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This study compares two different techniques in a time series small area application: state
space models estimated with the Kalman filter with a frequentist approach to
hyperparameter estimation, and multilevel time series models estimated within the
hierarchical Bayesian framework. The application chosen is the Dutch Travel Survey
featuring level breaks caused by the survey redesigns, as well as small sample sizes for the
main publication domains. Both models require variances of the design-based domain
estimates as prior information. In practice, however, only unstable estimates of the
design-based variances are available. In this paper, excessive volatility and a possible bias in
design-based variance estimates are removed with the help of a state space model. The
multilevel and state space modelling approaches deliver similar results. Slight differences in
model-based variance estimates appear mostly in small-scale domains and are due to
neglecting uncertainty around the hyperparameter estimates in state space models, and to
a lesser extent due to skewness in the posterior distributions of the parameters of interest.
The results suggest that the reduction in design-based standard errors with the hierarchical
Bayesian approach is over 50% at the provincial level, and over 30% at the national level,
averaged over the domains and time.

Introduction

The problem of small area estimation (SAE) emerges when reliable estimates for small areas
cannot be produced relying solely on a design-based inference procedure due to an insufficient
number of sampled units. Either the number of units sampled in the domain of interest is too
small, or the variable of interest has a rare occurrence, in cases when the break-up into domains
is defined post hoc, after the survey has been done. An increasing demand for small area
statistics boosted the development of numerous SAE techniques. Most of these are meant for
cross-sectional data, where the so-called strength over space could be borrowed. This implies
that sample information from other similar domains could be used to improve the design
estimate for a small area of interest. Sometimes, an area may not be sampled at all, in which
case regression synthetic estimators (Gonzalez (1973)) produce figures using some auxiliary
variables. Composite estimators may be used to combine direct estimates with their synthetic
counterparts. This is often done in the framework of the Fay-Herriot model (Fay and Herriot
(1979)), which is estimated using the empirical best linear unbiased predictor (EBLUP) or
hierarchical Bayesian (HB) approach. The literature on these methods is extensive, see, e.g.,
Ghosh and Lahiri|(1987), |Prasad and Rao|(1990), Rao|(2003).

While small area estimates may be improved by borrowing strength over space, adding the time
dimension further offers a huge potential for improvement. Borrowing strength over time is
realised by using sampling information accumulated over time in the respective, as well as in
other domains. Time series techniques, such as multilevel times series and structural
(unobserved component) time series (STS) models, are powerful tools in producing more
reliable estimates for repeatedly conducted surveys, both for small and non-small areas. Thanks
to their ability to borrow strength over time and domain space, such models can extract the
so-called signal by removing a great part of the sampling noise from design-based
point-estimates. As a result, standard errors (SEs) of such model-based point-estimates are
usually substantially lower than the design SEs. Furthermore, time series models can help
compare figures prior to and after survey redesigns by estimating level breaks. Time series
extensions of the Fay-Herriot model can be found in|Rao and Yu|(1994), Datta et al.[(1999), and
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You|(2008) (see |Rao|(2003) for an overview). For small area applications modelled with the STS
techniques, see|Harvey and Koopman|(1997), Pfeffermann|(1991), |Pfeffermann and Bleuer
(1993), [Pfeffermann and Tiller|(2006), Pfeffermann et al.|(2014), |Krieg and Van den Brakel|(2012)
and|Bollineni-Balabay et al.|(2016). Level break estimation within the STS framework is
illustrated in|Van den Brakel and Roels|(2010).

With this paper, the authors would like to contribute to empirical evidence and practical
considerations in times series SAE. This study compares two different time series techniques in
areal life time series small area application - the Dutch Travel Survey (DTS). This survey features
unacceptably volatile estimates in its more than 600 small domains. The reasons for that are
small sample sizes at the provincial level and several survey redesigns, which make the official
figures hard to compare over time. Therefore, this survey could largely benefit from the time
series model-based approach in producing official statistical figures. The two time series
approaches considered in this paper are multilevel time series modelling within the hierarchical
Bayesian (HB) framework and the frequentist-based STS approach facilitated by the Kalman
filter. The initial intention was to check if specifications with random regression coefficients
and/or random intercepts, like in multilevel models, perform better than STS models where
such components are conventionally modelled as fixed effects. Further, another model is
considered within the multilevel Bayesian framework - a model with a nearly identical to that of
the STS model likelihood function (differing only in the way the trend model is specified). This
comparison is performed in order to check if the quality of the STS model-based estimates
produced by frequentist estimation routines is good enough compared to the full Bayesian
multilevel framework, as most practitioners, including Statistics Netherlands, estimate STS
models in the frequentist framework.

All model specifications within both modelling approaches are made comparable in terms of the
same pooling dimension, as well as in that no spatial correlation is assumed across domains.
Rationales behind multivariate against univariate modelling dimensions are also addressed. The
multilevel time series and STS approaches are compared in terms of adequacy of model-based
point-estimates for the trend and for multiple level breaks due to the survey redesigns, as well
as in terms of gain in precision that can be reached within these two modelling frameworks. It is
well known, though, that variance estimates often get a negative bias in the frequentist STS
models due to neglected hyperparameter uncertainty (see, e.g., Pfeffermann and Tiller|(2005),
Bollineni-Balabay et al.|(2015)), so a direct comparison of variance estimates obtained from HB
multilevel and frequentist STS models is not completely fair. In this work, we quantify the
uncertainty around hyperparameters to make the comparison of the two models fairer.
Another novelty of this paper lies in exploiting the STS approach to refine the multilevel one in
the case of unreliable or missing variance estimates of the design estimator (further referred to
as design-based variance estimates). These are used as input in multilevel models and are
treated as the true known sampling error variances. This paper shows how volatility, missing
values, as well as a possible bias in design-based variance estimates can be alleviated.

Section 2 of this paper presents a brief description of the DTS. Section 3 is fully devoted to the
multilevel model setting. It presents the model itself, as well as estimation details for the HB
approach in two subsections. Section 4 presents the STS model and has the same structure.
Section 5 explains how unreliable design-based variance estimates can be improved using the
STS technique. Sections 6 and 7 present empirical results for the DTS at the provincial and
national level, respectively. In each of these sections, the multivariate trend structure is
examined with regard to possible pooling across one or more factor variables. Further, the
performance of the multilevel HB model is compared to that of the STS model. Section 8
contains conclusions and discussion.
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Table 2.1 Domain classification of the DTS along three factors

Provinces Mobility motives (“Mot”)  Transport modalities (“Mod")
1. Groningen 1. Work 1. Cardriver

2. Friesland 2. Business 2. Car passenger

3. Drenthe 3. Visits 3. Train

4. Overijssel 4. Shopping 4. Bus/tram/metro
5. Flevoland 5. Education 5. Scooter/moped
6. Gelderland 6. Recreative 6. Bicycle

7. Utrecht 7. Other motives 7. Walking

8. Noord-Holland 8. Other modalities
9. Zuid-Holland

10. Zeeland

11. Noord-Brabant

12. Limburg

Dutch Travel Survey

The DTS is a stratified two-stage survey that attempts to measure the travel behavior of the
Dutch population. Every year, a cross-sectional sample is drawn with sampling units being
defined either as households (before 2010), or persons (since 2010). The variable of interest
considered in this study is the number of kilometers per person per day (km-pppd) covered per
transport modality and motive either at the national, or provincial level. Design estimates for
km-pppd are obtained with the general regression (GREG) estimator (equation (6.4.1) in|Sarndal
et al.[(1992)) by dividing the estimated total number of kilometers covered within a year by the
population with a certain transport modality/motive by the population size and the number of
days in a year. Point- and variance GREG-estimates are produced on an annual basis and for
different break-downs into domains. The time span considered in this paperis T = 29, covering
the years 1985-2013. Since 1985, the survey has undergone several redesigns. Until 1994, the
population of interest consisted of residents aged 12 years and older. Since 1994, children under
12 years old have also been included in the population of interest. In 1995, the sample became
six times as large as before (a net-sample size increase from 10 000 to about 65 000
households). Since 2003-2004, however, net sample sizes have been considerably lower
constituting slightly more than 20 000 households (about 43 000 persons between 2010 and
2013). In 1999, the DTS went through the second major redesign that featured some
response-motivation and follow-up measures. The published series were corrected for this level
break within Statistics Netherlands. In 2004, the data collection for the survey was transferred
to another agency. Finally, the survey was redesigned again in 2010 and since then has been
conducted by Statistics Netherlands. These two redesigns caused major discontinuities in the
time series and have not been corrected for so far.

