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In mixed-mode surveys, mode-differences in measurement bias, also called

measurement effects or mode effects, continue to pose a problem to survey

practitioners. In this paper, we discuss statistical adjustment of measurement bias to

the level of a measurement benchmark mode during inference frommixed-mode data.

In doing so, statistical methodology requires auxiliary information which we suggest to

collect in a re-interview administered to a sub-set of respondents to the first stage of a

sequential mixed-mode survey. In the re-interview, relevant questions from the main

survey are repeated. After introducing the design and presenting relevant statistical

theory, this paper evaluates the performance of a set of six candidate estimators that

exploit re-interview information in a Monto Carlo simulation. In the simulation, a large

number of parameters is systematically varied, which define the size and type of

measurement and selection effects between modes in the mixed-mode design. Our

results indicate that the performance of the estimators strongly depends on the true

measurement error model. However, one estimator, called the inverse regression

estimator, performs particularly well under all considered scenarios. Our results

suggest that the re-interview method is a useful approach to adjust measurement

effects in the presence of non-ignorable selectivity between modes in mixed-mode

data.

1 Introduction

Sequential mixed-mode surveys combine multiple modes of data collection in sequential

order to maximize on survey response while optimizing on data collection costs

(De Leeuw, 2005; Groves et al., 2010; Lynn, 2013). Usually, a sequential design starts

with a cost efficient mode (e.g., web data collection) and, subsequently,

non-respondents to the first stage are approached by another mode (e.g., face-to-face).

This second stage, typically, strongly improves survey response. When a face-to-face

follow up is used, for example, the combined mixed-mode design often reaches

response rates comparable to those of single-mode face-to-face survey designs, but at

lower costs (Klausch, Hox, & Schouten, 2015). Sequential designs are not limited to two

modes and in practice many designs use three or even four modes.

The increase in survey response may be an indication for a reduction in survey

non-response bias and may lead to more balanced response samples (Klausch, Hox, &

Schouten, 2015; Schouten, Cobben, & Bethlehem, 2009). However, any mode has

particular measurement error properties, which turn certain modes more or less

suitable for the measurement of specific target variables (Klausch, Hox, & Schouten,

2013). It is often noted, for example, that socially desirable answering can introduce

systematic measurement error (bias) to estimates of statistics of sensitive characteristics

(Kreuter, Presser, & Tourangeau, 2008). This behaviour is typically stronger in interviewer

administered than in self-administered modes. A mixed-mode design combining self-

and interviewer administration can, therefore, increase the measurement bias of linear

estimates, such as means and totals.

Mode differences in random and systematic measurement error, which are also called

‘measurement effects’ (or mode effects), are considered a key problem of mixed-mode
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surveys (Jäckle, Roberts, & Lynn, 2010; Klausch et al., 2013). Besides increases in bias of

mixed-mode estimates, they can lead to instability of time series, because the relative

sizes of mode-specific response samples in repeated mixed-mode surveys often vary

over time (Buelens & van den Brakel, 2014). Such deficits may outweigh the increase in

response.

The present paper contributes to the growing body of literature that discusses statistical

adjustment of measurement effects (Kolenikov & Kennedy, 2014; Suzer Gurtekin, 2013;

Vannieuwenhuyze, 2015). Statistical adjustment seeks to convert measurements

obtained under different modes to the level of a common measurement benchmark

mode (Klausch, Schouten, & Hox, 2015). The measurement benchmark mode is

assumed to be the desirable way (combination of mode and question format) to

measure a target variable. For example, if the systematic measurement error differences

between modes were known for a continuous target variable, the difference in means

could be used in a mixed-mode survey as a fixed adjustment to all responses that were

not observed under the benchmark mode.

However, the primary difficulty in estimating measurement effects, is a common

confounding with so-called selection effects in mixed-mode data (Vannieuwenhuyze,

2014, 2015; Vannieuwenhuyze & Loosveldt, 2013; Vannieuwenhuyze, Loosveldt, &

Molenberghs, 2010). A selection effect denotes a difference in the true score

distributions of a target variable between mode-specific response samples. Practically,

this situation suggests that different people participate in different modes. This, frankly,

is the objective of any mixed-mode survey and in the absence of selection effects using a

sequential mixed-mode survey has only very limited practical advantages.

Disentangling measurement and selection effects requires additional auxiliary data,

which are typically unavailable to analysts. Previous literature has often applied

relatively weak auxiliary data for estimating measurement effects, such as

socio-demographic sampling frame information, leading to potential bias of unknown

size in effect estimates (Vannieuwenhuyze, 2015; Vannieuwenhuyze & Loosveldt, 2013).

In particular, estimates will be biased when mode-specific non-response does not occur

at random in the mixed-mode design (Little & Rubin, 2002), as may be indicated by weak

relations of auxiliary information and response mechanisms.

In this article, we employ an innovative approach to this problem using a research design

called the mixed-mode re-interview (Klausch, Schouten, & Hox, 2015; Schouten,

van den Brakel, Buelens, van der Laan, & Klausch, 2013). In the re-interview,

respondents to the first stage of the mixed-mode design are re-approached under a

second mode, where relevant questions from the main survey are repeated. This

additional information is exploited in estimation. Using a simulation study, we evaluate

whether the re-interview is a useful approach for adjusting measurement error bias

between survey modes in the important case when selection into modes depends on

the target variable and thus occurs not at random.

This paper is structured into two parts. First, we provide a formal framework to describe

survey errors and statistical adjustment in mixed-mode surveys and the re-interview

design (sections 2 and 3). This theory is novel to the field and needed to describe and

solve adjustment problems of the type discussed here. Second, we use a statistical
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simulation to evaluate the performance of a total of six adjusted estimators, which

exploit re-interview information in different ways (section 4). In the simulation, we

systematically vary the size of measurement and selection effects and study how the

efficiency of the estimators changes across conditions.

2 The sequential mixed-mode

re-interview design

There are, in principle, three ways to address mode differences in measurement error

(Schouten et al., 2013). First, the occurrence of effects may be prevented by designing

questions and questionnaires to evoke the same and correct answer under all modes (a

situation also called measurement equivalence; Dillman, Smyth, and Christian, 2009). If

achieving equivalence is not possible a second option may be to avoid problematic

modes, such as those modes leading to an increase in measurement error. However,

avoiding some modes may not be desirable from a response and a cost perspective. The

third approach therefore addresses measurement effects during the estimation stage,

where we distinguish two approaches. The first approach uses the so-called calibration

method. The analyst accepts that measurement error models of modes may in fact differ

and instead focusses on calibrating the size of mode-specific response samples to fixed

proportions, thus keeping measurement error of the whole design stable across time

(Buelens & van den Brakel, 2014). Therefore it is a strong advantage of this procedure

that it helps to stabilize time series data from repeated cross-sectional mixed-mode

surveys, when the size of mode-specific response groups differs across time as it is often

the case in practice. However, the approach does not adjust the measurement error

difference between modes. Statistical adjustment of measurement effects is considered

in the present paper.

2.1 Problem proposition

A schematic illustration of the available data from a mixed-mode survey is provided in

figure 2.1, i (Klausch, 2014; Klausch, Hox, & Schouten, 2015). For ease of exposition, we

focus on a mixed-mode design with two modes (extensions to more modes are

addressed in the appendix). We distinguish three types of variables in the mixed-mode

survey: first, the ’true’ scores of a target variable, 𝑌, second, variable 𝑌 as measured by

mode 1, 𝑌𝑚1, and third, variable 𝑌 as measured by mode 2, 𝑌𝑚2.

In figure 2.1, i, we depict the missing data pattern typical to a standard sequential

mixed-mode survey, where response (available data) is characterised by white areas and

unavailable data is characterised by grey areas. It can be seen that the true scores 𝑌 are

unobserved, which is the primary motivation to conduct a survey, whereas 𝑌𝑚1 and 𝑌𝑚2

are partly observed, because, in a sequential mixed-mode design, nonrespondents to

𝑚1 are followed up in𝑚2 resulting in some response under either𝑚1 (field A) or𝑚2

(field D). The unobserved outcomes can be called ’potential’ (following terminology

introduced by Rubin, 2005) denoting the hypothetical events that respondents under𝑚2
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𝑌 𝑌𝑚1 𝑌𝑚2 𝑌𝑚1 𝑌𝑚2 
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A 

D 

E 

(i) (ii) 

B 

C A 

B D 

F 

Figure 2.1 Schematic illustration of the missing data pattern of two sequential

mixed-mode surveys: left (i) a simple sequential design, right (ii) a sequential

design with re-interview. The true scores 𝑌 are not observed, while respondents

in modes 1 and 2 give answers 𝑌𝑚1 (󰅳ield A) and 𝑌𝑚2 (󰅳ield D). The additional re-

interview data in (ii) create overlap between the𝑚1 (󰅳ield A) and𝑚2 (󰅳ield E) re-

sponse distributions.

had been observed under𝑚1 (Field B) or, reversely, respondents under𝑚1 had been

observed under𝑚2 (Field C).

