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This study compares two different techniques in a time series small area application: state

space models estimated with the Kalman filter with a frequentist approach to

hyperparameter estimation, andmultilevel time series models estimated within the

hierarchical Bayesian framework. The application chosen is the Dutch Travel Survey

featuring level breaks caused by the survey redesigns, as well as small sample sizes for the

main publication domains. Both models require variances of the design-based domain

estimates as prior information. In practice, however, only unstable estimates of the

design-based variances are available. In this paper, excessive volatility and a possible bias in

design-based variance estimates are removed with the help of a state space model. The

multilevel and state space modelling approaches deliver similar results. Slight differences in

model-based variance estimates appear mostly in small-scale domains and are due to

neglecting uncertainty around the hyperparameter estimates in state space models, and to

a lesser extent due to skewness in the posterior distributions of the parameters of interest.

The results suggest that the reduction in design-based standard errors with the hierarchical

Bayesian approach is over 50% at the provincial level, and over 30% at the national level,

averaged over the domains and time.

1 Introduction

The problem of small area estimation (SAE) emerges when reliable estimates for small areas

cannot be produced relying solely on a design-based inference procedure due to an insufficient

number of sampled units. Either the number of units sampled in the domain of interest is too

small, or the variable of interest has a rare occurrence, in cases when the break-up into domains

is defined post hoc, after the survey has been done. An increasing demand for small area

statistics boosted the development of numerous SAE techniques. Most of these are meant for

cross-sectional data, where the so-called strength over space could be borrowed. This implies

that sample information from other similar domains could be used to improve the design

estimate for a small area of interest. Sometimes, an area may not be sampled at all, in which

case regression synthetic estimators (Gonzalez (1973)) produce figures using some auxiliary

variables. Composite estimators may be used to combine direct estimates with their synthetic

counterparts. This is often done in the framework of the Fay-Herriot model (Fay and Herriot

(1979)), which is estimated using the empirical best linear unbiased predictor (EBLUP) or

hierarchical Bayesian (HB) approach. The literature on these methods is extensive, see, e.g.,

Ghosh and Lahiri (1987), Prasad and Rao (1990), Rao (2003).

While small area estimatesmay be improved by borrowing strength over space, adding the time

dimension further offers a huge potential for improvement. Borrowing strength over time is

realised by using sampling information accumulated over time in the respective, as well as in

other domains. Time series techniques, such as multilevel times series and structural

(unobserved component) time series (STS) models, are powerful tools in producing more

reliable estimates for repeatedly conducted surveys, both for small and non-small areas. Thanks

to their ability to borrow strength over time and domain space, such models can extract the

so-called signal by removing a great part of the sampling noise from design-based

point-estimates. As a result, standard errors (SEs) of such model-based point-estimates are

usually substantially lower than the design SEs. Furthermore, time series models can help

compare figures prior to and after survey redesigns by estimating level breaks. Time series

extensions of the Fay-Herriot model can be found in Rao and Yu (1994), Datta et al. (1999), and
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You (2008) (see Rao (2003) for an overview). For small area applications modelled with the STS

techniques, see Harvey and Koopman (1997), Pfeffermann (1991), Pfeffermann and Bleuer

(1993), Pfeffermann and Tiller (2006), Pfeffermann et al. (2014), Krieg and Van den Brakel (2012)

and Bollineni-Balabay et al. (2016). Level break estimation within the STS framework is

illustrated in Van den Brakel and Roels (2010).

With this paper, the authors would like to contribute to empirical evidence and practical

considerations in times series SAE. This study compares two different time series techniques in

a real life time series small area application - the Dutch Travel Survey (DTS). This survey features

unacceptably volatile estimates in its more than 600 small domains. The reasons for that are

small sample sizes at the provincial level and several survey redesigns, which make the official

figures hard to compare over time. Therefore, this survey could largely benefit from the time

series model-based approach in producing official statistical figures. The two time series

approaches considered in this paper are multilevel time series modelling within the hierarchical

Bayesian (HB) framework and the frequentist-based STS approach facilitated by the Kalman

filter. The initial intention was to check if specifications with random regression coefficients

and/or random intercepts, like in multilevel models, perform better than STSmodels where

such components are conventionally modelled as fixed effects. Further, another model is

considered within the multilevel Bayesian framework - a model with a nearly identical to that of

the STSmodel likelihood function (differing only in the way the trendmodel is specified). This

comparison is performed in order to check if the quality of the STSmodel-based estimates

produced by frequentist estimation routines is good enough compared to the full Bayesian

multilevel framework, as most practitioners, including Statistics Netherlands, estimate STS

models in the frequentist framework.

All model specifications within bothmodelling approaches aremade comparable in terms of the

same pooling dimension, as well as in that no spatial correlation is assumed across domains.

Rationales behindmultivariate against univariatemodelling dimensions are also addressed. The

multilevel time series and STS approaches are compared in terms of adequacy of model-based

point-estimates for the trend and for multiple level breaks due to the survey redesigns, as well

as in terms of gain in precision that can be reached within these twomodelling frameworks. It is

well known, though, that variance estimates often get a negative bias in the frequentist STS

models due to neglected hyperparameter uncertainty (see, e.g., Pfeffermann and Tiller (2005),

Bollineni-Balabay et al. (2015)), so a direct comparison of variance estimates obtained from HB

multilevel and frequentist STSmodels is not completely fair. In this work, we quantify the

uncertainty around hyperparameters to make the comparison of the twomodels fairer.

Another novelty of this paper lies in exploiting the STS approach to refine the multilevel one in

the case of unreliable or missing variance estimates of the design estimator (further referred to

as design-based variance estimates). These are used as input in multilevel models and are

treated as the true known sampling error variances. This paper shows how volatility, missing

values, as well as a possible bias in design-based variance estimates can be alleviated.

Section 2 of this paper presents a brief description of the DTS. Section 3 is fully devoted to the

multilevel model setting. It presents the model itself, as well as estimation details for the HB

approach in two subsections. Section 4 presents the STSmodel and has the same structure.

Section 5 explains how unreliable design-based variance estimates can be improved using the

STS technique. Sections 6 and 7 present empirical results for the DTS at the provincial and

national level, respectively. In each of these sections, the multivariate trend structure is

examined with regard to possible pooling across one or more factor variables. Further, the

performance of the multilevel HBmodel is compared to that of the STSmodel. Section 8

contains conclusions and discussion.

Statistics Netherlands | Discussion paper 2016|03 4



Table 2.1 Domain classi􀅮ication of the DTS along three factors

Provinces Mobility motives (”Mot”) Transport modalities (”Mod”)

1. Groningen 1. Work 1. Car driver

2. Friesland 2. Business 2. Car passenger

3. Drenthe 3. Visits 3. Train

4. Overijssel 4. Shopping 4. Bus/tram/metro

5. Flevoland 5. Education 5. Scooter/moped

6. Gelderland 6. Recreative 6. Bicycle

7. Utrecht 7. Other motives 7. Walking

8. Noord-Holland 8. Other modalities

9. Zuid-Holland

10. Zeeland

11. Noord-Brabant

12. Limburg

2 Dutch Travel Survey

The DTS is a stratified two-stage survey that attempts to measure the travel behavior of the

Dutch population. Every year, a cross-sectional sample is drawn with sampling units being

defined either as households (before 2010), or persons (since 2010). The variable of interest

considered in this study is the number of kilometers per person per day (km-pppd) covered per

transport modality andmotive either at the national, or provincial level. Design estimates for

km-pppd are obtained with the general regression (GREG) estimator (equation (6.4.1) in Särndal

et al. (1992)) by dividing the estimated total number of kilometers covered within a year by the

population with a certain transport modality/motive by the population size and the number of

days in a year. Point- and variance GREG-estimates are produced on an annual basis and for

different break-downs into domains. The time span considered in this paper is 𝑇 = 29, covering

the years 1985-2013. Since 1985, the survey has undergone several redesigns. Until 1994, the

population of interest consisted of residents aged 12 years and older. Since 1994, children under

12 years old have also been included in the population of interest. In 1995, the sample became

six times as large as before (a net-sample size increase from 10 000 to about 65 000

households). Since 2003-2004, however, net sample sizes have been considerably lower

constituting slightly more than 20 000 households (about 43 000 persons between 2010 and

2013). In 1999, the DTS went through the secondmajor redesign that featured some

response-motivation and follow-upmeasures. The published series were corrected for this level

break within Statistics Netherlands. In 2004, the data collection for the survey was transferred

to another agency. Finally, the survey was redesigned again in 2010 and since then has been

conducted by Statistics Netherlands. These two redesigns caused major discontinuities in the

time series and have not been corrected for so far.

Domains of the DTS are formed by an intersection of three factors (see Table 2.1): transport

modalities (𝑀𝑜𝑑) indexed as 𝑖, mobility motives (𝑀𝑜𝑡) indexed as 𝑗, and territorial units

(provinces) indexed as 𝑝. The total number of provinces is 𝑃 = 12, and each province 𝑝 is

broken into 𝐽 = 7motives, and each motive 𝑗 is broken into 𝐼 = 8 transport modalities.

The model described in the subsequent section will be applied at two aggregation levels of the

DTS survey. Firstly, time series of national averages of distances covered, i.e. km-pppd, can be

obtained, thus forming an intersection of modalities andmotives. Secondly, one can go one

level deeper where the target variable is defined as time series of provincial averages, i.e.

km-pppd at the intersection of all the three above-mentioned factors.
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3 MultilevelTimeSeriesApproachAp-

plied to the DTS

3.1 Model Speci􀅮ication

Application of multilevel models is common practice in small area estimation (SAE). The model

presented in this section is a time series extension of the well known Fay-Herriot model for a

cross-section.

In the model below, small areas (domains) are indexed with𝑚 𝜖 {1, ..., 𝑀}, and the number of

years is 𝑇. At the national level,𝑀 = 𝐼 × 𝐽 = 56; at the provincial level,𝑀 = 𝐼 × 𝐽 × 𝑃 = 672.

The𝑀-dimensional vector of GREG estimates 𝒀𝒕 can be expressed as the sum of signal 𝜽𝒕 and

survey errors contained in vector 𝒆𝒕:

𝒀𝒕 = 𝜽𝒕 + 𝒆𝒕, 𝒆𝒕
􀐕􀐐
∼ 𝑁(𝟎,𝜱𝒕), 𝑡 𝜖 {1, ..., 𝑇}, (3.1)

where the signal 𝜽𝒕 consists of the true population parameter and a measurement error that is

stable over time under a particular survey design and changes when a redesign occurs. A

change in the measurement error is represented by a level break (or discontinuity). Level breaks

are included in the signal on purpose, so that the reader can decide which of those to keep or

remove from the signal, depending on whether or not a certain survey modification is viewed as

an improvement. Survey errors 𝒆𝒕 are independently distributed over time with a

𝑀-dimensional covariance matrix𝜱𝒕. Although sampling units may occur in several domains at

the same time (e.g., in domains ”Work-Bicycle” and ”Work-Train”), correlations between such

domains are assumed to be negligible, which renders the𝜱𝒕-matrix diagonal with design-based

variances for every domain𝑚. These variances are generally unknown, so design-based

variance estimates 𝑉𝑎𝑟(𝑌􀐙,􀐠) (Särndal et al. (1992))are used instead and are treated as the true

known variances.

