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1. Introduction 

The measurement of house prices is a challenging area for statistical agencies. They are 

often faced with severe data limitations and there are several difficult conceptual issues 

involved. Some of those measurement issues, for example adjusting for quality changes, 

are also encountered in the compilation of producer price indexes and the Consumer 

Price Index (CPI). But a number of other issues, while not entirely unique to housing, 

may be less familiar to index practitioners. One such issue is the distinction between a 

price index for the stock of houses – or more generally for a stock of assets – and a price 

index for houses that are acquired. The latter index can be separated into indexes for 

newly-built houses and second-hand houses, similar to what is being done in the CPI for 

durable goods like cars. 

Statistics Netherlands participates in a Eurostat pilot study on the treatment of 

owner-occupied housing in the Harmonised Index of Consumer Prices (HICP). The aim 

is to compile price indexes for both newly-built and second-hand (re-sold) houses and 

ultimately incorporate them into the HICP using the ‘net acquisitions approach’.1 This 

approach means that second-hand houses exchanged between households are excluded. 

The number of second-hand dwellings purchased from outside the household sector is 

typically quite small in most countries, as will be the weight in the HICP. To meet user 

needs, Eurostat has decided to broaden the scope of the pilot study. Makaronidis and 

Hayes (2006) note that “While the net acquisitions approach is maintained, the intention 

is now to produce wider housing price indices, ones which will serve the needs of the 

HICP but also the needs of those users whose main interest is in dwelling price indices 

per se”. In particular, a self-standing price index should now be compiled for all houses 

purchased, including second-hand houses exchanged between households. 

In the present paper, however, we focus primarily on the compilation of an index 

that measures the price change of the total stock of owner-occupied houses. This has an 

advantage in its own right: a price index for the housing stock is presumably what the 

general public understands by a house price index. As most existing houses are not sold 

during a certain short time period, it is the market value of the property that should be 

                                                      
1 The user-cost approach is an alternative approach for incorporating owner-occupied housing into a CPI. 
A third method, the rental equivalence approach, is applied in the Dutch national CPI. For a discussion of 
the different approaches, see Diewert (2003). 



 2

observed. By definition, the market value equals the sale price in case a house is sold. 

Market values must be estimated for houses that have not been sold. The market value, 

whether observed or estimated, is usually called the ‘price’. 

There are a number of methods for constructing house price indexes. Some use 

simple summary measures like the mean or median price. More sophisticated methods 

such as hedonic and repeat-sales approaches, employ regression analysis. Each method 

has its own advantages and weaknesses, which are documented extensively elsewhere; 

see e.g. Hansen (2006) for the Australian case. A major practical drawback of hedonic 

methods is that the characteristics of the sampled houses must be available to adjust for 

quality (mix) changes. In that respect the repeat-sales method has a distinct advantage;2 

only price changes of houses that were sold more than once enter the regression so that 

matched pairs of houses are compared over time. 

Bourassa et al. (2006) present an alternative approach to measuring house price 

changes, referred to as the sale price appraisal ratio (SPAR) method. The SPAR method 

has been used in New Zealand, Sweden and Denmark for quite some time,3 and is now 

also being used in the Netherlands. Like the repeat-sales approach, the SPAR method is 

based on matched pairs but in contrast uses (nearly) all price data that is available for 

the current period. Since the majority of the houses sold during the current period have 

not been sold during an earlier base period, base period sale prices are generally lacking. 

Those prices are therefore estimated using official valuations or appraisals. According 

to Bourassa et al. (2006) “the advantages and the relatively limited drawbacks of the 

SPAR method make it an ideal candidate for use by government agencies in developing 

house price indexes”. Unfortunately the authors present the SPAR method – or rather an 

estimator of the period-to-period change in the index – without discussing it from an 

index number or statistical perspective. Several questions arise. Is the SPAR method 

aiming at a price index of the housing stock? Given the target, what assumptions are 

needed to derive the SPAR estimator, and what are its statistical properties? This paper 

addresses these and related questions. 

                                                      
2 The repeat-sales technique was originally developed by Bailey et al. (1963) and has been further refined 
by Case and Shiller (1987), among others. See also Thibodeau (1997). 

3 The Swedish and Danish indexes are compiled by the national statistical agencies as part of their real 
estate statistics program. In New Zealand the SPAR index is produced and published by Quotable Value, 
a valuation and property information company. 
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In a broad sense two types of SPAR indexes can be distinguished, a weighted 

one and an equally weighted or unweighted one. The former is called a value-weighted 

index in the housing economics literature because the price indexes of the individual 

dwellings are implicitly weighted by their base period prices (values). In Section 3 we 

show that this index can, under a number of simplifying assumptions, be interpreted as 

an estimator of the price index (value index) for the stock of houses in a certain base 

period. In order to fully understand this index we will start by presenting in Section 2 a 

simple, though infeasible, estimator. Section 4 goes into the unweighted SPAR method. 

Here we discuss the choice between taking the arithmetic or the geometric mean of the 

individual price indexes. To gain further insight, Section 5 compares the unweighted 

geometric SPAR index with the hedonic time dummy variable index. Section 6 focuses 

on the lack of consistency in aggregation of the SPAR price indexes for sub-sets of the 

housing stock. Section 7 contains a discussion of the treatment of new and disappearing 

houses. In Section 8 we provide an alternative, expenditure-based interpretation of the 

value-weighted SPAR index and outline how a stratified value-weighted SPAR index 

can be constructed that most likely meets Eurostat requirements. Section 9 provides an 

overview of the data we used to compile weighted and unweighted SPAR price index 

numbers for the Netherlands. In Section 10 empirical results are presented, including a 

comparison with the repeat-sales price index that has been published by the Dutch land 

registry office until January 2008. Section 11 concludes. 

2. A Simple Estimator of the Value Index of a Fixed Housing Stock 

In general the choice of index number formula is an important issue. In price indexes 

like the CPI the price relatives must be weighted according to the economic importance 

of the goods (their value shares), and a symmetric treatment of the comparison period t 

and the base period 0 is preferable. For the construction of an index that aims at tracking 

the value of the stock of houses those issues are not equally important. Here, the target 

more or less automatically determines the index number formula to be used, the more so 

because every house is a unique asset, which implies that quantities do not play a role. 

This is particularly true if, as we assume for now, the housing stock is fixed over time. 

We will return to this issue in Section 7 where the assumption of a fixed stock of houses 

will be relaxed. 
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Let s
ip  denote the price (market value) of house i in period s (s= 0,t) and let 0U  

be the total population of owner-occupied houses or housing stock, which is assumed 

fixed, in the base period with size 0N . Hence, the average price in period s (s= 0,t) is 

defined as ∑∈
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The second expression on the right-hand side of equation (1) shows that t
WP  is a value-

weighted index. In the standard index number literature price index formulas are usually 

named after their ‘inventors’, and t
WP  is called a Dutot index. One might alternatively 

refer to (1) as a Laspeyres price index in which all quantities are equal to 1 because each 

house is a unique property. 

The question arises how to estimate t
WP  when not all data is available. Suppose 

that in period 0 and period t independent random samples have been drawn from the 

population 0U , say 0S  and tS  with size 0n  and tn , for which we know the transaction 

or sale prices in both periods. Since (1) is a ratio of average prices (market values) in the 

population, the ratio of the sample averages ∑∈
= sSi

ss
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ss npSp /)(  (s= 0, t) is a natural 

estimator: 
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The use of (2) is problematic for three reasons. First, t
WP
)

 most likely has a high standard 

error. Second, t
WP
)

 is not unbiased; its expected value )( t
WPE
)

 differs from the target t
WP . 

Third, there may be very few matched pairs and the problem of dealing with changes in 

the average quality of the sampled houses arises. Below we will discuss those problems 

in some detail. 

In the Appendix approximating formulas for the bias and sampling variance of 
t

WP
)

 are derived based on Taylor series expansions. Still assuming that 0S  and tS  are 

independent random samples we obtain 
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and 
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In practice the values of (3) and (4) may well turn out to be large. Nevertheless t
WP
)

 is 

actually used in some countries.4 

As a consequence of independent sampling the set of houses belonging to both 
0S  and tS , i.e. the set 0SS t ∩  of matched pairs, might be small or even empty, so that 

both 0
ip  and t

ip  will be known for a few houses only or for none at all. This situation of 

‘missing prices’ is generally viewed as a problem of changes in the quality mix: if the 

set of sampled houses differs between two periods then the average quality will differ 

also. The conventional way of looking at this problem is that the price index should be 

adjusted for compositional change or changes in the quality mix, for example by using 

hedonic regression. Yet, above all things it is a sampling problem, or at least it can be 

interpreted as such: in the housing stock 0U  – where new and disappearing houses are 

excluded by assumption – changes in the quality mix do not occur. Put differently, the 

quality mix bias can be viewed as a part of the bias given by expression (3): the problem 

diminishes with an increasing sample size and vanishes if the whole population would 

be observed. 

