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Structural time series models are known as a powerful technique for variance reduction in

the framework of small area estimation (SAE) of repeatedly conducted surveys. Such

models, however, contain unknown hyperparameters that have to be estimated before the

Kalman filter can be launched to estimate state variables of the model. If the uncertainty

around these hyperparameters is not taken into account, the newly obtained variance

estimates for the state variables of interest become negatively biased, particularly in short

time series. The Dutch Labour Force survey (DLFS) is a typical example of SAE in that its

sample sizes are too small to produce reliable monthly figures using design-based

estimators known from classical sampling theory. Statistics Netherlands currently uses a

structural time series model to reduce the variance of the design-based estimates of the

unemployed labour force. In order to account for the negative bias in the DLFSmodel

variance estimates, several approximation approaches known in the literature are

considered. The results suggest that the best performing approach out of these can correct

for a -percent negative relative bias of the signal MSE produced by the Kalman filter by

offering a positive bias of  percent. After accounting for the hyperparameter uncertainty,

the standard errors of the model estimates are about  percent smaller than the

design-based standard errors.

1 Introduction

Monthly figures on the labour force produced by national statistical institutes (NSIs) are

important economic indicators. These indicators are generally based on Labour Force Surveys

(LFS). Most NSIs apply a rotating panel design in their LFS, but in most cases the sample size is

still not large enough to produce sufficiently precise monthly figures about the labour force

based on design-based estimators known from classical sampling theory (Särndal et al. (),

Cochran ()). In such cases, statistical modelling can be used to improve the effective sample

size of domains by borrowing information from preceding periods or other domains. Such

techniques are often referred to as small area estimation (SAE), see Rao (). Repeatedly

conducted surveys in particular have a potential for improvement within the framework of

structural time series (STS) or multilevel time series models.

Common applied SAE procedures are based onmultilevel models that are estimated with the

empirical best linear unbiased prediction (EBLUP) or the hierarchical Bayesian (HB) approaches.

Such models usually contain unknown hyperparameters that have to be estimated, which

translates into larger standard errors around the domain predictions. If this uncertainty (here

and further in this paper referred to as the hyperparameter uncertainty) is not taken into

account, the MSE estimates of the quantities of interest become negatively biased. Within the

framework of the EBLUP and HB approaches, it is very common to take the hyperparameter

uncertainty into account, see Rao (), Ch.-, .

STSmodels are not as widely used in SAE as multilevel models. The Kalman filter usually

applied to analyse STSmodels ignores the hyperparameter uncertainty, and therefore produces

negatively-biasedMSE estimates. For this reason, the apparent gains from the STS technique in

terms of reduced variance estimates have to be treated without undue optimism. Applications

that give evidence for substantial advantages of STSmodels over the design-based approach

treat the estimated model hyperparameters as known, see, e.g., Krieg and van den Brakel

(), Van den Brakel and Krieg (a), Pfeffermann and Bleuer (), Tiller ().
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At Statistics Netherlands, a multivariate STSmodel is used to produce official monthly labour

force figures. This model was originally proposed by Pfeffermann () and is referred to as

the DLFSmodel in this paper. It uses sample information from preceding time periods and

accounts for different aspects of the rotating panel design, such as the so-called rotation group

bias (RGB) and autocorrelation in the survey errors. In this way, sufficiently precise monthly

estimates for the unemployed labour force are obtained (see Van den Brakel and Krieg (a)).

However, this application, just like the other aforementioned studies, does not account for the

hyperparameter uncertainty in the estimated MSEs.

This paper focuses on the true mean square error (MSE) estimation in the case of the DLFS

model. The literature offers several ways to account for the hyperparameter uncertainty in STS

models. Among those MSE approximation approaches considered in this paper are the

asymptotic approximation developed by Hamilton (), as well as parametric and

non-parametric bootstrapping approaches developed by Pfeffermann and Tiller () and

Rodriguez and Ruiz (). These methods are applied to the DLFSmodel to see whether the

hyperparameter uncertainty matters in terms of increased MSEs of the quantities of interest in

this real life application.

This paper presents an extendedMonte-Carlo simulation study, where the DLFSmodel acts as

the data generation process. The contribution of the paper is three-fold. First of all, it

establishes the best approach to the MSE approximation for the DLFS and offers a more

realistic evaluation of the variance reduction obtained with the STSmodel compared to the

design-based approach. Secondly, this Monte-Carlo study verifies the claim of Rodriguez and

Ruiz () about the superiority of their method over the bootstrap of Pfeffermann and Tiller

() in a more complex model. Finally, the Monte-Carlo simulation shows how the model can

be checked for possible misspecification.

The paper is structured as follows. Section  contains a general description of the DLFS survey

design and presents the model currently used by Statistics Netherlands. Section  reviews the

above-mentioned approaches to the MSE approximation. Some details on the simulation and

bootstrap setup specific for the DLFS are given in Section . Results of the simulation study are

presented in Section .

2 The LFS model

The DLFS is based on a stratified two-stage cluster design for households with estimates

produced on amonthly, quarterly and annual basis. More details on the sampling design are to

be found in Van den Brakel and Krieg (a). Quarterly design-based estimates for the

unemployed labour force are obtained with the general regression (GREG) estimator (Särndal

et al. ()). In the case of the DLFS, the GREG estimator is based on a complex model that

uses a set of socio-demographic categorical variables, see Van den Brakel and Krieg (b).

The series considered in the present study are monthly estimates of the total number of the

unemployed labour force. Since October , the survey has been conducted as a five-wave

rotating panel survey, where a sample of households is drawn every month. Households are

approached five times, with a three-month gap between the interviews. The term ”wave” in this

context means a sample of households that enter the LFS panel at time 𝑡 and leave the panel in

 months after five interviews. Let 𝑌
𝑡−𝑗
𝑡 denote the GREG estimate of the total number of the

unemployed labour force in month 𝑡. Five such estimates are obtained per month, each of them

being respectively based on the sample that entered the survey in month 𝑡 − 𝑗,
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Figure 2.1 Numbers of unemployed in the Netherlands: design- and model-based

estimates

𝑗 = {0, 3, 6, 9, 12}. In the middle of , the DLFS was subject to a survey transition that

resulted in substantial discontinuities, which required an extension of the model. Therefore, the

present study covers the time span from January  until June , in order to avoid

unnecessary model complications that are not particularly relevant for this Monte-Carlo study

for MSE approximation.

