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Abstract

Time-based diary surveys collect data over specified time intervals and impose a heavy re-

sponse burden. To reduce the effort of reporting, respondents may omit spells or may not

respond at all. Correspondingly, those surveys may suffer from underreporting and item-non-

response. Accordingly, survey estimatesmight bebiaseddownwards. Capture-recapturemeth-

ods (CRC) are used to estimate underreporting in the Dutch Road Freight Transport Survey

(RFTS). The heterogeneity of the vehicles concerning capture and recapture probabilities is

modeled through logistic regression and log-linear models. Six different estimators are dis-

cussed and compared. The obtained CRC estimates suggest considerable amounts of under-

reporting in the RFTS, although the levels are not surprising compared with findings of other

validation studies on underreporting in transport, mobility, and travel surveys. All estimators

applied yield larger point estimates than the RFTS, although the estimated amount of under-

reporting varies between the estimators. Linking sensor data to surveys and applying capture-

recapture techniques is a promising method to estimate underreporting in surveys. However,

the used sensor data are more suitable to complement the survey rather than replacing it.

The views expressed in this paper are those of the authors and do not necessarily reflect the

policies of Statistics Netherlands.
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1 Introduction

Nonprobability-based big data sources have become increasingly popular in social science re-

search and official statistics.1) Due to their unknown data generating processes, these data sets

are rarely used in the production of official statistics. However, in practice, it is often required

to use this kind of data to provide statistics cheaper and faster and to reduce response burden

(Buelens, 2012; Daas et al., 2015). In most cases, big data sources are partial observations of

one or a few variables of a subset of a population (Buelens et al., 2014). One important type

of big data is often produced and collected by sensors, which can be any device storing infor-

mation about physical elements and human behavior (Ganguly et al., 2009). Sensor data are

often not collected for research purposes (Connelly et al., 2016). Rather, the resulting data sets

are large, complex, and unsystematic. Finally, the data are often held by commercial agencies

(Schnell, 2019a). Nevertheless, the information the data hold should be utilized in the produc-

tion of official statistics (Citro, 2014; Lohr & Raghunathan, 2017). A current promising concept

seems to be the production of ‘multisource statistics’ (De Waal et al., 2017). For these con-

cepts, record linkage on a microlevel is an essential tool (Schnell, 2016), since big data sources

often contain only a few or no covariates, resulting in low information content.

When a sensor and a survey that independently measure an identical target variable can be

linked by a unique identifier and can be enhanced with administrative data, a maximum infor-

mation gain is achieved (Japec et al., 2015). In this case, the term ‘big data’ can be expanded to

‘identifiable big data’ (Shlomo & Goldstein, 2015). Hence, to evaluate the enhancement of sur-

vey data with administrative and big data, empirical research on linkable data sets is needed. In

this article, the Dutch Road Freight Transport Survey (RFTS), the weigh-in-motion (WIM) road

sensor data, the Dutch Vehicle Register (BVR), and the Dutch business register (BR) are linked

on a microlevel for analysis.

An important aim of the RFTS is to provide estimates of transported shipment weight at quar-

terly and annual intervals. Due to nonresponse and underreporting, a downward bias in the

RFTS point estimates is expected. We use WIM data to assess, quantify, and correct this bias

associated with estimates of the number of days on which transport occurred and the corre-

sponding transported shipment weights. The corrections are based on an application of CRC

techniques. These techniques were initially developed in ecology and biology to estimate (un-

known) population sizes. The RFTS and the WIM observations are considered as two capture

occasions. The BVR and BR provide covariates to model heterogeneity in the capture proba-

bilities both for RFTS and WIM. This application is a new example of multisource estimation in

official statistics.

2 Research Background

The number of surveys conducted has increased over the last decades (Singer, 2016), while

the nonresponse rates are increasing, too (Meyer et al., 2015). Furthermore, surveys put an

unnecessary burden on the respondent if the information of interest is accessible from other

1) This workingpaper is partially based on Klingwort et al. (2019a).
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data sets (Schnell, 2015; Miller, 2017). Especially, time-based diary surveys collect data on

specified time intervals and impose a heavy response burden. To reduce the effort of report-

ing, respondents may omit spells or may not respond at all. Correspondingly, those surveys

yield low response rates (Krishnamurty, 2008). Accordingly, survey estimates might be biased

downward due to ‘inaccurate reporting, nonreporting, and nonresponse’ (Richardson et al.,

1996). As will be shown, even in the case of a mandatory survey with a high response rate,

these problems cannot be neglected.