Suppose we knew the prices t
ip  in the comparison period t as well as the base 

period prices 0
ip  for all houses in the sample tS . This assumption is totally unrealistic, 

but it helps to gain a better understanding of the SPAR method. Now we can estimate 
t

WP  using price observations from tS  only: 

)(
)(

/

/

00 t

tt

Si

t
i

Si

tt
i

t
W Sp

Sp
np

np
P

t

t
==

∑
∑

∈

∈
(

,         (5) 

where ∑∈
= tSi

t
i

t npSp /)( 00 . Obviously, the problem of quality mix change no longer 

exists. Note that the set tS  constantly changes over time. Unlike most samples used for 

                                                      
4 Before the introduction in May 2005 of the repeat-sales price index the Dutch land registry published 
this type of index for flats and single-family dwellings. The Australian Bureau of Statistics (ABS) applies 
the ‘naive’ estimator combined with detailed stratification to control for compositional change in its price 
index for established houses (ABS, 2005). 
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official price indexes, tS  is not a panel that is kept fixed as much as possible. As we do 

not know a priori which houses will be sampled, the base period prices for all 0Ui∈  

must be available. The bias and variance of t
WP
(

 can now be approximated by (see again 

the Appendix) 
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It should be clear that the potentially large bias and variance are reduced considerably in 

this case. In each period t
WP
(

 is based on a single sample ( tS ) and since 0
ip  and t

ip  will 

generally be highly positively correlated, the covariance term ))(),(cov( 0 ttt SpSp  most 

likely has a large positive value. The bias associated with ratio estimators such as (5) is 

called small sample bias. It decreases as the sample is enlarged (that is, the estimator is 

consistent) and can be neglected in practice, provided that the sample size is sufficiently 

large. 

The assumption of known base period sale prices is one of the biggest practical 

problems of t
WP
(

. In reality those prices will be observed for a limited number of houses 

belonging to tS . A solution might be to estimate the ‘missing’ base period prices using 

a model-based approach that incorporates auxiliary data. The SPAR method is based on 

this idea. 

3. The Value-Weighted SPAR Method 

Replacing the true but largely unobserved base period prices (market values) 0
ip  in the 

denominator of (5) by model-based estimates 0ˆ ip  yields an alternative estimator: 
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in which ∑∈
= tSi

t
i

t npSp /ˆ)(ˆ 00 . While for some sampled houses the base period sale 

prices may be available, for reasons of consistency and practicality it seems preferable 

to use the estimated prices for those houses as well. 

A requirement that must be met for every price index is that it takes on the value 

of 1 if all prices remain unchanged between the base period and the comparison period. 

According to the axiomatic approach to index number theory the index then satisfies the 

identity test (ILO et al., 2004). This test should not only hold for the target index t
WP  

but for estimators thereof as well. Notice that estimator (5) satisfies the identity test. To 

ensure that the model-based estimator (8) also satisfies this test, in other words to attach 

a value of 1 to t
WP̂  in the base period ( 1ˆ 0 =WP ), we impose the following restriction: 
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Suppose next that the base period prices are estimated using a regression model. 

For simplicity we restrict ourselves here to the linear model 0000
ik ikki xp εβα ++= ∑  

(for all 0Ui∈ ), where ikx  denotes the k-th explanatory variable (k= 1,…,K) and 0
kβ  the 

corresponding parameter; 0
iε  is a disturbance term with 0)( 0 =iE ε . This model can be 

estimated by Ordinary Least Squares (OLS) regression on the data of the base period 

sample 0S , yielding estimated parameters (coefficients) )(ˆ 00 Sα  and )(ˆ 00 Skβ . In case 

of OLS, restriction (9) will be satisfied since the residuals 00ˆ ii pp −  sum to zero using a 

model that includes an intercept term ( 0α ). The predicted base period prices for tSi∈  

are ∑+=
k ikki xSSp )(ˆ)(ˆˆ 00000 βα . Thus, the average estimated base period price for the 
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Estimator t
AWP )(

ˆ  has some drawbacks too. We have assumed that the regression 

model holds for all 0Ui∈ . However, the OLS estimators are unbiased, conditional on 

the data pertaining to the base-period sample 0S  from which the model is estimated. 

Predicting (base period) prices for houses belonging to the current-period sample tS  

may give rise to biased results. Another problem has to do with the choice of regression 
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model. If we wish to have a model that explains house prices as accurate as possible, 

attributes of the houses would be needed. Since we explicitly want to avoid hedonics, 

other auxiliary variables must be found. Government appraisals might be a satisfactory 

alternative because we expect them to have substantial power to predict market prices. 

Suppose that appraisals 0
ia  are available for all houses belonging to 0U . Then we could 

postulate the following descriptive model: 000
iii ap εμγ ++= . Estimating this model on 

the data of 0S  using OLS produces predicted base period prices 0000 )(ˆ)(ˆˆ ii aSSp μγ += . 

Substituting those into expression (8) for all tSi∈  and denoting the average appraisal 

value in tS  by ∑∈
= tSi

t
i

t naSa /)( 00  gives 
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An objection one might raise against t
BWP )(

ˆ  is that the regression line should pass 

through the origin because if 00 →ia  we also expect 00 →ip .5 The model should thus 

be re-formulated as 000
iii ap εβ +=  for 0Ui∈ . Estimating this simplified model on the 

data of 0S  produces a regression coefficient )(ˆ 0Sβ . Substituting 000 )(ˆˆ ii aSp β=  for 
tSi∈  into (8) yields 
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Of course the problem mentioned earlier still holds: the OLS estimator is unbiased for 
0Si∈ , and predicting the base period prices for tSi∈  may give rise to biased results. 

Moreover, because the simplified model does not contain an intercept term, restriction 

(9) is not met. In order to obtain a price index that equals unity in the base period, we 

simply divide t
CWP )(

ˆ  by its starting value 0
)(

ˆ
CWP . This normalisation leads to an estimator 

in which regression coefficient )(ˆ 0Sβ  no longer plays a role: 
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5 One could also argue that there is a lower bound to the market value of a dwelling so that this restriction 
is undesirable. In that case (11) would be a feasible, though not necessarily very accurate, estimator that 
satisfies the identity test. 
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t
SWP )(

ˆ  given by (13) is what Bourassa et al. (2006) call the value-weighted SPAR 

index. We have used regression modelling to stress that the SPAR method is essentially 

a model-based approach. Alternatively, t
SWP )(

ˆ  follows directly from t
WP
(

, given by (5), if 

we assume an identical, non-stochastic ratio b between the market value of a house and 

its appraisal in the base period ( bap ii =00 / ) and subsequently normalised the result. Of 

course t
SWP )(

ˆ  reduces to t
WP
(

 when this assumption would exactly hold. There is a simple 

relationship between t
SWP )(

ˆ  and the ‘naïve’ estimator t
WP
)

, given by expression (2): 

t
Wt

t
SW P

Sa
SaP

)
⎥
⎦

⎤
⎢
⎣

⎡
=

)(
)(ˆ

0

00

)( .       (14) 

Equation (14) makes clear that the value-weighted SPAR index measures a larger price 

change than the ratio of sample mean prices ( t
W

t
SW PP

)
>)(

ˆ ) if the current period sample 

contains relatively many cheap houses as compared to the base period sample. 

Bourassa et al. (2006) present the SPAR index as a pseudo chain index. Recast 

in our notation they define t
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The presentation of a direct index, which directly relates period t to the base period 0, as 

a chain index may divert one’s attention from what the SPAR method is actually about. 

But it does show that the measured period-to-period price change 
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with )(/)( 11,1 −−− = ττττττ SpSpPW

)
, has a similar structure as expression (14). Thus, if the 

current period sample contains relatively many cheap houses compared with the sample 

in the preceding period, then the price change measured by the value-weighted SPAR 

method will be larger than the price change measured by the ratio of sample means. Yet 

there is a subtle difference in the interpretation of (14) and (16). The direct SPAR index 

given by (14) or (13) is essentially based on matched pairs of houses, which is the basic 

principle underlying the SPAR method, and thus adjusts for compositional change. The 

period-to-period links, on the other hand, cannot be interpreted in this way and are thus 

affected by compositional change. 
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The value-weighted SPAR index t
SWP )(

ˆ  is a ratio of two ratios and the question 

arises whether it is an approximately unbiased estimator of the population index t
WP . In 

the Appendix an approximating expression for the expected value of t
SWP )(

ˆ  is derived. 