Domains of the DTS are formed by an intersection of three factors (see Table: transport
modalities (Mod) indexed as i, mobility motives (Mot) indexed as j, and territorial units
(provinces) indexed as p. The total number of provinces is P = 12, and each province p is
broken into /] = 7 motives, and each motive j is broken into I = 8 transport modalities.

The model described in the subsequent section will be applied at two aggregation levels of the
DTS survey. Firstly, time series of national averages of distances covered, i.e. km-pppd, can be
obtained, thus forming an intersection of modalities and motives. Secondly, one can go one
level deeper where the target variable is defined as time series of provincial averages, i.e.
km-pppd at the intersection of all the three above-mentioned factors.
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3.1

Multilevel Time Series Approach Ap-
plied to the DTS

Model Specification

Application of multilevel models is common practice in small area estimation (SAE). The model
presented in this section is a time series extension of the well known Fay-Herriot model for a
cross-section.

In the model below, small areas (domains) are indexed with m € {1, .., M}, and the number of
yearsis T. At the national level, M = [ X ] = 56; at the provincial level, M = [ X ] X P = 672.
The M-dimensional vector of GREG estimates Y, can be expressed as the sum of signal 8, and
survey errors contained in vector e;:

Yi=0,+e, e <N@O®,), te{l,.T)} 3.1)
where the signal 8, consists of the true population parameter and a measurement error that is
stable over time under a particular survey design and changes when a redesign occurs. A
change in the measurement error is represented by a level break (or discontinuity). Level breaks
are included in the signal on purpose, so that the reader can decide which of those to keep or
remove from the signal, depending on whether or not a certain survey modification is viewed as
an improvement. Survey errors e; are independently distributed over time with a
M-dimensional covariance matrix @;. Although sampling units may occur in several domains at
the same time (e.g., in domains “Work-Bicycle” and “Work-Train"), correlations between such
domains are assumed to be negligible, which renders the @,-matrix diagonal with design-based
variances for every domain m. These variances are generally unknown, so design-based
variance estimates Var(Y,, ) (Sarndal et al.|(1992))are used instead and are treated as the true
known variances.

Here and further in this paper, vectors and matrices are printed in bold. Vectors with a subscript
t ormare T- or M-dimensional, respectively. No correlation is assumed between different
stochastic terms in this paper, unless explicitly mentioned.

The signal development over time is described by a combination of a stochastic and
deterministic trend together with level breaks, as mentioned above. All potential cyclical
movements in the economy are covered by the stochastic trend, hence the absence of the
cyclical component. There is no seasonal component because the data is annual. The following
time-series model is assumed for the M-dimensional vector of signals 8,:

0, =ct+ rte+ SRE(BFEL+ BRE) + .+ ORE ((BRE L+ BRE ) + v + Kkt +
STEBFE + ..+ 6FE . BFE + te{l,.,T (3-2)
1:B1 Kppt Uy, e{L,..,T},

Krg
where c and k are the overall intercept and linear time trend coefficient, respectively, tis an
M-dimensional vector of ones, v = (v, .., Vy)" are independent domain effects that serve as
random intercepts in the model, k = (k4, ..., kp)' are domain-specific random linear time trend
coefficients; Kgg and Kz denote numbers of level interventions modelled as random or fixed
effects, respectively; BRE and BFE are vectors with level break coefficients assumed to be
random or fixed effects, respectively. Scalars BRE represent the mean of the k-th level break
random coefficient across domains; 835 and &7; are indicator variables for level breaks
modelled as random and fixed effects, respectively. These indicators switch from zero to one at
the moment of a redesign. With an entry of a new dummy variable, all previous dummies
remain equal to one. Note that scalar terms ¢, k, BRE are estimated as fixed effects. They are

contained in a vector, say 8, along with BEE.
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Termsinuy = (Uyy, .., Upy,e) are domain-by-time effects modelled as random walks. The
pattern of the DTS series suggests a non-stationary model for the trend u,. Therefore, one
could assume either a random walk (I(1)), or an integrated random walk (I(2), the so-called
smooth-trend model, as in|Harvey|(2001)). Here, the latter formulation is preferred due to its
well-known flexibility and parsimony (Durbin and Koopman|(2012), Ch. 3,|Harvey|(2001)). This
application, as well as the one in|Bollineni-Balabay et al.|(2016)) provide evidence for data
overfitting when other specifications (I(1)-random walk or the local linear trend model) for the
stochastic trends are applied. When applied to the DTS, these alternative trend specifications
resulted in severe overfitting too. Therefore, only the smooth-trend model is considered in this
paper. The disturbance terms €, of the u,-terms are assumed to be normally, identically and
independently distributed over time and across domains:

Uy =Up_q+Ti_q, Tt =711+ €, € e N(0,Z,), te{l,.,T}, (3-3)
where X, is a diagonal IJ- or PIJ-dimensional matrix at the national or provincial level,
respectively.

The following identifiability constraints are imposed on the stochastic trend estimates i, ; to
insure that, after accounting for the level break interventions, all the deterministic time
variation in signal 8., ¢ is accounted for by the linear trend (k + i,,)t, and the stochastic time
variation around this deterministic trend and the remaining time-average level ¢ + v, is
accounted for solely by i, ;:

T T
Z l’lm,t = 0, Z ﬁm,tt = 0 (34)
t=1

t=1
Since there is no reason to assume that the stochastic trends have similar dynamics across
either motives, or transport modalities, as will be verified in Subsection[7.1} every diagonal
element of a IJ-dimensional square matrix X, is assigned a unique value at the national level. As
for the provincial level, one could assume that the trend disturbances for motive j and transport
modality i from P provinces come from the same distribution. This would make the model
parametrisation much more parsimonious. Then matrix X, will consist of P block replicas of a
1]-dimensional covariance matrix Z|;;; for motive-modality intersections:

Zy = Iip) @ Zpyg). (3.5)
Whether or not this assumption is feasible, will be verified in Subsection[6.1]
The area-specific terms v, k;, and Bhr, are assumed to share the same variance across
domains and to be normally and independently distributed over the domain space and between
each other. By construction, they are distributed around zero due to the presence of the overall
elements ¢, k, and BRE:

v N(0,02D),

iid
Kk ~ N(0,02D), (3.6)
iid
BRE = N(0,0%sD),
k
where 0 and I denote an M-dimensional vector and identity matrix, respectively. Such model
specification allows us to draw terms v,,, k,, and ,Bﬁfk from distributions centred around zero,
which will be necessary in the Bayesian estimation, but it makes these terms, as well as their
means unidentifiable. The sums (¢ + vi), (k + k) and (BEE + Biry) are, however, identifiable
and constitute random intercepts, random linear trend slopes and random level break
coefficients, respectively. Note that BRE-coefficients can be estimated as fixed effects by
setting their variance U;RE equal to infinity. There is always a trade-off between regression
k

coefficients’ bias and variance when a random or fixed effects assumption is chosen, see|Clark
and Linzer|(2015) for a discussion.
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3.2