In the following, it is our objective to estimate the true mixed-mode response mean of

𝑌, denoted 𝑌̄𝑟𝑚𝑚
. This is the true mean of the response sample. It should be noted that

an estimator of 𝑌̄𝑟𝑚𝑚
may additionally suffer from non-response bias against the true

population mean. In this paper, we focus on adjusting measurement error bias of

response mean estimators. We refer to literature on non-response adjustment for

correcting the remaining non-response bias of the measurement error-adjusted

response mean (Bethlehem, 2002; Bethlehem, Cobben, & Schouten, 2011; Cochran,

1977; Little & Rubin, 2002; Särndal & Lundström, 2005; Särndal, Swensson, & Wretman,

1992).

Since, observed variables 𝑌𝑚 are employed in estimation, the measurement error of

both variables may bias an unadjusted estimator of 𝑌̄𝑟𝑚𝑚
that results when simply

pooling the mixed-mode data by taking the sample mean across observed data

(Kolenikov & Kennedy, 2014). We seek to find an estimator whose mean squared error is

lower compared to the unadjusted estimator.

In doing so, we make an important assumption, called the measurement benchmark

assumption. In the absence of true scores 𝑌, it is impossible to correct the measurement

error bias contributed by both modes to the estimator. Instead, we focus on the

situation when one of the modes is assumed as a measurement benchmark, setting the

observed scores of this mode equal to 𝑌. The choice of benchmark mode is made by the

analyst and guided by the practical consideration which combination of mode and

question format can be assumed to evoke the least or no measurement error.

A major complication in this endeavour is the occurrence of non-random selection
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effects between modes, in the sense that the response mean of true scores 𝑌 under𝑚1

is not equivalent to the response mean under𝑚2. Such effects are desired in

mixed-mode surveys, because they reflect that different modes reach different

respondents. If both modes reached the same respondents, the second mode in the

mixed-mode design would not have any additional value except for increasing the overall

response rate. Unfortunately, selection effects are confounded with mode differences in

measurement error (measurement effects. A difference in response means on 𝑌𝑚1 and

𝑌𝑚2 thus can denote a measurement or a selection effect or a combination. In a simple

sequential design (Figure 2.1, i), the analyst has insufficient information to determine the

size of these effects (Vannieuwenhuyze & Loosveldt, 2013). In adjusting measurement

error it is therefore necessary to control for selection effects between modes.

2.2 Design and use of a re-interview extension

Any estimator of 𝑌̄𝑟𝑚𝑚
that seeks to be superior to an unadjusted estimator necessarily

needs to employ additional data in estimation. The re-interview method is one approach

for collecting such data. It may be an approach to use register (sampling frame)

information for modelling response mechanisms and target variables. We consider these

variables weak auxiliary information in many cases and for this reason evaluate the role

of re-interview data as potentially stronger auxiliary data.

The re-interview design consists of a standard sequential mixed-mode survey, where in

addition a subset of respondents in𝑚1 is followed up in𝑚2. The additional information

is used during estimation of the mixed-mode response mean. Figure 2.1, ii, illustrates

the missing data pattern of this design. It can be seen that the re-interview data create

overlap between the partly observed response vectors 𝑌𝑚1 and 𝑌𝑚2, so that for this

subset of respondents the outcomes are observed in both modes (Field E). This overlap

is essential in all estimation techniques discussed bellow.

Three further aspects of the re-interview design are worth highlighting. First, the

introduction of a re-interview next to an ongoing mixed-mode design does not impact

the standard fieldwork of the sequential mixed-mode survey. Since𝑚1 respondents are

only re-interviewed after their 𝑌𝑚1 answers have been recorded, the additional

measurement occasion cannot ’bias’ the regular measurement process.

Second, the re-interview fieldwork normally suggests additional costs. However, it is not

required to approach every𝑚1 respondent again. Instead, only a smaller sub-set of𝑚1

respondents needs to be approached for a re-interview. This measure makes sure that

the mixed-mode re-interview design still offers the advantage of cost savings compared

to a standard design fielded in𝑚2 alone. Intuitively, the smaller the re-interview sample

size will be, the less precise will be an adjustment basing on the re-interview data. In this

paper, we focus on evaluating the precision of estimators in the large sample scenario. In

future research we will assess the sensitivity of the best estimators across different

re-interview sample sizes.

Third, when adding the re-interview measurement to a sequential mixed-mode design,

the repeated measurements in𝑚2 potentially may be influenced by the earlier

measurement occasion. In this situation, 𝑌𝑚2 in the re-interview would not follow the
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same measurement model as standard responses in𝑚2. In the present paper, we

assume that the measurement error models in the re-interview and the regular𝑚2

model are identical. We call this assumptionmeasurement equivalence.

Measurement equivalence is likely to occur in many practical situations. For

in-equivalence to occur, respondents first need to recall answers given at the first

occasion (𝑚1) when the question is repeated under𝑚2. In addition, respondents need

to be motivated to reproduce the answer they recall from the first occasion. The time lag

between occasions, which in practice usually lies in the range of several weeks, plays a

relevant role, because longer time lags increase chances of answers being forgotten.

Even if answers given earlier in𝑚1 are recalled, it is doubtful whether this causes the

re-interview respondent to answer consistently with this answer in the response

situation under𝑚2. Measurement equivalence, nevertheless, is an important

assumption for the re-interview method. Whereas we assume equivalence, we point to

the need for experimental evaluation of possible in-equivalence between regular𝑚2

and re-interview measurements in practice. In addition, it may be possible to relax the

assumption in further development of the suggested re-interview methodology. We

re-emphasize these aspects in the discussion section.

3 Bias and adjustment of the

mixed-mode response mean

In this section, we, first, present a statistical model for the data generating process of

mixed-mode re-interview surveys. Second, we derive the bias of the unadjusted

mixed-mode estimator. Third, we suggest a set of six potentially superior candidate

estimators that exploit re-interview data in estimation.

3.1 Selection model

For the simple sequential mixed-mode survey (Figure 2.1, i) we assume a fixed response

model that separates all units 𝑖 in a population of size 𝑁 for a given mixed-mode design

𝐷 into two response strata (units participating in either𝑚1 or𝑚2) and a non-response

stratum (Cochran, 1977). Since we focus on the response mean in this paper (cf. section

2), the non-response stratum is ignored in the following discussion. Let fixed indicator

variables 𝑟1 and 𝑟2 identify these groups, so that 𝑁𝑟𝑗 = ∑
𝑖 𝑟𝑗𝑖 is the population size of the

response stratum of mode 𝑗 = {1, 2}. Let

𝑃𝑗 =
𝑁𝑟𝑗

(𝑁𝑟1 + 𝑁𝑟2)
(1)

denote the relative size of the strata, and let 𝑌̄𝑟𝑗 = 𝑁−1
𝑟𝑗

∑𝑟𝑖𝑗𝑦𝑖 be the stratum mean,

where 𝑦𝑖 is the true score of unit 𝑖 on continuous target variable 𝑦. The mixed-mode

response mean is then given by
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𝑌̄𝑟𝑚𝑚
= 𝑃1𝑌̄𝑟1 + 𝑃2𝑌̄𝑟2 . (2)

The contrast

𝑆𝐸(𝑌̄𝑟1 , 𝑌̄𝑟𝑚𝑚
) = 𝑌̄𝑟1 − 𝑌̄𝑟𝑚𝑚

= 𝑃2(𝑌̄𝑟1 − 𝑌̄𝑟2) (3)

denotes the selection effect of 𝑌̄𝑟1 relative to 𝑌̄𝑟𝑚𝑚
. It can be seen that the relative

selection effect between modes, i.e. 𝑆𝐸(𝑌̄𝑟1 , 𝑌̄𝑟2) = 𝑌̄𝑟1 − 𝑌̄𝑟2, is dependent on

𝑆𝐸(𝑌̄𝑟1 , 𝑌̄𝑟𝑚𝑚
) and if 𝑆𝐸(𝑌̄𝑟1 , 𝑌̄𝑟𝑚𝑚

) ≠ 0, 𝑆𝐸(𝑌̄𝑟1 , 𝑌̄𝑟2) ≠ 0 follows. Relative selection

effects between modes are a major motivation for conducting mixed-mode surveys,

because, if 𝑌̄𝑟1 = 𝑌̄𝑟2 (or equivalently 𝑆𝐸(𝑌̄𝑟1 , 𝑌̄𝑟𝑚𝑚
) = 0), the second stage survey in

mode𝑚2 does not contribute to a reduction of selection bias of mixed-mode estimators

against the population mean and thus would not be needed.