The RFTS is a mandatory time-based diary survey collecting data from truck owners on road

freight transport activities in a specifiedtime interval. In the past, transport, mobility, and travel

surveys were already subject to validation studies. For this purpose, GPS sensor data from

portable devices have been analyzed with a geographic information system (GIS). However,

these studies have important limitations. If no external sensor data can be linked to the survey,

the potential respondents must participate in a supplementary survey. This additional burden

results in low participation rates (Bricka&Bhat, 2006). Additional issues arise from the fact that

the data collection devices are connected to the survey unit (vehicle or person). In practice,

GPS devices cause problems due to intended or unintended switch off, delays due to standby

mode, battery issues, or the device not being carried.

Furthermore, the use of GPS devices in surveys is not suitable for all population members,

for example, the elderly or retired (Bricka et al., 2012). Finally, signal loss, signal noise, and

matching of GPS and survey data complicate accurate measurements (Shen & Stopher, 2014).

Instead, data based on local, permanently installed road sensors are used in our research to

validate and adjust survey estimates using CRC techniques. As a result of this, the problems

caused by respondent behavior, as discussed above, are avoided. However, the road sensors

used have different drawbacks (see section 3.2). To the best of our knowledge, road sensor

data have not been used for correcting surveys before.

2.1 Underreporting in Transport, Mobility, and Travel Surveys

In 1986, Hassounah et al. (1993) documented underreporting rates for a large-scale transporta-

tion survey in the United States varying regionally from 2.6% to 46.8%. Due to the technical

absence of GPS data, this study used cordon counts to estimate underreporting. In GPS vali-

dation studies, vehicles were equipped with GPS devices to track movements. In the first GPS

household travel survey (1997, United States), Pearson (2001) reported underreporting in trip

rates of 12.4% and 31.1%. The discrepancy is due to the definition of dwell times. These find-

ings were confirmed by Wolf et al. (2003), who reported rates of missed trips up to 42% in the

Californian Household Travel Survey. Bricka and Bhat (2006) summarized the levels of underre-

porting in GPS surveys in the United States and reported even higher rates up to 81%. Stopher

et al. (2007) reported contrary results for the Sydney Household Travel Survey (2004), where

only 7.4% of trips were missed. However, all non-recorded GPS trips due to technical issues

were excluded. In recent studies, Bohte and Maat (2009) concluded that GPS-/GIS-based re-

sults from 2007 are comparable to results from the 2006 Dutch Travel Survey. In contrast, Wolf

et al. (2013) reported for a regional household travel survey in the United States (2010/2011)

that GPS-based results showed higher trip rates.

Summarizing the results for transport, mobility, and travel surveys, there seem to be contrary

results, but underreporting in reported trips is likely. Therefore, the use of sensor data to assess

survey data quality and to validate and adjust biased survey estimates seems to be a promising

method.
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3 Data

3.1 SurveyData

The RFTS is conducted by Statistics Netherlands and is based on Eurostat (2016) guidelines. A

central objective of the mandatory survey is to collect data on the weight of the shipments

transported by Dutch trucks. Therefore, truck owners must report the days on which the truck

was used and the corresponding shipment weight. No report is required if the truck was not

used for transport purposes. The target population is the Dutch commercial vehicle fleet, ex-

cluding military, agricultural, and commercial vehicles older than 25 years. Furthermore, only

vehicles with a weight of at least 3.5 tons and at least 2 tons of load capacity are taken into

consideration. The sample is stratified by six variables (the type of transport, type of vehicle,

industry class, load capacity, age of the vehicle, size of vehicle fleet), resulting in 74 strata. For

each quarter of 2015, a separate sample is drawn and invited to the survey. A sampling unit

consists of a truck license plate and a specific week for which reporting is required. Hence, a

truck can be sampled more than once in 2015, but with different survey periods.

TheRFTS is conductedusing internet interviewing, postal interviewing, andquerying of software-

based journey planning systems. Large haulers use the latter. Especially, small companies re-

ceive a paper questionnaire. All other haulers and truck owners are contacted by a postal letter

and are invited to participate in a web survey.

The sample consists of 33,817 unique vehicle–week combinations. Of these, 3,597 cases are

classified as nonresponse, resulting in a response rate of 89.4%. The answer categories regard-

ing truck-related activities are the following: truck used (22,454), truck not used (5,304), and

truck not owned (2,462). The latter case is excluded from the analysis because the validity of the

response cannot be verified. This decision is due to quarterly updates of the BVR, complexity in

holding companies, vehicle rental, and vehicle leasing. However, in the case of this response,

the survey agency asks for the contact information of the current owner. If this information is

available, the current owner is contacted, and the new response replaces the initial response.

The answer category that the truck has not been used reduces the respondent’s burden consid-

erably since only small parts of the questionnaire must be answered. Nevertheless, choosing

this response fulfills the obligation to participate in the mandatory survey. It is expected to

find cases of underreporting due to nonresponse and misreporting by falsely responding that

the truck was not used. It is not possible to assess measurement errors due to the respondent

reporting wrong dates the truck was used in the survey period, or the respondent reporting

the wrong weight of the transported shipment.