Model assumes that area-specific random terms v,,, originate from one distribution (the
same applies to K, and [)’ﬁfk). Itis, however, quite plausible that differences exist between
means of random terms belonging to different motives, transport modalities or provinces. If the
pattern of the series for a certain intersection of the motives with transport modalities suggests
that provinces do not differ much from each other, the model could be written as in with
only two, instead of three additional terms per random component. Then the remaining
random effect variation around the motive and modality means would be described by an
M-dimensional random-effect vector. All this gives a rise to the following model, which is an
extension of Model (3.2):

0 =ct+ ym/n & Viod + Vot @ tmy + Vv

+ Kkttt + i @ Kpyoat + Kmort Q Yymyy) + Kt

+ 8TE (B L+ ymn @ Biktoa + Biktor @ timyp + BTO)+ 3.7)

+ 8% e (BRE L+ iy ® BRe . Moa + Biagmot @ tmyy) + Biey)
+OTEBE + .+ SREBRE +u,, tef{l,.,T),
where each of the v, k, BRE-terms sub-indexed with Mod contains random term means taken
across motives and provinces for each of I transport modalities and is distributed as
Vitoa = N(0,0%,,,D),
Karoa ~ N(0,0%,,,D), (3.8)
Mo = N(O, 02 D).
The same applies to random terms labelled with Mot. These are /-dimensional. Random terms
v, k, BRE are M-dimensional and take care of the variation around their respective motive and
modality means.
Note that the signal 8,, ; has no area-by-time white noise in the multilevel models presented in
this paper. It is assumed that all the stochastic variation in 8,,, . over time is picked up by the
stochastic structure of the trend. In fact, allowing for an additional noise in the signal resulted in
data overfit in many, especially small domains. The absence of the additional noise term makes
it furthermore easier to compare the multilevel approach with the structural time series one.
Special cases of models and could also be considered. For instance, all level breaks
could be modelled as fixed effects. Further, if distribution assumptions about the random terms
Vp and k,,, do not seem to hold, one could consider modelling these terms as fixed effects. In
the latter case, estimation at the national level will be reduced to a univariate setting.

Estimation Details on the Multilevel Model

The multilevel modelling technique constitutes a composite estimator, i.e. a combination of the
design and synthetic estimators. The model in (3.I)-(3.2) can be estimated with the EBLUP
(empirical best unbiased predictor), or within the hierarchical Bayesian (HB) approach. For this
application, the HB approach is chosen with non-informative priors using the Gibbs-sampler
pre-programmed in the mcmcsae R-package (Boonstra|(2015)). The posterior means of the
signals 6, ¢ are taken to be domain point-estimates, and the posterior standard deviations of
O ¢s serve as their measures of uncertainty. These posterior standard deviations are further in
this paper referred to as SEs for brevity.

Random terms vy, k,,, and BRE, are independent and assigned normal priors as in within
the Bayesian estimation framework. The random walk term has a normal prior distribution as
well: uy, e N(0,0%,,A), A being a T-dimensional covariance matrix. In case when the initial
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Uy in all domains are assigned a non-informative prior, matrix A becomes unbounded.
However, the limit of the precision matrix A~ used in the Gibbs sampler is well-defined, see,
e.g.,[Rue and Held (2005). Apart from that, the precision matrix A~1 is sparse (i.e., mostly
contains zeros and, in this case, has five diagonals), which makes the Gibbs sampler efficient.
The variances of the random-effect components are assigned inverse chi-squared priors with
degrees of freedom v and a scale parameter s2: 62 ~ Inv — x?(v, s2), 62 ~ Inv — y?(v,, s2),
JéRE ~Inv — x*(Vgpp séRE), 0% m ~ Inv — x2(Vym, S&m)- Non-informative priors on these
variance parameters would require small values (close to zero) for v and s2 hyperparameters.

If variances of the stochastic terms v, k,, etc. are small (relative to the design-based
variances), the convergence of the Gibbs sampler could be very slow. Apart from that, as
Gelman et al.|(2008) and|Polson et al.|(2012) suggest, the inverse-gamma (or inverse
chi-squared) parametrization for variance parameters is often not robust and should be
replaced by distributions for standard deviation parameters from the folded noncentral
t-family, of which the half-Cauchy distribution is a special case. In order to solve both problems,
Gelman et al.[{(2008) suggest applying a redundant multiplicative parametrisation. In this paper,
this parameter expansion is applied to any stochastic term components for which
non-informative priors are chosen: v,,, = &, 7, ki = &K, €tC., Where &-terms are
multiplicative scalar parameters, and the terms with a tilde are distributed like in and (3.3),
but with variances 2, 62, etc., for which inverse-Gamma (or inverse chi-squared) priors can be
chosen. Such parametrization is used for standard deviation parameters that are expressed as:
oy = |&,16y, 0, = || Gy, etc. The &-terms are independent of each other and are assigned
normal priors:

Sy ~ N(ay, 1), & ~ N(ay, Vi) f[}RE ~ N(aﬁRE: VBRE): $u ~ N(ay, vu)- (3.9)
Setting @ = 0 (and y = 1, without loss of generality) implies that priors on the standard
deviation parameters come from the half t-family, see|Gelman|(2006). Settinga = 1andy =0
is equivalent to the original (non-expanded) parametrization of the model. Combining
& ~ N(0,1) with 1 degree of freedom in 2 ~ Inv — y?(1, s?) results in a half-Cauchy prior for
parameter . For numerical reasons, the scale parameters s in this application are restricted to
the standard deviation of the variable of interest in vector Y.

The overall intercept ¢, linear trend coefficient k and expectations SRE of random level break
coefficients are estimated as regression coefficients and are contained in 8, along with vectors
BEE. The prior for all the regression coefficients is flat (normal with mean B = 0 and a large
variance !2,;0).

Denoting the parameter vector by y:

¥ = v,k B, B, 0}, 0%, 05, 08, 0§ g, ),

the likelihood function can be written as:

p(Y1P) = NGV @ yr) + §ck @ t+ XREBRE + XB + &1, @) (3.10)
where t denotes a vertical vector with time indicators (0, 1,..., T — 1), L) isa T-dimensional
column vector of ones, @ is a [MT x MT] matrix, matrix XRE is [MT x MK ] and contains
dummy regressors for the vector with random level break effects BRE = (BRE', ﬁﬁf‘;;)’, and X
isa [MT X (2 + Kgg + dFE)]-dimensional matrix, d"£ being the number of level break
coefficients modelled as fixed effects. The dimension of matrix X is due to the presence of the
overall effects ¢, k, and Kz BREs in the vector B, as well as due to the presence of the
dFE-dimensional vector BFE of fixed level break coefficients.
The parameters in the prior distribution below are assumed to be mutually independently
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4.1

distributed. The joint prior is then a product of each parameter’s marginal prior distribution:
[ M

var=| [ |[[voad ﬁN(o,&a,mA) x
1| [m=1

_l:v,K,ﬁRE m=1

(3.11)
[ o=z wusd|| | | Melewro [N 8o 25,).
I=v,kx, l=v,k,
_BRE,u i _BRE,u

Then the conditional posterior density of the parameter vector ¥ is proportional to the
following joint density: p(¥|Y) o p(¥)p(Y|1h). See Appendix[Alfor each parameter’s
conditional posterior distribution used in the Gibbs-sampler.