Rotating panel designs are known to have systematic differences between the estimates of

their subsequent waves. This phenomenon is usually referred to as the rotation group bias

(RGB), see, e.g., Bailar (), Kumar and Lee (), or Pfeffermann (). Common reasons

behind the RGB are panel attrition, panel-effects, and differences in questionnaires andmodes

used in the subsequent waves. In the case of the DLFS, the first wave estimates are assumed to

bemost reliable, with the subsequent waves systematically underestimating the unemployed

labour force numbers, which is reflected by a negative RGB in the level. The seasonal

component may be affected too, but in this application the seasonal RGB turned out to be

negligible (see Van den Brakel and Krieg (a) for details).

Apart from the RGB, another problemwith the LFS is small monthly sample sizes. With the first

wave net sample size of about  persons on average, the GREG estimates cannot produce

sufficiently reliable unemployment figures on a monthly basis. Both problems can be solved

with the help of a STSmodel, which is currently used in the production of official LFS figures.

Such a model makes use of the information accumulated over time to produce point-estimates

with smaller standard errors.

In a STSmodel, the series of design estimates is decomposed into unobserved components,

whereupon the so-called signal - a more reliable series of point-estimates - can be obtained.

The signal is usually extracted with the Kalman filter. The filter removes a great part of the

population and sampling noise from the GREG-estimates and produces point- and variance

estimates for the signal and its unobserved components. As a result, not only are these signal

point-estimates less volatile (see Fig. .), their standard errors are usually substantially lower

compared to the design standard errors (in the case of the DLFS,  percent smaller). Apart

from that, an STSmodel can extract the RGB pattern from the GREG series.

Let the five-dimensional vector 𝒀𝒕 = (𝑌𝑡𝑡 𝑌𝑡−3𝑡 𝑌𝑡−6𝑡 𝑌𝑡−9𝑡 𝑌𝑡−12𝑡 )′ denote the GREG estimates

of the total number of the unemployed labour force for the five DLFS waves observed at time 𝑡.

Based on Pfeffermann (), Van den Brakel and Krieg (a) developed the following model
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for the five-dimensional vector with GREG estimates :

𝒀𝒕 = 𝟏𝟓𝜉𝑡 + 𝝀𝒕 + 𝒆𝒕, (.)

where 𝟏𝟓 is a five-dimensional column vector of ones, 𝝀𝒕 is a vector containing the RGBs, and 𝒆𝒕

is a vector with the survey errors. It is assumed that the true population parameter is

𝜉𝑡 = 𝐿𝑡 + 𝛾𝑡 + 𝜀𝑡, which is the sum of a stochastic trend, a stochastic seasonal component, and

an irregular component. For the full description of the DLFSmodel, the reader is referred to

Van den Brakel and Krieg (b). The description below summarizes its main features.

For the stochastic trend 𝐿𝑡, the so-called smooth-trendmodel is assumed:

𝐿𝑡 = 𝐿𝑡−1 + 𝑅𝑡−1,

𝑅𝑡 = 𝑅𝑡−1 + 𝜂𝑅,𝑡,
(.)

where 𝐿𝑡 and 𝑅𝑡 represent the level and slope of the true population parameter, respectively,

with the slope disturbance term being distributed as: 𝜂𝑅,𝑡
𝑖𝑖𝑑
∼ 𝑁(0, 𝜎2𝑅).

In the case of monthly data, the seasonal component 𝛾𝑡 can be trigonometrically decomposed

into six stochastic harmonics:

𝛾𝑡 =

6



𝑙=1

𝛾𝑡,𝑙 , (.)

where each of these six harmonics follows the process:

𝛾𝑡,𝑙 = 𝑐𝑜𝑠(ℎ𝑙)𝛾𝑡−1,𝑙 + 𝑠𝑖𝑛(ℎ𝑙)𝛾
∗
𝑡−1,𝑙 + 𝜔𝑡,𝑙 ,

𝛾∗𝑡,𝑙 = −𝑠𝑖𝑛(ℎ𝑙)𝛾𝑡−1,𝑙 + 𝑐𝑜𝑠(ℎ𝑙)𝛾
∗
𝑡−1,𝑙 + 𝜔∗

𝑡,𝑙 ,

with ℎ𝑙 =
𝜋𝑙

6
being the l-th seasonal frequency, 𝑙 = {1, ...6}. The zero-expectation stochastic

terms𝜔𝑡,𝑙 and𝜔
∗
𝑡,𝑙 are assumed to be normally and independently distributed and to share the

same variance within and across all the harmonics, such that:

𝐶𝑜𝑣(𝜔𝑡,𝑙 , 𝜔𝑡′,𝑙′) = 𝐶𝑜𝑣(𝜔∗
𝑡,𝑙 , 𝜔

∗
𝑡′,𝑙′

) = 
𝜎2𝜔 if 𝑙 = 𝑙′ and 𝑡 = 𝑡′,

0 if 𝑙 ≠ 𝑙′ or 𝑡 ≠ 𝑡′,

𝐶𝑜𝑣(𝜔𝑡,𝑙 , 𝜔
∗
𝑡,𝑙) = 0 for all l and t.

Since the estimates of the first wave are assumed to be RGB-free (as motivated in Van den

Brakel and Krieg (a)), the RGB vector for the five waves can be written in the following

form: 𝝀𝒕 = (0 𝜆𝑡−3𝑡 𝜆𝑡−6𝑡 𝜆𝑡−9𝑡 𝜆𝑡−12𝑡 )′. The RGB variables for the last four waves are

time-dependent and are modelled as a randomwalk process:

𝜆
𝑡−𝑗
𝑡 = 𝜆

𝑡−𝑗
𝑡−1 + 𝜂

𝑡−𝑗
𝜆,𝑡 , 𝑗 = {3, 6, 9, 12}. (.)