3.2 Weigh-inMotionRoadSensor Data

The Dutch national road administration operates the WIM road sensor network. The purpose

of this system is to detect overloaded trucks using a dynamic measurement while trucks pass

the station. If there is suspicion of overloading, the truck is taken to a traffic checkpoint, and

a static weighting is done. In 2015, there were nine operating WIM systems. Each system

measured both directions (see Figure 3.1).

This network installation results in 18measurement points. For the analysis, the recorded vari-

ables are the date, front/rear license plate, total weight, axles pressure, and automated truck
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3.1 WIM road sensor network onDutch highways. Circles and crosses
indicate the 18 sensor systems onDutch highways.

classification. In 2015, a total of 35,669,347 trucks pass-by were recorded, of which 24,825,019

had a front license plate recognized by the WIM software system. Of those eligible, 3,733,064

records matched a truck from the survey using the front license plate as match variable, and

44,011 of the recorded trucks matched a truck in its corresponding survey period using the

combination of the time stamp (day) and front license plate as match variable. For each truck,

its axle weights are measured, and the total weight corresponds to the sum of the individual

axle weights. Based on Enright andOBrien (2011) and expert information from the road admin-

istration, a conditional mean imputation was applied to the measured axles weights to correct

for measurement errors. A deterministic error correction rule is used in this study. If the mea-

suredweight of an axle is greater than 20 tons, theweight of this axle is imputed by the average

weight of the remaining axles. If the weight ofmore than one axle exceeds 20 tons, the average

value of the remaining axles with a weight of fewer than 20 tons is used here, too. Due to 1,629

trucks having no axle weights stored in the data (the total weight is available), this rule could

not be applied to these cases. Sensitivity analysis of the deterministic correction showed that

choosing the threshold too small (≤ 15 tons) leads to a downward bias in the distribution of

the measured weight. For these cases and cases where trucks were driving outside the speed

interval [60, 120 km/h], the total weight was predicted using the technical characteristics from

the vehicle register (described in paragraph ‘Register data’). Therefore, a stepwise model se-

lection procedure based on the Bayesian information criterion (BIC) was applied (using the R

function ‘stepAIC’ of the MASS package by Venables and Ripley (2002)) to select a model for a

linear regression (𝑟2𝑎𝑑𝑗. = 0.54).

In 17,321 of the 44,011 matched trucks (see the Results section), the trailer weight could not

be linked to the WIM. This was due to the license plate not being recognized by the WIM soft-

ware system (11,341) or the trailer not being registered in the vehicle register (5,980). The

missing trailer weight was imputed with the mean of the empty trailer weight, conditional on

the automated classification of the truck, and its loading capacity. Since the total weight mea-

sured includes the entire unit (truck, trailer, and shipment), the truck and trailer weights were

subtracted using the weight information from the BVR. The resulting value corresponds to the
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transported weight, which is equal to the definition of reported weight in the RFTS. The calcu-

lation of the transported shipment weight resulted in 3,945 negative values. These values were

trimmed to 0 to not bias the estimate of the transported weight downward. Finally, an over-

all proportional bias correction was applied, calibrating the WIM-measured shipment weights

to those reported in the RFTS. The correction factor was obtained from the subset of vehicles

that were observed both in the RFTS and by WIM. This resulted in a down-scaling of the WIM

shipment weights by approximately 14%.

3.3 Vehicle andBusiness Register Data

The BVR and BR provide additional administrative data with information about technical truck

characteristics and specifics of the truck owners. Both data sets were linked one by one to the

RFTS and WIM data using the combination of license plate and the annual quarter as match

variable.

The BVR contains the covariates, truck equipment class, type of fuel, number of wheels, num-

ber of cylinders, horsepower, emission class, maximum mass of truck, mass of empty truck,

maximum mass of trailer, loading capacity, number of axles, width of truck, length of truck,

leasing status, status of owner (person or company), province in which the owner is located,

year of manufacture, and vehicle classification.

The covariates provided by the BR are the classification of economic activity (NACE), commer-

cial or own transport, classification of company size, the size of the vehicle fleet, and the total

fleet loading capacity. The variables of the BVR and BR will be used within the model selection

to find appropriate covariates for the CRC models. Observations with missing administrative

datawere excluded from the analysis. This decision explains the difference between the 44,011

matches and the 43,775 truck days in table 4.1).