Structural Time Series (STS) Unob-
served Component Modelling in the
Case of the DTS

STS Model Specification

The general theory on STS models is presented in|Durbin and Koopman|(2012) and|Harvey
(1989). Similarly to the multilevel framework presented in Section 3.1} the series of the DTS
design estimates Y, ; in a STS model can be decomposed into signal 8,, ; and the survey error

component, as in (3.1). The 8,,, ;-term, in turn, is decomposed into several unobserved
components:

Bm,t = Lm,t + 61,tﬁm,1 + ..+ 5K,tﬁm,K + Em‘t, te {1, ey T}, (41)

where L,, ; is the stochastic trend component, K is the total number of level breaks in domain
m, and &y ¢ is an indicator variable for the k-th level-break regression coefficient 8, ;.. The
population parameter error termis £, ¢ i N(0,a2). In cross-sectional surveys like the DTS, it is
difficult to separate this term from the sampling error e, ;, especially if the variance of &, + is
small relatively to the sampling variance. Therefore, the two terms are combined into one
composite error term v, ; that is assumed to be largely dominated by the sampling error. In
order to incorporate the design-based variance estimates Var(Y,, ;) in a STS mode|, the
composite error term vy, , can be modelled as &, (/Var (Y, (), & “ N(o, a5 ). Forthe
variance of this product to be close to the design-based variance estimate Var(Y;, ), ng
should be close to unity. Deviations from unity should correct for a possible under- or
overestimation of design-based variance estimates. In this way, STS models feature more
flexibility, unlike the multilevel ones, where the survey error variance estimates, used as prior
input into the model, are assumed to be true and are thus fixed.

For one domain m, the model in is referred to as a univariate STS model. If several domains
have to be estimated simultaneously so that they can borrow cross-sectional sample
information from each other, univariate models can be stacked under each other to constitute a
multivariate STS model. In this application, no spatial correlation is assumed, just like in the
multilevel model presented in the previous section.
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4.2

The obtained multivariate STS model largely resembles the multilevel one in (3.1), with each
domain being represented by the following equation:

Ym,t = Lm,t + 61,tﬁm,1 + e + 8K,tﬁm,1( + ém,tﬂ VaT‘(Ym’t), te {1, sy T}. (42)

As mentioned in Section[3.1} the smooth-trend model is assumed for the trend in the multilevel
setting. Here, the local linear trend model and a random walk with a drift both resulted in a
severe data overfit (see|Harvey|(2001) or|Durbin and Koopman|(2012) for different trend model
specifications). Therefore, the same trend model is assumed for the structural time series (STS)
model setting as in (3.3), though without the identification constraints for the multilevel setting
mentioned in . The trend component L,, ;, apart from the random-walk component u,,
with its deterministic part t(i + k), also implicitly contains an intercept. However, this
intercept is defined solely on the basis of the corresponding domain’s input series Y, . and
therefore would be equivalent to intercept ¢ + v, in only if the latter is modelled as a fixed,
rather than random effect. The covariance matrix of the disturbance terms belonging to the

trend Ly, ; is diagonal as in (3.5).

STS Model Estimation Details

Linear structural time series models with unobserved components are usually put into a
state-space form and analysed with the Kalman filter. First, the model hyperparameters (here,
oZsand 62, .s) are estimated using the maximum-likelihood (ML) approach by iteratively
running the Kalman filter. The hyperparameters are treated as known and set equal to their ML-
estimates, whereafter state variables (L, t, B xS) can be extracted by the Kalman filter
recursions. These recursions are initialised with diffuse priors for non-stationary variables (see
Koopman|(1997)). One has to be aware of the fact, that mean square error (MSE) estimates of
the state variables produced by the Kalman filter are negatively biased, since the uncertainty
around the hyperparameter estimates is not taken into account. See|Pfeffermann and Tiller
(2005) for the true MSE estimation approaches, as well as|Bollineni-Balabay et al.|(2015) for a
simulation-based comparison of different approaches existing in the literature. The STS models
presented in this paper are estimated in OxMetrics 7 (Doornik (2007)) in combination with the
SsfPack 3.0 package (Koopman et al.[(2008)). One could think of a full Bayesian approach to STS
model estimation with prior distributions for the model hyperparameters instead of
hyperparameter ML estimates. However, the computational capacity required for models like
the DTS one would make this approach unfeasible. Apart from that, since most practitioners,
including Statistics Netherlands, estimate STS models in the frequentist framework, the
authors aim to find if the quality of frequentist STS model-based estimates is sufficiently good
compared to when estimation is carried out within the full Bayesian multilevel framework.
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Tackling unreliability and missing val-

uesin design-based variance estimates
of the DTS

The problem with the DTS is that the design-based variance estimates are missing in
2004-2009. For 2010-2013, they are only available at the intersections of provinces with
modalities and of modalities with motives at the national level. The missingness in all domains
in 2004-2009 can be imputed with the help of the Kalman filter, as shown a bit later in this
subsection. As for the variances missing only at certain intersections at the end of the sample
(2010-2013), these may be be approximated by using the variances available at the other
intersections. The following approach is applied in order to approximate the standard errors
(SE(Ym¢)) at the three-dimensional intersection:

SE(Y moamotpt) = SE(Y moamott) * SE(Y moap,t)/SE(Y Moa) (5.1)
where the second factor in the right-hand side reflects an inflation of the standard error of the
GREG estimator (further referred to as the design-based standard error) in modality Mod when
switching from the national to the provincial level. The performance of this method is verified
using the 2003 data and is strikingly good for every province for the domain intersection in the
left panel of Fig.[5.1](here, relative margins of error are plotted, i.e. the margins of error at the
95% confidence level divided by the point-estimate). In most other domain intersections, the
approximation performs similarly. The right panel shows how the approximation performs in
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Figure 5.1 Original (solid line) and approximated (dashed line) relative margins of
error at the 95% confidence level for 12 provinces, 2003, percent

The Kalman filter (KF) is applied to impute the missing design-based standard error estimates
and to smooth out sampling fluctuations. Therefore, smoothed trends of the design-based
standard error estimates from the following univariate STS model are used as input information
in multilevel and STS models for the domain of interest, i.e. km-pppd:

SE(Ym) = Lifc + Emes €me = N(0,02),

Lf?ft = LTS‘I'Et—l + Rflft—l' (52)

iid

Ry =Ry 1+ Mt Nmye ~ N(0,07), te{l,..,T},
where LyE, and R3E, are the level and slope of the trend for the design-based standard errors,
respectively. Although standard deviations of normally distributed variables are Chi-distributed,
such Chi-distributions can be approximated with a normal distribution given moderate to large

numbers of degrees of freedom. Model[5.2|could also be augmented with sample size
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information. However, in this case such augmentations resulted in data overfit. Some of the
smoothed SE estimates are plotted against their original counterparts in Fig.[5.2}
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Figure 5.2 Original (solid line) and smoothed (dashed line) design-based standard
errors, Zuid-Holland.

If these smoothed estimates are used as an input in multilevel models (and thus treated as the
known true standard errors of the design estimator), some domains still experience too volatile
multilevel model point-estimates (see Fig[5.3} solid lines). This occurs only in domains where
the number of km-pppd is small (further referred to as small-scale domains, e.g., “Walking”,
"Bus/Tram/Metro”) and makes one suspect that the design-based variance estimates are biased
in these domains. For this reason, one could consider using the smoothed design-based
standard errors scaled within the univariate STS framework. This means that the sampling error
variances would be represented both in the STS and multilevel models by the product of the
scaling parameter aﬁm and the smoothed design-based variance estimates Var (Y, ). Fig.
shows point-estimates resulting from the two approaches applied to the same multilevel model.
The differences in other domains are negligible because most of these scaling parameters are
concentrated around unity, as Fig.[5.4/shows. Further in this paper, all the multilevel analysis will
be based on the second approach which applies scaled smoothed design-based variance
estimates. Not only does it prevent overfitting in domains whose design-based variance
estimates are not reliable, but it also eliminates another factor responsible for differences
between the outcomes from multilevel and STS models, because in this way both models use
design-based variance estimates corrected in the same way.
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Figure 5.3 Design-based point-estimates (dotted lines) and multilevel model
posterior means that use smoothed design SE estimates (solid line) and smoothed
design SE estimates scaled within the univariate STS framework (dashed line).
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Figure 5.4 Scaling factor for design-based standard errors in univariate STS models.