The RGB disturbances are not correlated across different waves and are normally distributed:

𝜂
𝑡−𝑗
𝜆,𝑡

𝑖𝑖𝑑
∼ (0, 𝜎2𝜆 ), with equal variances in all the four waves.

The last component in the model is the survey error. Their variance estimates are the GREG

design variances available from themicro-data, and so the survey errors can bemodelled as

𝑒
𝑡−𝑗
𝑡 = �̃�

𝑡−𝑗
𝑡

𝑉𝑎𝑟(�̂�
𝑡−𝑗
𝑡 ). This formulation makes it possible to account for heterogeneity

caused by differences in the survey design and sample sizes over time, see Binder and Dick

(). Since the samples of different waves, starting fromwave , are based on the same

people as the preceding wave samples, there will be correlation between the survey errors. To

account for this correlation, the survey error terms in Van den Brakel and Krieg (a) are

modelled as an AR() process:

�̃�𝑡𝑡 = 𝜈𝑡𝑡 ;

�̃�
𝑡−𝑗
𝑡 = 𝜌�̃�

𝑡−𝑗
𝑡−3 + 𝜈

𝑡−𝑗
𝑡 , 𝑗 = {3, 6, 9, 12}.

(.)
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The survey error autoregressive parameter 𝜌 is common to all the four waves and is estimated

from the input data using a procedure developed by Pfeffermann (). In this application

�̂� = 0.208, see Van den Brakel and Krieg (b). This estimate is used as a prior input into the

model, together with the survey design standard errors of the five waves. Since the variance of

the product𝑉𝑎𝑟(�̂�
𝑡−𝑗
𝑡 )�̃�

𝑡−𝑗
𝑡 is meant to be close to the variance estimate of the GREG

estimator, 𝑉𝑎𝑟(�̃�
𝑡−𝑗
𝑡 ) ≈ 1. For the first wave, 𝑉𝑎𝑟(�̃�𝑡𝑡 ) = 𝜎2

𝜈𝑡𝑡
≈ 1, and for the four subsequent

waves, with an AR() process assumed, 𝑉𝑎𝑟(�̃�
𝑡−𝑗
𝑡 ) ≈ 𝜎2

𝜈
𝑡−𝑗
𝑡

/(1 − 𝜌2) ≈ 1, 𝑗 = {3, 6, 9, 12}.

Five different hyperparameters 𝜎2
𝜈
𝑡−𝑗
𝑡

are assigned to the five waves, and their estimates have

indeed turned out to be close to unity. It is assumed that 𝜈-disturbance terms are normally and

independently distributed: 𝜈
𝑡−𝑗
𝑡

𝑖𝑖𝑑
∼ (0, 𝜎2

𝜈
𝑡−𝑗
𝑡

), 𝑗 = {0, 3, 6, 9, 12}.

Linear structural time series models with unobserved components are usually analysed with the

Kalman filter after putting them into a state-space form:

𝜶𝒕+𝟏 = 𝑻𝒕+𝟏𝜶𝒕 + 𝜼𝒕, (.)

𝒀𝒕 = 𝒁𝒕𝜶𝒕. (.)

Here, 𝑻𝒕 and 𝒁𝒕 are known design matrices of the transition andmeasurement equations,

respectively. The transition equation (.) describes how the state vector𝜶𝒕 evolves over time,

whereas the measurement equation (.) reflects the linear relationship between the

observations and the state vector. The autoregressive structure of survey errors in the rotating

panel design can be taken into account if the errors �̃�
𝑡−𝑗
𝑡 are modelled as state variables. They

thus disappear from the measurement equation (.) and move to the state vector𝜶𝒕. The

zero-expectation vector 𝜼𝒕 contains identically and independently distributed disturbance

terms. The design standard errors𝑉𝑎𝑟(�̂�
𝑡−𝑗
𝑡 ) become time-varying elements of the matrix 𝒁𝒕

and are from now on denoted as 𝑧
𝑡−𝑗
𝑡 , 𝑗 = {0, 3, 6, 9, 12}. More details on the state-space form

of the DLFSmodel are presented in Appendix A.

Collecting the variables mentioned in this section produces the following state vector (with the

survey error terms indexed differently for the state-space form):

𝜶𝒕 = (𝜶
𝝃
𝒕 𝜶

𝝀
𝒕 𝜶

𝒆
𝒕 )
′, where

𝜶
𝝃
𝒕 = (𝐿𝑡 𝑅𝑡 𝛾𝑡,1 𝛾

∗
𝑡,1...𝛾𝑡,5 𝛾

∗
𝑡,5 𝛾𝑡,6),

𝜶𝝀𝒕 = (𝜆𝑡−3𝑡 𝜆𝑡−6𝑡 𝜆𝑡−9𝑡 𝜆𝑡−12𝑡 ),

𝜶𝒆𝒕 = (�̃�𝑡𝑡 �̃�
𝑡−3
𝑡 �̃�𝑡−6𝑡 �̃�𝑡−9𝑡 �̃�𝑡−12𝑡 �̃�𝑡−2𝑡−2 �̃�

𝑡−5
𝑡−2 �̃�

𝑡−8
𝑡−2 �̃�

𝑡−11
𝑡−2 �̃�𝑡−1𝑡−1 �̃�

𝑡−4
𝑡−1 �̃�

𝑡−7
𝑡−1 �̃�

𝑡−10
𝑡−1 ).

All the state variables are initialised with a diffuse prior, except for the five survey error

components �̃�
𝑡−𝑗
𝑡 , 𝑗 = {0, 3, 6, 9, 12}. These stationary state variables are initialised with zeros

and with the initial variances taken equal to unity.

The disturbance variances, together with the autocorrelation parameter 𝜌, are collected in a

hyperparameter vector called 𝜽 = (𝜎2𝑅 𝜎2𝜔 𝜎2𝜆 𝜎2
𝜈1
𝜎2
𝜈2
𝜎2
𝜈3
𝜎2
𝜈4
𝜎2
𝜈5
𝜌), where the superscripts

{,...} stand for the numbers of the waves (note that the variance of the last eight state

variables is zero, see Appendix A). Hyperparameter 𝜌 is going to be estimated as in Pfeffermann

et al. () from the input data, whereafter the disturbance variance hyperparameters are

estimated by the quasi-maximum likelihoodmethod, treating �̂�-estimates as given. The vector

with the hyperparameter estimates is denoted as �̂�.