When a re-interview is added to the sequential mixed-mode design (Figure 2.1, ii), the 𝑟1
response stratum is split up into a re-interview response (field E) and re-interview

non-response (field F) stratum. Let 𝑟𝑟𝑒 denote the response indicator indicating whether

a respondent in𝑚1 responds in the re-interview (if assigned) and let 𝑃𝑟𝑒 = 𝑁𝑟𝑒/𝑁𝑟1
denote the size of the re-interview response sample relative to the number of𝑚1

respondents and let 𝑃𝑛𝑟𝑒 = 1− 𝑃𝑟𝑒. Furthermore, let 𝑌̄𝑟𝑟𝑒 indicate the response mean of

this stratum and 𝑌̄𝑟𝑛𝑟𝑒 the non-response mean. The contrast

𝑆𝐸(𝑌̄𝑟𝑟𝑒 , 𝑌̄𝑟1) = 𝑌̄𝑟𝑟𝑒 − 𝑌̄𝑟1 = 𝑃𝑛𝑟𝑒(𝑌̄𝑟𝑟𝑒 − 𝑌̄𝑟𝑛𝑟𝑒) (4)

denotes the re-interview selection effect, which occurs in the situation when

systematically different respondents participate in the re-interview than in𝑚1. Such

effects have practical relevance, because response in the re-interview may be selective

relative to𝑚1 since a different mode is offered (𝑚2) and for reasons of response burden

due to repeated participation. In the present paper, we explicitly allow for the possibility

of re-interview selection effects by including them in the simulation study. As we show

after introducing the candidate estimators, the size of re-interview selection effect has a

direct implication for the bias of the estimators.

Under the fixed-response model, the population response distribution of 𝑌 is a mixture

distribution of the stratum distributions from the sets defined by 𝑟1 = 1 and 𝑟2 = 1,

where 𝑟1 consists of two sub-strata defined by 𝑟𝑟𝑒 = 1 and 𝑟𝑟𝑒 = 0. Let 𝜎2𝑌 denote the

population response variance of 𝑌 and let 𝜎2𝑌𝑟𝑟𝑒
, 𝜎2𝑌𝑟𝑛𝑟𝑒

, and 𝜎2𝑌𝑟2
denote the population

variances within the strata, respectively. Furthermore, let

𝜎2𝑌𝑟 = 𝑃1(𝑃𝑟𝑒𝜎
2
𝑌𝑟𝑟𝑒

+ 𝑃𝑛𝑟𝑒𝜎
2
𝑌𝑟𝑛𝑟𝑒

) + 𝑃2𝜎
2
𝑌𝑟2

give the within-stratum variance pooled across

strata. It follows that the total variance 𝜎2𝑌 is equal to the sum of between-stratum and

pooled within-stratum variances, where the between-stratum variance is determined by

the size of selection effects:
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𝜎2𝑌 = 𝜎2𝑌𝑟 + 𝑃1(𝑃𝑟𝑒(𝑌̄𝑟𝑟𝑒 − 𝑌̄𝑟𝑚𝑚
)2 + 𝑃𝑛𝑟𝑒(𝑌̄𝑟𝑛𝑟𝑒 − 𝑌̄𝑟𝑚𝑚

)2) + 𝑃2(𝑌̄𝑟2 − 𝑌̄𝑟𝑚𝑚
)2

= 𝜎2𝑌𝑟 + 𝑃1(
𝑃𝑟𝑒

𝑃𝑛𝑟𝑒
𝑆𝐸(𝑌̄𝑟𝑟𝑒 , 𝑌̄𝑟1)

2 + 𝑆𝐸(𝑌̄𝑟1 , 𝑌̄𝑟𝑚𝑚
)2) + 𝑃2( −

𝑃1

𝑃2
𝑆𝐸(𝑌̄𝑟1 , 𝑌̄𝑟𝑚𝑚

)2)

= 𝜎2𝑌𝑟 +
𝑃1𝑃𝑟𝑒

𝑃𝑛𝑟𝑒
𝑆𝐸(𝑌̄𝑟𝑟𝑒 , 𝑌̄𝑟1)

2. (5)

3.2 Measurement model

Assume that each mode is associated with a question-specific measurement error model

that describes the relation of true scores 𝑦𝑖 to the observed outcomes in𝑚𝑗, denoted

𝑦
𝑚𝑗

𝑖 , as (Alwin, 2007; Biemer & Stokes, 1991; Lord & Norvick, 1968)

𝑦
𝑚𝑗

𝑖 = 𝜇𝑚𝑗 + 𝜆𝑚𝑗(𝑦𝑖 + 𝑢
𝑚𝑗

𝑖 ) ∀ 𝑖, (6)

where 𝜆𝑚𝑗 is a scale parameter that is equal to 1 if𝑚𝑗 measures on the scale of the true

score, and 𝑢
𝑚𝑗

𝑖 is an independently and identically distributed measurement error term

with

𝑢
𝑚𝑗

𝑖 ∼ 𝑖𝑖𝑑(0, (𝜎
𝑚𝑗
𝑢 )2) ∀ 𝑖. (7)

𝜇𝑚𝑗 is referred to as systematic measurement error common to all units, whereas

(𝜎
𝑚𝑗
𝑢 )2 denotes the variance of measurement errors in the population and is called the

random measurement error component. We assume independence of true scores 𝑦𝑖
and measurement errors 𝑢

𝑚𝑗

𝑖 for all 𝑖 and 𝑗.

Let 𝑐𝑗 = 𝑐𝑜𝑟(𝑌𝑚𝑗 , 𝑌) be the population correlation between 𝑌𝑚𝑗 and 𝑌. Random error

(𝜎
𝑚𝑗
𝑢 )2 is dependent on 𝜎2𝑌 and 𝑐𝑗:

(𝜎
𝑚𝑗
𝑢 )2 =

1 − 𝑐2𝑗

𝑐2𝑗
𝜎2𝑌 . (8)

𝑐𝑗 is sometimes referred to as validity or reliability coefficient (Biemer & Stokes, 1991).

In the simulation we use different levels of 𝑐𝑗 to scale the error variance of 𝑌𝑚, without

specifically arguing on the source of random error.

When adjusting measurement bias, the analyst chooses a measurement benchmark

mode (cf. section 2). We denote the chosen benchmark by letter 𝑏 and denote the

alternative mode as focal mode 𝑗. Henceforth, 𝑏 may be chosen as 𝑏 = 1 (thus 𝑗 = 2), in

which case the first mode (𝑚1) in the sequential design is the measurement benchmark

(e.g., web) and the second mode (e.g., face-to-face) is the focal mode, or 𝑏 = 2 (thus
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𝑗 = 1) denoting the reverse situation. For the measurement benchmark mode it is

assumed that

𝑦
𝑚𝑏

𝑖 = 𝜇𝑚𝑏 + 𝜆𝑚𝑏(𝑦𝑖 + 𝑢
𝑚𝑏

𝑖 ) = 𝑦𝑖 ∀ 𝑖 (9)

implying 𝜇𝑚𝑏 = 0, 𝜆𝑚𝑏 = 1, and 𝑢
𝑚𝑏

𝑖 = 0 for all 𝑖 (thus 𝑐𝑏 = 1).

Furthermore, we assume measurement equivalence between re-interview and𝑚2 (cf.

section 2). Let 𝑦
𝑚𝑟𝑒

𝑖 denote potential re-interview outcomes. The measurement

equivalence assumption states that

𝑦
𝑚𝑟𝑒

𝑖 = 𝑦
𝑚2

𝑖 ∀ 𝑖. (10)

3.3 Bias of unadjusted mean estimators

Consider now the unadjusted estimator of the mixed-mode response mean which simply

pools the observed mixed-mode data without applying any correction in the estimator,

̂𝑌̄
𝑢𝑛𝑎𝑑𝑗

𝑟𝑚𝑚
=

1

𝑁̂𝑟1 + 𝑁̂𝑟2

𝑁

∑

𝑖=1

𝐼𝑖𝑑𝑖(𝑟1𝑖𝑦
𝑚1

𝑖 + 𝑟2𝑖𝑦
𝑚2

𝑖 ), (11)

where 𝑑𝑖 denotes design weights determined by the sampling design 𝐷 as inverse of

inclusion probability of unit 𝑖 and 𝐼 denotes the indicator for the outcome of random

sampling, where 𝐸𝐷(𝐼𝑖) = 𝑑−1𝑖 , and 𝑁̂𝑟𝑗 = ∑ 𝐼𝑖𝑑𝑖𝑟𝑖𝑗. The bias of the unadjusted mean

estimator over sampling design 𝐷 and measurement model𝑀 is given by

𝐵( ̂𝑌̄
𝑢𝑛𝑎𝑑𝑗

𝑟𝑚𝑚
) = 𝑃1((𝜆

𝑚1 − 1)𝑌̄𝑟1 + 𝜇𝑚1) + 𝑃2((𝜆
𝑚2 − 1)𝑌̄𝑟2 + 𝜇𝑚2)

= 𝑃1𝐵
𝑚1
𝑚𝑒 + 𝑃2𝐵

𝑚2
𝑚𝑒 , (12)

where 𝐵
𝑚1
𝑚𝑒 and 𝐵

𝑚2
𝑚𝑒 denote measurement bias contributed by modes 1 and 2. If𝑚1 or

𝑚2 represent a measurement benchmark, one of the measurement bias terms is zero. If

𝑏 = 1, it follows 𝐵( ̂𝑌̄𝑟𝑚𝑚
) = 𝑃2𝐵

𝑚2
𝑚𝑒 , and 𝐵(

̂𝑌̄𝑟𝑚𝑚
) = 𝑃1𝐵

𝑚1
𝑚𝑒 in the reverse situation

(𝑏 = 2).