4 Methods

4.1 Definitions andNotation

We define the indicator 𝛿
𝑠𝑣𝑦
𝑖,𝑗 , which takes the value 1 if vehicle 𝑖 has been on the road on day

𝑗 of its survey period according to the survey response, and the value 0 otherwise. Similarly,

we define 𝛿𝑠𝑒𝑛𝑖,𝑗 to be an indicator equal to 1 if vehicle 𝑖 is recorded by a WIM station on day 𝑗

and equal to 0 otherwise. We define Θ𝑖,𝑗 to be the weight of the shipment carried by truck 𝑖

on day 𝑗. If 𝛿
𝑠𝑣𝑦
𝑖,𝑗 = 1 we use the sum of reported shipment weights in the survey, otherwise if

𝛿𝑠𝑒𝑛𝑖,𝑗 = 1 we use the WIM shipment measurements as described in section 3.2. A vehicle can

be captured by WIM sensors multiple times a day, in that case, the maximum of the weights

measured at these occasions is taken. If the vehicle is recorded only once, simply the weight

measured on that occasion is used.
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4.2 Survey Estimates

The regular, published statistics from the RFTS are post-stratification estimates. Survey weights

are calculated, taking the survey design into account and correcting for selective nonresponse

(Centraal Bureau voor de Statistiek, 2017). The regular survey estimators for the total of𝐷 and

𝑊 are defined as �𝐷𝑆𝑈𝑅𝑉 and �𝑊𝑆𝑈𝑅𝑉 and estimated by

𝐷̂𝑆𝑈𝑅𝑉 =

𝑟

�

𝑖=1

�𝑤𝑖

7

�

𝑗=1

𝛿
𝑠𝑣𝑦
𝑖,𝑗 � (1)

with𝑤𝑖, the surveyweight for vehicle 𝑖 and 𝑟 the number of respondents. The post-stratification

estimator for the total transported weight is given by

𝑊̂𝑆𝑈𝑅𝑉 =

𝑟

�

𝑖=1

�𝑤𝑖

7

�

𝑗=1

𝛿
𝑠𝑣𝑦
𝑖,𝑗 Θ𝑖,𝑗�. (2)

The𝑤𝑖 are based on the initial post-stratification weights𝑤
+
𝑖 (technical name “Ophoogfactor”)

that correct for selective nonresponse

𝑤+
𝑖∈ℎ = 13

𝑁+
ℎ

𝑟ℎ
, (3)

where𝑁+
ℎ is the number of vehicles in post-stratum ℎ including vehicles not owned and 𝑟ℎ the

number of respondents in post-stratum ℎ excluding vehicles reported not owned. The factor

13 scales up from one survey reporting week to the quarter. These initial post-stratification

weights have been developed and before. The weighting itself is not part of this research.

Since vehicles not owned are excluded from the analysis and the sample is defined as the study

population, the 𝑤+
𝑖 were scaled to

𝑤𝑖 = 𝑤+
𝑖

𝑛

∑
𝑟
𝑖=1𝑤

+
𝑖

, (4)

so that ∑
𝑟
𝑖=1 = 𝑛, with 𝑛 being the number of vehicles in the sample, excluding vehicles not

owned. Bootstrap estimates will be used for comparison with CRC methods. This is due to

the truck days and shipment weights being clustered by trucks and not being independent and

identically distributed.

In addition, we complement the survey observations with WIM observations resulting in an

extended survey estimator,

𝐷̂𝑆𝑈𝑅𝑉𝑋 =

𝑟

�

𝑖=1

�𝑤𝑖

7

�

𝑗=1

𝛿
𝑠𝑣𝑦
𝑖,𝑗 ∨ 𝛿𝑠𝑒𝑛𝑖,𝑗 � (5)
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𝑊̂𝑆𝑈𝑅𝑉𝑋 =

𝑟

�

𝑖=1

�𝑤𝑖

7

�

𝑗=1

(𝛿
𝑠𝑣𝑦
𝑖,𝑗 ∨ 𝛿𝑠𝑒𝑛𝑖,𝑗 ) Θ𝑖,𝑗�. (6)

4.3 Capture–recapture Techniques

Capture-recapture techniques (CRC) were originally developed to estimate the unknown size

of an animal population (International Working Group for Disease Monitoring and Forecasting,

1995). These techniques were transferred to human populations and are frequently used in

social and medical research to address undercounts in censuses, to estimate unknown pop-

ulation sizes, or to estimate the incidence of a disease (Böhning et al., 2017). The biological

procedure, using traps to (re)-capture animals, is replaced by using at least two datasets con-

taining elements of the target population. With two datasets 𝐴 and 𝐵 available, in the first

capture occasion elements are captured and marked. On the second occasion, elements get

recaptured. The overlap of both capture occasions are the elements captured twice. Trans-

ferred to the present study, the first capture occasion is the RFTS, where trucks are considered

as being captured and marked on specific days in the survey period (𝑛1 = ∑
𝑖,𝑗 𝛿

𝑠𝑣𝑦
𝑖,𝑗 ). The sec-

ond capture occasion is the WIM data, where (𝑛2 = ∑
𝑖,𝑗 𝛿

𝑠𝑒𝑛
𝑖,𝑗 ) trucks are recorded on specific

days in the survey period, of which (𝑚2 = ∑
𝑖,𝑗 𝛿

𝑠𝑣𝑦
𝑖,𝑗 ∧ 𝛿𝑠𝑒𝑛𝑖,𝑗 ) are recaptured.