Here and further in this paper, vectors andmatrices are printed in bold. Vectors with a subscript

𝑡 or𝑚 are 𝑇- or𝑀-dimensional, respectively. No correlation is assumed between different

stochastic terms in this paper, unless explicitly mentioned.

The signal development over time is described by a combination of a stochastic and

deterministic trend together with level breaks, as mentioned above. All potential cyclical

movements in the economy are covered by the stochastic trend, hence the absence of the

cyclical component. There is no seasonal component because the data is annual. The following

time-series model is assumed for the𝑀-dimensional vector of signals 𝜽𝒕:

𝜽𝒕 =𝑐𝜾 + 𝜅𝑡𝜾 + 𝛿􀐄􀏷􀍮,􀐠(𝛽
􀐄􀏷
􀍮 𝜾 + 𝜷𝑹𝑬𝟏 ) + ... + 𝛿􀐄􀏷􀏽􀓼􀓯,􀐠(𝛽

􀐄􀏷
􀏽􀓼􀓯

𝜾 + 𝜷𝑹𝑬𝑲𝑹𝑬) + 𝝂 + 𝜿𝑡+

𝛿􀏸􀏷􀍮,􀐠𝜷
𝑭𝑬
𝟏 + ... + 𝛿􀏸􀏷􀏽􀓰􀓯,􀐠𝜷

𝑭𝑬
𝑲𝑭𝑬

+ 𝒖𝒕, 𝑡 𝜖 {1, ..., 𝑇},
(3.2)

where 𝑐 and 𝜅 are the overall intercept and linear time trend coefficient, respectively, 𝜾 is an

𝑀-dimensional vector of ones, 𝝂 = (𝜈􀍮, ..., 𝜈􀏿)
􀚄 are independent domain effects that serve as

random intercepts in the model, 𝜿 = (𝜅􀍮, ..., 𝜅􀏿)
􀚄 are domain-specific random linear time trend

coefficients;𝐾􀐄􀏷 and𝐾􀏸􀏷 denote numbers of level interventions modelled as random or fixed

effects, respectively;𝜷𝑹𝑬𝒌 and𝜷𝑭𝑬𝒌 are vectors with level break coefficients assumed to be

random or fixed effects, respectively. Scalars 𝛽􀐄􀏷􀐗 represent the mean of the 𝑘-th level break

random coefficient across domains; 𝛿􀐄􀏷􀐗,􀐠 and 𝛿
􀏸􀏷
􀐗,􀐠 are indicator variables for level breaks

modelled as random and fixed effects, respectively. These indicators switch from zero to one at

the moment of a redesign. With an entry of a new dummy variable, all previous dummies

remain equal to one. Note that scalar terms 𝑐, 𝜅, 𝛽􀐄􀏷􀐗 are estimated as fixed effects. They are

contained in a vector, say𝜷, along with𝜷𝑭𝑬𝒌 .
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Terms in 𝒖𝒕 = (𝑢􀍮,􀐠, ..., 𝑢􀏿,􀐠)
􀚄 are domain-by-time effects modelled as randomwalks. The

pattern of the DTS series suggests a non-stationary model for the trend 𝒖𝒕. Therefore, one

could assume either a randomwalk (𝐼(1)), or an integrated randomwalk (𝐼(2), the so-called

smooth-trendmodel, as in Harvey (2001)). Here, the latter formulation is preferred due to its

well-known flexibility and parsimony (Durbin and Koopman (2012), Ch. 3, Harvey (2001)). This

application, as well as the one in Bollineni-Balabay et al. (2016) provide evidence for data

overfitting when other specifications (I(1)-randomwalk or the local linear trendmodel) for the

stochastic trends are applied. When applied to the DTS, these alternative trend specifications

resulted in severe overfitting too. Therefore, only the smooth-trend model is considered in this

paper. The disturbance terms 𝝐𝒕 of the 𝒖𝒕-terms are assumed to be normally, identically and

independently distributed over time and across domains:

𝒖𝒕 = 𝒖𝒕􀍸𝟏 + 𝒓𝒕􀍸𝟏, 𝒓𝒕 = 𝒓𝒕􀍸𝟏 + 𝝐𝒕, 𝝐𝒕
􀐕􀐕􀐐
∼ 𝑁(𝟎, 𝜮𝒖), 𝑡 𝜖 {1, ..., 𝑇}, (3.3)

where 𝜮𝒖 is a diagonal 𝐼𝐽- or 𝑃𝐼𝐽-dimensional matrix at the national or provincial level,

respectively.

The following identifiability constraints are imposed on the stochastic trend estimates 𝑢̂􀐙,􀐠 to

insure that, after accounting for the level break interventions, all the deterministic time

variation in signal 𝜃􀐙,􀐠 is accounted for by the linear trend (𝜅 + 𝜅􀐙)𝑡, and the stochastic time

variation around this deterministic trend and the remaining time-average level 𝑐 + 𝜈􀐙 is

accounted for solely by 𝑢̂􀐙,􀐠:
􀐆

∑

􀐠􀍹􀍮

𝑢̂􀐙,􀐠 = 0,

􀐆

∑

􀐠􀍹􀍮

𝑢̂􀐙,􀐠𝑡 = 0. (3.4)

Since there is no reason to assume that the stochastic trends have similar dynamics across

either motives, or transport modalities, as will be verified in Subsection 7.1, every diagonal

element of a 𝐼𝐽-dimensional square matrix 𝜮𝒖 is assigned a unique value at the national level. As

for the provincial level, one could assume that the trend disturbances for motive 𝑗 and transport

modality 𝑖 from 𝑃 provinces come from the same distribution. This would make the model

parametrisation muchmore parsimonious. Thenmatrix 𝜮𝒖 will consist of 𝑃 block replicas of a

𝐼𝐽-dimensional covariance matrix 𝜮[𝑰𝑱] for motive-modality intersections:

𝜮𝒖 = 𝑰[𝑷] ⊗𝜮[𝑰𝑱]. (3.5)

Whether or not this assumption is feasible, will be verified in Subsection 6.1.

The area-specific terms 𝜈􀐙, 𝜅􀐙 and 𝛽􀐄􀏷􀐙,􀐗 are assumed to share the same variance across

domains and to be normally and independently distributed over the domain space and between

each other. By construction, they are distributed around zero due to the presence of the overall

elements 𝑐, 𝜅, and 𝛽􀐄􀏷􀐗 :

𝝂
􀐕􀐕􀐐
∼ 𝑁(𝟎, 𝜎􀍯􀑍 𝑰),

𝜿
􀐕􀐕􀐐
∼ 𝑁(𝟎, 𝜎􀍯􀑊𝑰),

𝜷𝑹𝑬𝒌
􀐕􀐕􀐐
∼ 𝑁(𝟎, 𝜎􀍯

􀑂􀓼􀓯􀔏
𝑰),

(3.6)

where 𝟎 and 𝑰 denote an𝑀-dimensional vector and identity matrix, respectively. Such model

specification allows us to draw terms 𝜈􀐙, 𝜅􀐙 and 𝛽􀐄􀏷􀐙,􀐗 from distributions centred around zero,

which will be necessary in the Bayesian estimation, but it makes these terms, as well as their

means unidentifiable. The sums (𝑐 + 𝜈􀐙), (𝜅 + 𝜅􀐙) and (𝛽
􀐄􀏷
􀐗 + 𝛽􀐄􀏷􀐙,􀐗) are, however, identifiable

and constitute random intercepts, random linear trend slopes and random level break

coefficients, respectively. Note that𝜷𝑹𝑬𝒌 -coefficients can be estimated as fixed effects by

setting their variance 𝜎􀍯
􀑂􀓼􀓯􀔏

equal to infinity. There is always a trade-off between regression

coefficients’ bias and variance when a random or fixed effects assumption is chosen, see Clark

and Linzer (2015) for a discussion.
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Model (3.2) assumes that area-specific random terms 𝜈􀐙 originate from one distribution (the

same applies to 𝜅􀐙 and 𝛽􀐄􀏷􀐙,􀐗). It is, however, quite plausible that differences exist between

means of random terms belonging to different motives, transport modalities or provinces. If the

pattern of the series for a certain intersection of the motives with transport modalities suggests

that provinces do not differ much from each other, the model could be written as in (3.7) with

only two, instead of three additional terms per random component. Then the remaining

random effect variation around the motive andmodality means would be described by an

𝑀-dimensional random-effect vector. All this gives a rise to the following model, which is an

extension of Model (3.2):

𝜽𝒕 =𝑐𝜾 + 𝜾[𝑴/𝑰] ⊗𝝂𝑴𝒐𝒅 + 𝝂𝑴𝒐𝒕 ⊗ 𝜾[𝑴/𝑱] + 𝝂

+ 𝜅𝑡𝜾 + 𝜾[𝑴/𝑰] ⊗𝜿𝑴𝒐𝒅𝑡 + 𝜿𝑴𝒐𝒕𝑡 ⊗ 𝜾[𝑴/𝑱] + 𝜿𝑡

+ 𝛿􀐄􀏷􀍮,􀐠(𝛽
􀐄􀏷
􀍮 𝜾 + 𝜾[𝑴/𝑰] ⊗𝜷𝑹𝑬𝟏,𝑴𝒐𝒅 + 𝜷𝑹𝑬𝟏,𝑴𝒐𝒕 ⊗ 𝜾[𝑴/𝑱] + 𝜷𝑹𝑬𝟏 )+

...

+ 𝛿􀐄􀏷􀏽􀓼􀓯,􀐠(𝛽
􀐄􀏷
􀏽􀓼􀓯

𝜾 + 𝜾[𝑴/𝑰] ⊗𝜷𝑹𝑬𝑲𝑹𝑬,𝑴𝒐𝒅 + 𝜷𝑹𝑬𝑲𝑹𝑬,𝑴𝒐𝒕 ⊗ 𝜾[𝑴/𝑱] + 𝜷𝑹𝑬𝑲𝑹𝑬)

+ 𝛿􀏸􀏷􀍮,􀐠𝜷
𝑭𝑬
𝟏 + ... + 𝛿􀏸􀏷􀏽􀓰􀓯,􀐠𝜷

𝑭𝑬
𝑲𝑭𝑬

+ 𝒖𝒕, 𝑡 𝜖 {1, ..., 𝑇},

(3.7)

where each of the 𝜈, 𝜅, 𝛽􀐄􀏷-terms sub-indexed with𝑀𝑜𝑑 contains random termmeans taken

across motives and provinces for each of 𝐼 transport modalities and is distributed as

𝝂𝑴𝒐𝒅
􀐕􀐕􀐐
∼ 𝑁(𝟎, 𝜎􀍯􀑍􀓷􀔓􀔈

𝑰),

𝜿𝑴𝒐𝒅
􀐕􀐕􀐐
∼ 𝑁(𝟎, 𝜎􀍯􀑊􀓷􀔓􀔈

𝑰),

𝜷𝑹𝑬𝑴𝒐𝒅

􀐕􀐕􀐐
∼ 𝑁(𝟎, 𝜎􀍯

􀑂􀓼􀓯􀓷􀔓􀔈

𝑰).