Again assuming that 0S  and tS  are independently drawn random samples from 0U , the 

following expression for the bias of t
SWP )(

ˆ  holds: 
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where 2/100000000 )](var)(/[var())(),(cov( SaSpSaSp=ρ  (with 11 ≤≤− ρ ) denotes 

the correlation coefficient of the average price and the average appraisal in period 0 and 

)(/))]([var())(( 02/10000 UpSpSpcv =  the coefficient of variation of )( 00 Sp . Provided 

that the appraisals are reasonably accurate reflections of the sale prices (market values), 

ρ  will be close to 1.6 Note that this type of bias is of a technical nature. It is implicitly 

assumed that the relation between appraisals and the true market values in the base 0 is 

the same for houses sold in period t as that for houses sold in period 0, which cannot be 

tested as the base period market values for the sample tS  are unknown. The magnitude 

of the bias of t
SWP )(

ˆ  depends on the value of ))(( 00 Spcv  and hence on the sample size. 

As an illustration we give a numerical example. Taking 01.1=t
WP  (a price increase of 

1%), 95.0=ρ  and 05.0))(( 00 =Spcv  the bias amounts to 0.00025, i.e. only 0.025%, 

according to (17). If the coefficient of variation would be twice as high (other things 

equal), the bias becomes 0.1%, which is not negligible at an appreciation rate of 1%. 

De Haan (2007a) explains how the variance of t
SWP )(

ˆ  can be approximated using 

Taylor linearization. Since we are dealing with a ratio of two ratios, the formula for the 

variance is more complex than the formula presented in Section 2 and will not be shown 

here. Not surprisingly, the standard error depends on the size of the samples tS  and 0S . 

In practice the ‘samples’ contain all sales as registered by the Dutch land registry. An 

important feature is that the standard error of the index may vary considerably over time 

as a result of the changing sample size. In periods with few sales the standard error of 

the SPAR index could be substantial, especially for a small country like the Netherlands 

with less than four million owner-occupied houses, and even more so for SPAR indexes 

for sub-populations. 
                                                      
6 This correlation coefficient appears to be equal to the root of the coefficient of determination R-squared 
obtained from a univariate regression, including an intercept term, that ‘explains’ the base period sale 
price using the appraisal as the explanatory variable. 
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4. Unweighted SPAR Indexes 

This section addresses the estimation of equally weighted or unweighted averages of the 

individual price (market value) indexes 0/ i
t
i pp  using the SPAR approach. At first sight 

the unweighted arithmetic average 
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seems an obvious target index, but the unweighted geometric average 
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could be used also. In the index number literature (18) and (19) are usually referred to 

as a Carli and Jevons price index, respectively. On what grounds can we make a choice 

between both population indexes? A useful criterion, based on the axiomatic approach 

to index number theory, is to what extent they satisfy a set of axioms or tests, including 

the identity test mentioned earlier. See e.g. Balk (1995) for a review of the axiomatic 

approach. The Jevons index (19) satisfies all ‘reasonable’ tests (ILO, 2004). The Carli 

index (18), on the other hand, violates the time reversal test. This test says that if the 

data for periods 0 and t are interchanged, then the resulting price index should equal the 

reciprocal of the original price index. The time reversal test is a fundamental one since it 

is difficult to accept an index that gives a different picture if the ordering of time is 

reversed. Notice that the Dutot price index (1) does satisfy this test. 

The fact that t
UGP  satisfies the time reversal test and t

UAP  does not, can formally 

be represented by 

1
0

0

0

0
1

0
1

0 =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∏∏
∈∈ Ui

N

t
i

i

Ui

N

i

t
i

p
p

p
p

       (20) 

and 

10

0

0

0
00

≥
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑∑
∈∈

N
p
p

N
p
p

Ui
t
i

i

Ui i

t
i

.       (21) 
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Jensen’s Inequality implies t
UG

t
UA PP ≥ , where equality only holds if the individual price 

indexes 0/ i
t
i pp  are identical for all 0Ui∈ . Based on Jensen’s Inequality we also have 

∏∑ ∈∈
≥ 0

0

0
/1000 )/(/)/(

Ui
Nt

iiUi
t
ii ppNpp . It follows that the product, given by (21), of 

t
UAP  and the unweighted arithmetic price index in which the prices of periods 0 and t are 

interchanged, must be greater than or equal to 1. So in general t
UAP  has an upward bias. 

For direct indexes the magnitude of the bias could be limited, but a chained variant of 
t

UAP  will exhibit upward drift, especially when prices oscillate. From the point of view 

of the axiomatic approach to index number theory the geometric index t
UGP  is preferred 

to the arithmetic index t
UAP . 

The derivation of the unweighted arithmetic and geometric SPAR indexes runs in 

a way similar to that of the value-weighted SPAR index. For a random sample tS  the 

following estimators of (18) and (19) can be defined (compare (5)): 

t
Si i

t
i

t
UA n

p
p

P
t

∑
∈

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=
0(

       (22) 

and 

∏
∈

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

t

t

Si

n

i

t
it

UG p
p

P

1

0

(
.       (23) 

t
UAP
(

 is an unbiased estimator of t
UAP . Due to the geometric structure this does not hold 

for t
UGP
(

, which can be regarded as a disadvantage. On the other hand, an advantage of 

geometric means is that they are often less sensitive to outliers. Note that the bias of the 

sample geometric mean is usually negligible (see Balk, 2005). t
UAP
(

 and t
UGP
(

 are pseudo 

estimators since the base period prices are largely unknown. Assuming an identical non-

stochastic ratio b between the market values and the appraisals during the base period 

for all houses, we obtain the unweighted SPAR price indexes by substituting bap ii
00 =  

into (22) and (23) and subsequently dividing the outcomes by their base period values. 

This leads to 

∑

∑

∈

∈

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
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⎛
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       (24) 
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and 
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)(~

)(~
)(~

ˆ
000

00

1

0

0

1

0

)(

0

0 Sp
Sp

Sa
Sa

a
p

a
p

P
tt

t

Si
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i

i

Si

n

i

t
i

t
SUG

t

t

⎥
⎦

⎤
⎢
⎣

⎡
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⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=

∏

∏

∈

∈ .       (25) 

Due to the normalisation both types of unweighted SPAR price indexes satisfy 

the time reversal test.7 So we are faced with the somewhat paradoxical situation that the 

unweighted arithmetic (Carli) target index (18) violates the time reversal test whereas 

the unweighted arithmetic SPAR index (24), which is an estimator of that population 

index, does satisfy this test.8 We would nevertheless prefer the geometric SPAR index 

(25) as the target to be estimated – the unweighted geometric (Jevons) index (19) – does 

satisfy the time reversal test. 

In the second expression on the right-hand side of (25), ∏∈
= 0

0/1000 )()(~
Si

n
iaSa  

and ∏∈
= t

t

Si
n

i
t aSa /100 )()(~  denote the unweighted geometric average appraisals in the 

base and current period samples; ∏∈
= 0

0/1000 )()(~
Si

n
ipSp  and ∏∈

= t

t

Si
nt

i
tt pSp /1)()(~  

are the corresponding geometric average prices. Equation (25) has a similar structure as 

equation (14). Just like in (14), the bracketed factor in (25) can be interpreted as a factor 

which adjusts the ratio of mean prices )(~/)(~ 00 SpSp tt  for any differences in the quality 

mix of the sampled houses. This topic will be addressed again in Section 5 where we 

make a comparison with a bilateral hedonic time dummy index. 

5. The Unweighted Geometric SPAR Index and Hedonic Regression 

Suppose the semi-log hedonic regression model holds for all 0Ui∈ : 

0

1

000ln i

K

k
ikki xp εβα ++= ∑

=

,       (26) 

                                                      
7 The value-weighted SPAR index (13) also satisfies this test. 

8 This type of ‘paradox’ is not an unknown phenomenon in the price index literature. In case of a fixed set 
of goods that have been sampled proportionally to base period quantities, for example, the Dutot price 
index, which does satisfy the time reversal test, is an approximately unbiased estimator of the population 
Laspeyres price index, which violates this test. See Balk (2005). 
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where ikx  is the k-th characteristic of house i.9 A semi-log specification usually leads to 

more satisfactory results than a completely linear one and has been successfully applied 

in much empirical work. Assuming we know the characteristics of all houses, an (OLS) 

regression of the semi-log model on the data of sample 0S  yields predicted base period 

prices ∑ =
=

K

k ikki xSSp
1

00000 ])(ˆexp[)](ˆexp[ˆ βα .10 Suppose the appraisals were obtained 

using regression model (26),11 so that ∑ =
==

K

k ikkii xSSpa
1

000000 ])(ˆexp[)](ˆexp[ˆ βα  for 

all 0Ui∈ ; hence, ∑∏ =∈
==

K

k kkSi
n

i SxSSaSa
1

00000/1000 )]()(ˆexp[)](ˆexp[)()(~
0

0

βα  and 

∑∏ =∈
==

K

k
t

kkSi
n

i
t SxSSaSa t

t

1
0000/100 )]()(ˆexp[)](ˆexp[)()(~ βα , in which )( 0Sxk  and 

)( t
k Sx  denote the unweighted arithmetic averages of attribute k in 0S  and tS . We thus 

find })]()()[(ˆexp{)(~/)(~
1

000000 ∑ =
−=

K

k
t

kkk
t SxSxSSaSa β , which makes clear that the 

ratio of the mean appraisals in both samples can be viewed as a factor that controls for 

changes in the quality mix. Substituting this mix-adjustment factor into expression (25) 

yields 

)(~
)(~

)]()()[(ˆexpˆ
00

1

000
)( Sp

SpSxSxSP
ttK

k

t
kkk

t
SUG ⎥

⎦

⎤
⎢
⎣

⎡
−= ∑

=

β .       (27) 

Notice that )(~/)(~ˆ 0
)( SpSpP tttt

SUG =  if )()( 0SxSx k
t

k =  for all k. Notice further 

that (27) would not change if we had assumed 00 ˆ ii pba =  ( 1≠b ) instead of 00 ˆ ii pa = . 