4.4 Capture–recaptureAssumptions

In the present study the population is assumed to be closed. There are no elements entering

or leaving the population, making the unknown population size a constant. This assumption is

justified, since a sample is observed and that sample does not change (no vehicles leave or enter

the sample after it was drawn). Furthermore, all elements used in this analysis belong to the

population, as only Dutch trucks are in the RFTS and the Dutch trucks in WIM can be identified

by their license plate. The assumption of perfect linkage ismet for trucks recognized by theOCR

software as they can be linked one-by-onewith their unique identifier of license plate and date.

Since the OCR software failed occasionally to properly recognize a license plate, there might be

more trucks which have been recorded in the survey period. Moreover, the inclusion of a truck

being in the RFTS is independent of the same truck being recorded by aWIMstation (Chao et al.,

2001). Finally, the capture probabilities for the elements should be homogeneous. However, it

is sufficient if the homogeneity in capture probabilities is given for at least one dataset (Van der

Heijden et al., 2017). In the present study the capture probabilities in the RFTS and WIM are

modeled using covariates. Since the RFTS is a random sample survey, homogeneity conditional

on the stratification variables can be assumed. By contrast, the inclusion of trucks in WIM is

non-probabilistic.

4.5 Lincoln–Petersen Estimator

The Lincoln-Petersen estimator (Lincoln, 1935; Petersen, 1893), also known as dual-system es-

timator (Wolter, 1986), assumes homogeneous capture probabilities for all elements within

every dataset. The Lincoln-Petersen estimator estimates the population sizes of (𝐷) and (𝑊)

by
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𝐷̂𝐿𝑃 =
∑
𝑖,𝑗 𝛿

𝑠𝑣𝑦
𝑖,𝑗 ∑

𝑖,𝑗 𝛿
𝑠𝑒𝑛
𝑖,𝑗

∑
𝑖,𝑗 𝛿

𝑠𝑣𝑦
𝑖,𝑗 ∧ 𝛿𝑠𝑒𝑛𝑖,𝑗

, (7a)

𝑊̂𝐿𝑃 =
(∑𝑖,𝑗 𝛿

𝑠𝑣𝑦
𝑖,𝑗 Θ𝑖,𝑗)(∑𝑖,𝑗 𝛿

𝑠𝑒𝑛
𝑖,𝑗 Θ𝑖,𝑗)

∑
𝑖,𝑗(𝛿

𝑠𝑣𝑦
𝑖,𝑗 ∧ 𝛿𝑠𝑒𝑛𝑖,𝑗 ) Θ𝑖,𝑗

. (7b)

The estimator 𝑊̂𝐿𝑃 considers the transported shipment weights on each truck day rather than

the observation counts. In this research, bootstrap variance and confidence interval estimates

are used to account for the dependency between vehicle and weight of the transported ship-

ment.

4.6 LogitModel

Huggins (1989) and Alho (1990) proposed a likelihood approach, which is conditioned on the

captured elements, to model heterogeneity in capture probabilities using covariates. The cap-

ture probabilities for each element on each occasion are modeled using a linear logistic model.

Covariates are used to model 𝑃𝑠𝑖𝑗 and 𝑃
𝑤
𝑖𝑗 , which are the capture probabilities for the RFTS and

WIM, respectively.

𝐷̂𝐻𝑈𝐺 =�

𝑖,𝑗

1

𝜓̂𝑖𝑗
(8a)

𝑊̂𝐻𝑈𝐺 =�

𝑖,𝑗

1

𝜓̂𝑖𝑗
Θ𝑖,𝑗 (8b)

with

𝜓̂𝑖𝑗 = 1 − (1 − 𝑃̂
𝑠𝑣𝑦
𝑖𝑗 )(1 − 𝑃̂𝑠𝑒𝑛𝑖𝑗 ) (9)

the estimated probability to be captured at least once, and 𝑃̂
𝑠𝑣𝑦
𝑖𝑗 and 𝑃̂𝑠𝑒𝑛𝑖𝑗 the model predic-

tions of the capture probabilities in the RFTS and WIM respectively.

4.7 Log-LinearModel

Fienberg (1972) introduced Log-linear models for population size estimation in closed popu-

lations. Two datasets A and B form a 𝐴 × 𝐵 contingency table with a cell representing the

counts of elements that are never observed. The count of this cell can be estimated by fitting

a log-linear model to the incomplete contingency table.