It could be argued that an alternative unadjusted estimator uses only𝑚1 responses, but

not the follow up, for estimating 𝑌̄𝑟𝑚𝑚
. This estimator pictures the situation when a

single-mode survey would be used instead of the mixed-mode design, for example, to

save the costs for administering𝑚2. The estimator is
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̂𝑌̄
𝑢𝑛𝑎𝑑𝑗2

𝑟𝑚𝑚
=

1

𝑁̂𝑟1

𝑁

∑

𝑖=1

𝐼𝑖𝑑𝑖𝑟1𝑖𝑦
𝑚1

𝑖 (13)

and it has bias

𝐵( ̂𝑌̄
𝑢𝑛𝑎𝑑𝑗2

𝑟𝑚𝑚
) = (𝜆𝑚1 − 1)𝑌̄𝑟1 + 𝜇𝑚1 + 𝑆𝐸(𝑌̄𝑟1 , 𝑌̄𝑟𝑚𝑚

) = 𝐵
𝑚1
𝑚𝑒 + 𝑆𝐸(𝑌̄𝑟1 , 𝑌̄𝑟𝑚𝑚

). (14)

It can be seen that when𝑚1 is the benchmark the estimator suffers from a selection

effect against 𝑌̄𝑟𝑚𝑚
, and when the follow up mode𝑚2 is the benchmark, it suffers from

additional measurement bias 𝐵
𝑚1
𝑚𝑒 .

3.4 Candidate estimators using re-interview data

In the following, we employ the auxiliary information collected in the re-interview in a

set of six adjusted candidate mean estimators. Let indicator 𝑠𝑟𝑒,𝑖 determine whether

unit 𝑖 is selected for a re-interview. Furthermore, let 𝑃𝑠 = ∑𝑠𝑟𝑒,𝑖/∑ 𝑟1 denote the

proportion of re-interviewed respondents. 𝑃𝑠 = 1 denotes the situation when all𝑚1

respondents are approached for a re-interview, but, as we noted, in practice choices of

𝑃𝑠 < 1make the design cost efficient. Depending on which mode represents the

measurement benchmark, we now seek to estimate the mean of either 𝑌𝑚1 or 𝑌𝑚2 over

the full response sample. This objective presents us with the missing data problem

illustrated in figure 2.1, ii. In doing so, we employ auxiliary data obtained from the

sub-set of re-interview respondents, that is all 𝑖 for whom 𝐼𝑖𝑠𝑟𝑒,𝑖𝑟𝑟𝑒,𝑖 = 1 holds.

We consider two classes of estimators referred to as 𝜋-estimators and 𝑦-estimators,

respectively (Kang & Schafer, 2007; Särndal & Lundström, 2005). Further estimators,

including combined 𝜋− and 𝑦− estimators (’double-robust’), have been suggested in the

literature but we do not discuss them in the present paper (Bang & Robins, 2005).

𝜋-estimators estimate the propensity of respondents to reply under the benchmark

mode and apply it for calibrating a selective sub-group (i.e. response sample in

benchmark mode) to a reference group (i.e. the mixed-mode response sample). Let the

propensity for unit 𝑖 to be observed in the benchmark mode be denoted as 𝜋𝑖
(Rosenbaum & Rubin, 1983, 1985). The propensity can be estimated using a model 𝑓𝜋:

𝜋𝑖 = 𝑃(𝑟𝑖𝑏 = 1|𝑦
𝑚𝑗

𝑖 , 𝑟𝑖𝑗 = 1 ∪ 𝑟𝑖,𝑟𝑒 = 1)

= 𝑓𝜋(𝑦
𝑚𝑗

𝑖 , 𝑟𝑖𝑗 , 𝑟𝑖,𝑟𝑒 = 1, 𝜃) ∀ 𝑖 ; 𝑏, 𝑗 = 1, 2 ; 𝑏 ≠ 𝑗. (15)

A typical choice for function 𝑓𝜋 is the logistic or probit regression model with unknown

parameter vector 𝜃. The propensity score can be applied in a variety of ways in

estimation, such as matching, stratification or weighting. In this paper, we examine

performance of a weighting estimator using the inverse propensity:
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̂𝑌̄
𝜋

𝑟𝑚𝑚
=

1

𝑁̂1 + 𝑁̂2

𝑁

∑

𝑖=1

𝐼𝑖𝑑𝑖𝑦
𝑚𝑏

𝑖 (𝑟𝑖,𝑟𝑒𝑠𝑟𝑒,𝑖
(1 − 𝜋̂𝑖)

𝜋̂𝑖
+ 1) ; 𝑏 = 1, 2. (16)

This estimator first estimates the total of the observed benchmark outcomes 𝑦
𝑚𝑏

𝑖 from

the response in benchmark mode 𝑏. It then adds an estimate of the total of benchmark

outcomes in the focal mode using benchmark outcomes from the re-interview response

sample calibrated by weight (1 − 𝜋̂𝑖)/𝜋̂𝑖.

On the other hand, 𝑦-estimators seek to find accurate predictions of the potential

benchmark outcomes 𝑦𝑚𝑏 using a suitable model for 𝑦𝑚𝑏 and finally sum over the joint

vector of observed and predicted scores (Schafer & Kang, 2008). A general form of

𝑦-estimator can be written as:

̂𝑌̄
𝑦𝑒𝑠𝑡

𝑟𝑚𝑚
=

1

𝑁̂1 + 𝑁̂2

𝑁

∑

𝑖=1

𝐼𝑖𝑑𝑖(𝑟𝑖𝑏𝑦
𝑚𝑏

𝑖 + 𝑟𝑖𝑗𝑦̂
𝑚𝑏

𝑖 ) ; 𝑏, 𝑗 = 1, 2 ; 𝑏 ≠ 𝑗, (17)

where 𝑦̂
𝑚𝑏

𝑖 represent the estimated potential (unobserved) benchmark outcomes for

respondents in the focal mode 𝑗. The 𝑦-estimator requires specifying a 𝑦-model that

describes the relation of benchmark to alternative mode outcomes. It is then assumed

that the model also holds in the response stratum to mode 𝑗 and can be used to

transform observed 𝑦𝑚𝑗 to 𝑦𝑚𝑏. Three simple y-models lead to the fixed-effect estimator

̂𝑌̄
𝑓𝑒

𝑟𝑚𝑚
=

1

𝑁̂1 + 𝑁̂2

𝑁

∑

𝑖=1

𝐼𝑖𝑑𝑖(𝑟𝑖𝑏𝑦
𝑚𝑏

𝑖 +𝑟𝑖𝑗(𝑦
𝑚𝑗

𝑖 −( ̂𝑌̄
𝑚𝑗

𝑟𝑒 −
̂𝑌̄
𝑚𝑏

𝑟𝑒 ))) ; 𝑏, 𝑗 = 1, 2 ; 𝑏 ≠ 𝑗,

(18)

where

̂𝑌̄
𝑚𝑗

𝑟𝑒 =
1

𝑁

𝑁

∑

𝑖=1

𝐼𝑖𝑑𝑖𝑟𝑟𝑒,𝑖𝑠𝑟𝑒,𝑖𝑦
𝑚𝑗

𝑖 (19)

is the sample mean of the re-interview stratum (and ̂𝑌̄
𝑚𝑏

𝑟𝑒 defined analogously), the ratio

estimator

̂𝑌̄
𝑟𝑎𝑡𝑖𝑜

𝑟𝑚𝑚
=

1

𝑁̂1 + 𝑁̂2

𝑁

∑

𝑖=1

𝐼𝑖𝑑𝑖(𝑟𝑖𝑏𝑦
𝑚𝑏

𝑖 + 𝑟𝑖𝑗𝑦
𝑚𝑗

𝑖

̂𝑌̄
𝑚𝑏

𝑟𝑒

̂𝑌̄
𝑚𝑗

𝑟𝑒

) ; 𝑏, 𝑗 = 1, 2 ; 𝑏 ≠ 𝑗, (20)

and the regression (GREG) estimator
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̂𝑌̄
𝑔𝑟𝑒𝑔

𝑟𝑚𝑚
=

1

𝑁̂1 + 𝑁̂2

𝑁

∑

𝑖=1

𝐼𝑖𝑑𝑖(𝑟𝑖𝑏𝑦
𝑚𝑏

𝑖 +𝑟𝑖𝑗(
̂𝑌̄
𝑚𝑏

𝑟𝑒 −𝛽̂𝑟𝑒(
̂𝑌̄
𝑚𝑗

𝑟𝑒−𝑦
𝑚𝑗

𝑖 ))) ; 𝑏, 𝑗 = 1, 2 ; 𝑏 ≠ 𝑗,

(21)

where 𝛽𝑟𝑒 denotes the (population) ’slope’ of the linear regression of 𝑌𝑚𝑏 on 𝑌𝑚𝑗 in the

re-interview stratum, given by the ratio of population covariance of 𝑌𝑚𝑏 and 𝑌𝑚𝑗 over

the variance of 𝑌𝑚𝑗 in the re-interview (Bethlehem, 1988; Särndal & Lundström, 2005).