Numerical analysis of this paper is conducted with OxMetrics  (Doornik ()) in combination

with SsfPack . package (Koopman et al. ()).
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3 ReviewofMSEApproximationApproaches

State variables in structural time series models are usually extracted by the Kalman filter

according to the following recursions:

�̂�𝒕|𝒕 = �̂�𝒕�̂�𝒕−𝟏|𝒕−𝟏 +𝑲𝒕𝝐𝒕,

�̂�𝒕|𝒕 = �̂�𝒕|𝒕−𝟏 − �̂�𝒕|𝒕−𝟏𝒁
′
𝒕𝑲

′
𝒕,

�̂�𝒕|𝒕−𝟏 = �̂�𝒕�̂�𝒕−𝟏|𝒕−𝟏�̂�
′
𝒕 + �̂�𝒕,

where ′ stands for a transpose, �̂�𝒕|𝒕 and �̂�𝒕|𝒕 = 𝑬𝒕[(�̂�𝒕|𝒕 − 𝜶𝒕)(�̂�𝒕|𝒕 − 𝜶𝒕)
′] denote the

conditional mean of the state vector and its MSE, respectively, extracted by the Kalman filter

based on information available up to and including time 𝑡. This kind of estimates is usually

referred to as filtered estimates. Matrix �̂�𝒕|𝒕−𝟏 is the predicted state covariance matrix with the

prediction mean square error estimates on its main diagonal:

�̂�𝒕|𝒕−𝟏 = 𝑬𝒕[(�̂�𝒕|𝒕−𝟏 − 𝜶𝒕)(�̂�𝒕|𝒕−𝟏 − 𝜶𝒕)
′], where the word predicted implies that the estimates

for period 𝑡 are based on information up to and including time 𝑡 − 1. 𝑲𝒕 is the so-called Kalman

gain: 𝑲𝒕 = �̂�𝒕|𝒕−𝟏𝒁
′
𝒕𝑭

−𝟏
𝒕 , 𝝐𝒕 = 𝒀𝒕 − 𝒁𝒕�̂�𝒕|𝒕−𝟏 are innovations and 𝑭𝒕 is the innovation covariance

matrix: 𝑭𝒕 = 𝒁𝒕�̂�𝒕|𝒕−𝟏𝒁
′
𝒕 (note that the covariance matrix of the measurement equation error

terms is lacking here because those error terms have been placed in the state vector). Note that

the covariance matrix𝑸 and transition matrix 𝑻 are time-invariant here, the former being a

diagonal matrix with the state disturbance variance hyperparameters, and the latter containing

the autoregressive parameter 𝜌.

Themean square error extracted by the Kalman filter conditionally on the information up to and

including time 𝑡 is:

𝑷𝒕|𝒕 = 𝑬𝒕[(�̂�𝒕|𝒕(𝜽) − 𝜶𝒕)(�̂�𝒕|𝒕(𝜽) − 𝜶𝒕)
′], (.)

where the expectation is taken with respect to the distribution of the state vector at time 𝑡,

provided this expectation exists. In practice, however, the true hyperparameter vector is

replaced by its estimates �̂� in the Kalman filter recursions. Then, the MSE in (.) is no longer

the true MSE and is called ”naive” as it does not incorporate the uncertainty around the

�̂�-estimates. The true MSE then becomes:

𝑴𝑺𝑬𝒕|𝒕 = 𝑬𝒕[(�̂�𝒕|𝒕(�̂�) − 𝜶𝒕)(�̂�𝒕|𝒕(�̂�) − 𝜶𝒕)
′], (.)

which is larger than the MSE in (.) and can be decomposed as the sum of the filter uncertainty

and parameter uncertainty:

𝑴𝑺𝑬𝒕|𝒕 = 𝑬𝒕[(�̂�𝒕|𝒕(𝜽) − 𝜶𝒕)(�̂�𝒕|𝒕(𝜽) − 𝜶𝒕)
′] + 𝑬𝒕[(�̂�𝒕|𝒕(�̂�) − �̂�𝒕|𝒕(𝜽))(�̂�𝒕|𝒕(�̂�) − �̂�𝒕|𝒕(𝜽))

′].

(.)

The first term, the filter uncertainty, is approximated by the naive MSE-estimates �̂�𝒕|𝒕 delivered

by the Kalman filter. Approximation of the second term, the parameter uncertainty, requires

some additional effort. The literature on the true mean square error approximation proposes

twomain approaches: asymptotic approximation and bootstrapping. Bootstrapping can be

performed in a parametric or non-parametric way. A few general details have to be mentioned

about these methods in the context of STSmodels and of the DLFSmodel specifically.

If a STSmodel contains non-stationary components, as is the case with the DLFSmodel, a

special procedure is required for bootstrap samples to be drawn conditionally on the given

dataset {𝒀𝟏, ..., 𝒀𝑻}. The simulation smoother algorithm developed by Durbin and Koopman

() can be exploited to generate conditional draws for the trend, seasonal and the RGB state

variables. At the first step of this algorithm, the state variables and the data series are

Statistics Netherlands | Discussion paper, June 2015|04   



generated unconditionally on the original data set, either parametrically or non-parametrically.

The generated series {𝒀
𝒃,†
𝟏 , ..., 𝒀

𝒃,†
𝑻 } will surely diverge from the dataset they have been

bootstrapped from. They must therefore undergo some kind of correction. The state variables

are corrected by the magnitude of the smoothedmean of their counterparts extracted from a

”correction” dataset, which constitutes differences between the original data {𝒀𝟏, ..., 𝒀𝑻} and the

unconditional bootstrap dataset {𝒀
𝒃,†
𝟏 , ..., 𝒀

𝒃,†
𝑻 }, as described in Koopman, Harvey, Doornik, and

Shephard (), Ch.... The survey errors generated as described in either parametric or

non-parametric unconditional state recursion, do not need any adjustments as they constitute

(autocorrelated) noise.