The following is based on Coumans et al. (2017) and uses the notation of log-linear models by

Bishop et al. (1975):
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𝑙𝑜𝑔 𝑚𝑎𝑏 = 𝜆 + 𝜆𝐴𝑎 + 𝜆𝐵𝑏 + 𝜆𝑋𝑥 + 𝜆𝐴𝑋𝑎𝑥 + 𝜆𝐵𝑋𝑏𝑥 + 𝜆𝑌𝑦 + 𝜆𝐴𝑌𝑎𝑦 + 𝜆𝐵𝑌𝑏𝑦 . (10)

The parameters 𝜆𝐴𝑋𝑎𝑥 , 𝜆
𝐵𝑋
𝑏𝑥 , 𝜆

𝐴𝑌
𝑎𝑦, and 𝜆

𝐵𝑌
𝑏𝑦 are the interaction terms between the datasets𝐴 and𝐵

and the covariates 𝑋 and 𝑌, respectively. The independence assumption between the datasets

𝐴 and𝐵 is now conditioned on the covariates. For every level of the included covariates, a sub-

population size is estimated, which in sum gives the total population size. This method is used

to estimate 𝐷̂𝐿𝐿 and 𝑊̂𝐿𝐿. The latter estimator is obtained using the weight of the transported

shipment as the dependent variable in the models rather than cell counts.

4.8 Model Selection

To select appropriate covariates to fit the logit and log-linear models, a stepwise selection pro-

cedure based on the Bayesian Information Criterion (BIC) is used (using the stepAIC function of

the MASS-package by Venables and Ripley (2002)). To cover the full information of the covari-

ates, the model selection is based on the logit model, since the log-linear model only allows

for categorical variables. All of the selected variables were used in the logit-model, whereas

only five variables with themost explanatory power of bothmodels were used in the log-linear

model. For that purpose, the continuous covariates were categorized based on their quantiles.

Using 𝛿
𝑠𝑣𝑦
𝑖,𝑗 as dependent variable, the finally chosen independent variables for the logit-model

were classification of economic activity (NACE), classification of company size, total fleet load-

ing capacity, number of wheels, horsepower, maximum mass of truck, mass of empty truck,

maximum mass of trailer, status of owner (person or company), and province in which the

owner is located.

Using 𝛿𝑠𝑒𝑛𝑖,𝑗 as dependent variable, the finally chosen independent variables for the logit-model

were classification of economic activity (NACE), commercial or own transport, classification of

company size, size of the vehicle fleet, total fleet loading capacity, truck equipment class, type

of fuel, horsepower, mass of empty truck, maximum mass of trailer, number of axles, width

of truck, length of truck, status of owner (person or company), province in which the owner is

located, year of manufacture, and vehicle classification.

Accordingly, the variables selected for the log-linear model were classification of economic

activity (NACE), commercial or own transport, classification of company size, size of the vehicle

fleet, total fleet loading capacity, number of wheels, and horsepower.

4.9 Variance Estimation

Bootstrapping is typically used to obtain variance estimates of model-based methods (Efron,

1979; Efron & Tibshirani, 1994). For consistency and comparability, we computed bootstrap

variance estimates for all estimators discussed. As mentioned earlier, this accounts for the

cluster effects in the data, due to the trucks being the sampling units and not the truck days.

Hence, there are more truck days then sampling units. Further, the weight of the transported

shipment is clustered in trucks.

Bootstrap samples are obtained from the original RFTS sample of trucks by simple random sam-

pling with replacement. A bootstrap data set for estimation purposes consists of all records,
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both RFTS and WIM, that are available for the vehicles in the bootstrap sample. When the

same vehicle is drawn more than once, all its associated records are repeated the number of

times the vehicle occurs in the bootstrap sample.

The mean of the bootstrap distribution is computed to ascertain that the bootstrap procedure

is unbiased. The variance of the bootstrap distribution is used as a variance estimate. The

0.025% and 0.975% quantiles of the bootstrap distribution are used to estimate the lower and

upper boundaries of the 95% confidence intervals.

4.10 Linking Survey andSensor Data

Table 4.1 shows the truck days of the matched RFTS and WIM. There were 94,338 truck days

reported in the RFTS. 43,775 truck days were captured in the WIM, of which 34,131 were re-

ported in the RFTS. On 9,644 days, there were no reported trips in the RFTS, but trucks were

recorded at a WIM station. On 60,207 days, there were reported trips in the RFTS, but nothing

was captured in the WIM.

4.1 Captures of TruckDays in RFTS andWIM

𝐷 Sensor

Survey recorded not recorded ∑

reported 34,131 60,207 94,338

not reported 9,644 ? ?

∑ 43,775 ? ?