It can be seen that the fixed-effect estimator is a special case of the GREG estimator,

where the slope is equal to 1. Furthermore, it can be shown that the ratio estimator is

the special case of the GREG estimator, where the intercept is fixed at zero. In practice,

the parameters 𝛽𝑟𝑒 as well as 𝑌̄
𝑚𝑗
𝑟𝑟𝑒 and 𝑌̄

𝑚𝑏
𝑟𝑟𝑒 , are estimated by their sample analogues in

the re-interview response stratum.

The IPW, regression and ratio estimators are standard approaches of survey statisticians

for estimation with missing outcomes. The fixed-effect estimator is useful, because the

contrast between 𝑌̄
𝑚𝑗
𝑟𝑟𝑒 and 𝑌̄

𝑚𝑏
𝑟𝑟𝑒 may form a good estimator of measurement bias 𝜇𝑚𝑗. In

addition to the standard estimators, we consider two further estimators in this paper.

First, we use an inverse version of a regression estimator (IREG). The idea of IREG is to

use benchmark measurements 𝑌𝑚𝑏 instead of 𝑌𝑚𝑗 as auxiliary data for modelling focal

mode outcomes 𝑌𝑚𝑗 in

𝑦
𝑚𝑗

𝑖 = 𝜈0 + 𝜈𝑟𝑒𝑦
𝑚𝑏

𝑖 + 𝜖𝑖 , (22)

estimated by ordinary least squares from re-interview response, and then use the

inverse of 𝜈𝑟𝑒 in a GREG-type estimator leading to

̂𝑌̄
𝑖𝑟𝑒𝑔

𝑟𝑚𝑚
=

1

𝑁̂1 + 𝑁̂2

𝑁

∑

𝑖=1

𝐼𝑖𝑑𝑖(𝑟𝑖𝑏𝑦
𝑚𝑏

𝑖 +𝑟𝑖𝑗(
̂𝑌̄
𝑚𝑏

𝑟𝑒 −
1

𝜈𝑟𝑒
( ̂𝑌̄

𝑚𝑗

𝑟𝑒−𝑦
𝑚𝑗

𝑖 ))) ; 𝑏, 𝑗 = 1, 2 ; 𝑏 ≠ 𝑗.

(23)

In the next section, we explain why IREG may be a superior estimator to the standard

approaches.

Finally, we consider an alternative approach to estimation with missing data using

simultaneous multiple imputation (Rubin, 1987). The procedure creates several data

sets, in which all missing data are replaced by plausible values. Variance in plausible

values for a given unit across imputed data sets reflects the uncertainty in the imputed

value. In doing so, we evaluate the performance of sequential regression imputation

(Raghunathan, Lepkowski, van Hoewyk, & Solenberger, 2001) using an algorithm called

”MICE” with five multiply imputed data sets (multiple imputation by chained equations;

van Buuren, 2012; van Buuren, Brand, Groothuis-Oudshoorn, and Rubin, 2006). This

algorithm specifies two regression models 𝑃(𝑌𝑚1|𝑌𝑚2 , 𝜃1) and 𝑃(𝑌
𝑚2|𝑌𝑚1 , 𝜃2).
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Starting with the conditional distribution featuring less missing values, a regression

model is fit and a draw from the posterior distribution of parameter estimates taken.

Based on this draw a predictive model is used to generate imputes. The completed

vector of 𝑌𝑚 is then used as a predictor for the second regression model. The procedure

is iterative and stops when plausible imputes do not change anymore. It can be shown

the method is an approximate Gibbs sampler for the bivariate distribution 𝑃(𝑌𝑚1 , 𝑌𝑚2)

(Raghunathan et al., 2001). Depending on benchmark mode choice, 𝑌̄𝑟𝑚𝑚
is estimated by

taking the sample mean across the completed vector of 𝑌𝑚𝑏 for each imputed data set

and then pooling the estimates according to Rubin’s rules (Rubin, 1987).

3.5 Bias of standard estimators

Usually, exogenous sampling frame information is available for statistical inference using

the standard estimators. This data is assumed to be available for all population units and

considered free of random measurement error. Both properties cannot be said to hold

in the re-interview design, however. As argued above, response in the re-interview

sub-sample may be selective (equation 4). Furthermore, observations in the focal mode

may be subject to random error 𝑢𝑚𝑗 (equation 6) as well as scaling parameter 𝜆𝑚𝑗 ≠ 1.

Since it is unclear, which effect these deviations from standard assumptions have, it is

instructive to consider the expected bias of the standard estimators (cf. proof given in

the supplemental material),

𝐵( ̂𝑌̄
𝑓𝑒

𝑟𝑚𝑚
) = 𝑃𝑗((1 − 𝜆𝑚𝑗)(𝑌̄𝑟𝑟𝑒 − 𝑌̄𝑟𝑗)), (24)

𝐵( ̂𝑌̄
𝑟𝑎𝑡𝑖𝑜

𝑟𝑚𝑚
) ≈ 𝑃𝑗(𝜇

𝑚𝑗

𝑌̄𝑟𝑟𝑒 − 𝑌̄𝑟𝑗

𝜆𝑚𝑗𝑌̄𝑟𝑟𝑒 + 𝜇𝑚𝑗
), (25)

and

𝐵( ̂𝑌̄
𝑔𝑟𝑒𝑔

𝑟𝑚𝑚
) ≈ 𝑃𝑗((1 − 𝜆𝑚𝑗𝛽𝑟𝑒)(𝑌̄𝑟𝑟𝑒 − 𝑌̄𝑟𝑗)), (26)

where

𝛽𝑟𝑒 =
𝜎2𝑌

𝜆𝑚𝑗(𝜎2𝑌 + (𝜎
𝑚𝑗
𝑢 )2)

. (27)

Note that the bias of the ratio and GREG estimator are approximated using Taylor

linearization (Särndal et al., 1992), where the remainder terms vanish in large samples.

From equations (24) to (26), it can be seen that all biases depend on the contrast

(𝑌̄𝑟𝑟𝑒 − 𝑌̄𝑟𝑗) which denotes a selection effect between the re-interview and the focal
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mode. If𝑚1 is the benchmark, (𝑌̄𝑟𝑟𝑒 − 𝑌̄𝑟2) describes the degree to which𝑚2

respondents in the re-interview differ from𝑚2 respondents in the sequential design. If

𝑚2 is the benchmark, (𝑌̄𝑟𝑟𝑒 − 𝑌̄𝑟1) describes the degree to which𝑚2 response in the

re-interview is selective relative to𝑚1 response (i.e. a re-interview selection effect,

equation 4). In practical situations it is likely that both contrasts are non-zero introducing

bias in all standard y-estimators.

From equation (24) it can be seen that ̂𝑌̄
𝑓𝑒

𝑟𝑚𝑚
is unbiased if 𝜆𝑚𝑗 = 1, but may be biased in

other cases. Put differently, the fixed-effect estimator does correct a systematic error

difference between modes, if there is no scale difference 𝜆𝑚𝑗. Furthermore, it can be

seen that the bias ̂𝑌̄
𝑓𝑒

𝑟𝑚𝑚
is equivalent to the GREG estimator, when 𝛽𝑟𝑒 = 1, which could

be expected from the definition of the estimators.

From equation (25) it follows that the bias of ̂𝑌̄
𝑟𝑎𝑡𝑖𝑜

𝑟𝑚𝑚
is determined by factor 𝜇𝑚𝑗. The

ratio estimator thus corrects a scale difference between modes, if there is no systematic

error 𝜇𝑚𝑗. Therefore it represents a counter-part to ̂𝑌̄
𝑓𝑒

𝑟𝑚𝑚
, which is unbiased in the

reverse situation.

From equation (26) it can be seen that ̂𝑌̄
𝑔𝑟𝑒𝑔

𝑟𝑚𝑚
is approximately unbiased if 𝜆𝑚𝑗𝛽𝑟𝑒 = 1,

and thus

𝜎2𝑌

𝜎2𝑌 + (𝜎
𝑚𝑗
𝑢 )2

= 1. (28)

We note that the bias of GREG does not depend on 𝜆𝑚𝑗 and is determined by the size of

random error. It is thus only negligible when the focal mode does not measure with

random error. This conjecture points to a somewhat surprising shortcoming of the GREG

estimator, which is biased in most practical scenarios of the re-interview design, because

the focal mode usually measures with error.

To deal with this problem, we introduced the inverse regression estimator (IREG) in the

previous section. It can be seen that its bias is

𝐵( ̂𝑌̄
𝑖𝑟𝑒𝑔

𝑟𝑚𝑚
) ≈ 𝑃𝑗((1 − 𝜆𝑚𝑗𝑣−1𝑟𝑒 )(𝑌̄𝑟𝑟𝑒 − 𝑌̄𝑟𝑗)), (29)

where 𝑣−1𝑟𝑒 = (𝜆𝑚𝑗)−1 and, consequently, ̂𝑌̄
𝑖𝑟𝑒𝑔

𝑟𝑚𝑚
is approximately unbiased.

Whereas we can take the bias properties of four of the considered candidate estimators

from these equations, we will focus on the simulated trade-off of bias and variance

(mean squared error) in the study presented in the next section.
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4 Simulation study

In the present section, we explain, first, the parametrization of the model and the

simulation conditions and, second, the results of the simulation.