For the parametric bootstrap, the necessary disturbances for state recursions (.) and (.) are

drawn from their joint conditional multivariate normal density 𝜼𝒕
𝑖𝑖𝑑
∼ 𝑀𝑁(𝟎,𝜴).

Non-parametric bootstrap has an advantage of not depending on any particular assumption

about this joint distribution. In this case, a bootstrap sample of standardised innovations

{𝝐
𝒃,𝑺𝒕
𝒓+𝟏, ..., 𝝐

𝒃,𝑺𝒕
𝑻 } is obtained by sampling with replacement from {𝝐𝑺𝒕𝒓+𝟏(�̂�), ..., 𝝐

𝑺𝒕
𝑻 (�̂�)} where

𝝐𝑺𝒕𝒕 = 𝑭
−𝟏/𝟐
𝒕 (�̂�)𝝐𝒕(�̂�) are standardized innovations from the Kalman filter recursions based on

the original ML estimates of the hyperparameters. For the DLFSmodel, a burn-in period 𝑟 of 

time-points is chosen. This choice is motivated by the number of state variables that are

initialised with a diffuse prior, which is ; additional  time points are skipped to have a burn-in

period of two and a half years, and also in order to be on a safe-side. A bootstrap observation

set {𝒀𝒃𝟏, ..., 𝒀
𝒃
𝑻} is then constructed by running the so-called innovation form of the Kalman filter:

�̂�𝒃𝒕|𝒕 = �̂�𝒃𝒕|𝒕−𝟏 +𝑲𝒕(�̂�)𝑭
𝟏/𝟐
𝒕 (�̂�)𝝐

𝒃,𝑺𝒕
𝒕 (.)

�̂�𝒃𝒕 = 𝒁𝒕�̂�
𝒃
𝒕|𝒕−𝟏 + 𝑭

𝟏/𝟐
𝒕 (�̂�)𝝐

𝒃,𝑺𝒕
𝒕 , 𝑡 = 𝑑 + 1, ..., 𝑇; (.)

Note, that the univariate version of a multivariate Kalman filter, suggested by Koopman and

Durbin (), is computationally more efficient. This version is implemented in SsfPack

package that is used for this work. In this case, each series 𝑌𝑡,𝑑 in a multivariate model is treated

as a univariate one. Then, for each of these series, the Kalman gain𝑲𝒕,𝒅 is a vector, whereas 𝐹𝑡,𝑑

is a scalar.

The following sections contain a brief presentation of the asymptotic approach, as well as the

recent Rodriguez and Ruiz () bootstrap approaches (hereafter referred to as the RR

bootstrap) and Pfeffermann and Tiller () (hereafter the PT bootstrap) bootstrap

approaches.

3.1 Rodriguez and Ruiz Bootstrapping Approach

Rodriguez and Ruiz () developed their bootstrap method for the mean square error

approximation conditional on the data. Bootstrapping can be done both parametrically and

non-parametrically, following the steps below:

. Estimate the model and obtain all the hyperparameter estimates �̂�.

. Generate a bootstrap sample {𝒀𝒃𝟏, ..., 𝒀
𝒃
𝑻} using �̂�, either parametrically or non-parametrically,

as described before the beginning of this sub-section. If the model is non-stationary, the overall

pattern of the bootstrap sample has to be brought in accordance with the pattern of the original

sample, as described in the third and fourth paragraphs of the introduction to Section .

. The bootstrap dataset {𝒀𝒃𝟏, ..., 𝒀
𝒃
𝑻} is used to obtain both the survey error autocorrelation

parameter �̂�𝑏 estimates and bootstrap ML estimates �̂�𝒃𝑴𝑳. Thereafter, the Kalman filter is

launched again using the original series {𝒀𝟏, ..., 𝒀𝑻} and the newly-estimated �̂�𝒃, which produces

�̂�𝒕|𝒕(�̂�
𝒃) and �̂�𝒕|𝒕(�̂�

𝒃).
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. Then, steps - are repeated 𝐵 times.

. Having obtained 𝐵 bootstrap replicates, the true conditional MSE can be approximated in the

following way:

𝑴𝑺𝑬
𝑹𝑹

𝒕|𝒕 =
𝟏

𝑩

𝑩



𝒃=𝟏

�̂�𝒕|𝒕(�̂�
𝒃) +

𝟏

𝑩

𝑩



𝒃=𝟏

[�̂�𝒕|𝒕(�̂�
𝒃) − �̄�𝒕|𝒕][�̂�𝒕|𝒕(�̂�

𝒃) − �̄�𝒕|𝒕]
′, (.)

where �̄�𝒕|𝒕 =
𝟏

𝑩
∑
𝑩
𝒃=𝟏 �̂�𝒕|𝒕(�̂�

𝒃).

Equation (.) is applied both for the parametric and non-parametric bootstrap MSE-estimators

(denoted further as𝑀𝑆𝐸𝑅𝑅1 and𝑀𝑆𝐸𝑅𝑅2, respectively).

3.2 Pfeffermann and Tiller Bootstrapping Approach

The bootstrap developed by Pfeffermann and Tiller () differs from the one described in the

previous subsection in that expectations of the squared error loss elements in (.) are taken

unconditionally on the data, whereas the Rodriguez and Ruiz () approach conditions on the

original dataset {𝒀𝟏, ..., 𝒀𝑻}. Further, unlike Rodriguez and Ruiz (), Pfeffermann and Tiller

() drop the terms that are of order𝑂 
1

𝑇2
, which is theoretically proven in Pfeffermann and

Tiller (), Appendix C. Using results in Hall and Martin (), they show that the true MSE,

being

𝑴𝑺𝑬𝒕|𝒕 = �̂�𝒕|𝒕(𝜽) + 𝑬[(�̂�𝒕|𝒕(�̂�) − �̂�𝒕|𝒕(𝜽))(�̂�𝒕|𝒕(�̂�) − �̂�𝒕|𝒕(𝜽))
′], (.)

can be approximated by its bootstrap analogues as follows:

�̂�𝒕|𝒕(𝜽) = 𝟐�̂�𝒕|𝒕(�̂�) −
𝟏

𝑩

𝑩



𝒃=𝟏

�̂�𝒕|𝒕(�̂�
𝒃) + 𝑶

𝟏

𝑻𝟐
, (.)