Table 4.2 shows the matched data sets as well, but the cells include the transported shipment

weight in kilotons (kt) on the reported truck days. In the RFTS, 953.71 kt were reported. In the

WIM, 475.96 kt were captured in the WIM, of which 376.83 kt were reported in the RFTS. In

the WIM, 99.13 kt were measured but were not reported in the RFTS. In the RFTS, 576.88 kt

were reported, which were not captured in the WIM.

4.2 Captures of Transported ShipmentWeight (in kt) in RFTS andWIM

𝑊 (in 𝑘𝑡) Sensor

Survey recorded not recorded ∑

reported 376,83 576,88 953,71

not reported 99,13 ? ?

∑ 475,96 ? ?

5 Results

All estimators show considerable amounts of underreporting for truck days (Table 5.1; Figure

5.1, left panel) and transported shipment weight (Table 5.1; Figure 5.1, right panel). Figure 5.1

shows the six different estimates by estimator and the sampling variance for all estimators esti-

mated by bootstrapping (3,000 bootstrap samples). The estimated amount of underreporting

varies between the estimators, but a similar pattern in the amount of underestimation is found

for both two target variables.
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5.1 RFTS and CRC estimates for𝐷 and𝑊 (in kt), bootstrappedmean,
standard error, confidence interval, and underestimation

Estimator Point Bootstrap Bootstrap Bootstrap Estimated

estimate mean standard error confidence interval underestimation (in %)

𝐷̂𝑆𝑈𝑅𝑉 101,390 101,399 395.96 [100,643; 102,197] –

𝐷̂𝑆𝑈𝑅𝑉𝑋 107,666 107,672 380.66 [106,923; 108,441] 5.83

𝐷̂𝐻𝑈𝐺 109,439 109,440 244.73 [108,975; 109,926] 7.35

𝐷̂𝐻𝑈𝐺𝑖𝑛𝑡 109,882 109,885 246.86 [109,412; 110,376] 7.73

𝐷̂𝐿𝑃 120,994 120,996 363.75 [120,304; 121,723] 16.2

𝐷̂𝐿𝐿 125,954 126,034 737.46 [124,673; 127,577] 19.5

𝑊̂𝑆𝑈𝑅𝑉 965.30 965.23 8.20 [ 949.33; 965.30] –

𝑊̂𝑆𝑈𝑅𝑉𝑋 1,026.83 1,026.69 8.37 [1,009.94; 1,043.53] 5.99

𝑊̂𝐻𝑈𝐺 1,108.58 1,108.36 8.32 [1,091.65; 1,124.37] 12.92

𝑊̂𝐻𝑈𝐺𝑖𝑛𝑡 1,112.59 1,112.40 8.34 [1,095.52; 1,128.38] 13.24

𝑊̂𝐿𝑃 1,204.60 1,204.38 9.14 [1,185.83; 1,221.89] 19.87

𝑊̂𝐿𝐿 1,216.85 1,217.40 9.74 [1,197.73; 1,236.08] 20.67

The amount of underestimation for the extended survey estimator 𝐷̂𝑆𝑈𝑅𝑉𝑋 is about 6%. Both

conditional likelihood estimators 𝐷̂𝐻𝑈𝐺 and 𝐷̂𝐻𝑈𝐺𝑖𝑛𝑡 show amounts of underestimation about

7%. Using covariates to did not have a substantial effect on the estimate. The full likelihood

estimators 𝐷̂𝐿𝑃 and 𝐷̂𝐿𝐿 show about 16% and 20% underestimation, respectively. In the case

of the full likelihood estimators, the covariates had a more substantial effect on the estimates.

The reported standard errors are likely too small andwould probably be larger using the specific

formulas of the estimators.

The naive extended survey estimator 𝑊̂𝑆𝑈𝑅𝑉 also shows an amount of underestimation in the

RFTS from about 6%. Both conditional likelihood estimators 𝑊̂𝐻𝑈𝐺 and 𝑊̂𝐻𝑈𝐺𝑖𝑛𝑡 show about

13% underreporting in the RFTS. Again, the covariates did not have a large effect on the con-

ditional likelihood estimates. The largest amount of underestimation in the RFTS is obtained

by the full likelihood estimators 𝑊̂𝐿𝑃 and 𝑊̂𝐿𝐿. Here, the amount of underestimation is about

20% (𝑊̂𝐿𝑃) and 21% (𝑊̂𝐿𝐿).
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5.1 Bootstrap estimates of the six estimators for𝐷 and𝑊 (in kt). The solid
black dotwithin each box shows the point estimates based on the
original data
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5.1 BootstrapDiagnostics