4.1 Simulation set-up

In practice, the distributions of 𝑌 and the selection and measurement model parameters

are unknown. It was therefore the goal of this study to assess the potential effects that

different choices for the parameters have on the RMSE of the unadjusted and adjusted

estimators by Monte Carlo Simulation.

Tables 4.1 and 4.2 give an overview on the parametrization of the selection and

measurement model, respectively. We distinguish between three types of parameters.

Fixed parameters were not varied over simulation conditions. Free parameters

represented the simulation conditions, where the exact values applied in the simulation

can be taken from the tables and are detailed below. Dependent parameters depended

on the parametrization of the fixed and free parameters.

Table 4.1 Parameterization of the super-population selectionmodel in the sim-

ulation

Parameter Eq. Value(s) in simulation Description

Fixed:

𝑌̄𝑟𝑚𝑚
(2) 1 Mixed-mode response mean

𝜎2𝑌𝑟 (5) 1 Pooled within-stratum variance

𝑃1 (1) 0.5 Proportion of𝑚1 resp.

𝑃𝑟𝑒 (4) 0.6 Proportion of re-int. resp.

Free:

𝑆𝐸(𝑌̄𝑟1 , 𝑌̄𝑟𝑚𝑚
) (3) {−0.5, −0.25, 0, 0.25, 0.5} Selection effect of mode 1

𝑆𝐸(𝑌̄𝑟𝑟𝑒 , 𝑌̄𝑟1) (4) {0, 0.5} Re-interview selection effect

Dependent:

𝑌̄𝑟1 (3) Dep. on 𝑌̄𝑟𝑚𝑚
, 𝑆𝐸(𝑌̄𝑟1 , 𝑌̄𝑟𝑚𝑚

) Response stratum mean of𝑚1

𝑌̄𝑟2 (3) Dep. on 𝑌̄𝑟𝑚𝑚
, 𝑌̄𝑟1 , 𝑃1 Response stratum mean of𝑚2

𝑌̄𝑟𝑟𝑒 (4) Dep. on 𝑌̄𝑟1, 𝑆𝐸(𝑌̄𝑟𝑟𝑒 , 𝑌̄𝑟1) Response stratum mean of re-int.

𝑌̄𝑟𝑛𝑟𝑒 (4) Dep. on 𝑌̄𝑟1 , 𝑌̄𝑟𝑟𝑒 , 𝑃𝑟𝑒 Non-resp. stratum mean of re-int.

𝑃2 (1) 0.5, dep. on 𝑃1 Proportion of𝑚2 respondents

𝑃𝑛𝑟𝑒 (4) 0.4, dep. on 𝑃𝑟𝑒 Proportion of re-int. non-resp.

𝜎2𝑌 (5) Dep. on 𝜎2𝑌𝑟, 𝑆𝐸(𝑌̄𝑟𝑟𝑒 , 𝑌̄𝑟1) Population variance of 𝑌

It can be seen that a fully parametrized selection model has six degrees of freedom. We

fixed the values for 𝑌̄𝑟𝑚𝑚
= 1,𝑃1 = 0.5, 𝑃𝑟𝑒 = 0.6, and 𝜎2𝑌𝑟 = 1, respectively. In earlier

experimental research the chosen response proportion for 𝑃1 and 𝑃𝑟𝑒 were found for a

web - face-to-face mixed-mode re-interview design (Klausch, Hox, & Schouten, 2015;

Schouten et al., 2013). For other designs different response proportions may be

expected, but we do not expect our results to vary strongly across choices of these

parameters.

Statistics Netherlands | Discussion paper 2015|23 16



The strength of selectivity between modes, 𝑆𝐸(𝑌̄𝑟1 , 𝑌̄𝑟𝑚𝑚
), and the strength of

re-interview selectivity, 𝑆𝐸(𝑌̄𝑟𝑟𝑒 , 𝑌̄𝑟1), represented the free parameters in the selection

model (equations 3 and 4). These parameters were varied from absent (0%) to strong

selectivity (±50% relative effect to 𝑌̄𝑟𝑚𝑚
= 1). Within each response stratum true scores

𝑦𝑖 were generated from a Gaussian super-population, with means 𝑌̄𝑟𝑟𝑒, 𝑌̄𝑟𝑛𝑟𝑒 and 𝑌̄𝑟2 and

variance 𝜎2𝑌𝑟𝑗
= 1, respectively. As explained in section 3.1, the resulting population

response distribution of 𝑌 is a mixture of Gaussian distributions, with 𝑌̄𝑟𝑚𝑚
= 1 and

population variance 𝜎2𝑌 , where 𝜎
2
𝑌 is given in equation (5).

Table 4.2 Parametrization of the super-population measurement model in the

simulation

Parameter Eq. Value(s) in simulation Description

Fixed:

𝜇𝑚𝑏 (9) 0 Benchmark mode systematic error

𝜆𝑚𝑏 (9) 1 Benchmark mode scale parameter

(𝜎
𝑚𝑏
𝑢 )2 (9) 0 Benchmark mode error variance

Free:

𝑏 (9) {1, 2} Benchmark mode, 𝑏 ≠ 𝑗

𝜇𝑚𝑗 (6) {−0.3, 0, 0.3} Focal mode systematic error

𝜆𝑚𝑗 (6) {0.75, 1, 1.25} Focal mode scale parameter

𝑐𝑗 (8) {0.1, 0.2, ..., 1} True-observed score correlation

Dependent:

𝑗 (6) {1,2}, dep. on 𝑏 Focal mode, 𝑏 ≠ 𝑗

(𝜎
𝑚𝑗
𝑢 )2 (8) Dep. on 𝑐𝑗 and 𝜎

2
𝑌 Focal mode error variance

The measurement model has seven degrees of freedom (Table 4.2), where by benchmark

mode assumption the parameters of the benchmark measurement model were fixed

(𝜇𝑚𝑏 = 0, 𝜆𝑚𝑏 = 1, and (𝜎
𝑚𝑏
𝑢 )2 = 0). The parameters of the focal mode were varied

(equation 6): we introduced either no systematic error, 𝜇𝑚𝑗 = 0, or moderate

measurement error bias (±30% relative to the population mean). Furthermore, scaling

parameter 𝜆𝑚𝑗 was varied for moderate scale differences, scaling 𝑦𝑚𝑗 up (𝜆𝑚𝑗 = 1.25)

and down (𝜆𝑚𝑗 = 0.75). An important element of the focal mode is random error

(𝜎
𝑚𝑗
𝑢 )2, introduced by true-observed score correlation 𝑐𝑗, see equation (8), where 𝑐𝑗

was varied between 0.1 (very high error variance) and 1 (no error variance).

A full factorial design was applied across the free parameters, giving rise to

5 ∗ 2 ∗ 2 ∗ 3 ∗ 3 ∗ 10 = 1800 separate super-population conditions. For each of the

conditions, a population of size 𝑁 = 100, 000 was generated as a single realization from

the super-population. From the generated populations, 𝐾 = 1000 repeated simple

random samples with expected size 𝑛𝑠𝑎𝑚𝑝𝑙𝑒 = 2500 were drawn without replacement.

Every second𝑚1 respondent was randomly selected for a re-interview (𝑃𝑠 = 0.5). This

proportion can be expected to yield, on average, a moderate re-interview sample size

(expected reinterview 𝑛𝑟𝑒 = (𝑃1)(𝑃𝑟𝑒)(𝑃𝑠)𝑛𝑠𝑎𝑚𝑝𝑙𝑒 = 375).

Subsequently, all estimators discussed under section 3 were administered for each

sample. Besides the six adjusted estimators, we computed the unadjusted mixed-mode

estimator (equation 11) and the unadjusted ”mode 1 only” estimator (equation 13). We

Statistics Netherlands | Discussion paper 2015|23 17



then estimated the root MSE (RMSE) across the 𝐾 = 1000 repeated samples for any

estimator ̂𝑌̄𝑟𝑚𝑚
as

̂𝑅𝑀𝑆𝐸( ̂𝑌̄𝑟𝑚𝑚
) = √

1

𝐾

𝐾

∑

𝑘=1

( ̂𝑌̄𝑟𝑚𝑚,𝑘
− 𝑌̄

𝑝𝑜𝑝
𝑟𝑚𝑚

)2, (30)

where 𝑌̄
𝑝𝑜𝑝
𝑟𝑚𝑚

the true population mean for the given condition. Since, as chosen above,

𝑌̄
𝑝𝑜𝑝
𝑟𝑚𝑚

≈ 1 = 𝑌̄𝑟𝑚𝑚
for any condition, the estimated RMSE also has the interpretation of

approximated relative 𝑅𝑀𝑆𝐸 (= ̂𝑅𝑀𝑆𝐸( ̂𝑌̄𝑟𝑚𝑚
)/𝑌̄𝑟𝑚𝑚

).

4.2 Results

Figures 4.1 to 4.4 illustrate the key results of the simulation. Each figure displays the

estimated RMSE of the two unadjusted and the six adjusted estimators for three levels

of 𝜆𝑚𝑗 against the correlation between 𝑌𝑚1 and 𝑌𝑚2 observed in the re-interview

(’re-interview correlation’). This correlation can be compared to the analogously

estimable quantity in practice, as point of orientation. In the simulation the re-interview

correlation is primarily impacted by the size of random error in the focal mode, which is

a function of the population correlation 𝑐𝑗 (equation 8) varied systematically from 0.1 to

1 (Table 4.2).