𝑬[(�̂�𝒕|𝒕(�̂�) − �̂�𝒕|𝒕(𝜽))(�̂�𝒕|𝒕(�̂�) − �̂�𝒕|𝒕(𝜽))
′] =

𝟏

𝑩

𝑩



𝒃=𝟏

[�̂�𝒃𝒕|𝒕(�̂�
𝒃) − �̂�𝒃𝒕|𝒕(�̂�)][�̂�

𝒃
𝒕|𝒕(�̂�

𝒃) − �̂�𝒃𝒕|𝒕(�̂�)]
′ + 𝑶

𝟏

𝑻𝟐
.

(.)

Equations (.) and (.) correspond to the first and the second terms of equation (.),

respectively. The resulting MSE-estimator below has a bias of correct order𝑂 
1

𝑇2
:

𝑴𝑺𝑬
𝑷𝑻

𝒕|𝒕 = 𝟐�̂�𝒕|𝒕(�̂�) −
𝟏

𝑩

𝑩



𝒃=𝟏

�̂�𝒕|𝒕(�̂�
𝒃) +

𝟏

𝑩

𝑩



𝒃=𝟏

[�̂�𝒃𝒕|𝒕(�̂�
𝒃) − �̂�𝒃𝒕|𝒕(�̂�)][�̂�

𝒃
𝒕|𝒕(�̂�

𝒃) − �̂�𝒃𝒕|𝒕(�̂�)]
′,

(.)

Equation (.) is applied both for the parametric and non-parametric bootstrap

MSE-estimators (denoted further as𝑀𝑆𝐸𝑃𝑇1 and𝑀𝑆𝐸𝑃𝑇2, respectively). MSE-calculation in

(.) requires three Kalman filter runs for every bootstrap series. One run is needed to get

MSE-matrix �̂�𝒕|𝒕(�̂�
𝒃) based on the original data set {𝒀𝟏, ..., 𝒀𝑻} and bootstrap parameters �̂�𝒃. In

the second run, �̂�𝒃𝒕|𝒕(�̂�
𝒃) is estimated from the bootstrap data set {𝒀𝒃𝟏, ..., 𝒀

𝒃
𝑻} and the same

bootstrap parameters �̂�𝒃. The third Kalman filter run is needed to produce the state estimates

�̂�𝒃𝒕|𝒕(�̂�) based on data set {𝒀
𝒃
𝟏, ..., 𝒀

𝒃
𝑻} and �̂�-estimates that were obtained from the original

dataset.

The bootstrap procedure is summarized below:

. Estimate the model using the original dataset and obtain the hyperparameter vector

estimates �̂�. Apart from that, save the ”naive” MSE estimates �̂�𝒕|𝒕(�̂�) for future use in (.).
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. Using either the parametric or non-parametric method, generate a bootstrap sample

{𝒀𝒃𝟏, ..., 𝒀
𝒃
𝑻} conditional on the observed sample using the original ML estimates �̂�, as described

in Section ..

. Estimate bootstrap hyperparameter estimates �̂�𝒃 from the newly generated bootstrap

dataset. Run the Kalman filter for three times to get �̂�𝒃𝒕|𝒕(�̂�
𝒃), �̂�𝒕|𝒕(�̂�

𝒃), �̂�𝒃𝒕|𝒕(�̂�), as described

under (.).

. Repeat steps - 𝐵 times.

. Approximate the true conditional MSE using (.).

Pfeffermann and Tiller () note that, in the case of the parametric bootstrap, the third

Kalman filter run can be avoided because the true state vector is generated (and thus known) for

every bootstrap series. Thus, the state estimates �̂�𝒃𝒕|𝒕(�̂�) in (.) can be replaced by the true

vector𝜶𝒃𝒕 to obtain the following MSE estimator:

𝑴𝑺𝑬
𝑷𝑻𝟏

𝒕|𝒕 = �̂�𝒕|𝒕(�̂�) −
𝟏

𝑩

𝑩



𝒃=𝟏

�̂�𝒕|𝒕(�̂�
𝒃) +

𝟏

𝑩

𝑩



𝒃=𝟏

[�̂�𝒃𝒕|𝒕(�̂�
𝒃) − 𝜶𝒃𝒕 ][�̂�

𝒃
𝒕|𝒕(�̂�

𝒃) − 𝜶𝒃𝒕 ]
′. (.)

In this formulation, there is only one �̂�𝒕|𝒕(�̂�) in the right-hand side of (.). This is due to the

fact that the new term 𝐸𝐵[�̂�
𝑏
𝑡|𝑡(�̂�

𝑏) − 𝛼𝑏𝑡 ]
2, corresponding to the last term in the right-hand

side of (.), can itself be decomposed, in the same fashion as in (.), into the parameter

uncertainty 𝐸𝐵[�̂�
𝑏
𝑡|𝑡(�̂�

𝑏) − �̂�𝑏𝑡|𝑡(�̂�)]
2 and the filter uncertainty term 𝑃𝑏𝑡|𝑡(�̂�) = 𝐸[�̂�𝑏𝑡|𝑡(�̂�) − 𝛼𝑏𝑡 ]

2,

�̂� being the true parameter vector the bootstrap state variable 𝛼𝑏𝑡 is generated with. However,

the bootstrap average term
1

𝐵
∑
𝐵
𝑏=1[�̂�

𝑏
𝑡|𝑡(�̂�) − 𝛼𝑏𝑡 ]