Expressions similar to (27) are well known from the hedonic price index literature; see 

e.g. Triplett (2004) and De Haan (2007b). In particular, an expression can be obtained 

which almost coincides with (27) using a weighted version of the time dummy variable 

hedonic approach. In this case the semi-log hedonic model is estimated on the pooled 

data of 0S  and tS . The time dummy variable model reads 

                                                      
9 We are using the same notation for the parameters and the disturbance term as in the linear model of 
Section 3. This should not lead to confusion. 

10 The predictors are not unbiased because the expected value of a nonlinear function (the exponent) is not 
equal to the nonlinear function of the expected value. See for example Goldberger (1968), who provides a 
correction term. In practice the bias can often be neglected. 

11 According to Bourassa et al. (2006), footnote 3, in New Zealand the appraisals are actually based on 
hedonic regression modelling but we do not know if the semi-logarithmic or some other specification has 
been used. The geometric formula is not applied in New Zealand to estimate SPAR indexes. Currently the 
value-weighted variant is applied. Prior to September 2004 the unweighted arithmetic variant was used. 
For more information see the Reserve Bank’s website: www.rbnz.gov.nz/keygraphs/1697975.html. Note 
that Bourassa et al. (2006) do not discuss the geometric SPAR index. 
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s
i

K

k
ikki

s
i xDp εβδα +++= ∑

=1
ln     ( ts ,0= ),       (28) 

where iD  is a dummy variable that takes on the value of 1 for tSi∈  and the value of 0 

for 0Si∈ . The time dummy model is restrictive since the parameters are assumed fixed 

over time. Furthermore, we assume that (28) is estimated using Weighted Least Squares 

(WLS) regression with weights 0
iw  for 0Si∈  and t

iw  for tSi∈ . The predicted prices 

are ]~exp[)~exp(~
1

0 ∑ =
=

K

k ikki xp βα  and ]~exp[)~exp()~exp(~
1∑ =

=
K

k ikk
t
i xp βδα . Because the 

time dummy model controls for changes in the characteristics, the exponent of the time 

dummy coefficient, 0~/~)~exp( i
t
i pp=δ , is a quality-adjusted price index. 

Due to the inclusion of an intercept term and a time dummy variable in model 

(28), the weighted residuals )~/ln(~lnln s
i

s
i

s
i

s
i pppp =−  (s= 0,t) sum to zero in each time 

period (De Haan, 2004a, 2004b, 2007b): 

∑ ∑
∈ ∈

=⎟⎟
⎠
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⎝
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w .       (29) 

Exponentiating yields 
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∏
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After substituting the predicted prices into (30) and some rearranging we find 
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)~exp(
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δ .       (31) 

Suppose that a WLS-procedure is used where the observations are weighted by 

the reciprocal of the sample sizes in both periods, that is 00 /1 nwi =  and tt
i nw /1= . In a 

sense we are treating the two time periods symmetrically by proportionally reducing the 

impact of the largest sample in the pooled regression. Now (31) reduces to 

[ ]
[ ]∏ ∑

∏ ∑

∏

∏

∈
=

∈
=

∈

∈==

t

t

t

t

Si

nK

k ikk

Si

nK

k ikk

Si

n
i

Si

nt
i

t
TD

x

x

p

p
P 1

1

1

1

1
0

1

)~exp(

)~exp(
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)(~
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)]()([~exp 0
1

0

Sp
SpSxSx

tK
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t
kkk ⎥

⎦

⎤
⎢
⎣

⎡
−= ∑

=

β .       (32) 

The time dummy price index t
TDP~ , given by (32), differs from expression (27) only in 

the regression coefficients. In (32) a kind of average value over periods 0 and t is taken, 

whereas in (27) the coefficients relate to period 0 only. As a consequence of the pooling 

of data the coefficients kβ
~  will likely have smaller standard errors than the coefficients 

)(ˆ 00 Skβ . Thus if the appraisals would be estimated using the semi-log hedonic model 

(26), then the geometric SPAR index is presumably less accurate than the time dummy 

index t
TDP~ . One the other hand, the WLS procedure used in the pooled regression may 

cause heteroskedasticity which leads to standard errors of the coefficients that are larger 

than would be strictly necessary. 

The bilateral time dummy index t
TDP~  is, in a sense, unnecessarily inefficient. 

Instead of running a regression on the data of periods 0 and t only, it would make more 

sense to estimate a time dummy index on the pooled data of all periods and incorporate 

dummy variables for all periods into the model, including those in between 0 and t. 

Such a multilateral or multi-period time dummy index has three things in common with 

a repeat-sales index: both are based on the assumption of fixed parameters, they become 

more efficient as time passes and more and more data is being added to the sample, and 

they suffer from revision. Revision is the phenomenon that previously computed figures 

will be ‘revised’ when additional data become available.12 

6. Consistency in Aggregation 

So far we have only looked at indexes for all houses. Users may also desire indexes for 

certain well-defined sub-populations, for example indexes for different regions or types 
                                                      
12 Repeat-sales indexes belong to the class of stochastic price indexes (Clements et al., 2006). Stochastic 
indexes are estimated using regression techniques and will be revised in the course of time: they violate 
temporal fixity (Hill, 2004). This is also one of Diewert’s (1995) criticisms of the stochastic approach. In 
his words (p. 20): “[Stochastic] price indexes are not invariant to the number of periods T in the sample”. 
Some authors (e.g. Clapp and Giacotto, 1999, and Butler et al., 2005) speak of revision bias when there is 
a systematic, or asymmetric, adjustment in one direction. For repeat-sales indexes downward adjustments 
seem to prevail. In an empirical study on Swedish data Clapham et al. (2004) show that the revisions for 
hedonic multi-period time dummy index numbers are smaller than those for repeat-sales index numbers 
and that they are not asymmetric. 
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of dwellings. Suppose that the total population 0U  is subdivided into h= 1,…,H non-

overlapping sub-groups or strata 0
hU  with sizes 0

hN . The value-weighted index (1) and 

the unweighted arithmetic and geometric indexes (18) and (19) can now be re-written as 

∑ ∑

∑
=

∈

∈

⎥
⎥
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⎢
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⎡

=
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h

t
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Ui
i

Ui
i

t
W P

p

p
P h

1
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0
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;       (33) 
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= ;       (34) 
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1
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0
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,       (35) 

with stratum price indexes ∑∑ ∈∈
= 00

0
, /

Ui iUi
t
i

t
hW ppP

h
, ∑∈

= 0
00

, /)/(
hUi hi

t
i

t
hUA NppP , and 

∏∈
= 0

0/10
, )/(

h

h

Ui
N

i
t
i

t
hUG ppP . In (33), (34) and (35) the aggregate indexes are presented 

as weighted arithmetic and geometric averages of the stratum indexes; the base period 

value shares ∑ ∑∈ ∈0 0
00 /

hUi Ui ii pp  and the relative number of dwellings 00 / NNh  serve as 

weights. The population indexes are consistent in aggregation: the aggregate indexes 

can be written as weighted averages of stratum indexes that have the same mathematical 

form. 

Unlike the target indexes, the SPAR indexes are not consistent in aggregation. 