Bootstrap diagnostic showed a similar overall pattern for both target variables and all applied

estimators, for the point estimator as well as for the upper and lower limits of the confidence

interval. This also holds for the estimators with the largest standard error 𝐷̂𝐿𝐿 as well as for

the estimator with the smallest standard error 𝐷̂𝐻𝑈𝐺 and equally for 𝑊̂𝐿𝐿 and 𝑊̂𝑆𝑈𝑅𝑉. Figure

5.2 shows the convergence of 𝐷̂𝐿𝐿 and 𝑊̂𝐿𝐿. The point estimate is stable after 1,000 bootstrap

iterations. The upper and lower limits of the bootstrapped confidence intervals limits take

more iterations to converge.
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5.2 Convergence of the 3,000 bootstrap iterations for the number of truck
days and the transported shipmentweight

5.2 Stratification

Motivated by the work from Darroch (1961), Plante et al. (1998), all estimators are applied in

a stratified manner. This approach aimed not only to answer content-related questions but

rather to evaluate the flexibility as well as the limitations of the applied estimators. The RFTS

respondents and nonrespondents constitute the population under study. For stratification,

the population under study is divided into 𝐻 strata. Within each stratum, 𝐷̂ℎ, 𝑊̂ℎ, and the

most likely amount of underreporting will be estimated. The stratified CRC estimates showed

partially slightly larger amounts of underestimation in the RFTS, for example, for smaller com-

panies and vehicles driving not for commercial purposes. However, the stratified approach also

revealed the limitations of the CRC estimators when strata are small or only few captures are

present within strata (Klingwort et al., 2018).

5.3 Simulation

It is not possible to assess measurement errors due to the respondent reporting wrong dates

the truck was used in the survey period, or the respondent reporting the wrong weight of the

transported shipment. Such errors are likely due to satisficing, digit-preference, and memory

errors (Krosnick, 1991; Schnell, 2019b). The RFTS responses constitute a substantial part of the

unique identifier to link the survey and sensor data. Accordingly, the CRC estimates rely among

the WIM observations on the RFTS responses. Hence, errors in the reported truck days influ-

ence the obtained estimates for 𝐷̂ and 𝑊̂. To evaluate the robustness and sensitivity of the

obtained estimators towards systematic response errors, a simulation study was conducted.

Two systematic respondent-driven error patterns were simulated. One is considered as an un-

derreporting and the other as an overreporting error. The considered overreporting error as-

sumes too much being reported in the RFTS, and the underreporting error assumes too few

being reported in the RFTS. Klingwort et al. (2019b) showed that both unconditional likelihood

estimators are robust against overreporting errors and sensitive to underreporting errors.

CBS | CBDS Working paper | January 2020 15



5.4 Summary

All applied CRC estimators show considerable amounts of underreporting in the RFTS. The lev-

els are not surprising compared with the findings of other validation studies on underreporting

in transport, mobility, and travel surveys (see section 2.1). It is recommended relying on the

log-linear model for estimating truck days and transported shipment weight. First, it is based

on the full likelihood, whereas the logit models are conditional likelihood approaches. Second,

it takes heterogeneity in the trucks related to capture and recapture probabilities into account,

whereas the Lincoln–Petersen estimator assumes homogeneity.

6 Discussion

Linking sensor data to surveys and applying capture-recapture techniques is a promisingmethod

to estimate underreporting in questionnaires. Note that the sensor data are used to comple-

ment rather than replace the survey data. Implementing themethod in the Dutch Road Freight

Transport Survey is, however, hampered by several issues. First, the sensors do not recognize

every license plate on the front and/or back of the vehicles. If this failure is selective, there

could be a selection bias in the sensor data. This selection bias could affect the amount of un-

derreporting both up and downwards, depending on the selectivity of failure. Second, some

trucks were used in the analysis for which no report in the RFTS would have been required, for

example, when driving for maintenance, fuel, signposting, etc. Third, there is a trend to move

from road sensors to on-board sensors, which compromises the quality and accessibility of the

WIM sensor data in the future.

7 Conclusion

The application demonstrates that road sensor data can potentially be used to assess underre-

porting in the Road Freight Transport Survey. More generally, big data can complement survey

data in the production of official statistics to estimate bias in survey point estimates by com-

bining survey, administrative, and sensor data with capture-recapture techniques. Themethod

presented here applies to any validation study and not only to transport surveys, as long as dif-

ferent sources can be linked on a micro-level using a unique identifier.

The presented application is currently not considered to be implemented in connection with

the Road Freight Transport Survey. Nonetheless, there are possibilities for further research.

For example, a replication study with the same data for other years or the same method using

different data sources. For example, finding other big data sources inwhich signals are recorded

that could validate survey questions. Questions about facts or actual behavior would qualify

sooner than questions about opinions and attitudes. Moreover, a simulation study would be

useful to investigate how sensitive the method is to linkage errors.
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