(3.8)

The same applies to random terms labelled with𝑀𝑜𝑡. These are 𝐽-dimensional. Random terms

𝝂, 𝜿, 𝜷𝑹𝑬𝒌 are𝑀-dimensional and take care of the variation around their respective motive and

modality means.

Note that the signal 𝜃􀐙,􀐠 has no area-by-time white noise in the multilevel models presented in

this paper. It is assumed that all the stochastic variation in 𝜃􀐙,􀐠 over time is picked up by the

stochastic structure of the trend. In fact, allowing for an additional noise in the signal resulted in

data overfit in many, especially small domains. The absence of the additional noise termmakes

it furthermore easier to compare the multilevel approach with the structural time series one.

Special cases of models (3.2) and (3.7) could also be considered. For instance, all level breaks

could be modelled as fixed effects. Further, if distribution assumptions about the random terms

𝜈􀐙 and 𝜅􀐙 do not seem to hold, one could consider modelling these terms as fixed effects. In

the latter case, estimation at the national level will be reduced to a univariate setting.

3.2 Estimation Details on the Multilevel Model

Themultilevel modelling technique constitutes a composite estimator, i.e. a combination of the

design and synthetic estimators. The model in (3.1)-(3.2) can be estimated with the EBLUP

(empirical best unbiased predictor), or within the hierarchical Bayesian (HB) approach. For this

application, the HB approach is chosen with non-informative priors using the Gibbs-sampler

pre-programmed in themcmcsae R-package (Boonstra (2015)). The posterior means of the

signals 𝜃􀐙,􀐠 are taken to be domain point-estimates, and the posterior standard deviations of

𝜃􀐙,􀐠s serve as their measures of uncertainty. These posterior standard deviations are further in

this paper referred to as SEs for brevity.

Random terms 𝜈􀐙, 𝜅􀐙 and 𝛽􀐄􀏷􀐙,􀐗 are independent and assigned normal priors as in (3.6) within

the Bayesian estimation framework. The randomwalk term has a normal prior distribution as

well: 𝒖𝒎
􀐕􀐕􀐐
∼ 𝑁(𝟎, 𝜎􀍯􀐡,􀐙𝑨), 𝑨 being a 𝑇-dimensional covariance matrix. In case when the initial
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𝑢􀐙􀍮 in all domains are assigned a non-informative prior, matrix 𝑨 becomes unbounded.

However, the limit of the precision matrix 𝑨􀍸𝟏 used in the Gibbs sampler is well-defined, see,

e.g., Rue and Held (2005). Apart from that, the precision matrix 𝑨􀍸𝟏 is sparse (i.e., mostly

contains zeros and, in this case, has five diagonals), which makes the Gibbs sampler efficient.

The variances of the random-effect components are assigned inverse chi-squared priors with

degrees of freedom 𝑣 and a scale parameter 𝑠􀍯: 𝜎􀍯􀑍 ∼ 𝐼𝑛𝑣 − 𝜒􀍯(𝑣􀑍, 𝑠
􀍯
􀑍), 𝜎

􀍯
􀑊 ∼ 𝐼𝑛𝑣 − 𝜒􀍯(𝑣􀑊, 𝑠

􀍯
􀑊),

𝜎􀍯
􀑂􀓼􀓯

∼ 𝐼𝑛𝑣 − 𝜒􀍯(𝑣􀑂􀓼􀓯 , 𝑠
􀍯
􀑂􀓼􀓯

), 𝜎􀍯􀐡,􀐙 ∼ 𝐼𝑛𝑣 − 𝜒􀍯(𝑣􀐡,􀐙, 𝑠
􀍯
􀐡,􀐙). Non-informative priors on these

variance parameters would require small values (close to zero) for 𝑣 and 𝑠􀍯 hyperparameters.

If variances of the stochastic terms 𝜈􀐙, 𝜅􀐙 etc. are small (relative to the design-based

variances), the convergence of the Gibbs sampler could be very slow. Apart from that, as

Gelman et al. (2008) and Polson et al. (2012) suggest, the inverse-gamma (or inverse

chi-squared) parametrization for variance parameters is often not robust and should be

replaced by distributions for standard deviation parameters from the folded noncentral

𝑡-family, of which the half-Cauchy distribution is a special case. In order to solve both problems,

Gelman et al. (2008) suggest applying a redundant multiplicative parametrisation. In this paper,

this parameter expansion is applied to any stochastic term components for which

non-informative priors are chosen: 𝜈􀐙 = 𝜉􀑍𝜈̃􀐙, 𝜅􀐙 = 𝜉􀑊𝜅̃􀐙, etc., where 𝜉-terms are

multiplicative scalar parameters, and the terms with a tilde are distributed like in (3.6) and (3.3),

but with variances 𝜎̃􀍯􀑍 , 𝜎̃
􀍯
􀑊 , etc., for which inverse-Gamma (or inverse chi-squared) priors can be

chosen. Such parametrization is used for standard deviation parameters that are expressed as:

𝜎􀑍 = |𝜉􀑍|𝜎̃􀑍, 𝜎􀑊 = |𝜉􀑊|𝜎̃􀑊, etc. The 𝜉-terms are independent of each other and are assigned

normal priors:

𝜉􀑍 ∼ 𝑁(𝛼􀑍, 𝛾􀑍), 𝜉􀑊 ∼ 𝑁(𝛼􀑊, 𝛾􀑊), 𝜉􀑂􀓼􀓯 ∼ 𝑁(𝛼􀑂􀓼􀓯 , 𝛾􀑂􀓼􀓯), 𝜉􀐡 ∼ 𝑁(𝛼􀐡, 𝛾􀐡). (3.9)

Setting 𝛼 = 0 (and 𝛾 = 1, without loss of generality) implies that priors on the standard

deviation parameters come from the half 𝑡-family, see Gelman (2006). Setting 𝛼 = 1 and 𝛾 = 0

is equivalent to the original (non-expanded) parametrization of the model. Combining

𝜉 ∼ 𝑁(0, 1)with 1 degree of freedom in 𝜎̃􀍯 ∼ 𝐼𝑛𝑣 − 𝜒􀍯(1, 𝑠􀍯) results in a half-Cauchy prior for

parameter 𝜎. For numerical reasons, the scale parameters 𝑠􀍯 in this application are restricted to

the standard deviation of the variable of interest in vector 𝒀.

The overall intercept 𝑐, linear trend coefficient 𝜅 and expectations 𝛽􀐄􀏷􀐗 of random level break

coefficients are estimated as regression coefficients and are contained in𝜷, along with vectors

𝜷𝑭𝑬𝒌 . The prior for all the regression coefficients is flat (normal with mean𝜷𝟎 = 𝟎 and a large

variance𝜴𝜷𝟎
).

Denoting the parameter vector by𝝍:

𝝍 = (𝝂, 𝜿, 𝜷𝑹𝑬
􀚅
, 𝒖, 𝜷􀚄, 𝜎􀍯􀑍 , 𝜎

􀍯
􀑊 , 𝜎

􀍯
􀑂􀓼􀓯

, 𝜎􀍯􀐡 , 𝜉􀑍, 𝜉􀑊, 𝜉􀑂􀓼􀓯 , 𝜉􀐡),

the likelihood function can be written as:

𝑝(𝒀|𝝍) = 𝑁(𝜉􀑍𝝂̃ ⊗ 𝜾[𝑻] + 𝜉􀑊𝜿̃ ⊗ 𝒕 + 𝑿𝑹𝑬𝜷𝑹𝑬 + 𝑿𝜷 + 𝜉􀐡𝒖̃, 𝜱) (3.10)

where 𝒕 denotes a vertical vector with time indicators (0, 1, ..., 𝑇 − 1)􀚄, 𝜾[𝑻] is a 𝑇-dimensional

column vector of ones,𝜱 is a [𝑀𝑇 ×𝑀𝑇]matrix, matrix𝑿𝑹𝑬 is [𝑀𝑇 ×𝑀𝐾􀐄􀏷] and contains

dummy regressors for the vector with random level break effects𝜷𝑹𝑬 = (𝜷𝑹𝑬
􀚅

𝟏 , ..., 𝜷𝑹𝑬
􀚅

𝑲𝑹𝑬
)􀚄, and𝑿

is a [𝑀𝑇 × (2 + 𝐾􀐄􀏷 + 𝑑􀏸􀏷)]-dimensional matrix, 𝑑􀏸􀏷 being the number of level break

coefficients modelled as fixed effects. The dimension of matrix𝑿 is due to the presence of the

overall effects 𝑐, 𝜅, and𝐾􀐄􀏷 𝛽
􀐄􀏷
􀐗 s in the vector𝜷, as well as due to the presence of the

𝑑􀏸􀏷-dimensional vector𝜷𝑭𝑬 of fixed level break coefficients.

The parameters in the prior distribution below are assumed to be mutually independently
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distributed. The joint prior is then a product of each parameter’s marginal prior distribution:

𝑝(𝝍) = [ ∏

􀐘􀍹􀑍,􀑊,􀑂􀓼􀓯

[

􀏿

∏

􀐙􀍹􀍮

𝑁(0, 𝜎̃􀍯􀐘 )]] [

􀏿

∏

􀐙􀍹􀍮

𝑁(𝟎, 𝜎̃􀍯􀐡,􀐙𝑨)]×

⎡
⎢
⎢
⎢
⎣

∏

􀐘􀍹􀑍,􀑊,

􀑂􀓼􀓯,􀐡

𝐼𝑛𝑣 − 𝜒􀍯
􀑒􀑧􀔐
(𝑣􀐘, 𝑠

􀍯
􀐘 )

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

∏

􀐘􀍹􀑍,􀑊,

􀑂􀓼􀓯,􀐡

𝑁􀑎􀔐
(𝛼􀐘, 𝛾􀐘)

⎤
⎥
⎥
⎥
⎦

𝑁(𝜷𝟎, 𝜴𝜷𝟎
).