By post-stratifying the total samples 0S  and tS  according to the above scheme we find 

h= 1,…,H sub-samples 0
hS  and t

hS . The value-weighted SPAR index for stratum h with 
s
hn  observations (s= 0,t) is given by ∑ ∑ ∑ ∑∈ ∈ ∈ ∈

= t
h

t
h h hSi Si Si Si iii

t
i

t
hSW apapP 0 0 ]//[]/[ˆ 000

),( ; 

∑∑ ∈∈
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0000
),( /)/(/]/)/([ˆ

h
t
h Si hiiSi

t
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t
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t
hSUA napnapP  is the unweighted arithmetic variant 

and ∏∏ ∈∈
= 0

0/100/10
),( )/(/)/(ˆ

h

h
t
h

t
h

Si
n

iiSi
n

i
t
i

t
hSUG apapP  the unweighted geometric one. In 

case of the unweighted indexes, for example, the aggregation problem implies that the 

aggregate indexes cannot unambiguously be written as weighted averages of stratum-

specific SPAR indexes using the relative sub-sample sizes as weights. If the sampling 

fractions are identical for all h in periods 0 and t ( h
tt

hh fnnnn == // 00 ) we know for 

sure that ∑ =
=

H

h
t

hSUAh
t

SUA PfP
1 ),()(

ˆˆ  and hfH

h
t

hSUG
t

SUG PP )ˆ(ˆ
1 ),()( ∏ =

= . In practice this situation 

will hardly ever occur. It therefore seems reasonable to estimate the aggregate indexes 

by 
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= ,       (37) 

which are found by replacing the stratum population indexes in (34) and (35) by the 

stratum-specific SPAR indexes. An advantage is that the assumption of a fixed ratio 

between market values (prices) and appraisals can be relaxed and applied to the stratum 

level. A drawback might be that post-stratification could raise the standard error of the 

aggregate index in case of very small sub-sample sizes. 

The problem is a little bit more complex for the value-weighted SPAR index. 

Again the SPAR index is not consistent in aggregation. To estimate an aggregate index 

in a similar way as (36) and (37) we must know the value shares ∑ ∑∈ ∈0 0
00 /

hUi Ui ii pp . 

Those are of course unknown. Under the assumption of a fixed ratio between the market 

values and the appraisals for all 0Ui∈  we could replace the market value shares by the 

appraisal-based shares ∑ ∑∈ ∈0 0
00 /

hUi Ui ii aa  and estimate the aggregate index as 
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Since the assumption will be violated, the appraisal-based shares are rough estimates of 

the true value shares. More importantly, the above-mentioned advantage of making this 

assumption at the stratum level instead of the aggregate level no longer holds. 

7. Dynamic Population and Sampling 

Apart from quality changes of existing houses, which will be touched upon at the end of 

this section, the total stock of owner-occupied houses is dynamic in two respects. Some 

houses will be demolished and disappear from the stock while newly-built houses and 

existing houses which are sold by, for example, local governments or ‘corporations’ to 

private households are added to the stock. The assumption of a fixed housing stock 0U  

that has been maintained so far should be relaxed. The problem of new and disappearing 
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houses raises several issues. What is precisely meant by the stock of existing houses? If 

we know the answer, which index number formula should be used to measure the price 

change of the dynamic stock? And is the available sample appropriate for calculating a 

SPAR index which aims at estimating the population index? 

Let us begin with the first question. Although the term ‘stock of existing houses’ 

is common in the literature (e.g. in Hwang and Quigley, 2004), it is a bit of a misnomer 

since any newly-built house exists and belongs to the target population we are interested 

in once it has been sold (for the first time). Consequently, a distinction between newly-

built houses and existing houses is irrelevant for our main goal: any index that is meant 

to measure the changes in the market value of the stock of ‘existing’ houses should in 

principle take newly-built houses into account. There are nevertheless several problems 

that need attention. 

The value index of a dynamic housing stock is ∑∑ ∈∈ 0
0/

Ui iUi
t
i ppt , where tU  

denotes the total stock in period t. If tU  changes over time, this value index is affected 

by quantity changes and cannot be called a price index. Suppose first that some houses 

disappear but no new houses are added to the stock, so that the total stock shrinks. The 

natural way to construct a value-weighted price index would still be using t
WP , given by 

(1), and imputing the ‘missing prices’ of period t for houses that disappear from 0U . 

The use of explicit hedonic imputations is preferable. Imputations are implicitly made if 

we apply the value-weighted SPAR index and view it as an estimator of (1). Given the 

lack of a hedonic benchmark index, the impact of such implicit imputations cannot be 

measured. 

Suppose next that houses are added to the stock but that no houses disappear, so 

that the total stock expands. Assuming, as argued above, that the price index should also 

relate to new houses, the following target index might be considered: 

∑
∑
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t

Ui
i

Ui

t
i

t
P p

p
P 0 .       (39) 

This index could be referred to as a Paasche price index. Four remarks are in place. 

Firstly, imputations are needed for the missing base period prices of the new houses, 

something that is done implicitly using the SPAR method. Secondly, when applying the 

SPAR method the base period appraisals must be known for the new houses; thus, in 
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each period t the (fictitious) appraised values that would have been attached to the new 

dwellings had they existed in the base period must be available. In the Netherlands 

appraisals for newly-built houses are calculated retrospectively as they are needed for 

income tax and local tax purposes. Thirdly, it is important to realize that tS  is a sample 

from the period t stock tU  rather than from the base period stock 0U . As a result, if the 

value-weighted SPAR index were based on tS  it would be aiming at (39) instead of (1). 

Fourthly, the period-to-period changes 1/ −t
P

t
P PP , as well as the annual changes, will be 

affected by changes in the population. This is the dynamic-population counterpart to the 

period-to-period changes in the sample-based value-weighted SPAR index that is also 

affected by compositional changes, as we saw in Section 3. 

A symmetric treatment of the periods 0 and t is preferable in a price index. From 

this point of view the Fisher price index 2/1][ t
P

t
W

t
F PPP =  would be a sensible choice. The 

construction of a chain index might also be considered, particularly when the dynamics 

are substantial, i.e. when many houses appear or disappear. Unfortunately, short-term 

chain indexes may exhibit drift if the data exhibit a seasonal pattern. Moreover, the use 

of the SPAR method to estimate period-to-period chain Paasche or Fisher price indexes 

would require appraisals for each period t-1, which are of course not available. So this is 

not a feasible approach. 

All in all the use of t
WP  seems both unavoidable and acceptable provided that the 

dynamics are limited. To estimate this index using the value-weighted SPAR method, 

houses that were added to the stock after the base period must be removed from sample 
tS . This can easily be attained by coupling the sample to the base period housing stock 

data set. The same goes for unweighted SPAR indexes. If the dynamics are substantial 

the use of a chain index on an annual basis would be preferable. As from January 2008 

an annual chain index can be constructed in the Netherlands because houses will then be 

appraised annually. Since the houses are not appraised in real time but retrospectively, 

there will inevitably be a one or two year time lag involved, but that does not seem too 

problematic. 

In the preceding sections we have assumed that in each period the set of houses 

sold (excluding new houses) is a random sample from the base period housing stock. 

This is a strong assumption. Some types of houses, in the Netherlands apartments and 

relatively cheap single-family dwellings, are sold more frequently than others and have 

a higher probability to be included in the ‘sample’. Furthermore, the land registry only 
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records the prices of second-hand houses; the prices of newly-built houses – which we 

would like to include in the base period sample – are not recorded. If random selection 

does not hold and different types of houses or different regions, etc. show different price 

changes, sample selection bias will occur. In contrast to the small sample bias given by 

(17), which stems from the non-linearity of the SPAR index, little can be said a priori 

about the sign and magnitude of sample selection bias. This problem could be mitigated 

by post-stratifying the sample as outlined in Section 6. 

So far we have been assuming that the quality of each house remains constant. In 

reality the quality of a house may deteriorate due to wear and tear, especially if major 

repairs are omitted, but it may also improve due to renovations or extensions. While the 

SPAR method controls for changes in the quality mix of the sample, it does not control 

for such quality changes.13 It has been suggested to us to adjust the prices for property 

improvements that require a buiding permit. In the Netherlands such an adjustment is 

unfortunately infeasible because permit data are available only at aggregate levels but 

not for individual houses. Our suggestion to construct an annually chained SPAR index 

is more promising. Assuming that the appraisals take account of major improvements, 

subsequent appraisals can possibly be used to construct annually chained SPAR price 

indexes that will to some extent control for quality changes. This is beyond the scope of 

the present paper and left for future research. 

8. An Expenditure-Based Interpretation of the Value-Weighted SPAR       
Index 

Our focus has been on the construction of a price index for the total stock of houses as 

we feel that this should be a country’s primary house price index. In the introduction we 

mentioned, however, that Eurostat prefers a net acquisitions approach to incorporating 

owner-occupied housing into the HICP. The weight reflects net expenditures on newly-

built and re-sold, second-hand houses, thus excluding purchases within the household 

sector and also excluding purchases of land. Data problems in some (smaller) countries 

and the desire to serve the needs of users that are interested in house price growth per 

                                                      
13 The same applies to the repeat-sales method. Hybrid methods, which combine repeat sales methods and 
hedonic regression, have been developed to overcome this problem (Wang and Zorn, 1997). 
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se, have led Eurostat to broaden the scope. More specifically, a ‘Laspeyres-type’ price 

index must be compiled for all houses purchased by private households during a certain 

base year in which house prices should include the price of land. Under an acquisitions 

or expenditure approach a value-weighted index is most appropriate.14 Below we show 

that the value-weighted SPAR has a straightforward interpretation as an expenditure-

based house price index. Since it is not a Laspeyres-type index we briefly outline how 

to construct a stratified value-weighted SPAR index that is most likely to meet Eurostat 

requirements. 