The DTS at the Provincial Level

Before we estimate both models, a careful inspection for outliers is needed. The trend
disturbance variance o, may get overestimated due to one single outlier, especially if the
design-based variance of this outlying point is negatively biased. Excessively large trend
disturbance variances would cause model point-estimates to overfit the data. In order to
eliminate the effect of outliers, we inspect estimation results from univariate STS models for
each domain and assign a large value to the design-based variance of every outlying point.
There are five outliers in total at the provincial level, which belong to small-scale domains
involving “Scooter”, “Train” or “Other modalities”. These outliers are treated in the same way in
the multilevel and STS models.
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6.1 The Multivariate Variance Structure of Stochastic Trends

Small areas (domains) at the provincial level are formed by an intersection of 12 provinces with
8 modalities and 7 motives (M = 672). Subsectionpresented a general variance structure of
the trend disturbances. To see if some domains with certain irregularities can benefit from other
domains by means of pooling by either provinces, motives or modalities, it is best to compare
the trend disturbance variance estimates &, , obtained from univariate STS models (4.2). By
looking at the top panel of Fig.[B.T|with box-plots for these a, ,,-estimates, it becomes clear
that they are very heterogeneously distributed across the modalities. With heterogeneity less
pronounced across the motives (the lower panel), there is no systematic way in which some
motives resemble the others, and the existing differences are still too big to be able to pool the
trend disturbance variances across the motives.

Viewing provinces as panel units with responses on g, ,,, of motives and modalities provides an
opportunity to use larger amounts of sample information in estimating the hyperparameters.
This would make the hyperparameters estimates more reliable if the processes in provinces are
similar indeed. In order to check that, one could construct scatter- or barplots of
Ou,p,ji-estimates from univariate STS models for the twelve provinces for every intersection of
the motives and transport modalities (find the scatterplot and barplots in Fig.[6.1and[B.2}
respectively). These plots reveal that oy, , ; ;-estimates of provinces 2 (Friesland) and 5
(Flevoland) often exhibit very different values from the rest of the provinces - at eight and
seventeen Mot/Mod intersections, respectively. Large oy, ,,-values in province 5 (e.g., in Mod
1/Mot 1-3,6, Mod 2/Mot 3, Mod 4/Mot 1) are mostly caused by a bigger scale of the series, i.e.
with more km-pppd being covered in this province compared to the other provinces. As for
Province 2 (e.g., in Mod 2/Mot 1, Mod 5/Mot 1, Mod 8/Mot 6), large 0, ,-values are caused by
either a bigger scale, or a more volatile pattern of the series. g, ; ;-estimates of province 1
exhibit the largest values (compared to the rest of the provinces) for about five times, and those
of province 10 and 12 - four and three times, respectively. It is worthwhile to observe the scale
of the latter provinces’ series (1, 10 and 12): it hardly ever exceeds the scale of the rest of the
provinces, and is sometimes even smaller. Therefore, these provinces would be better off if
pooled together with the other ones. Further, one can see that the disturbance variances in
many cases tend to take on very small values when estimated within the STS approach. It means
that the trend in such cases resembles a straight line. Keeping in mind that the ML estimator
tends to underestimate hyperparameters when their distribution is right-skewed, it would also
be desirable to estimate such variance hyperparameters in a pool with other domains (provinces
in this case). Thus, we abstain from pooling provinces 2 and 5 with the other ten. Therefore, the
twelve provinces are divided into a cluster of two and a cluster of ten provinces, within which
variances are pooled. This applies to the multilevel, as well as to the multivariate STS analysis.
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6.2

The DTS point-estimates are very similar when comparing the univariate and multivariate STS
settings with each other. There are, however, a few domains that exhibit significant differences
(depicted in Fig.[6.2). It is worth considering the consequences that pooling may have on model
estimates. If one province turns out to be very different from the others it has been pooled with,
then an underestimate of the stochastic trend variance can force the model-based
point-estimates to take strange slopes, for example, when ks are not sufficiently scattered due
to a small 62 (as, e.g., in Noord-Holland/Shopping/Car-passenger). The advantage of pooling
0ym aCross provinces is that certain idiosyncracies occurring only in one province can be
eliminated. If there is, for instance, no real factor behind the sudden surge in point-estimates of
the Limburg/Business/Bus-Tram-Metro domain, pooling could be considered in order to get rid
of such irregularities. Further, excessive volatility in the univariate model point-estimates of one
province due to underestimation of design-based variances in this province can be overcome by
borrowing information from other provinces for an identical intersection of motives and
transport modalities (as in Zuid-Holland/Shopping/Scooter).
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Figure 6.2 STS model-based point-estimates obtained from univariate STS models
(black line) and from a multivariate STS model where s are pooled across provinces
(coral line); the colour of the confidence intervals corresponds to the colour of the
line.

Multilevel Model Estimation Results

Several model formulations have been considered for the multilevel framework. These
formulations have already been mentioned at the end of Section[3.1]and are summarised in
Table[6.1] Model selection is based on the deviance information criterion (DIC) (see
Spiegelhalter et al.|(2002)) which is a generalisation of the well-known AIC and BIC for
hierarchical models. Adequacy of point- and variance estimates is also taken into account as an
informal criterion. Table[6.Ilalso contains information on the minimum sufficient number of
iterations, burn-in iterations, as well as the thinning interval h. The latter means that only every
h-th draw from the parameter posterior distribution is saved in the MCMC chain. Thinning helps
overcome memory constraints when a chain is strongly autocorrelated (see|Gelfand and Smith
(1990)). Further, in order to ensure that the stationary distribution of a parameter has been
reached, more than one chain is needed, each chain starting with draws from an overdispersed
distribution (Gelman and Rubin|(1992)). Three parallel chains are constructed in this application
for each parameter. We use the Gelman-Rubin convergence statistic for multiple chains (R-hat)
to be able to judge about the sufficient length of a burn-in period and about whether the chains
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have mixed well, which allows us to arrive at a reasonable estimate of the true posterior

Q'I:ﬁ)rllg %tlf - Multilevel models considered for the DTS at the provincial level

Model Year and domain indication  Itera-  Burn-in  Thinning DIC

labels for level breaks tions

HB-bRE  BRE: 1994 2010forallm; 75000 50000 50 -43668
BFE: 2004 for m in Mot 6,7

HB-bFE  BFE: 1994, 2010 for all m; 55000 30000 50 -43606
2004 formin Mot 6,7

HB-FE BFE: 1994, 2010 for all m; 5000 1000 10 -43859

2004 form in Mot 6,7;
(c+vy), (k+ K,,) as FE

HB-bRE stands for a model with random effects as in (3.1)-(3.2). HB-bFE differs from HB-bRE in
that all B8,,-coefficients are estimated as fixed effects. HB-FE differs from HB-bFE in that v,,, and
K., terms are estimated as fixed effects, too. Different model modifications of the kind in
have been tried for HB-bRE and HB-bFE models. However, these modifications either resulted
in a numerical failure (in model HB-bRE variations), or failed to secure multiple chain
convergence in some variance parameters (Grszod' "12/1\40:) in model HB-bFE variations. The only
model modification that could be fitted successfully was the HB-bFE model with an additional
Vymoa-term. However, this specification did not result in model improvement, with the DIC value
being even lower than that of the basic HB-bFE model.