(3.11)

Then the conditional posterior density of the parameter vector𝝍 is proportional to the

following joint density: 𝑝(𝝍|𝒀) ∝ 𝑝(𝝍)𝑝(𝒀|𝝍). See Appendix A for each parameter’s

conditional posterior distribution used in the Gibbs-sampler.

4 Structural Time Series (STS) Unob-

served Component Modelling in the

Case of the DTS

4.1 STS Model Speci􀅮ication

The general theory on STSmodels is presented in Durbin and Koopman (2012) and Harvey

(1989). Similarly to the multilevel framework presented in Section 3.1, the series of the DTS

design estimates 𝑌􀐙,􀐠 in a STSmodel can be decomposed into signal 𝜃􀐙,􀐠 and the survey error

component, as in (3.1). The 𝜃􀐙,􀐠-term, in turn, is decomposed into several unobserved

components:

𝜃􀐙,􀐠 = 𝐿􀐙,􀐠 + 𝛿􀍮,􀐠𝛽􀐙,􀍮 + ... + 𝛿􀏽,􀐠𝛽􀐙,􀏽 + 𝜀􀐙,􀐠, 𝑡 𝜖 {1, ..., 𝑇}, (4.1)

where 𝐿􀐙,􀐠 is the stochastic trend component,𝐾 is the total number of level breaks in domain

𝑚, and 𝛿􀐗,􀐠 is an indicator variable for the 𝑘-th level-break regression coefficient 𝛽􀐙,􀐗. The

population parameter error term is 𝜀􀐙,􀐠
􀐕􀐕􀐐
∼ 𝑁(0, 𝜎􀍯􀑅 ). In cross-sectional surveys like the DTS, it is

difficult to separate this term from the sampling error 𝑒􀐙,􀐠, especially if the variance of 𝜀􀐙,􀐠 is

small relatively to the sampling variance. Therefore, the two terms are combined into one

composite error term 𝑣􀐙,􀐠 that is assumed to be largely dominated by the sampling error. In

order to incorporate the design-based variance estimates 𝑉𝑎𝑟(𝑌􀐙,􀐠) in a STSmodel, the

composite error term 𝑣􀐙,􀐠 can bemodelled as 𝑒̃􀐙,􀐠√𝑉𝑎𝑟(𝑌􀐙,􀐠), 𝑒̃􀐙,􀐠
􀐕􀐕􀐐
∼ 𝑁(0, 𝜎􀍯􀐑̃􀔑). For the

variance of this product to be close to the design-based variance estimate 𝑉𝑎𝑟(𝑌􀐙,􀐠), 𝜎
􀍯
􀐑̃􀔑

should be close to unity. Deviations from unity should correct for a possible under- or

overestimation of design-based variance estimates. In this way, STSmodels feature more

flexibility, unlike the multilevel ones, where the survey error variance estimates, used as prior

input into the model, are assumed to be true and are thus fixed.

For one domain𝑚, themodel in (4.1) is referred to as a univariate STSmodel. If several domains

have to be estimated simultaneously so that they can borrow cross-sectional sample

information from each other, univariate models can be stacked under each other to constitute a

multivariate STSmodel. In this application, no spatial correlation is assumed, just like in the

multilevel model presented in the previous section.
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The obtained multivariate STSmodel largely resembles the multilevel one in (3.1), with each

domain being represented by the following equation:

𝑌􀐙,􀐠 = 𝐿􀐙,􀐠 + 𝛿􀍮,􀐠𝛽􀐙,􀍮 + ... + 𝛿􀏽,􀐠𝛽􀐙,􀏽 + 𝑒̃􀐙,􀐠√𝑉𝑎𝑟(𝑌􀐙,􀐠), 𝑡 𝜖 {1, ..., 𝑇}. (4.2)

As mentioned in Section 3.1, the smooth-trendmodel is assumed for the trend in the multilevel

setting. Here, the local linear trendmodel and a randomwalk with a drift both resulted in a

severe data overfit (see Harvey (2001) or Durbin and Koopman (2012) for different trendmodel

specifications). Therefore, the same trendmodel is assumed for the structural time series (STS)

model setting as in (3.3), though without the identification constraints for the multilevel setting

mentioned in (3.4). The trend component 𝐿􀐙,􀐠, apart from the random-walk component 𝑢􀐙,􀐠

with its deterministic part 𝑡(𝜅 + 𝜅􀐙), also implicitly contains an intercept. However, this

intercept is defined solely on the basis of the corresponding domain’s input series 𝑌􀐙,􀐠 and

therefore would be equivalent to intercept 𝑐 + 𝜈􀐙 in (3.2) only if the latter is modelled as a fixed,

rather than random effect. The covariance matrix of the disturbance terms belonging to the

trend 𝐿􀐙,􀐠 is diagonal as in (3.5).

4.2 STS Model Estimation Details

Linear structural time series models with unobserved components are usually put into a

state-space form and analysed with the Kalman filter. First, the model hyperparameters (here,

𝜎􀍯􀐡s and 𝜎̃
􀍯
􀐙,􀐠s) are estimated using the maximum-likelihood (ML) approach by iteratively

running the Kalman filter. The hyperparameters are treated as known and set equal to their ML-

estimates, whereafter state variables (𝐿􀐙,􀐠, 𝛽􀐙,􀐗s) can be extracted by the Kalman filter

recursions. These recursions are initialised with diffuse priors for non-stationary variables (see

Koopman (1997)). One has to be aware of the fact, that mean square error (MSE) estimates of

the state variables produced by the Kalman filter are negatively biased, since the uncertainty

around the hyperparameter estimates is not taken into account. See Pfeffermann and Tiller

(2005) for the true MSE estimation approaches, as well as Bollineni-Balabay et al. (2015) for a

simulation-based comparison of different approaches existing in the literature. The STSmodels

presented in this paper are estimated in OxMetrics 7 (Doornik (2007)) in combination with the

SsfPack 3.0 package (Koopman et al. (2008)). One could think of a full Bayesian approach to STS

model estimation with prior distributions for the model hyperparameters instead of

hyperparameter ML estimates. However, the computational capacity required for models like

the DTS one would make this approach unfeasible. Apart from that, since most practitioners,

including Statistics Netherlands, estimate STSmodels in the frequentist framework, the

authors aim to find if the quality of frequentist STSmodel-based estimates is sufficiently good

compared to when estimation is carried out within the full Bayesian multilevel framework.
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5 Tacklingunreliabilityandmissingval-

ues indesign-basedvarianceestimates

of the DTS

The problemwith the DTS is that the design-based variance estimates are missing in

2004-2009. For 2010-2013, they are only available at the intersections of provinces with

modalities and of modalities with motives at the national level. The missingness in all domains

in 2004-2009 can be imputed with the help of the Kalman filter, as shown a bit later in this

subsection. As for the variances missing only at certain intersections at the end of the sample

(2010-2013), these may be be approximated by using the variances available at the other

intersections. The following approach is applied in order to approximate the standard errors

(𝑆𝐸(𝑌􀐙,􀐠)) at the three-dimensional intersection:

𝑆𝐸(𝑌􀏿􀐛􀐐,􀏿􀐛􀐠,􀐜,􀐠) = 𝑆𝐸(𝑌􀏿􀐛􀐐,􀏿􀐛􀐠,􀐠) ⋅ 𝑆𝐸(𝑌􀏿􀐛􀐐,􀐜,􀐠)/𝑆𝐸(𝑌􀏿􀐛􀐐,􀐠), (5.1)

where the second factor in the right-hand side reflects an inflation of the standard error of the

GREG estimator (further referred to as the design-based standard error) in modality𝑀𝑜𝑑when

switching from the national to the provincial level. The performance of this method is verified

using the 2003 data and is strikingly good for every province for the domain intersection in the

left panel of Fig. 5.1 (here, relative margins of error are plotted, i.e. the margins of error at the

95% confidence level divided by the point-estimate). In most other domain intersections, the

approximation performs similarly. The right panel shows how the approximation performs in

the worst case.

Figure 5.1 Original (solid line) and approximated (dashed line) relative margins of

error at the 95% con􀅮idence level for 12 provinces, 2003, percent

The Kalman filter (KF) is applied to impute the missing design-based standard error estimates

and to smooth out sampling fluctuations. Therefore, smoothed trends of the design-based

standard error estimates from the following univariate STSmodel are used as input information

in multilevel and STSmodels for the domain of interest, i.e. km-pppd:

𝑆𝐸(𝑌􀐙,􀐠) = 𝐿􀐅􀏷􀐙,􀐠 + 𝜀􀐙,􀐠, 𝜀􀐙,􀐠
􀐕􀐕􀐐
∼ 𝑁(0, 𝜎􀍯􀑅 ),

𝐿􀐅􀏷􀐙,􀐠 = 𝐿􀐅􀏷􀐙,􀐠􀍸􀍮 + 𝑅􀐅􀏷􀐙,􀐠􀍸􀍮,

𝑅􀐅􀏷􀐙,􀐠 = 𝑅􀐅􀏷􀐙,􀐠􀍸􀍮 + 𝜂􀐙,􀐠, 𝜂􀐙,􀐠
􀐕􀐕􀐐
∼ 𝑁(0, 𝜎􀍯􀑇 ), 𝑡 𝜖 {1, ..., 𝑇},

(5.2)

where 𝐿􀐅􀏷􀐙,􀐠 and 𝑅
􀐅􀏷
􀐙,􀐠 are the level and slope of the trend for the design-based standard errors,

respectively. Although standard deviations of normally distributed variables are Chi-distributed,

such Chi-distributions can be approximated with a normal distribution given moderate to large

numbers of degrees of freedom. Model 5.2 could also be augmented with sample size
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information. However, in this case such augmentations resulted in data overfit. Some of the

smoothed SE estimates are plotted against their original counterparts in Fig. 5.2.

Figure 5.2 Original (solid line) and smoothed (dashed line) design-based standard

errors, Zuid-Holland.

If these smoothed estimates are used as an input in multilevel models (and thus treated as the

known true standard errors of the design estimator), some domains still experience too volatile

multilevel model point-estimates (see Fig.5.3, solid lines). This occurs only in domains where

the number of km-pppd is small (further referred to as small-scale domains, e.g., ”Walking”,

”Bus/Tram/Metro”) andmakes one suspect that the design-based variance estimates are biased

in these domains. For this reason, one could consider using the smoothed design-based

standard errors scaled within the univariate STS framework. This means that the sampling error

variances would be represented both in the STS andmultilevel models by the product of the

scaling parameter 𝜎􀍯􀐑̃􀔑 and the smoothed design-based variance estimates 𝑉𝑎𝑟(𝑌􀐙,􀐠). Fig. 5.3

shows point-estimates resulting from the two approaches applied to the samemultilevel model.