In the land registry’s data set all transactions are registered. So far the total set of 

houses sold in the current month t, denoted by tS , has been viewed as a sample from 

the fixed base period housing stock 0U . From an expenditure point of view tS  is not a 

sample, however, and ∑∈ tSi
t
ip  equals total current period expenditure on second-hand 

houses. Hence equation (5) describes the population Paasche price index for purchases 

of second-hand houses, denoted here by t
EPP )( : 
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p
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We still assume the stock of houses fixed over time. This is not necessary. If population 

data on new houses were available (which is not the case in the Netherlands), the prices 

could be included in (40). 

Since the base period prices 0
ip  are generally unknown for tSi∈ , estimator (8) 

or what should now be called the imputation Paasche index 
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14 Not everyone shares this view. Hill and Melser (2007, footnote 7) note that: “a case can be made for 
giving equal weight to all house sales, rather than weighting by expenditure shares. The usual justification 
for weighting price indexes by expenditure shares is so that the basket of goods and services will be 
representative for the average household. Housing is unusual, however, in that most households only buy 
one house, and the distribution of house prices is significantly skewed to the right. Most households 
therefore are not buying from the right tail. Hence it may be preferable to give all houses equal weight in 
the index [….], since this will provide an index that is more representative for the median household.” 
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measures what the Paasche index given by (40) would have been when all houses sold 

during the current period had also been sold during the base period. The usual approach 

to estimating such ‘missing prices’ is to rely on hedonic regression. The value-weighted 

SPAR, given by expression (13), is an alternative estimator of (40). Again writing the 

appraisals as 00 ˆ ii pba = , the value-weighted SPAR index can be re-written as 
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Note that index volatility cannot be caused by sampling variance when the SPAR index 

is interpreted in the above way because there is no sampling involved – this volatility is 

either real or due to ‘model variance’ or measurement error that results from using the 

appraisals as auxiliary information. The better the fit of a linear regression of the base 

period sale prices on appraisals, the smaller this model variance is likely to be. For the 

same reason we can no longer speak of sample selection bias. Stratification of the value-

weighted SPAR index on this account would be meaningless. 

Stratification still makes sense for two other reasons though: to relax the basic 

assumption underlying the SPAR method and to compute Laspeyres-type price indexes. 

The basic assumption is that of a uniform sale price appraisal ratio, apart from a random 

disturbance term. In the Netherlands this assumption might be violated at the aggregate 

level because of the autonomous way in which municipalities determine the appraisals. 

By stratififying according to region, and possibly also according to type of dwelling, we 

expect the basic assumption to hold approximately at the level of the strata. The number 

of strata to be distinguished is limited since many strata with few observations can make 

the aggregate index unstable. 

Stratification is also helpful for estimating a price index pertaining to all second-

hand houses purchased during a particular base year that fulfils Eurostat requirements. 

This ‘gross acquisitions’ index should be a Laspeyres-type price index, with the weights 

reflecting base year expenditures. Several European countries combine stratification and 

hedonic regression to control for compositional change while some other countries are 

planning to do so. Due to a lack of data on housing attributes the use of hedonics is 

infeasibele in the Netherlands, and we propose a combination of stratification with the 

use of the value-weighted SPAR index at the stratum level. 
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Following the notation used in Section 6 the stratum-specific SPAR index and 

the set of houses sold during the base period are denoted t
hSWP ),(

ˆ  and 0
hS , respectively, 

for strata h= 1,…,H. Let us begin by holding on to the appraisal reference month 0 as 

the base period. Then an expenditure-based ‘Laspeyres-type’ SPAR price index may be 

defined by 

t
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t
ELP )(

ˆ  can be criticised for its hybrid nature: fixed base period expenditure weights are 

combined with Paasche indexes at the stratum level. On the other hand, it is not unusual 

in price index construction to make a distinction between upper level and lower level 

aggregation methods. In a CPI lower level indexes are often unweighted. The difference 

between t
ELP )(

ˆ  and the stratified value-weighted SPAR index t
WP~  given by (38) is clear. 

The latter uses estimated value shares for the stock of housing in month 0 whereas t
ELP )(

ˆ  

uses expenditure shares for the houses bought in that month. 

Eurostat requires a year instead of a month as the base period. The computation 

of expenditure shares on a yearly basis does not pose any problems since sale prices for 

the population are known. To calculate the stratum indexes we suggest normalising the 

initial current period stratum values by dividing them by their average monthly values 

across the whole base year. This is admittedly a crude approach, but it mimics what 

many statistical agencies actually do when rebasing their index. 

9. Data 

The Dutch housing stock consists of approximately 7.8 million houses in 2007, half of 

which are owner-occupied. It concerns mainly flats and single-family dwellings. In the 

Netherlands real estate transactions are registered by the land registry office. As the land 

registry does not register prices of newly-built houses, the sale price data only refer to 

purchases of second-hand houses. Our data set comprises monthly sale price data for the 

period January 1995 – December 2007 and a limited number of characteristics of the 

houses, in particular address (including postal code) and type of dwelling. On an annual 

basis some 200 thousand owner-occupied houses change hands. 
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Figure 1 reveals a seasonal pattern in the number of sales: in July and especially 

in December relatively many houses are sold, in January relatively few. It should be 

mentioned that the data are registered at the date the definitive contract of sale has been 

signed at a notary’s office. However, on average the sale is agreed two months earlier, 

namely when a provisional contract is signed. From an economic point of view this is 

when the actual transaction takes place, so that the ‘true’ peaks in the number of sales 

occur in October rather than in December. Also, the price indexes presented in Section 8 

– including the land registry’s repeat-sales index – essentially lag two months behind. It 

is important to bear this in mind when interpreting the results and analysing the Dutch 

housing market. 
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Figure 1. Number of sales for second-hand houses 

 

Official government appraisals are available from January 1995 onwards. Under 

the Real Estate Law the municipalities are obliged to re-estimate the market value of all 

dwellings periodically. So far there have been four appraisal reference months: January 

1995, January 1999, January 2003 and January 2005. As from January 2007 appraisals 

should be made every year. The land registry’s data set has accordingly been split into 

four sub-periods: January 1995 – January 1999, January 1999 – January 2003, January 

2003 – January 2005, and January 2005 – December 2007. January 1999, January 2003 
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and January 2005 serve as overlap periods. This is to create a time series by multiplying 

or ‘chaining’ the SPAR index numbers for the sub-periods during the overlap months. 

The land registry’s sale price data and the official appraisals relate to the same 

concept of price, including land. During the reference months we expect to find a high 

correlation between actual sale prices and appraisals. Figure 2 plots appraisals against 

sale prices (in thousand euros) for second-hand houses sold in January 2005, the most 

recent appraisal reference period. To investigate the empirical relationship between sale 

prices and appraisals, we ran various regressions, including logarithmic ones. The linear 

model did not seem to perform worse than the logarithmic models, which is reassuring. 

Using the notation of Section 3, the estimated linear model shown in Figure 2 reads 
00 975.0835.1ˆ ii ap += , with 963.02 =R . Note that we did some data cleaning. Houses 

for which the appraisals differed more than 50% from the sale prices were deemed 

unacceptably large outliers and were deleted from the initial data set. It concerns less 

than 3% of the observations. 

Figure 2 confirms that the distribution of house prices is skewed to the right. It 

also points to heteroskedasticity: the variance of the sale price seems to increase when 

the appraised value increases. Thus, if we would split the housing stock up into a lower 

and a higher priced segment of equal sizes, the standard error of the SPAR index for the 

higher priced segment is likely to be greater for two reasons: fewer observations (giving 

rise to larger sampling variance) and a larger variability of the sale price appraisal ratios 

(resulting in larger model variance). 

Although the correlation in Figure 2 is high, one may wonder why 4% of the 

variation in sale prices is still not ‘explained’ by appraisals. One reason is that the way 

in which the appraisals are carried out has not yet been fully harmonised across Dutch 

municipalities. Moreover, the appraisals are established retrospectively – usually there 

is a time lag of one or two years involved. For example, many appraisals relating to 

January 2005 may not have been determined before the end of 2006. The municipalities 

differ both in the valuation method as such – though most of them look at sale prices of 

comparable houses in the neighbourhood – and in the way the values are ‘deflated’ to 

obtain appraisals for the reference month.15  

                                                      
15 If a house has been renovated between the reference month and the date the appraisal has actually been 
performed, the appraised value includes the improvement. This may perhaps seem somewhat strange but 
a positive aspect is that the SPAR price indexes will be partially adjusted for such quality improvements. 
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Figure 2. Scatter plot and linear OLS regression line of sale prices and appraisals, 
January 2005 

 
The basic assumption underlying the SPAR method is that of a fixed ratio between sale 

prices (or market values) and appraisals in the base or reference appraisal period. Less 

strictly formulated, for the SPAR method to produce approximately unbiased results the 

regression line should go through the origin; it is not necessary that the slope coefficient 

is equal to unity. In January 2005 the estimated intercept term does differ significantly 

from 0 ( 001.0<p ), but the value of 1.84 thousand euros is so small that we do not have 

to worry about it too much. Table 1 summarizes the results of the regressions of the sale 

prices 0
ip  on the appraisals 0

ia  for all four appraisal reference months. Measured by the 

goodness of fit ( 2R ) the reliability of the appraisals appears to have increased somewhat 

in the course of time. 