All figures display the condition where systematic measurement error was set to +30%

(𝜇𝑚𝑗 = 0.30) of the mixed-mode response mean (𝑌̄𝑟𝑚𝑚
= 1). We provide the figures for

the 0% and −30% conditions in the supplemental material. The results presented here

for +30% held in large parts for these conditions, so that this choice avoids redundancy.

We highlight the few exceptions in the discussion below.

Furthermore, we focus the following discussion on RMSE, but we provide separate plots

of the bias and variance components of RMSE in the supplemental material. Considering

the variance plots, in particular, it can be seen that in most scenarios the variance

component of RMSE only plays a dominant role for small to moderate re-interview

correlations. For high correlations the dominant component of RMSE turns out to be

bias. This is an important result, which however may be impacted by the size of the

re-interview sample (𝑛𝑟𝑒 = 375 in the present study). We return to this aspect in the

discussion. For brevity, we focus on RMSE in the following and point to the bias and

variance components where necessary.

4.2.1 RMSE whenmode 1 is the benchmark

Consider first figures 4.1 and 4.2 which display the situation when𝑚1 is the benchmark

(𝑏 = 1). Figure 4.1 shows the condition when a re-interview selection effect (SE) was

introduced (+50% of 𝑌̄𝑚1
), whereas it was absent (0%) in the results shown in figure 4.2.

Each separate line in the figures represents a different relative SE between𝑚1 and𝑚2

(𝑆𝐸(𝑌̄𝑟1 , 𝑌̄𝑟𝑚𝑚
), cf. equation 3) varying from −50% to +50% of the mixed-mode
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Figure 4.1 RMSE of adjusted and unadjusted estimators for benchmark mode

𝑏 = 1, meas. bias 𝜇𝑚2 = 0.30, and re-interview 𝑆𝐸(𝑌̄𝑟𝑟𝑒 , 𝑌̄𝑚1
) = 0.50. IREG per-

forms best under all conditions, followed closely by ratio, which is however biased

more strongly. Fixed-effect performs well under 𝜆𝑚𝑗 = 1 only.
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Figure 4.2 RMSE of adjusted and unadjusted estimators for benchmark mode

𝑏 = 1, meas. bias 𝜇𝑚2 = 0.30, and re-interview 𝑆𝐸(𝑌̄𝑟𝑟𝑒 , 𝑌̄𝑚1
) = 0. IREG performs

best but ratio shows high RMSE. Fixed-effect performs insuf󰅳iciently and can only

reduce RMSE fully when 𝜆𝑚𝑗 = 1.
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response mean. For clarity, we limit the vertical axis to .50 (equivalent to 50% relative

RMSE), so that higher RMSE is not displayed.

In interpreting the further results, we have to compare the performance of the adjusted

to the unadjusted mixed-mode estimator (equation 11). Considering the unadjusted

mixed-mode estimator, we see that the baseline RMSE, which we sought to reduce by

adjustment, varied considerably across conditions of 𝜆𝑚𝑗 and 𝑆𝐸(𝑌̄𝑟1 , 𝑌̄𝑟𝑚𝑚
). Whereas it

was at a constant level of its bias at 𝐵(𝑌̄
𝑢𝑛𝑎𝑑𝑗
𝑟𝑚𝑚

) = 𝑃𝑗𝜇
𝑚𝑗 = 0.5 ∗ 0.3 = 15% if 𝜆𝑚𝑗 = 1,

it was considerably higher, up to 30 to 40%, for 𝜆𝑚𝑗 > 1 and lower, 1 to 15%, for

𝜆𝑚𝑗 < 1. In addition, we can verify that using𝑚1 only to estimate 𝑌̄𝑟𝑚𝑚 (’Unadjusted

Mode 1’ estimator, equation 13) was insufficient and lead to large RMSE (dominated

again by its bias term).

Across the six adjusted estimators, we identified the IREG estimator to outperform all

other estimators when mode 1 is the benchmark (𝑏 = 1). Whereas the estimator was

unbiased (equation 29), its variance component could, however, be considerable when

focal mode random error was high, as indicated by low re-interview correlation.

However, RMSE fell below 10% for a re-interview 𝑐𝑜𝑟 > .50 and below 5% for 𝑐𝑜𝑟 > .70

(Figure 4.1). In the absence of re-interview sample selectivity, these values even

improved slightly (Figure 4.2). Whereas the unadjusted mixed-mode estimator could

outperform IREG when 𝜆𝑚𝑗 = 0.75, the strength of IREG lay in its reliable performance

under all conditions.

Furthermore, we notice that all other adjusted estimators performed worse under at

least some conditions. This held for the regression, IPW and multiple imputation (MI)

estimator in particular. These estimators showed high (> 10%) RMSE unless

re-interview correlation was very high (> .90), a situation seldom expectable in practice.

For the fixed-effect estimator we notice its good performance if 𝜆𝑚𝑗 = 1. This finding

was expectable as bias vanishes under this condition (equation 24), so that the

remainder in both figures is a variance component. However, considering 𝜆𝑚𝑗 ≠ 1 we

found that the estimator can suffer from serious error (see in particular Figure 4.1).

A similar observation can be made for the ratio estimator, which suffered from moderate

RMSE when re-interview selectivity is 50% (Figure 4.1), but RMSE increased drastically

for 0% (Figure 4.2). A finding not shown here, but available in the supplemental

material, was that the ratio estimator performed slightly better for all conditions of 𝜆𝑚𝑗

in the absence of systematic term 𝜇𝑚𝑗, since its bias then vanishes (equation 25).

However, we then found the ratio estimator to have higher variance (i.e. if 𝜇𝑚𝑗 = 0),

which makes it an inefficient choice even in the absence of bias. Variance of the ratio

estimator even increased further in presence of negative systematic measurement error

𝜇𝑚𝑗 = −0.30, also shown in the supplemental material.

4.2.2 RMSE whenmode 2 is the benchmark

Now consider the situation when we regarded𝑚2 as the benchmark (𝑏 = 2) shown in

figures 4.3 and 4.4. The findings for the unadjusted estimators were identical, but for the

adjusted estimators we found some differences to the situation when 𝑏 = 1. We

address these in the following.
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Figure 4.3 RMSE of adjusted and unadjusted estimators for benchmark mode

𝑏 = 2, meas. bias 𝜇𝑚1 = 0.30, and re-interview 𝑆𝐸(𝑌̄𝑟𝑟𝑒 , 𝑌̄𝑚1
) = 0.50. IREG, ratio

and 󰅳ixed-effect perform well. However, 󰅳ixed-effect can only fully reduce RMSE

when 𝜆𝑚𝑗 = 1 and ratio maintains residual RMSE on low level.
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Figure 4.4 RMSE of adjusted and unadjusted estimators for benchmark mode

𝑏 = 2, meas. bias 𝜇𝑚1 = 0.30, and re-interview 𝑆𝐸(𝑌̄𝑟𝑟𝑒 , 𝑌̄𝑚1
) = 0. All adjusted

estimators except MI perform well.
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First, we found the IREG estimator again performed well, if re-interview correlations

exceed a moderate level (> .40) regardless of the size of the re-interview SE. It can be

seen that IREG even lead to somewhat smaller RMSE at each level of re-interview

correlation compared to 𝑏 = 1.

Second, also the finding that GREG, IPW, and MI have high RMSE was repeated, even

though RMSE levels were lower than for 𝑏 = 1 (Figure 4.3). However, RMSE of GREG and

IPW nearly vanished in the absence of a re-interview SE (Figure 4.4). This is an immediate

consequence of absent bias and minimal variance under this condition (cf. equation 27

for bias of GREG; simulated bias and variances can be taken from supplemental

material). Since it is hard to diagnose the size of the re-interview SE in practice, however,

we recommend against the use of the estimators as we did for𝑚1 as benchmark.

Third, the fixed-effect estimator had low RMSE under both re-interview SE conditions

and regardless of levels of scaling parameter 𝜆𝑚𝑗. At first glance, this finding is

surprising, given that RMSE varies considerably across 𝜆𝑚𝑗 when𝑚1 is the benchmark

(cf. Figure 4.1). This conjecture warrants a closer look at the role of the variance and bias

components. From the supplemental material we may take that from re-interview

𝑐𝑜𝑟 = .35 variance was approximately negligible and bias became the dominant part of

RMSE. In figures 4.3 and 4.4 this point is reached when the RMSE graphs are, roughly,

horizontal. From bias equation (24) we may take that in the absence of a re-interview

SE, the fixed-effect estimator is unbiased, so that RMSE approaches zero (Figure 4.4). In

the presence of a re-interview SE some residual bias remains, but it is small (< 10%) for

moderate choices of 𝜆𝑚𝑗 (Figure 4.3). By equation (24) we may quantify maximum

absolute bias for this simulation as |𝐵( ̂𝑌̄
𝑓𝑒

𝑟𝑚𝑚
)| = |0.5(1 − 𝜆𝑚𝑗)(0.5)| = 6.25%. We thus

find that even for relatively extreme choices for 𝜆𝑚𝑗 and 𝑆𝐸(𝑌𝑟1 , 𝑌𝑟𝑚𝑚
), bias and RMSE of

the fixed-effect estimator do not reach extreme levels, which was reflected by the

simulation results.