Fig.[6.3|shows point-estimates for the three multilevel models mentioned in Table[6.1] While
most domains get comparable point-estimates from the three models, a combination of
"Car-driver” with “Work” and "Business” motives features some most striking problems
inherent to models HB-bRE and HB-bFE. It is worth mentioning that the 1994-break is largest
exactly at the intersection of modality “Car-driver” with motive “Busines”. Only five provinces
are depicted, but the results are similar for the rest of the provinces. As the second row of
Fig.[6.3|demonstrates, the model with level breaks modelled as random effects is incapable of
fitting the level breaks for the year 1994. Neither of the HB-bRE modifications can cure this
problem (some of them even result in less adequate level break estimates for 1994). The level
break for the years 2010-2013 is not captured by the HB-bRE model in these domains either.
Apparently, the assumptions about common distributions for BXEs are violated in the case of
the DTS. The first row of Fig.[6.3|suggests that the assumptions about common distributions for
K.,s andfor for vy, s are often not applicable either.

The model HB-bFE exhibits a greatly improved fit. However, the fit for the years 1985-1994 is
not optimal for the "Work”-motive (see the first row). Apart from that, the level of the signal in
"Business” seems to be too low (see the second row of Fig.[6.3), suggesting that the common
distributions imposed on the random intercepts do not allow the v,,-terms to take sufficiently
large values.

Finally, the fit of the model with only fixed effects (HB-FE) seems to be most adequate. This
model also gets the lowest DIC-value, see Table[6.1]
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6.3 Multilevel and STS Model Estimation Results Compared

Not only does the multilevel model HB-FE turn out to be the best one out of the multilevel
models considered in this paper, but it also offers a more straightforward comparison with STS
models, since intercepts and regression coefficients in the latter type of models are in fact fixed
effects. However, the performance of the two modelling approaches in terms of signal (trend
etc.) variance estimates cannot be fairly compared at this stage. There are at least two reasons
for that. We will try to quantify the effect of each of them shortly.
The first reason is the fact that the true (unknown) hyperparameters of a STS model (in this
case, 2 and G2) are replaced by their maximum likelihood estimates and are treated as known.
Within the HB approach, the uncertainty about these hyperparameter estimates is summarised
by the variance of their posterior distribution. The signal MSE bias in STS models due to
hyperparameter uncertainty can be negligible if the distribution of the ML estimator is
symmetric and well concentrated around its mean. But, if the series is short or if the
hyperparameters are close to their boundary values, the ML estimator distributions of such
hyperparametes (and their posteriors too) are not symmetric. In this case, the uncertainty
around the hyperparameter estimates could be very large, resulting in a considerable signal
MSE bias in STS models. Therefore, lower signal variance estimates delivered by an STS model|,
in comparison with posterior signal variances, do not necessarily mean that the STS approach is
superior to the HB one. In fact, the extent to which HB model-based SE estimates exceed those
from a comparable STS model gives an indication for the scale of the MSE negative bias in such
STS model. The negative bias in STS models can be accounted for by the bootstrap method of
Pfeffermann and Tiller|(2005). Bollineni-Balabay et al.|(2015) show why this method is superior
to other existing methods for MSE estimation in STS models.
Another source of differences when comparing the two modelling approaches may appear
when the signal posterior distributions are skewed, thus producing larger posterior standard
deviations for domain predictors than the signal standard errors produced by a linear STS
model. In fact, if the normality assumption about the data/disturbances is not satisfied, linear
STS models like the ones considered in this paper should not be applied.
Point-estimates produced by the HB-FE and multivariate STS model are depicted in Fig.[6.4]
together with the 95% confidence intervals from the STS model superimposed on the credible
intervals from the HB-FE model. The latter are symmetric as they are constructed using the
posterior standard deviations, rather than being quantile-based. In most domains, the posterior
distribution of the domain predictors is symmetric. It is sometimes slightly skewed in
small-scale domains. This is where differences in point- and variance estimates become visible.
The STS model-based point-estimates tend to be smoother (as in the lower panel of Fig.[6.4),
since they are based on smaller (close to the boundary space) values of the trend disturbance
variances. The HB model-based point-estimates in such domains, in turn, stem from a set of
draws from a heavy right-tailed distribution of the trend variance, which results in more flexible
HB-based trends. Further, the differences in point-estimates from the STS and HB models are
also partially due to the fact that posterior means of 6,,, ¢, rather than medians, are taken as
domain m predictors.
The signal standard error estimates produced by the two approaches could be compared and
summarised in terms of relative deviation (RD) of the STS-derived signal SEs from the HB
posterior standard deviations:
STS HB
RDSTS, = w -100%. (6.1)
SE;

For the multivariate setting, the overall average of this measure across time and domains is
equal to -9.4%, with a median of -3.1%. This itself does not imply serious differences between
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the outcomes of the two approaches, but shows that the distribution of the RD-terms is very

skewed, with the mean being pulled to the left by extreme SE-differences in small-scale

domains
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Figure 6.4 The provincial level design point-estimates (thin dashed line),
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7.1

It would be interesting to check if there is a tendency for the HB-based SEs to exceed the
STS-based ones in small-scale domains, since such domains are suspected to feature skewed
posteriors. By “scale” here is meant a time average of the domain'’s point-estimates produced
by the multivariate STS model. In this way, the scale represents both the number of km-pppd
and the effective sample size: the scarcity of respondents belonging to a certain
motive/modality intersection translates into low per-person figures for kilometers travelled for
that intersection. The 672 provincial domain numbers sorted by scale in the descending order
are plotted on the x-axis of Fig.[6.5] It is clearly visible that, as the domain scale decreases, the
STS signal standard errors tend to deviate more from the HB-FE posterior standard deviations
in a negative direction. Most of the extreme deviations (those up to 200%) occur around level
interventions. There, the HB-based signals obtain larger uncertainty than the STS-based ones.
Now we try to quantify the effect of hyperparameter uncertainty on the differences between
the HB-FE-based and STS-based SEs. For that, an identical HB-FE model has been estimated
(referred to as HB-FE-ML), for which informative priors on the trend disturbance variances have
been set with a large number of degrees of freedom and the scale parameter taken equal to the
ML estimates from the STS multivariate model. Relative deviations as in have been
calculated for the HB-FE and HB-FE-ML posterior standard deviations. Their average value
suggests that skewness in the signal posterior distributions can be blamed for only -1.6% out of
the above-mentioned -9.4% reduction/underestimation in the HB posterior standard deviations
by the STS approach. The remaining -7.8% are due to the hyperparameter uncertainty around
the trend disturbance variances, not accounted for in the STS approach.

It is of particular interest how much reduction in design-based standard errors can be obtained
by time series modelling technique. The HB-FE model offers a 51% reduction in design-based
standard errors at the provincial level on average, with a median of 54%. For the STS
multivariate model, where provinces are pooled as described in Subsection[6.1] the mean and
median percentage reduction are slightly bigger - 54% and 57%, respectively. These and the
above-mentioned figures indicate that the HB-FE and STS approaches deliver very similar
results, with sizeable differences appearing mostly in small domains due to neglected
hyperparameter uncertainty in STS models.