2 replacing �̂�𝑡|𝑡(�̂�)may needmuchmore

bootstrap iterations to converge. Further, one should be aware of the fact that this simplified

methodmay result in an additional bias if the normality assumption about the model error

terms is violated. Then, the term 𝐸𝐵[�̂�
𝑏
𝑡|𝑡(�̂�

𝑏) − 𝛼𝑏𝑡 ]
2 will also contain a non-zero expectation of

the cross-terms: 𝐸{[�̂�𝑏𝑡|𝑡(�̂�) − 𝛼𝑏𝑡 ][�̂�
𝑏
𝑡|𝑡(�̂�

𝑏) − �̂�𝑏𝑡|𝑡(�̂�)]}. In this application, the influence of

non-zero cross-term bootstrap averages has turned out to be of a negligible importance, but

the bootstrap average
𝟏

𝑩
∑
𝑩
𝒃=𝟏[�̂�

𝒃
𝒕|𝒕(�̂�) − 𝜶𝒃𝒕 ][�̂�

𝒃
𝒕|𝒕(�̂�) − 𝜶𝒃𝒕 ]

′ exhibited large deviations from

the term it was meant to replace. This may be explained by the fact that the true Kalman filter

MSE in (.) can be obtained from simulated series if the distribution of the state-vector is

sufficiently dispersed. When bootstrapping non-stationary models, however, the bootstrap

series are forced to follow the pattern of the underlying original series, as it has beenmentioned

in the description of the simulation smoother algorithm. Therefore, the replacement of �̂�𝒕|𝒕(�̂�)

with the term
𝟏

𝑩
∑
𝑩
𝒃=𝟏[�̂�

𝒃
𝒕|𝒕(�̂�) − 𝜶𝒃𝒕 ][�̂�

𝒃
𝒕|𝒕(�̂�) − 𝜶𝒃𝒕 ]

′ in (.) is not equivalent. For this reason,

both parametric (denoted as PT) and non-parametric (PT) bootstraps in this application rely

on the estimator in (.).

3.3 Asymptotic Approximation

An asymptotic approximation (AA) to the true MSE in equation (.) was developed by

Hamilton () and can be expressed as an expectation over the hyperparameter joint

asymptotic distribution 𝜋𝑎(𝜽|𝒀) conditional on the given dataset 𝒀 ≡ {𝒀𝟏, ..., 𝒀𝑻}. In this

application, a part of the hyperparameter vector that is estimated with the ML-method

(denoted as 𝜽𝑴𝑳), depends on the value of the autoregressive parameter 𝜌. Therefore, the

hyperparameter joint distribution has the following form: 𝜋(𝜽|𝒀) = 𝜋(𝜌|𝒀)𝜋(𝜽𝑴𝑳|𝜌, 𝒀). The

MSE is approximated as follows:
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𝑴𝑺𝑬𝒕|𝒕 = 𝑬𝝅(𝜽|𝒀)[�̂�𝒕|𝒕(𝜽)] + 𝑬𝝅(𝜽|𝒀) 𝑬𝒕[(�̂�𝒕|𝒕(𝜽) − �̂�𝒕|𝒕(�̂�))(�̂�𝒕|𝒕(𝜽) − �̂�𝒕|𝒕(�̂�))
′]. (.)

Random 𝜌-realisations are drawn from their asymptotic distribution𝑁(�̂�, 1/√𝑇), where 𝑇 is the

series length. After a value is drawn from this distribution, the other hyperparameters are

re-estimated to obtain �̂�𝑴𝑳|𝜌 and the information matrix �̂�(�̂�𝑴𝑳|𝜌𝜋(𝜌|𝒀)). Finally, a 𝜽𝑴𝑳-draw is

made from distribution √𝑇(𝜽𝑴𝑳 − �̂�𝑴𝑳|𝜌𝜋(𝜌|𝒀)) ∼ 𝑀𝑁(𝟎, 𝑇�̂�−𝟏(�̂�𝑴𝑳|𝜌𝜋(𝜌|𝒀))). The Kalman

filter is run again using 𝜌- and 𝜽𝑴𝑳-realisations to obtain the state estimates �̂�𝒕|𝒕(𝜽𝝅(𝜽|𝒀)) and

their MSEs �̂�𝒕|𝒕(𝜽𝝅(𝜽|𝒀)). The procedure is repeated until 𝐵 𝜽𝝅(𝜽|𝒀)-draws are obtained,

whereafter (.) is approximated by averaging the necessary quantities over 𝐵 iterations. If all

the hyperparameters of the model are estimated within the ML-procedure, 𝐵 draws can be

made directly from √𝑇(𝜽𝝅(𝜽|𝒀) − �̂�) ∼ 𝑀𝑁(𝟎, 𝑇�̂�−𝟏(�̂�)).

The first term in (.) can be approximated by the expected value of the Kalman filter variance

�̂�𝒕|𝒕 across 𝐵 realizations of the hyperparameter vector, and the second term by the sampling

variance of the state vector expectation. By virtue of the continuous mapping theorem, the

sample average ̄�̂�𝒕|𝒕 =
𝟏

𝑩
∑
𝑩
𝒃=𝟏 �̂�𝒕|𝒕(𝜽

𝒃
𝝅(𝜽|𝒀)) can replace the state vector estimates �̂�𝒕|𝒕(�̂�) in

(.) that are based on the initially estimated hyperparameter vector. An asymptotic

approximation to the true MSE could therefore be obtained in the following way:

̂𝑴𝑺𝑬
𝑨𝑨

𝒕|𝒕 =
𝟏

𝑩

𝑩



𝒃=𝟏

�̂�𝒕|𝒕(𝜽
𝒃
𝝅(𝜽|𝒀)) +

𝟏

𝑩

𝑩



𝒃=𝟏

[�̂�𝒕|𝒕(𝜽
𝒃
𝝅(𝜽|𝒀)) −

̄�̂�𝒕|𝒕][�̂�𝒕|𝒕(𝜽
𝒃
𝝅(𝜽|𝒀)) −

̄�̂�𝒕|𝒕]
′. (.)

Obviously, this MSE-estimator is entirely based on the asymptotic normality assumption about

the hyperparameter vector estimator. Apart from that, this approach usually produces

significant biases if the series is not of a sufficient length, in which case the asymptotic

distribution would fail to approximate the finite (usually skewed) distribution of

maximum-likelihood estimates.

Another problemwith the asymptotic approach can appear if some of the hyperparameters are

estimated to be close to zero. This can happen to the initial model estimates or during the

procedure itself, e.g., due to certain extreme 𝜌-draws. In these cases, the asymptotic variance

of such hyperparameters will be too large, which will inflate the MSE-estimates of the signal

and its unobserved components. It may as well lead to a failure in inverting the information

matrix for the hyperparameter vector.