Fourth, we made a similar conjecture for the ratio estimator, which showed low levels of

RMSE under all levels of 𝜆𝑚𝑗. It can be shown that the maximum absolute bias of the

ratio estimator is 5.77% (reached for 𝑆𝐸(𝑌𝑟1 , 𝑌𝑟𝑚𝑚
) = −0.5, 𝜆𝑚𝑗 = 1; cf. equation 25).

However, as for 𝑏 = 1 we observed that the variance of the ratio estimator is sensitive to

random error (low re-interview correlations) when 𝜇𝑚𝑗 = 0 or 𝜇𝑚𝑗 = −.30, as can be

seen in the variance plots available in the supplemental material. We found that from

re-interview 𝑐𝑜𝑟 > .50 the ratio estimator performed well in all 𝜇𝑚𝑗 conditions and it

performed even slightly better than the fixed-effect estimator.

In summary, when mode 1 was the benchmark, only the IREG estimator performed

reliably, whereas ratio and fixed-effect estimators performed only well under special

circumstances (fixed-effect if 𝜆𝑚𝑗 = 1, ratio if 𝜇𝑚𝑗 = 0). When mode 2 was the

benchmark, IREG performed again well, but also the ratio and fixed-effect estimators

showed low levels of RMSE when re-interview correlation was moderate, even in the

most extreme scenarios considered here. GREG, IPW, and MI performed badly in most

considered scenarios due to their high bias.
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5 Discussion

The present paper introduced a new approach for estimating and adjusting

measurement bias (also called measurement effects) in mixed-mode surveys towards a

benchmark mode by using re-interview data. This data is obtained from a subset of

respondents to the first mode in a sequential design and it is employed as auxiliary data

in a set of six adjusted candidate estimators. We evaluated by simulation, whether any

of the estimators can outperform the unadjusted mean estimator in terms of mean

squared error.

Earlier literature that attempts to estimate or adjust measurement effects can be

criticized for potentially high bias, because researchers often had to assume that

selection is ignorable conditional on weak auxiliary information (Vannieuwenhuyze,

2015; Vannieuwenhuyze & Loosveldt, 2013). Importantly, this study is among the first to

demonstrate how estimating measurement effects in the presence of non-ignorable

selection effects is practically feasible.

Our results demonstrated the potential of the re-interview approach for adjusting

measurement effects, but the final choice of estimator depends on the analyst’s

expectations about the measurement error model of the focal mode and choice of

benchmark mode. Generally, the IREG estimator performed well in all considered

scenarios, whereas the ratio and fixed-effect estimator may be viable alternatives to be

used if 𝜇𝑚𝑗 = 0 or 𝜆𝑚𝑗 = 1 can be assumed, respectively. Given that the analyst often

has insufficient information on the type of measurement error model, the IREG

estimator may be the safest option in practice, but its use requires at least a moderate

re-interview correlation of .50, better .70, to control its variance.

These conclusions were based on a large number of possible scenarios varying many

parameters of the measurement and selection error models while keeping only a small

number of parameters fixed (cf. Tables 4.1 and 4.2). Furthermore, our method can be

extended for use with more than two modes. The choice of re-interview mode then

becomes a more central decision in the design, as discussed in more detail for the cases

of the Dutch Labor Force Survey and the American Community Survey in the appendix to

this article .

Nevertheless, some limitations to the present study show up relevant paths for further

theoretical and empirical work. Firstly, we assumed measurement equivalence between

the re-interview and mode 2 (equation 10). As we discussed in section 2, the fieldwork

design is a relevant factor determining the plausibility of this assumption. Longer time

lags let appear equivalence more plausible because answers given under mode 1 tend to

be forgotten. A time frame of several weeks appears to us as sufficient in many practical

scenarios. However, to further re-assure against potential violations future research

could develop designs and estimators for testing and adjusting the degree of

measurement in-equivalence in re-interview designs.

Secondly, we assumed that the realizations of the benchmark mode represent the true

scores towards which focal mode measurements are adjusted. A relevant path for

further work is evaluating the robustness of our results to the introduction of random
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error in the benchmark mode. Furthermore, designs which allow estimating random

error of survey items, such as test-retest designs in the same mode, could be evaluated

as a means to adjust for random error in GREG and IREG estimators.

Thirdly, despite the large variety of scenarios we considered in our simulation, some

parameters were held constant. These parameters included the size of the overall

response sample, the size of mode-specific response proportions, the size of the

re-interviewed sample, and the response rate in the re-interview. In particular, the size

of the re-interview response sample, which is a function of all aforementioned

parameters, may have an impact on the efficiency of adjustments. In the present

simulation, the variance of the adjusted estimators was small for all estimators when a

moderate re-interview correlation was present. In further research, it should be

evaluated, however, how robust these results are to changes in the size of the

re-interview response sample (in this study, the expected re-interview 𝑛 was

𝑛𝑟𝑒 = 375). Another relevant factor we left out of consideration is the cost of the

re-interview, which is also determined by the size of the re-interview sample (besides

the mode). For fixed survey budgets a re-interview decreases overall sample size leading

to an increase in sampling error of the re-interview mixed-mode design compared to a

design without re-interview. Future work should therefore address the trade-off

between cost, re-interview sample sizes, and error.
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Appendix: Extending the

re-interview design to multiple

modes

So far, we have limited the number of modes to two. However, many real surveys use

three or four modes. These include the Dutch Labor Force Survey (LFS) and the

American Community Survey (ACS). Here, we consider the extension to three modes.

Since the number of possible designs with three modes is already quite large, we restrict

ourselves to the designs of the ACS and LFS. Extensions to other designs or designs with

more than three modes can be done analogously.

Figure 5.1 presents the extension of figure 1 to the ACS and LFS. The ACS and LFS both

start with a self-administered mode, and then do a follow-up of nonrespondents with

telephone and face-to-face. In order to be able do employ telephone, a listed telephone

number needs to be available. In figure 2, areas with a subscript 1 and a subscript 0

represent subsamples with and without a listed number, respectively. The LFS collects

areas 𝐴0, 𝐴1, 𝐹1 and 𝐵0, where 𝐹1 is a telephone follow-up and 𝐵0 a face-to-face

follow-up. The ACS also does a follow-up of telephone nonrespondents by face-to-face,

i.e. it also collects area 𝐺1.

𝑌 𝑌𝑚1 𝑌𝑚2 𝑌𝑚3 

Response 

Potential outcomes 

   A1 

   X0 

   X1 Listed phone 

No listed phone 

   C1 

   D1 

   E1 

   A0 

   B1 

   B0    B0    B0 

   A0 

   F1 

   H1 

   I1 

   J1 

   K0 

   L0 

   M1 

   N1 

   G1    G1 

Figure 5.1 Schematic illustration of the missing data pattern a sequential

mixed-mode re-interview design with three modes.

The areas for re-interview depend on the benchmark mode. They are also slightly

different between the LFS and ACS. Since re-interviews follow the order of modes in the

sequence (𝑚1 -𝑚2 -𝑚3 ), the𝑚1 respondents with a telephone need to be randomly

divided into two groups, 𝐸1 and 𝐻1. When𝑚1 is the benchmark, a re-interview is done

on 𝐴1 and 𝐴0, leading to observations in 𝐶1 and 𝐾0. For the ACS, also 𝐼1 is observed.

Areas 𝐷1 and 𝐿0 are nonrespondents to the re-interviews. Additionally, area 𝐽1 are

non-respondents to the re-interview in the ACS. When𝑚2 is the benchmark mode, then
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𝐶1 and𝑀1 are observed for both ACS and LFS, and 𝐷1 and 𝑁1 is non-response to the

re-interview. When𝑚3 is the benchmark mode, then 𝐾0 and𝑀1 are observed, and,

additionally, 𝐼1 for the ACS.

The estimation strategy can be shaped by making pairs with the benchmark mode. For

example, when𝑚1 is the benchmark, the pairs (𝑚1,𝑚2) and (𝑚1,𝑚3) are formed, and

the corresponding potential outcomes are estimated or imputed analogously to the two

mode setting described in section 3. The recommended estimator per pair must be

chosen based on conjectures about the measurement models and bias terms. However,

following the simulation results of section 4, the inverse regression estimator will often

be the preferred estimator.
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Explanation of symbols 
 

 Empty cell Figure not applicable 

 . Figure is unknown, insufficiently reliable or confidential 

 * Provisional figure 

 ** Revised provisional figure 

 2014–2015 2014 to 2015 inclusive 

 2014/2015 Average for 2014 to 2015 inclusive 

 2014/’15 Crop year, financial year, school year, etc., beginning in 2014 and ending in 2015 

 2012/’13–2014/’15 Crop year, financial year, etc., 2012/’13 to 2014/’15 inclusive 

 

Due to rounding, some totals may not correspond to the sum of the separate figures. 
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