The differences in other domains are negligible because most of these scaling parameters are

concentrated around unity, as Fig. 5.4 shows. Further in this paper, all themultilevel analysis will

be based on the second approach which applies scaled smoothed design-based variance

estimates. Not only does it prevent overfitting in domains whose design-based variance

estimates are not reliable, but it also eliminates another factor responsible for differences

between the outcomes frommultilevel and STSmodels, because in this way both models use

design-based variance estimates corrected in the same way.
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Figure 5.3 Design-based point-estimates (dotted lines) and multilevel model

posterior means that use smoothed design SE estimates (solid line) and smoothed

design SE estimates scaled within the univariate STS framework (dashed line).

Figure 5.4 Scaling factor for design-based standard errors in univariate STS models.

6 The DTS at the Provincial Level

Before we estimate both models, a careful inspection for outliers is needed. The trend

disturbance variance 𝜎􀍯􀐡,􀐙 may get overestimated due to one single outlier, especially if the

design-based variance of this outlying point is negatively biased. Excessively large trend

disturbance variances would cause model point-estimates to overfit the data. In order to

eliminate the effect of outliers, we inspect estimation results from univariate STSmodels for

each domain and assign a large value to the design-based variance of every outlying point.

There are five outliers in total at the provincial level, which belong to small-scale domains

involving ”Scooter”, ”Train” or ”Other modalities”. These outliers are treated in the same way in

the multilevel and STSmodels.
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6.1 The Multivariate Variance Structure of Stochastic Trends

Small areas (domains) at the provincial level are formed by an intersection of 12 provinces with

8 modalities and 7 motives (𝑀 = 672). Subsection 3.1 presented a general variance structure of

the trend disturbances. To see if some domains with certain irregularities can benefit from other

domains by means of pooling by either provinces, motives or modalities, it is best to compare

the trend disturbance variance estimates 𝜎̂􀐡,􀐜 obtained from univariate STSmodels (4.2). By

looking at the top panel of Fig. B.1 with box-plots for these 𝜎􀐡,􀐙-estimates, it becomes clear

that they are very heterogeneously distributed across the modalities. With heterogeneity less

pronounced across the motives (the lower panel), there is no systematic way in which some

motives resemble the others, and the existing differences are still too big to be able to pool the

trend disturbance variances across the motives.

Viewing provinces as panel units with responses on 𝜎􀐡,􀐙 of motives andmodalities provides an

opportunity to use larger amounts of sample information in estimating the hyperparameters.

This would make the hyperparameters estimates more reliable if the processes in provinces are

similar indeed. In order to check that, one could construct scatter- or barplots of

𝜎􀐡,􀐜,􀐖,􀐕-estimates from univariate STSmodels for the twelve provinces for every intersection of

the motives and transport modalities (find the scatterplot and barplots in Fig. 6.1 and B.2,

respectively). These plots reveal that 𝜎􀐡,􀐜,􀐖,􀐕-estimates of provinces 2 (Friesland) and 5

(Flevoland) often exhibit very different values from the rest of the provinces - at eight and

seventeen Mot/Mod intersections, respectively. Large 𝜎􀐡,􀐙-values in province 5 (e.g., in Mod

1/Mot 1-3,6, Mod 2/Mot 3, Mod 4/Mot 1) are mostly caused by a bigger scale of the series, i.e.

with more km-pppd being covered in this province compared to the other provinces. As for

Province 2 (e.g., in Mod 2/Mot 1, Mod 5/Mot 1, Mod 8/Mot 6), large 𝜎􀐡,􀐙-values are caused by

either a bigger scale, or a more volatile pattern of the series. 𝜎􀐡,􀐜,􀐖,􀐕-estimates of province 1

exhibit the largest values (compared to the rest of the provinces) for about five times, and those

of province 10 and 12 - four and three times, respectively. It is worthwhile to observe the scale

of the latter provinces’ series (1, 10 and 12): it hardly ever exceeds the scale of the rest of the

provinces, and is sometimes even smaller. Therefore, these provinces would be better off if

pooled together with the other ones. Further, one can see that the disturbance variances in

many cases tend to take on very small values when estimatedwithin the STS approach. It means

that the trend in such cases resembles a straight line. Keeping in mind that the ML estimator

tends to underestimate hyperparameters when their distribution is right-skewed, it would also

be desirable to estimate such variance hyperparameters in a pool with other domains (provinces

in this case). Thus, we abstain from pooling provinces 2 and 5 with the other ten. Therefore, the

twelve provinces are divided into a cluster of two and a cluster of ten provinces, within which

variances are pooled. This applies to the multilevel, as well as to the multivariate STS analysis.
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Figure 6.1 Provincial 𝜎􀐡 from univariate STS models for all 56 intersections of motives and transport modalities.
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The DTS point-estimates are very similar when comparing the univariate andmultivariate STS

settings with each other. There are, however, a few domains that exhibit significant differences

(depicted in Fig. 6.2). It is worth considering the consequences that pooling may have onmodel

estimates. If one province turns out to be very different from the others it has been pooled with,

then an underestimate of the stochastic trend variance can force the model-based

point-estimates to take strange slopes, for example, when 𝜅􀐙s are not sufficiently scattered due

to a small 𝜎􀍯􀑊 (as, e.g., in Noord-Holland/Shopping/Car-passenger). The advantage of pooling

𝜎􀐡,􀐙 across provinces is that certain idiosyncracies occurring only in one province can be

eliminated. If there is, for instance, no real factor behind the sudden surge in point-estimates of

the Limburg/Business/Bus-Tram-Metro domain, pooling could be considered in order to get rid

of such irregularities. Further, excessive volatility in the univariate model point-estimates of one

province due to underestimation of design-based variances in this province can be overcome by

borrowing information from other provinces for an identical intersection of motives and

transport modalities (as in Zuid-Holland/Shopping/Scooter).

Figure 6.2 STS model-based point-estimates obtained from univariate STS models

(black line) and from amultivariate STS model where 𝜎􀍯􀐡s are pooled across provinces

(coral line); the colour of the con􀅮idence intervals corresponds to the colour of the

line.

6.2 Multilevel Model Estimation Results

Several model formulations have been considered for the multilevel framework. These

formulations have already beenmentioned at the end of Section 3.1 and are summarised in

Table 6.1. Model selection is based on the deviance information criterion (DIC) (see

Spiegelhalter et al. (2002)) which is a generalisation of the well-known AIC and BIC for

hierarchical models. Adequacy of point- and variance estimates is also taken into account as an

informal criterion. Table 6.1 also contains information on the minimum sufficient number of

iterations, burn-in iterations, as well as the thinning interval ℎ. The latter means that only every

ℎ-th draw from the parameter posterior distribution is saved in the MCMC chain. Thinning helps

overcomememory constraints when a chain is strongly autocorrelated (see Gelfand and Smith

(1990)). Further, in order to ensure that the stationary distribution of a parameter has been

reached, more than one chain is needed, each chain starting with draws from an overdispersed

distribution (Gelman and Rubin (1992)). Three parallel chains are constructed in this application

for each parameter. We use the Gelman-Rubin convergence statistic for multiple chains (R-hat)

to be able to judge about the sufficient length of a burn-in period and about whether the chains
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have mixed well, which allows us to arrive at a reasonable estimate of the true posterior

distribution.
Table 6.1 Multilevel models considered for the DTS at the provincial level

Model Year and domain indication Itera- Burn-in Thinning DIC

labels for level breaks tions

HB-bRE 􀑂􀓼􀓯: 1994, 2010 for all􀐙; 75000 50000 50 -43668

􀑂􀓰􀓯: 2004 for􀐙 in Mot 6,7

HB-bFE 􀑂􀓰􀓯: 1994, 2010 for all􀐙; 55000 30000 50 -43606

2004 for􀐙 in Mot 6,7

HB-FE 􀑂􀓰􀓯: 1994, 2010 for all􀐙; 5000 1000 10 -43859

2004 for􀐙 in Mot 6,7;

(􀐏 􀍷 􀑍􀔑), (􀑊 􀍷 􀑊􀔑) as FE

HB-bRE stands for a model with random effects as in (3.1)-(3.2). HB-bFE differs from HB-bRE in

that all 𝛽􀐙-coefficients are estimated as fixed effects. HB-FE differs from HB-bFE in that 𝜈􀐙 and

𝜅􀐙 terms are estimated as fixed effects, too. Different model modifications of the kind in (3.7)

have been tried for HB-bRE and HB-bFEmodels. However, these modifications either resulted

in a numerical failure (in model HB-bRE variations), or failed to secure multiple chain

convergence in some variance parameters (𝜎􀍯􀑊􀓷􀔓􀔈
, 𝜎􀍯􀑍􀓷􀔓􀔘

) in model HB-bFE variations. The only

model modification that could be fitted successfully was the HB-bFEmodel with an additional

𝝂𝑴𝒐𝒅-term. However, this specification did not result in model improvement, with the DIC value

being even lower than that of the basic HB-bFEmodel.

Fig. 6.3 shows point-estimates for the three multilevel models mentioned in Table 6.1. While

most domains get comparable point-estimates from the three models, a combination of

”Car-driver” with ”Work” and ”Business” motives features somemost striking problems

inherent to models HB-bRE and HB-bFE. It is worth mentioning that the 1994-break is largest

exactly at the intersection of modality ”Car-driver” with motive ”Busines”. Only five provinces

are depicted, but the results are similar for the rest of the provinces. As the second row of

Fig. 6.3 demonstrates, the model with level breaks modelled as random effects is incapable of

fitting the level breaks for the year 1994. Neither of the HB-bREmodifications can cure this

problem (some of them even result in less adequate level break estimates for 1994). The level

break for the years 2010-2013 is not captured by the HB-bREmodel in these domains either.

Apparently, the assumptions about common distributions for 𝛽􀐄􀏷􀐙 s are violated in the case of

the DTS. The first row of Fig. 6.3 suggests that the assumptions about common distributions for

𝜅􀐙s and/or for 𝜈􀐙s are often not applicable either.

The model HB-bFE exhibits a greatly improved fit. However, the fit for the years 1985-1994 is

not optimal for the ”Work”-motive (see the first row). Apart from that, the level of the signal in

”Business” seems to be too low (see the second row of Fig. 6.3), suggesting that the common

distributions imposed on the random intercepts do not allow the 𝜈􀐙-terms to take sufficiently

large values.

Finally, the fit of the model with only fixed effects (HB-FE) seems to be most adequate. This

model also gets the lowest DIC-value, see Table 6.1.
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6.3 Multilevel and STS Model Estimation Results Compared

Not only does the multilevel model HB-FE turn out to be the best one out of the multilevel

models considered in this paper, but it also offers a more straightforward comparison with STS

models, since intercepts and regression coefficients in the latter type of models are in fact fixed

effects. However, the performance of the twomodelling approaches in terms of signal (trend

etc.) variance estimates cannot be fairly compared at this stage. There are at least two reasons

for that. We will try to quantify the effect of each of them shortly.