 
 

                                                                                                                                                            
Unfortunately we do not know which houses in the data set it concerns. For more details on the Dutch 
appraisal data, see De Vries et al. (2008). 
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Table 1. OLS regression results (standard errors in parentheses) 

Reference month γ̂  (intercept) μ̂  (slope) 2R  n  
January 1995 6.442 (0.369) 0.959 (0.004) 0.903 7197
January 1999 -1.190 (0.414) 0.983 (0.003) 0.938 8958
January 2003 3.439 (0.506) 0.975 (0.002) 0.952 10186
January 2005 1.835 (0.488) 0.975 (0.002) 0.963 9665

 

Table 2 provides some additional summary statistics to assess the reliability of 

the appraisals. In January 1995 the mean appraisal value )( 00 Sa  is 3.3% lower than the 

mean sale price )( 00 Sp . Note that the ratio )(/)( 0000 SaSp  in the third column equals 

the denominator of the value-weighted SPAR price index given by expression (13). The 

same picture emerges from the individual ratios 00 / ii ap  in January 1995; the appraisals 

underestimate the sale prices on average by  more than 4%.16 The standard deviation of 

the ratios is quite large (0.161). In January 1999, January 2003 and January 2005 the 

appraisals overestimate the sale prices, which is in fact a little bit surprising. However, 

the mean value of the sale price appraisal ratios increasingly approaches 1, at least until 

2005, and the standard deviation becomes smaller. The conclusion seems justified that 

the appraisals tend to become better approximations of the sale prices. In a similar study 

for a single province (Overijssel) of the Netherlands, De Vries et al. (2006) reached the 

same conclusion. 
 
Table 2. A comparison of sale prices and appraisals in appraisal reference months 

Reference month )( 00 Sp  )( 00 Sa  00 / ii ap  
 (thousand €) (thousand €) )(

)(
00

00

Sa
Sp

 mean stand. dev. 

January 1995 90.6 87.8 1.033 1.043 0.161 
January 1999 130.9 134.4 0.974 0.975 0.114 
January 2003 201.3 202.9 0.992 0.994 0.105 
January 2005 212.2 215.8 0.983 0.985 0.099 

 
 

                                                      
16 The arithmetic mean of the individual ratios is equal to the denominator of the unweighted arithmetic 
SPAR index given by (22). The corresponding geometric mean – which is equal to the denominator of the 
unweighted geometric SPAR index (23) – would of course be slightly lower. 
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10. Results 

This section provides some results. Figure 3 shows monthly SPAR price index numbers 

for the Netherlands during January 1995 – December 2007, where January 1995 serves 

as the index reference period. Prices of second-hand houses have risen very sharply. In 

December 2007 the value-weighted SPAR index amounts to 282.5, which is equivalent 

to an average monthly increase of 0.7%. Prior to 1999 the unweighted arithmetic and 

geometric SPAR indexes nearly coincide with the value-weighted SPAR, but from 1999 

onwards the unweighted indexes, especially the geometric indexes, are slightly lower. 
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Figure 3. SPAR price indexes (January 1995= 100) 

 
A comparison of this index with the value-weighted (arithmetic) SPAR index 

tells us that more expensive houses exhibited a larger price increase than less expensive 

ones, especially after 1999. As already mentioned in Section 7, cheaper houses are sold 

more frequently in the Netherlands than expensive houses. This will introduce sample 

selection bias into all types of price indexes. However, sample selection bias in SPAR 

indexes is potentially less severe than in a repeat-sales index. This is because the repeat-

sales method by definition excludes houses that were sold only once during the period 
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January 1995 – December 2007, many of which are relatively expensive. Bourassa et al. 

(2006) also argue that the SPAR method is less prone to sample selection bias than the 

repeat-sales method. 

A standard repeat-sales index essentially aims at the unweighted geometric mean 

of price relatives (Wang and Zorn, 1997), so comparing this index with the unweighted 

geometric SPAR will make a lot of sense. This is done in Figure 4, where the repeat-

sales index refers to the house price index published by the Dutch land registry office 

until January 2008.17 As a matter of fact the repeat-sales index overstates the geometric 

SPAR more than expected. In December 2007 the difference has increased to 23.0 index 

points. 
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Figure 4. SPAR and repeat-sales price indexes (January 1995= 100) 

 
To gain insight into this large difference we re-computed the geometric SPAR 

index using the repeat-sales data set. The result is also shown in Figure 4. This accounts 

                                                      
17 This index is actually a weighted variant of the repeat-sales approach, where weighting of the data is 
applied to reduce heteroskedasticity (Jansen et al., 2005). The motivation behind weighting is that the 
variance of the log price changes may increase over time, in particular due to differences in maintenance. 
In practice the weighted repeat-sales index numbers differ not very much from the unweighted index 
numbers. 
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for almost half of the difference. Restricting the data set to houses that have been sold 

more than once clearly gives rise to substantial sample selection bias, which is in an 

upward direction in this particular case. However, more than half of the difference 

between the repeat-sales index and the geometric SPAR index is still unexplained. A 

part of this might be related to the repeat-sales estimation procedure and the revision 

that goes with it. The regression methodology is such that the estimated growth rate in 

house prices in a certain period is determined not only by the prices of houses sold in 

that period, but also by the prices of houses for which consecutive transactions occurred 

at either side of that period. The most recent periods are subject to particularly large 

revision as the houses that changed hands in a period are a relatively small proportion of 

the total number of sale prices that will eventually affect the index in that period. 

The revisions of the Dutch land registry’s repeat-sales index are indeed typically 

in a downward direction, something which is generally the case for repeat-sales indexes 

in other countries. Yet, given the magnitude of the revisions so far, it seems unlikely 

that future revisions will close the whole gap in December 2007 between the repeat-

sales index and the geometric SPAR index based on the repeat-sales data set. While we 

cannot entirely preclude the possibility of downward bias in the SPAR index, we have 

difficulties in finding any reasons for this. According to Case et al. (1997) additional 

upward bias in the repeat-sales index may be due to the fact that estimated house price 

growth is higher among properties that sell more frequently because purchasers make 

property investments that are not adequately controlled for. 

Figure 5 compares the value-weighted SPAR index with a ‘naïve’ index, i.e. the 

ratio of the arithmetic mean sale prices in the current period and the base period. There 

appears to be a systematic difference between both indexes, the naive index being lower 

than the SPAR since 1997. The extremely volatile behaviour of the naive index accords 

with a priori expectations. Apart from sampling error, this volatility must be caused by 

compositional changes affecting the index. 
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Figure 5. Value-weighted SPAR price index and ‘naive’ index (January 1995= 100) 

 
In Section 3, equation (14), it was shown that the value-weighted SPAR index 

can be written as the product of the naive index and a so-called mix-adjustment factor. 

This factor, which equals the ratio of the average appraisals in the base period sample 

and the current period sample, essentially adjusts the naive index for any changes in the 

quality mix, and hence controls for compositional change. Figure 6 illustrates how the 

mix-adjustment factor has changed over time. Except for 1995-1996 its value is smaller 

than 1, suggesting that the average quality of the houses in the current period sample is 

systematically higher than in the base period sample. 
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Figure 6. Mix-adjustment factor (ratio of value-weighted SPAR and naive index) 

 
Figure 7 depicts the monthly percentage changes in the value-weighted SPAR 

index. The time series is definitely smoothed as compared to the naive index, but the 

monthly fluctuations are still considerable. While these short-term fluctuations will to 

some extent reflect true price changes, including seasonality, it is most likely that the 

volatility of the SPAR time series is largely due to compositional changes – which, as 

mentioned in Section 3, do affect the month-to-month changes – and to sampling error. 