The DTS at the National Level

The Multivariate Variance Structure of Stochastic Trends

The number of domains at the national level is M = 56, defined by an intersection of 8 transport
modalities with 7 motives. As already described in Subsection one can look at box-plots
with the trend disturbance variance estimates obtained from univariate STS models in order to
see if the parametrisation of the trend variance matrix £,, can be made more parsimonious.
Similarly to the provincial level, g, ,,,5 do not exhibit resemblance either across motives, or (and
in particular) across the modalities, as can be seen in Fig.[7.1] The seeming resemblance
between some of the box-plots (e.g., Mod5-Mod8) disappears when zooming in the plots.
Endowing each domain with its own o, ,, at the national level limits the STS approach to the
univariate setting. Within the multilevel approach, a multivariate structure hinges on the
assumption of common distributions for the random effects in the HB-bRE and HB-bFE models.
The HB-FE model at the national level constitutes a set of univariate HB time-series models.
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Figure 7.1 0, from univariate state-space models at the national level

Multilevel and STS Model Estimation Results Compared

For the national level series, the same multivariate model variations described in Subsection|6.2
are considered. According to Table[7.1} the HB-FE model has the lowest DIC-value, but the
differences among the three HB model modifications are very small. As Fig.[7.2]shows, the
HB-bRE model does not experience any difficulties with the fit, as was the case at the provincial
level. Point-estimates from the HB-bFE, HB-FE and STS models almost coincide. Appendix[C]
presents point-estimates and their credible/confidence intervals for the HB-FE and univariate
STS models, as well as for the design-based estimator. The striking similarity between the
HB-FE and STS model-based point- and variance estimates is less strong in small-scale
domains, with the STS point-estimates being slightly smoother (e.g., in "Visits/Bicycle”,

"Visits/Other modalities”, “Recreative/Bicycle”, "Recreative/Other modalities”).
Table 7.1 Multilevel models considered for the DTS at the national level

Model labels  Iterations Burn-in  Thinning DIC

HB-bRE 75000 50000 50 -8114
HB-bFE 55000 30000 50 -8166
HB-FE 5000 1000 10 -8189
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For the comparison of the two approaches in terms of SEs, the reader is referred to equation
(6.1). The overall average of RD}5;-terms across time and domains at the national level is equal
10 -10.9%. and the median eauals -9.1%. This neaative mean is clearlv visible in Fia.[7.3

sl s g

.
! o !

.
. s

' Domains: large to small (by scale)

Figure 7.3 The national level RD3;, - relative deviation of STS SEs from HB-FE SEs for

signals,%.

Though much less pronounced than at the provincial level, some association of low RD-terms
with the decreasing domain scale can still be seen at the national level (Fig.[7.3). Indeed,
extreme RD-values of more than 20% occur in several small domains (e.g., “Visits/Other
modalities”, "Visits/Bicycle”). Some of the largest domains still feature low RD-values (e.g.,
"Visits/Car-passenger”, the third one from left). An inspection of the point-estimates of these
domains in Appendix|C|shows that the low RD}/,-values correspond to those domains where
the signal point-estimates from the HB models are visibly more volatile than those produced by
STS models. As with the provincial data, a similar HB-FE-ML model has been estimated at the
national level. It turns out that the difference between the HB- and STS-based SEs is almost
entirely due to the hyperparameter uncertainty around the trend disturbance variances (an
average -10.1% out of the above-mentioned -10.9%).

Mean reduction in design-based standard errors with the model-based approach is less than at
the provincial level, but still quite appreciable with the overall average of 31.7%, and the median
of 34.3% for the HB-FE model, (39% and 41%, respectively, for the STS approach).

Discussion

Time series models are well known for their power in reducing design-based variances and in
making point-estimates more stable, be it multilevel or structural time series models. Apart
from that, time series techniques are indispensable when it comes to estimating level breaks
due to survey redesigns. This paper aimed at establishing which of the two modelling
approaches - STS or multilevel - should be preferred.

The multilevel model estimated with the Hierarchical Bayesian approach (HB model) is a
time-series extension of the Fay-Herriot model. Apart from featuring hyperpriors for its
parameters, it differs from the conventional STS model (in the sense of Harvey, Koopman, and

Statistics Netherlands | Discussion paper 2016|0326



in the way it is used at Statistic Netherlands) in that time-invariant effects (e.g. intercepts, level
break or linear trend coefficients) can be treated as random. In this application, however,
assumptions about random effects sharing the same variance across domains turned out to be
invalid at the provincial level. Therefore, several HB-model variations have been considered
where (some of) these random components are modeled as fixed ones. Not only does the
fixed-effect specification of the HB-model (HB-FE) make the comparison of the HB and STS
approaches more straightforward, but it is also the only specification that provides an adequate
fit to the data.

The comparison between the STS and the HB-FE model in terms of estimated signal variances is
still not completely fair. First of all, this is due to the fact that the true (unknown)
hyperparameters of a STS model are replaced by their maximum likelihood estimates and are
treated as known. To account for this additional uncertainty, one would in addition have to
resort to bootstrapping techniques, see |Pfeffermann and Tiller|(2005), Bollineni-Balabay et al.
(2015). Within the HB-FE approach, the uncertainty around hyperparameter estimates is
summarised by the variance of their posterior distribution. Therefore, lower signal variance
estimates delivered by an STS model do not necessarily mean that the STS approach is superior
to the HB-FE one. In fact, the extent to which HB-FE model-based variance estimates exceed
those from a comparable STS model gives us an indication for the scale of the negative bias in
the signal MSEs of such STS model. This bias could be particularly large if variance
hyperparameters are close to their boundary values, with heavy right tails in the posterior
distributions/distributions of the ML estimator. This is the case in many small-scale domains of
the DTS, which makes the hyperparameter uncertainty the primary source of differences
between the two modelling approaches in the case of the DTS. Secondly, another source of
differences is skewed signal posterior distributions that produce larger posterior standard
deviations for domain predictors than the signal standard errors produced by a linear STS model
relying on the assumption of normality in the data/disturbances. In the DTS, slight skewness in
the signal posterior is observed at the provincial level, mainly in those domains whose trend
disturbance variance posteriors are skewed enough to feed some degree of asymmetry through
to the signal posterior.

It turns out that both point- and variance model-based estimates produced with the STS and
HB-FE techniques are very similar. Differences become visible mainly in small domains.
Standard errors produced by the STS model are smaller than posterior standard deviations from
the HB-FE model by 9.4% on average (across time and domains) at the provincial level (median
3.1%), and by 10.9% at the national level (median 9.1%). At the national level of the DTS,
skewness turned out to have a negligible effect on the standard error difference between the
two approaches, but at the provincial level it is responsible for about 1.5% out of the
above-mentioned 9.4% of the HB-FE model-based posterior standard deviations on average.
The rest is due to the hyperparameter uncertainty unaccounted for within the STS approach.
For these above-mentioned reasons, one should be aware of negative biases in frequentist
STS-based variances in short time series of series that feature small variance hyperparameters.
In such cases, the negative biases should be accounted for by means of an additional procedure,
such as the bootstrap of|Pfeffermann and Tiller|(2005).

As an important by-product, the results of this paper give an idea about how much reduction in
design-based standard errors can be obtained by these time series modelling techniques. The
mean reduction in design-based standard errors with the HB-FE model is 51% at the provincial
level, with the median of 54%. In other words, in order to reduce the design-based variance to
this extent, one would have to increase the sample size more than four-fold (conditional on the
point-estimates). For the STS model, the mean and median percentage reduction in the
design-based standard errors is slightly bigger - 54% and 57%, respectively, - due to the reasons
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already mentioned above. Mean reduction in design-based standard errors at the national level
is smaller than at the provincial one, but is still quite appreciable with the overall average of
31.7% and the median of 34.3% for the HB-FE model, and 39% and 41%, respectively, for the
STS model.

Another aspect we look at is unreliable design-based variance estimates. First of all, these
estimates are subject to sampling volatility. With the help of a simple STS model, design-based
standard errors can be smoothed with the Kalman filter. These smoothed standard error
estimates are further used as input in the multilevel and STS models. Secondly, design-based
variance estimates could be biased in the case of small domains. If the bias is negative, for
instance, then treating these estimates as the true variances in a multilevel setting results in
model overfit by putting too much weight on the design-based estimates. We suggest using the
STS univariate analysis to scale the design-based variance estimates in the right direction for
further use in multilevel models. The uncertainty around design-based variance estimates could
also be taken into account by imposing a prior distribution on them, as in|You and Chapman
(2006). The comparative analysis of the two time series modelling approaches, however, should
not be affected much by the way the design-based variance estimates are treated in this paper.
The reported reduction in design-based standard errors is conditional on these approximated
design-based variance estimates.