The first reason is the fact that the true (unknown) hyperparameters of a STSmodel (in this

case, 𝜎􀍯􀐡 and 𝜎̃􀍯􀐑 ) are replaced by their maximum likelihood estimates and are treated as known.

Within the HB approach, the uncertainty about these hyperparameter estimates is summarised

by the variance of their posterior distribution. The signal MSE bias in STSmodels due to

hyperparameter uncertainty can be negligible if the distribution of the ML estimator is

symmetric and well concentrated around its mean. But, if the series is short or if the

hyperparameters are close to their boundary values, the ML estimator distributions of such

hyperparametes (and their posteriors too) are not symmetric. In this case, the uncertainty

around the hyperparameter estimates could be very large, resulting in a considerable signal

MSE bias in STSmodels. Therefore, lower signal variance estimates delivered by an STSmodel,

in comparison with posterior signal variances, do not necessarily mean that the STS approach is

superior to the HB one. In fact, the extent to which HBmodel-based SE estimates exceed those

from a comparable STSmodel gives an indication for the scale of the MSE negative bias in such

STSmodel. The negative bias in STSmodels can be accounted for by the bootstrap method of

Pfeffermann and Tiller (2005). Bollineni-Balabay et al. (2015) show why this method is superior

to other existing methods for MSE estimation in STSmodels.

Another source of differences when comparing the twomodelling approaches may appear

when the signal posterior distributions are skewed, thus producing larger posterior standard

deviations for domain predictors than the signal standard errors produced by a linear STS

model. In fact, if the normality assumption about the data/disturbances is not satisfied, linear

STSmodels like the ones considered in this paper should not be applied.

Point-estimates produced by the HB-FE andmultivariate STSmodel are depicted in Fig. 6.4,

together with the 95% confidence intervals from the STSmodel superimposed on the credible

intervals from the HB-FEmodel. The latter are symmetric as they are constructed using the

posterior standard deviations, rather than being quantile-based. In most domains, the posterior

distribution of the domain predictors is symmetric. It is sometimes slightly skewed in

small-scale domains. This is where differences in point- and variance estimates become visible.

The STSmodel-based point-estimates tend to be smoother (as in the lower panel of Fig. 6.4),

since they are based on smaller (close to the boundary space) values of the trend disturbance

variances. The HBmodel-based point-estimates in such domains, in turn, stem from a set of

draws from a heavy right-tailed distribution of the trend variance, which results in more flexible

HB-based trends. Further, the differences in point-estimates from the STS and HBmodels are

also partially due to the fact that posterior means of 𝜃􀐙,􀐠, rather than medians, are taken as

domain𝑚 predictors.

The signal standard error estimates produced by the two approaches could be compared and

summarised in terms of relative deviation (RD) of the STS-derived signal SEs from the HB

posterior standard deviations:

𝑅𝐷􀐅􀐆􀐅
􀏺􀏴,􀐠 =

𝑆𝐸􀐅􀐆􀐅􀐠 − 𝑆𝐸􀏺􀏴􀐠

𝑆𝐸􀏺􀏴􀐠
⋅ 100%. (6.1)

For the multivariate setting, the overall average of this measure across time and domains is

equal to -9.4%, with a median of -3.1%. This itself does not imply serious differences between
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the outcomes of the two approaches, but shows that the distribution of the RD-terms is very

skewed, with the mean being pulled to the left by extreme SE-differences in small-scale

domains.

Figure 6.4 The provincial level design point-estimates (thin dashed line),

point-estimates from the multivariate STS model (thick dashed) and posterior means

from the HB-FE model (solid line), km-pppd; 95% con􀅮idence intervals from the STS

model superimposed on the credible intervals from the HB-FE model, the colour

corresponds to the colour of the point-estimates
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Figure 6.5 Box-plots for the provincial level 𝑅𝐷􀐅􀐆􀐅
􀏺􀏴,􀐠 - relative deviation of signal SEs produced in the multivariate STS model from signal SEs produced

by the HB-FE model, %.
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It would be interesting to check if there is a tendency for the HB-based SEs to exceed the

STS-based ones in small-scale domains, since such domains are suspected to feature skewed

posteriors. By ”scale” here is meant a time average of the domain’s point-estimates produced

by the multivariate STSmodel. In this way, the scale represents both the number of km-pppd

and the effective sample size: the scarcity of respondents belonging to a certain

motive/modality intersection translates into low per-person figures for kilometers travelled for

that intersection. The 672 provincial domain numbers sorted by scale in the descending order

are plotted on the 𝑥-axis of Fig. 6.5. It is clearly visible that, as the domain scale decreases, the

STS signal standard errors tend to deviate more from the HB-FE posterior standard deviations

in a negative direction. Most of the extreme deviations (those up to 200%) occur around level

interventions. There, the HB-based signals obtain larger uncertainty than the STS-based ones.

Now we try to quantify the effect of hyperparameter uncertainty on the differences between

the HB-FE-based and STS-based SEs. For that, an identical HB-FEmodel has been estimated

(referred to as HB-FE-ML), for which informative priors on the trend disturbance variances have

been set with a large number of degrees of freedom and the scale parameter taken equal to the

ML estimates from the STSmultivariate model. Relative deviations as in (6.1) have been

calculated for the HB-FE and HB-FE-ML posterior standard deviations. Their average value

suggests that skewness in the signal posterior distributions can be blamed for only -1.6% out of

the above-mentioned -9.4% reduction/underestimation in the HB posterior standard deviations

by the STS approach. The remaining -7.8% are due to the hyperparameter uncertainty around

the trend disturbance variances, not accounted for in the STS approach.

It is of particular interest howmuch reduction in design-based standard errors can be obtained

by time series modelling technique. The HB-FEmodel offers a 51% reduction in design-based

standard errors at the provincial level on average, with a median of 54%. For the STS

multivariate model, where provinces are pooled as described in Subsection 6.1, the mean and

median percentage reduction are slightly bigger - 54% and 57%, respectively. These and the

above-mentioned figures indicate that the HB-FE and STS approaches deliver very similar

results, with sizeable differences appearing mostly in small domains due to neglected

hyperparameter uncertainty in STSmodels.

7 The DTS at the National Level

7.1 The Multivariate Variance Structure of Stochastic Trends

The number of domains at the national level is𝑀 = 56, defined by an intersection of 8 transport

modalities with 7 motives. As already described in Subsection 6.1, one can look at box-plots

with the trend disturbance variance estimates obtained from univariate STSmodels in order to

see if the parametrisation of the trend variance matrix Σ􀐡 can bemademore parsimonious.

Similarly to the provincial level, 𝜎􀐡,􀐙s do not exhibit resemblance either across motives, or (and

in particular) across the modalities, as can be seen in Fig. 7.1. The seeming resemblance

between some of the box-plots (e.g.,𝑀𝑜𝑑5-𝑀𝑜𝑑8) disappears when zooming in the plots.

Endowing each domain with its own 𝜎􀐡,􀐙 at the national level limits the STS approach to the

univariate setting. Within the multilevel approach, a multivariate structure hinges on the

assumption of common distributions for the random effects in the HB-bRE and HB-bFEmodels.

The HB-FEmodel at the national level constitutes a set of univariate HB time-series models.
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Figure 7.1 𝜎􀐡 from univariate state-space models at the national level

7.2 Multilevel and STS Model Estimation Results Compared

For the national level series, the samemultivariate model variations described in Subsection 6.2

are considered. According to Table 7.1, the HB-FEmodel has the lowest DIC-value, but the

differences among the three HBmodel modifications are very small. As Fig. 7.2 shows, the

HB-bREmodel does not experience any difficulties with the fit, as was the case at the provincial

level. Point-estimates from the HB-bFE, HB-FE and STSmodels almost coincide. Appendix C

presents point-estimates and their credible/confidence intervals for the HB-FE and univariate

STSmodels, as well as for the design-based estimator. The striking similarity between the

HB-FE and STSmodel-based point- and variance estimates is less strong in small-scale

domains, with the STS point-estimates being slightly smoother (e.g., in ”Visits/Bicycle”,

”Visits/Other modalities”, ”Recreative/Bicycle”, ”Recreative/Other modalities”).
Table 7.1 Multilevel models considered for the DTS at the national level

Model labels Iterations Burn-in Thinning DIC

HB-bRE 75000 50000 50 -8114

HB-bFE 55000 30000 50 -8166

HB-FE 5000 1000 10 -8189
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Figure 7.2 National level design- and model-based point-estimates, km-pppd.
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For the comparison of the two approaches in terms of SEs, the reader is referred to equation

(6.1). The overall average of 𝑅𝐷􀐅􀐆􀐅
􀏺􀏴,􀐠-terms across time and domains at the national level is equal

to -10.9%, and the median equals -9.1%. This negative mean is clearly visible in Fig. 7.3.

Figure 7.3 The national level 𝑅𝐷􀐅􀐆􀐅
􀏺􀏴,􀐠 - relative deviation of STS SEs fromHB-FE SEs for

signals,%.

Thoughmuch less pronounced than at the provincial level, some association of low RD-terms

with the decreasing domain scale can still be seen at the national level (Fig. 7.3). Indeed,

extreme RD-values of more than 20% occur in several small domains (e.g., ”Visits/Other

modalities”, ”Visits/Bicycle”). Some of the largest domains still feature low RD-values (e.g.,

”Visits/Car-passenger”, the third one from left). An inspection of the point-estimates of these

domains in Appendix C shows that the low 𝑅𝐷􀐅􀐆􀐅
􀏺􀏴,􀐠-values correspond to those domains where

the signal point-estimates from the HBmodels are visibly more volatile than those produced by

STSmodels. As with the provincial data, a similar HB-FE-MLmodel has been estimated at the

national level. It turns out that the difference between the HB- and STS-based SEs is almost

entirely due to the hyperparameter uncertainty around the trend disturbance variances (an

average -10.1% out of the above-mentioned -10.9%).

Mean reduction in design-based standard errors with the model-based approach is less than at

the provincial level, but still quite appreciable with the overall average of 31.7%, and the median

of 34.3% for the HB-FEmodel, (39% and 41%, respectively, for the STS approach).

8 Discussion

Time series models are well known for their power in reducing design-based variances and in

making point-estimates more stable, be it multilevel or structural time series models. Apart

from that, time series techniques are indispensable when it comes to estimating level breaks

due to survey redesigns. This paper aimed at establishing which of the twomodelling

approaches - STS or multilevel - should be preferred.