Figure 7 also shows the percentage changes with respect to the previous month 

of the repeat sales index. The volatility of the repeat sales index is greater than that of 

the value-weighted SPAR index. The reason is that the repeat sales method is based on 

a much smaller number of observations. Notice that the month-to-month changes of the 

value-weighted SPAR and the unweighted geometric SPAR almost coincide. Thus, the 

repeat-sales method performs worse than the SPAR method, both in terms of bias and 

short-term variability. 
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Figure 7. Monthly percentage index changes 

 
We also computed stratified SPAR indexes according to equations (36), (37) and 

(38).18 The strata have been obtained by cross-classifying the twelve Dutch provinces 

and five types of dwellings (apartments, terraced houses, corner houses, semi-detached 

houses and detached houses), resulting into 60 cells. The average number of monthly 

sales per stratum is about 230, but in many cases the number of observations was much 

smaller, sometimes even below 10. Surprisingly, the differences between the ordinary 

un-stratified SPAR indexes and their stratified counterparts are very small, the stratified 

index being almost two index points higher during the ten-year period. So while there 

are a priori reasons to prefer stratification, for example to reduce sample selection bias, 

in practice it hardly affects the aggregate index. Something similar goes for the stratified 

Laspeyres-type price index described in Section 8: this index nearly coincides with the 

ordinary value-weighted SPAR index. 

However, because stratum indexes and sub-aggregates based on stratum indexes 

may be desirable in their own right, it is useful taking a glance at some of the results. 

                                                      
18 To compute stratified unweighted SPAR indexes we need the total number of houses per stratum in the 
housing stock during the four appraisal reference months. We only had average data at our disposal for 
the entire reference years (1995, 1999, 2003, and 2005), so we used these instead. 
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Figure 8 shows the value-weighted SPAR indexes for those strata with the lowest and 

highest price index numbers in December 2007: apartments in the province of Zeeland 

(stratum A) and detached houses in Utrecht (stratum B), respectively. Given the small 

number of observations per stratum, in particular for stratum A, the volatile pattern of 

the stratum indexes should not come as a big surprise. Figure 8 also confirms that house 

price growth can differ greatly across strata. This finding, together with the fact that the 

impact of stratification is almost negligible, suggests that sample selection bias plays a 

minor role in the SPAR indexes. Note that for small strata, for example stratum A in 

Figure 8, the value-weighted SPAR index has an upward bias, as explained by equation 

(17). Thus, a part of the difference between the stratified and the ordinary indexes might 

be the result of such ‘technical’ bias instead of sample selection bias. 
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Figure 8. Value-weighted SPAR price indexes (January 1995= 100) 
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11. Conclusion 

In this paper we have reviewed the SPAR approach to measuring house price growth 

from a statistical and an index number perspective. Just like the repeat-sales method, the 

SPAR method is an alternative to hedonic regression when data on the characteristics of 

the houses are unavailable. In their standard form, both methods have at least two things 

in common: they are solely based on price changes of matched pairs and thus adjust for 

compositional change, and they do not adjust for quality changes of the houses. From a 

practitioner’s point of view the simplicity and transparency of the SPAR method will be 

a big advantage. This method has been used in New Zealand since the early 1960s and 

is also applied in Sweden and Denmark. Recent experiences with the SPAR method in 

Australia are promising as well (Rossini and Kershaw, 2006). Unlike with repeat-sales, 

SPAR index numbers will not be revised over time. Also, sample selection bias is likely 

to be smaller for SPAR indexes than for repeat-sales indexes since the latter exclude 

houses that have been sold only once. Our empirical work indeed suggests that, while 

house price growth differs greatly across different regions and types of houses, sample 

selection bias in the SPAR indexes is of minor importance. 

SPAR indexes can either be value-weighted or equally weighted. The literature 

emphasizes that the choice should depend on the aim of the index. In case an equally-

weighted or unweighted index is preferred, the geometric variant should be used since 

the target price index satisfies the time reversal test whereas the arithmetic target index 

violates this test. For an index that aims at tracking the change in the value of the total 

housing stock, the weighted arithmetic variant seems a natural choice. Empirical results 

for the Netherlands from January 1995 to December 2007 show that the value-weighted 

and unweighted SPAR indexes differ marginally, so that in practice the choice between 

them might not be very important. The results also confirm that the repeat sales index 

suffers from upward bias and that the volatility of the repeat sales index is greater than 

that of the SPAR index. If a statistical agency has a choice between both methods, we 

would propose the SPAR method, provided that the quality of the appraisal is deemed 

sufficient.19 
                                                      
19 Preliminary results of our research on the SPAR method have been presented at a recent OECD-IMF 
Workshop on Real Estate Price Indexes (Van der Wal et al., 2006). Diewert (2007), who discusses the 
main topics that were dealt with at the Workshop, concludes that “ …. these assessment based methods 
are quite satisfactory (and superior to repeat sales methods) if: the assessed values are used for taxation 
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As from January 2008 Statistics Netherlands and the Dutch land registry office 

jointly publish monthly value-weighted SPAR price index numbers. Recently, we have 

estimated standard errors and confidence intervals for the index numbers as well as for 

monthly and annual index changes.20 This would make it possible to provide the public 

with some measure of accuracy. The failure to adjust for quality changes of the houses 

remains the most important unresolved issue. One topic for further research might be to 

investigate to what extent an annually-chained SPAR index more or less automatically 

adjusts for improvements of the houses, given the fact that most properties are appraised 

retrospectively and should include the effect of improvements carried out since the last 

appraisal reference month. 

12. Appendix: Derivation of Formulas (3), (4), (6), (7) and (17) 

In this Appendix equations (3), (4), (6), (7) and (17) in the main text will be derived. 

We start by introducing some simplifying notation. Our aim is to estimate the ratio 

xyR /=  of the population variables y and x using the ratio xyR ˆ/ˆˆ = , where ŷ  and x̂  

are (not necessarily unbiased) estimators of y and x.  

Given that )ˆ/1()ˆ()ˆ/ˆ()ˆ/1,ˆcov( xEyExyExy −= , the expected value )ˆ(RE  can be 

written as 
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Using a second-order Taylor series expansion around the point )ˆ(xE , x̂/1  can be 

approximated by 
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Thus, the expected value of (A.2) is 
                                                                                                                                                            
purposes; the index is adjusted using other information for depreciation and renovations bias, and only a 
single index is required and a decomposition of the index into structure and land components is not 
required”. The first and third conditions are met in the Netherlands. 

20 See De Haan (2007a) for a detailed description of the method, which is based on Taylor linearization 
techniques along the lines described in the Appendix. 
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Using a first-order Taylor series expansion the covariance term in expression (A.1) can 

be approximated by (see e.g. Kendall and Stuart, 1976) 

( )
2)]ˆ([
ˆ,ˆcov

ˆ
1,ˆcov

xE
xy

x
y −≅⎟

⎠
⎞

⎜
⎝
⎛ .     (A.4) 

Substituting (A.3) and (A.4) into (A.1) yields (compare Cochran, 1977, p. 161) 
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The variance of R̂ can be approximated using a first-order Taylor series expansion by 
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If ŷ  and x̂  are based on independently drawn samples then 0)ˆ,ˆcov( =xy , so that (A.5) 

and (A.6) reduce to 
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Formulas (3) and (4) are obtained by assuming that 0S  and tS  are independently drawn 

random samples and choosing )(ˆ tt Spy =  and )(ˆ 00 Spx =  in (A.5’) and (A.6’). In this 

case we know that )()ˆ( 0UpyE t=  and )()ˆ( 00 UpxE = . Formulas (6) and (7), in which 

a single sample appears, are found by choosing )(ˆ tt Spy =  and )(ˆ 0 tSpx =  with the 

same expected values. The covariance term in equations (A.5) and (A.6) now differs 

from 0; usually this term will be positive. 

The derivation of formula (17) is rather complex since the value-weighted SPAR 

index is a ratio of two ratios and two Taylor series approximations must be applied. We 

start from (A.5’) where )(/)(ˆ 0 ttt SaSpy =  and )(/)(ˆ 0000 SaSpx = . There is small 
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sample bias, hence ))((/))(()ˆ( 0 ttt SaESpEyE ≅  and ))((/))(()ˆ( 0000 SaESpExE ≅ . 

To work out the term 2)]ˆ(/[)ˆvar( xEx  we apply (A.6): 
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where 2/100000000 ))](var())(/[var())(),(cov( SaSpSaSp=ρ  denotes the correlation 

coefficient of the base period average prices and appraisals )( 00 Sp  and )( 00 Sa ; the 

coefficients of variation are defined as ))((/))]([var())(( 002/10000 SpESpSpcv =  and 

))((/))]([var())(( 002/10000 SaESaSacv = . The relative variation in the sale prices in 
0S  is likely to be of the same order of magnitude as the variation in the appraisals. Thus 

we expect the coefficients of variation to be approximately equal to each other. Using 

1))((/))(( 0000 ≅SpcvSacv  expression (A.7) reduces to 
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Substituting (A.7’) and the expressions for )ˆ(yE  and )ˆ(xE  into (A.5’) yields 
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Formula (17) follows from equation (A.8) assuming that 0S  are tS  random samples 

from the (fixed) population 0U . In that case )())(())(( 00000 UaSaESaE t == , so that 

1))((/))(( 000 =tSaESaE , )())(( 0000 UpSpE = , and )())(( 0UpSpE ttt = . 
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