The techniques presented here can be used nearly in any repeatedly conducted SAE application,
especially if a survey suffers from discontinuities due to redesigns. Unlike in the application
considered in|Bollineni-Balabay et al.|(2016), the presence of design-based variance estimates
here makes it possible to continuously apply this model-based approach in the production of
official statistical figures. Accounting for each new survey redesign will, however, be possible
only with a delay of at least one period. In addition, in the first time periods after a survey
redesign, estimated figures are likely to undergo substantial revisions, as soon as new data
become available under the new design. Yet, this problem is of a temporary nature and there
does not seem to exist any other solution except for a parallel run that increases the survey
expenses. See|Van den Brakel and Krieg|(2015) for an example where a parallel run is conducted
to obtain design-based estimates for discontinuities. These estimates are then used as a priori
information in a structural time series model to avoid the problem of revisions.

In this paper, the time dimension has been exploited for variance and volatility reduction in the
point-estimates, as well as for level break estimation. As for the spatial dimension, so far it has
been used only for getting rid of some idiosyncracies through pooling trend variances across
provinces. However, it can also be used as another source of variance reduction in model-based
estimates by exploiting spatial correlations between domains belonging to different provinces,
e.g., by allowing for f common stochastic trends shared by more than f domain trends, the way
it was done in e.g. [Bollineni-Balabay et al.|(2016), [Krieg and Van den Brakel|(2012). In the case
of the DTS, this approach seems to be worth exploring, since the pattern of trends belonging to
a certain motive-modality intersection is very similar among the twelve provinces of the
Netherlands.
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Appendices

Full Conditional Distributions for the
Gibbs-Sampler

The Gibbs sampler was first described by/Geman and Geman|(1984). Here we present

unnormalised conditional posterior densities for each parameter b in

Y = (v,1, B, u, B',03, 0%, 05, 0%, &, €1 € pre, &) for Model . Let YD) denote the
parameter vector where element b is deleted. Within the Gibbs sampler, the b-th parameter
values are drawn conditionally on the data ¥ and the rest of the parameters (5.

The conditional posterior density for parameters c, k, BRE, ..., 225 and BFE contained in vector
B originate from the product of the densities that contain these parameters:

p(BIYP,Y) <N(Bo, 2p,)%
NV Q ) + &k @ t+ Epre XREBRE + XB + &1, @),
which, using the results on conjugate priors in|Gelman et al.|(2014), turns into a normal density

(A1)

N(pg, 2p) with the following mean and variance:
tg =(X'®7X + 1) 1x
(XY — 6,7 ® ypy — &k @ t — £preXREBRE — £,00) + 0515,
Q=X X +05)7 1
For vector and matrix dimensions, refer to the description under the likelihood function

presentation in (3.10).
The conditional posterior of the M-dimensional vector of scaled area effects ¥, is:

(@YD, Y) =N (g, 25) o N(Oppy, 621 1) X
NV ® ypy + &k @ t + EpreXREBRE + XB + &1, D),
wy = ® lfr]‘p_ll[M] ® tyr +1/65) 7% (A.2)
Elpn ® @ (Y — Ecik @ t — Epre XREBRE — XB — &, 1),
25 = (&l ® l[T]qul[M] ® yr +1/65) 7
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A similar expression is valid for the linear trend random effects &,,:
p(E[Y O, Y) =N (uz 2i) < N(Oppy, 621 ) %
NV Q tyr) + &k @ t + EpreXREBRE + XB + &1, D),
Hie =R @ t' P~y @ t+1/67)71x (A3)
Elp Q@ UDLY — &,7 @ tyg) — EpreXREBRE — XB — &, 10),
Q= QUO Uy @t +1/62)77,
where t denotes a vertical vector with time indicators (0, 1,.., T — 1)’. The same logic applies to
random level break coefficients i;,’i’E (inter alia, vectors t are replaced with T-dimensional
vectors with dummy regressors for the level break k).
The conditional distribution for the T-dimensional scaled stochastic trend random terms it,, is
based on the data and other terms that are related to domain m:
p(im P, Y) =N(pg,, 24,) * N(Or), 65 mA)X
N(&yTmtir) + Eclimt + EgreXns Bre +
Xmﬁm + fuﬁm' ¢m)’
Ha,, =(EEPw + A7 /6] ) 7t
fzzt(pr_nl(ym - fvﬁm"[T] — $xKmt — 'EBREX&EE&E — XmBm),
4, = GEPH + AT /G0 )7

where vector Y,,, and matrix ®,, are T-dimensional, matrix XXE is [T x Kgz] and contains

(A.4)

indicator variables for the scaled random level break coefficients BRE in domain m, BRE being
[Krg X 1]. The matrix with fixed effects regressors X,,, is build by the same logic, i.e. contains
regressors only applicable to domain m and is therefore [T X (2 + Kgg + d5E)], d5E being the
number of level breaks modelled as fixed effects in domain m. f8,,, contains the overall effects
¢, K, BrE, ..BRE . along with dff fixed level break coefficients. Drawing from resultsin
unconstrained draws of the stochastic trend terms. Due to restrictions presented in (3.4), these

Qa4 1)

unconstrained draws should be adjusted to (I[T] — )itm, according to[Rue and Held

(2005).
Variance components of random effects are drawn from the Inv — y? density:
- _52 -
p(GZ1YE),Y) o< N(Opyy, 621 1wy) X Inv — x% (v, 52),
wst+ X,V (A.5)
v, +M
The same goes for the other random effects, except for the stochastic trend terms (e.g., for

Y1) Qaam YT)

p(G2[W,Y) = Inv — 2 (v, + M,

random linear trend effects &,,, terms v,, s7 and Y., 74, would be replaced by v, sz and ¥, &3,
respectively).

If every domain m is assigned a unique value for its stochastic trend variance (as is the case at
the national level of the DTS), then 7 ,, is drawn from the following conditional:

P(EEmlp7Em, ¥) o Inv = (0, SN Opr), 6 mAD),

v, sE + i, A vy, (A.6)
v +T—2 ’

where 2 is subtracted from T due to the two restrictions for the integrated random walk model.

p(62 | Cm), ¥) = v — 2 (v, + T — 2,

The scaling §,,-effects are drawn from the following distribution:
PP, ) =N(ug,, wg,) < N(ay, 1) X
NV @ ypy + &k @ t + EgreXREBRE + XB + £,11, D),
te, ="y @ @ Mgy @ Yy + 1/y,) 7% (A7)
VI ® @MY — § Rk @ t — EpreXREBRE — XB — & ),
wg, = (V' @ 4@y @y + 1/3,) 7
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The same logic applies to the scaling parameters of the rest of the random terms.

As for scaling the stochastic trend terms, the number of unique &,,-parameters can be made
equal to the number of unique variances on the main diagonal of Z,,. At the provincial level of
the DTS, for instance, the number of stochastic trend variances, and thus &,,-parameters, is
Mot X Mod, producing a Mot x Mod-dimensional §, vector. In this case, &, it terms in every
expression of this appendix should be substituted with the following:

$utt = Wl Q yrtimymot/mod) @ Su- (A.8)
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Figure B.1 Box-plots for o, s from univariate STS models at the provincial level
modalities within motives (upper panel) and motives within modalities (lower panel)
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C National level estimation results
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Figure C.1 The national level design-based point-estimates (thin blue dashed line),
point-estimates from the multivariate STS model (thick black dashed) and posterior
means from the HB-FE model (solid red); the colour of the 95% confidence (credible)
intervals corresponds to the colour of the point-estimates
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