The multilevel model estimated with the Hierarchical Bayesian approach (HBmodel) is a

time-series extension of the Fay-Herriot model. Apart from featuring hyperpriors for its

parameters, it differs from the conventional STSmodel (in the sense of Harvey, Koopman, and
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in the way it is used at Statistic Netherlands) in that time-invariant effects (e.g. intercepts, level

break or linear trend coefficients) can be treated as random. In this application, however,

assumptions about random effects sharing the same variance across domains turned out to be

invalid at the provincial level. Therefore, several HB-model variations have been considered

where (some of) these random components are modeled as fixed ones. Not only does the

fixed-effect specification of the HB-model (HB-FE) make the comparison of the HB and STS

approaches more straightforward, but it is also the only specification that provides an adequate

fit to the data.

The comparison between the STS and the HB-FEmodel in terms of estimated signal variances is

still not completely fair. First of all, this is due to the fact that the true (unknown)

hyperparameters of a STSmodel are replaced by their maximum likelihood estimates and are

treated as known. To account for this additional uncertainty, one would in addition have to

resort to bootstrapping techniques, see Pfeffermann and Tiller (2005), Bollineni-Balabay et al.

(2015). Within the HB-FE approach, the uncertainty around hyperparameter estimates is

summarised by the variance of their posterior distribution. Therefore, lower signal variance

estimates delivered by an STSmodel do not necessarily mean that the STS approach is superior

to the HB-FE one. In fact, the extent to which HB-FEmodel-based variance estimates exceed

those from a comparable STSmodel gives us an indication for the scale of the negative bias in

the signal MSEs of such STSmodel. This bias could be particularly large if variance

hyperparameters are close to their boundary values, with heavy right tails in the posterior

distributions/distributions of the ML estimator. This is the case in many small-scale domains of

the DTS, which makes the hyperparameter uncertainty the primary source of differences

between the twomodelling approaches in the case of the DTS. Secondly, another source of

differences is skewed signal posterior distributions that produce larger posterior standard

deviations for domain predictors than the signal standard errors produced by a linear STSmodel

relying on the assumption of normality in the data/disturbances. In the DTS, slight skewness in

the signal posterior is observed at the provincial level, mainly in those domains whose trend

disturbance variance posteriors are skewed enough to feed some degree of asymmetry through

to the signal posterior.

It turns out that both point- and variance model-based estimates produced with the STS and

HB-FE techniques are very similar. Differences become visible mainly in small domains.

Standard errors produced by the STSmodel are smaller than posterior standard deviations from

the HB-FEmodel by 9.4% on average (across time and domains) at the provincial level (median

3.1%), and by 10.9% at the national level (median 9.1%). At the national level of the DTS,

skewness turned out to have a negligible effect on the standard error difference between the

two approaches, but at the provincial level it is responsible for about 1.5% out of the

above-mentioned 9.4% of the HB-FEmodel-based posterior standard deviations on average.

The rest is due to the hyperparameter uncertainty unaccounted for within the STS approach.

For these above-mentioned reasons, one should be aware of negative biases in frequentist

STS-based variances in short time series of series that feature small variance hyperparameters.

In such cases, the negative biases should be accounted for by means of an additional procedure,

such as the bootstrap of Pfeffermann and Tiller (2005).

As an important by-product, the results of this paper give an idea about howmuch reduction in

design-based standard errors can be obtained by these time series modelling techniques. The

mean reduction in design-based standard errors with the HB-FEmodel is 51% at the provincial

level, with the median of 54%. In other words, in order to reduce the design-based variance to

this extent, one would have to increase the sample size more than four-fold (conditional on the

point-estimates). For the STSmodel, the mean andmedian percentage reduction in the

design-based standard errors is slightly bigger - 54% and 57%, respectively, - due to the reasons
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already mentioned above. Mean reduction in design-based standard errors at the national level

is smaller than at the provincial one, but is still quite appreciable with the overall average of

31.7% and the median of 34.3% for the HB-FEmodel, and 39% and 41%, respectively, for the

STSmodel.

Another aspect we look at is unreliable design-based variance estimates. First of all, these

estimates are subject to sampling volatility. With the help of a simple STSmodel, design-based

standard errors can be smoothed with the Kalman filter. These smoothed standard error

estimates are further used as input in the multilevel and STSmodels. Secondly, design-based

variance estimates could be biased in the case of small domains. If the bias is negative, for

instance, then treating these estimates as the true variances in a multilevel setting results in

model overfit by putting too much weight on the design-based estimates. We suggest using the

STS univariate analysis to scale the design-based variance estimates in the right direction for

further use in multilevel models. The uncertainty around design-based variance estimates could

also be taken into account by imposing a prior distribution on them, as in You and Chapman

(2006). The comparative analysis of the two time series modelling approaches, however, should

not be affected much by the way the design-based variance estimates are treated in this paper.

The reported reduction in design-based standard errors is conditional on these approximated

design-based variance estimates.

The techniques presented here can be used nearly in any repeatedly conducted SAE application,

especially if a survey suffers from discontinuities due to redesigns. Unlike in the application

considered in Bollineni-Balabay et al. (2016), the presence of design-based variance estimates

here makes it possible to continuously apply this model-based approach in the production of

official statistical figures. Accounting for each new survey redesign will, however, be possible

only with a delay of at least one period. In addition, in the first time periods after a survey

redesign, estimated figures are likely to undergo substantial revisions, as soon as new data

become available under the new design. Yet, this problem is of a temporary nature and there

does not seem to exist any other solution except for a parallel run that increases the survey

expenses. See Van den Brakel and Krieg (2015) for an example where a parallel run is conducted

to obtain design-based estimates for discontinuities. These estimates are then used as a priori

information in a structural time series model to avoid the problem of revisions.

In this paper, the time dimension has been exploited for variance and volatility reduction in the

point-estimates, as well as for level break estimation. As for the spatial dimension, so far it has

been used only for getting rid of some idiosyncracies through pooling trend variances across

provinces. However, it can also be used as another source of variance reduction in model-based

estimates by exploiting spatial correlations between domains belonging to different provinces,

e.g., by allowing for 𝑓 common stochastic trends shared bymore than 𝑓 domain trends, the way

it was done in e.g. Bollineni-Balabay et al. (2016), Krieg and Van den Brakel (2012). In the case

of the DTS, this approach seems to be worth exploring, since the pattern of trends belonging to

a certain motive-modality intersection is very similar among the twelve provinces of the

Netherlands.
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Appendices

A Full ConditionalDistributions for the

Gibbs-Sampler

The Gibbs sampler was first described by Geman and Geman (1984). Here we present

unnormalised conditional posterior densities for each parameter 𝑏 in

𝝍 = (𝝂, 𝜿, 𝜷𝑹𝑬
􀚅
, 𝒖, 𝜷􀚄, 𝜎􀍯􀑍 , 𝜎

􀍯
􀑊 , 𝜎

􀍯
􀑂􀓼􀓯

, 𝜎􀍯􀐡 , 𝜉􀑍, 𝜉􀑊, 𝜉􀑂􀓼􀓯 , 𝜉􀐡) for Model (3.2). Let𝝍(􀍸𝒃) denote the

parameter vector where element 𝑏 is deleted. Within the Gibbs sampler, the 𝑏-th parameter

values are drawn conditionally on the data 𝒀 and the rest of the parameters𝝍(􀍸𝒃).

The conditional posterior density for parameters 𝑐, 𝜅, 𝛽􀐄􀏷􀍮 , ..., 𝛽􀐄􀏷
􀏽􀓼􀓯

and𝜷𝑭𝑬 contained in vector

𝜷 originate from the product of the densities that contain these parameters:

𝑝(𝜷|𝝍(􀍸𝜷), 𝒀) ∝𝑁(𝜷𝟎, 𝜴𝜷𝟎
)×

𝑁(𝜉􀑍𝝂̃ ⊗ 𝜾[𝑻] + 𝜉􀑊𝜿̃ ⊗ 𝒕 + 𝜉􀑂􀓼􀓯𝑿
𝑹𝑬𝜷̃𝑹𝑬 + 𝑿𝜷 + 𝜉􀐡𝒖̃, 𝜱),

(A.1)

which, using the results on conjugate priors in Gelman et al. (2014), turns into a normal density

𝑁(𝝁𝜷, 𝜴𝜷)with the following mean and variance:

𝝁𝜷 =(𝑿􀚄𝜱􀍸𝟏𝑿 + 𝜴􀍸𝟏
𝜷𝟎
)􀍸𝟏×

[𝑿􀚄𝜱􀍸𝟏(𝒀 − 𝜉􀑍𝝂̃ ⊗ 𝜾[𝑻] − 𝜉􀑊𝜿̃ ⊗ 𝒕 − 𝜉􀑂􀓼􀓯𝑿
𝑹𝑬𝜷̃𝑹𝑬 − 𝜉􀐡𝒖̃) + 𝜴􀍸𝟏

𝜷𝟎
𝜷𝟎] ,

𝜴𝜷 = (𝑿􀚄𝜱􀍸𝟏𝑿 + 𝜴􀍸𝟏
𝜷𝟎
)􀍸𝟏.

For vector andmatrix dimensions, refer to the description under the likelihood function

presentation in (3.10).

The conditional posterior of the𝑀-dimensional vector of scaled area effects 𝜈̃􀐙 is:

𝑝(𝝂̃|𝝍(􀍸𝝂̃), 𝒀) =𝑁(𝝁𝝂̃, 𝜴𝝂̃) ∝ 𝑁(𝟎[𝑴], 𝜎̃
􀍯
􀑍 𝑰[𝑴])×

𝑁(𝜉􀑍𝝂̃ ⊗ 𝜾[𝑻] + 𝜉􀑊𝜿̃ ⊗ 𝒕 + 𝜉􀑂􀓼􀓯𝑿
𝑹𝑬𝜷̃𝑹𝑬 + 𝑿𝜷 + 𝜉􀐡𝒖̃, 𝜱),

𝝁𝝂̃ =(𝜉
􀍯
􀑍𝑰[𝑴] ⊗ 𝜾􀚄[𝑻]𝜱

􀍸𝟏𝑰[𝑴] ⊗ 𝜾[𝑻] + 1/𝜎̃􀍯􀑍 )
􀍸􀍮×

𝜉􀍯􀑍𝑰[𝑴] ⊗ 𝜾􀚄[𝑻]𝜱
􀍸𝟏(𝒀 − 𝜉􀑊𝜿̃ ⊗ 𝒕 − 𝜉􀑂􀓼􀓯𝑿

𝑹𝑬𝜷̃𝑹𝑬 − 𝑿𝜷 − 𝜉􀐡𝒖̃),

𝜴𝝂̃ = (𝜉􀍯􀑍𝑰[𝑴] ⊗ 𝜾􀚄[𝑻]𝜱
􀍸𝟏𝑰[𝑴] ⊗ 𝜾[𝑻] + 1/𝜎̃􀍯􀑍 )

􀍸􀍮.

(A.2)
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A similar expression is valid for the linear trend random effects 𝜅̃􀐙:

𝑝(𝜿̃|𝝍(􀍸𝜿̃), 𝒀) =𝑁(𝝁𝜿̃, 𝜴𝜿̃) ∝ 𝑁(𝟎[𝑴], 𝜎̃
􀍯
􀑊𝑰[𝑴])×

𝑁(𝜉􀑍𝝂̃ ⊗ 𝜾[𝑻] + 𝜉􀑊𝜿̃ ⊗ 𝒕 + 𝜉􀑂􀓼􀓯𝑿
𝑹𝑬𝜷̃𝑹𝑬 + 𝑿𝜷 + 𝜉􀐡𝒖̃, 𝜱),

𝝁𝜿̃ =(𝜉
􀍯
􀑊𝑰[𝑴] ⊗ 𝒕􀚄𝜱􀍸𝟏𝑰[𝑴] ⊗ 𝒕 + 1/𝜎̃􀍯􀑊 )

􀍸􀍮×

𝜉􀍯􀑊𝑰[𝑴] ⊗ 𝒕􀚄𝜱􀍸𝟏(𝒀 − 𝜉􀑍𝝂̃ ⊗ 𝜾[𝑻] − 𝜉􀑂􀓼􀓯𝑿
𝑹𝑬𝜷̃𝑹𝑬 − 𝑿𝜷 − 𝜉􀐡𝒖̃),

𝜴𝜿̃ = (𝜉􀍯􀑊𝑰[𝑴] ⊗ 𝒕􀚄𝜱􀍸𝟏𝑰[𝑴] ⊗ 𝒕 + 1/𝜎̃􀍯􀑊 )
􀍸􀍮,

(A.3)

where 𝒕 denotes a vertical vector with time indicators (0, 1, ..., 𝑇 − 1)􀚄. The same logic applies to

random level break coefficients 𝜷̃𝑹𝑬𝒌 (inter alia, vectors 𝒕 are replaced with 𝑇-dimensional

vectors with dummy regressors for the level break 𝑘).

The conditional distribution for the 𝑇-dimensional scaled stochastic trend random terms 𝒖̃𝒎 is

based on the data and other terms that are related to domain𝑚:

𝑝(𝒖̃𝒎|𝝍
(􀍸𝒖̃𝒎), 𝒀) =𝑁(𝝁𝒖̃𝒎 , 𝜴𝒖̃𝒎

) ∝ 𝑁(𝟎[𝑻], 𝜎̃
􀍯
􀐡,􀐙𝑨)×

𝑁(𝜉􀑍𝜈̃􀐙𝜾[𝑻] + 𝜉􀑊𝜅̃􀐙𝒕 + 𝜉􀑂􀓼􀓯𝑿
𝑹𝑬
𝒎 𝜷̃𝑹𝑬𝒎 +

𝑿𝒎𝜷𝒎 + 𝜉􀐡𝒖̃𝒎, 𝜱𝒎),

𝝁𝒖̃𝒎 =(𝜉􀍯􀐡𝜱
􀍸𝟏
𝒎 + 𝑨􀍸𝟏/𝜎̃􀍯􀐡,􀐙)

􀍸􀍮×

𝜉􀍯􀐡𝜱
􀍸𝟏
𝒎 (𝒀𝒎 − 𝜉􀑍𝜈̃􀐙𝜾[𝑻] − 𝜉􀑊𝜅̃􀐙𝒕 − 𝜉􀑂􀓼􀓯𝑿

𝑹𝑬
𝒎 𝜷̃𝑹𝑬𝒎 − 𝑿𝒎𝜷𝒎),

𝜴𝒖̃𝒎
= (𝜉􀍯􀐡𝜱

􀍸𝟏
𝒎 + 𝑨􀍸𝟏/𝜎̃􀍯􀐡,􀐙)

􀍸􀍮,

(A.4)

where vector 𝒀𝒎 andmatrix𝜱𝒎 are 𝑇-dimensional, matrix𝑿𝑹𝑬
𝒎 is [𝑇 × 𝐾􀐄􀏷] and contains

indicator variables for the scaled random level break coefficients 𝜷̃𝑹𝑬𝒎 in domain𝑚, 𝜷̃𝑹𝑬𝒎 being

[𝐾􀐄􀏷 × 1]. The matrix with fixed effects regressors𝑿𝒎 is build by the same logic, i.e. contains

regressors only applicable to domain𝑚 and is therefore [𝑇 × (2 + 𝐾􀐄􀏷 + 𝑑􀏸􀏷􀐙 )], 𝑑􀏸􀏷􀐙 being the

number of level breaks modelled as fixed effects in domain𝑚. 𝜷𝒎 contains the overall effects

𝑐, 𝜅, 𝛽􀐄􀏷􀍮 , ...𝛽􀐄􀏷􀏽􀓼􀓯 along with 𝑑
􀏸􀏷
􀐙 fixed level break coefficients. Drawing from (A.4) results in

unconstrained draws of the stochastic trend terms. Due to restrictions presented in (3.4), these

unconstrained draws should be adjusted to (𝑰[𝑻] −
𝜴𝒖̃𝒎𝜾[𝑻]𝜾

􀚅
[𝑻]

𝜾􀚅[𝑻]𝜴𝒖̃𝒎𝜾[𝑻]
) 𝒖̃𝒎, according to Rue and Held

(2005).

Variance components of random effects are drawn from the 𝐼𝑛𝑣 − 𝜒􀍯 density:

𝑝(𝜎̃􀍯􀑍 |𝝍
(􀍸𝝈̃𝟐𝝂), 𝒀) ∝ 𝑁(𝟎[𝑴], 𝜎̃

􀍯
􀑍 𝑰[𝑴]) × 𝐼𝑛𝑣 − 𝜒􀍯(𝑣􀑍, 𝑠

􀍯
􀑍),

𝑝(𝜎̃􀍯􀑍 |𝝍
(􀍸𝝈̃𝟐𝝂), 𝒀) = 𝐼𝑛𝑣 − 𝜒􀍯(𝑣􀑍 +𝑀,

𝑣􀑍𝑠
􀍯
􀑍 + ∑

􀐙 𝜈̃􀍯􀐙

𝑣􀑍 +𝑀
).

(A.5)

The same goes for the other random effects, except for the stochastic trend terms (e.g., for

random linear trend effects 𝜅̃􀐙, terms 𝑣􀑍, 𝑠
􀍯
􀑍 and∑􀐙 𝜈̃􀍯􀐙 would be replaced by 𝑣􀑊, 𝑠

􀍯
􀑊 and∑􀐙 𝜅̃􀍯􀐙,

respectively).

If every domain𝑚 is assigned a unique value for its stochastic trend variance (as is the case at

the national level of the DTS), then 𝜎̃􀍯􀐡,􀐙 is drawn from the following conditional:

𝑝(𝜎̃􀍯􀐡,􀐙|𝝍
(􀍸𝝈̃𝟐𝒖,𝒎), 𝒀) ∝ 𝐼𝑛𝑣 − 𝜒􀍯(𝑣􀐡, 𝑠

􀍯
􀐡)𝑁(𝟎[𝑻], 𝜎̃

􀍯
􀐡,􀐙𝑨),

𝑝(𝜎̃􀍯􀐡,􀐙|𝝍
(􀍸𝝈̃𝟐𝒖,𝒎), 𝒀) = 𝐼𝑛𝑣 − 𝜒􀍯(𝑣􀐡 + 𝑇 − 2,

𝑣􀐡𝑠
􀍯
􀐡 + 𝒖̃􀚄𝒎𝑨

􀍸𝟏𝒖̃𝒎

𝑣􀐡 + 𝑇 − 2
),

(A.6)

where 2 is subtracted from 𝑇 due to the two restrictions for the integrated randomwalk model.

The scaling 𝜉􀑍-effects are drawn from the following distribution:

𝑝(𝜉􀑍|𝝍
(􀍸𝝃𝝂), 𝒀) =𝑁(𝜇􀑎􀕅 , 𝜔􀑎􀕅

) ∝ 𝑁(𝛼􀑍, 𝛾􀑍)×

𝑁(𝜉􀑍𝝂̃ ⊗ 𝜾[𝑻] + 𝜉􀑊𝜿̃ ⊗ 𝒕 + 𝜉􀑂􀓼􀓯𝑿
𝑹𝑬𝜷̃𝑹𝑬 + 𝑿𝜷 + 𝜉􀐡𝒖̃, 𝜱),

𝜇􀑎􀕅 =(𝝂̃
􀚄𝑰[𝑴] ⊗ 𝜾􀚄[𝑻]𝜱

􀍸𝟏𝑰[𝑴] ⊗ 𝜾[𝑻]𝝂̃ + 1/𝛾􀑍)
􀍸􀍮×

𝝂̃􀚄𝑰[𝑴] ⊗ 𝜾􀚄[𝑻]𝜱
􀍸𝟏(𝒀 − 𝜉􀑊𝜿̃ ⊗ 𝒕 − 𝜉􀑂􀓼􀓯𝑿

𝑹𝑬𝜷̃𝑹𝑬 − 𝑿𝜷 − 𝜉􀐡𝒖̃),

𝜔􀑎􀕅
= (𝝂̃􀚄𝑰[𝑴] ⊗ 𝜾􀚄[𝑻]𝜱

􀍸𝟏𝑰[𝑴] ⊗ 𝜾[𝑻]𝝂̃ + 1/𝛾􀑍)
􀍸􀍮.

(A.7)
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The same logic applies to the scaling parameters of the rest of the random terms.

As for scaling the stochastic trend terms, the number of unique 𝜉􀐡-parameters can bemade

equal to the number of unique variances on the main diagonal of 𝜮𝒖. At the provincial level of

the DTS, for instance, the number of stochastic trend variances, and thus 𝜉􀐡-parameters, is

𝑀𝑜𝑡 × 𝑀𝑜𝑑, producing a𝑀𝑜𝑡 × 𝑀𝑜𝑑-dimensional 𝝃𝒖 vector. In this case, 𝜉􀐡𝒖̃ terms in every

expression of this appendix should be substituted with the following:

𝜉􀐡𝒖̃ → 𝒖̃𝑰[𝑴] ⊗ 𝜾[𝑻]𝜾[𝑴/𝑴𝒐𝒕/𝑴𝒐𝒅] ⊗𝝃𝒖. (A.8)
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B Provincial level auxiliaryestimation

results

Figure B.1 Box-plots for 𝜎􀐡s from univariate STS models at the provincial level:

modalities within motives (upper panel) and motives within modalities (lower panel)
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Figure B.2 Provincial 𝜎􀐡 from univariate STS models for every intersection of

motives and transport modalities.
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C National level estimation results
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Figure C.1 The national level design-based point-estimates (thin blue dashed line),

point-estimates from the multivariate STS model (thick black dashed) and posterior

means from the HB-FE model (solid red); the colour of the 95% con􀅮idence (credible)

intervals corresponds to the colour of the point-estimates
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