4 TheDLFS-speciic Simulation andBoot-

strap Setup for True MSE Approxi-

mation

The central data generating process of the present simulation study is the DLFSmodel. The

performance of the five MSE-approximation methods is examined on series of the original

length from the DLFS survey ( monthly time points from () until ()), as well as on

shorter series of length months and longer ones of length . For each of these series

lengths, a Monte-Carlo experiment is set up where multiple series () are simulated on the

basis of the LFSmodel used by Statistics Netherlands. MSEs for each of these series are

approximated based on 𝐵 = 300 bootstrap series; for asymptotic approximation, however, at
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least 𝐵 = 500 draws turned out to be needed. This number has been found sufficient for the

approximated MSEs to converge. MSEs from the five approximation methods averaged over

the  simulations are compared to MSE-averages produced by the ”naive” Kalman filter.

However, for the latter MSE estimates to converge to a certain average value, far more than

 simulations turned out to be needed (namely, at least ).

The hyperparameter maximum-likelihood estimates of the DLFSmodel, as well as the

Yule-Walker estimate of the survey error autoregressive parameter 𝜌, are used to generate

artificial data series �̂�𝒔𝒕 , 𝑠 = 1, ...𝑆. Since the system is non-stationary, generating series𝜶𝒔𝒕

unconditionally on the true data is going to result in negative or implausibly large numbers of

the unemployed. In order to avoid an excessively large number of series with negative values,

the unconditional recursion of the state variables is started with their smoothed estimates at

one of the highest points the original process has ever reached within the available sample.

Further, the first 𝑟 time points are discarded in order to prevent that the series start at the same

time-point (𝑟 being chosen equal to ). With an assumption that unemployment in the

Netherlands will not exceed  percent, the simulation data set is restricted to positive series

below the upper bound of  mln of unemployed (this value comprised about  percent of the

Dutch labour force in ). Keeping the artificial series below the upper bound is also done in

order not to extrapolate outside of the original data range when simulating the design standard

errors 𝑧
𝑡−𝑗
𝑡 , which are the time-dependent elements of the design-matrix 𝒁𝒕.

Since design variance estimates depend on the number of unemployed estimated by the

GREG-estimator for the wave in question, a model is needed to generate 𝑧
𝑡−𝑗
𝑡 -values that would

depend on the corresponding simulated numbers of the unemployed. The well-known formula

for the variance of the population total of a binary response variable is helpful to derive the

necessary generation process for the 𝑧
𝑡−𝑗
𝑡 -terms (see, e.g., Särndal et al. (), Section .):

𝑉𝑎𝑟(�̂�𝑡) = 𝑁2
𝑡 1 −

𝑛𝑡

𝑁𝑡

𝑝𝑡(1 − 𝑝𝑡)

𝑛𝑡
, (.)

where𝑁𝑡 is the population size in period 𝑡, 𝑛𝑡 is the sample size, and 𝑝𝑡 is the sample estimate

of the unemployment rate
�̂�𝑡

𝑁𝑡
. The design variance can then be approximated by the following

expression, after taking logs on both sides of (.), rearranging the terms and assuming that

unemployment 𝑝𝑡 does not reach high values, which allows to neglect the term 𝑙𝑛(1 − 𝑝𝑡):

𝑙𝑛(𝑉𝑎𝑟(�̂�𝑡)) = 𝛼𝑙𝑛 
𝑛𝑡

𝑁𝑡
 + 𝛽𝑙𝑛(�̂�𝑡). (.)

This study simulates numbers of unemployed conditional on the same population and sample

sizes as those observed in reality between () and (). This allows to avoid simulating

sample sizes in a study for longer series (𝑇 = 200). Instead, the information carried by the term

𝑙𝑛 
𝑛𝑡

𝑁𝑡
 can be represented by an intercept for the variances of the first wave. Starting from

wave , each design variance, denoted as (𝑧
𝑡−𝑗
𝑡 )2, 𝑗 = {3, 6, 9, 12}, is highly dependent on the

design variance of the preceding wave, since both are based on nearly the same group of people

and sample size. The sample size decreases by approximately  percent in each subsequent

wave due to panel attrition. Further, the signal 𝑙
𝑡−𝑗
𝑡 = 𝐿𝑡 + 𝛾𝑡 + 𝜆

𝑡−𝑗
𝑡 can act as a proxy for �̂�

𝑡−𝑗
𝑡

in (.), since both the signal and the direct estimate contain information on the level of

unemployed and the design effect (in this case, the RGB). The design standard errors 𝑧
𝑡−𝑗
𝑡 can

be derived from the following equations for log-variances:

𝑙𝑛[(𝑧
𝑡−𝑗
𝑡 )2] = 𝑐 + 𝛽𝑗𝑙𝑛(𝑙

𝑡−𝑗
𝑡 ) + 𝜖

𝑡−𝑗
𝑡 , 𝑗 = 0;

𝑙𝑛[(𝑧
𝑡−𝑗
𝑡 )2] = 𝜌𝑗𝑙𝑛[(𝑧

𝑡−𝑗
𝑡−3)

2] + 𝛽𝑗𝑙𝑛(𝑙
𝑡−𝑗
𝑡 ) + 𝜖

𝑡−𝑗
𝑡 , 𝜖

𝑡−𝑗
𝑡 ∼ 𝑁(0, (𝜎

𝑗
𝜖)

2), 𝑗 = {3, 6, 9, 12}.

(.)
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The regression coefficients in (.) are time-invariant. The superscripts are used to denote the

wave these coefficients belong to. The coefficient estimates are presented in Table . They are

obtained using the original design variances for the five panel waves and the extracted filtered

signal estimates coming from the DLFSmodel. For series longer than the original series, the

design standard errors 𝒛𝒔𝒕 have to be simulated as well according to the same process.

Table 1 Regression estimates for the design standard error process

𝑗 = 0 𝑗 = 3 𝑗 = 6 𝑗 = 9 𝑗 = 12

�̂� . - - - -

�̂�𝑗 . . . . .

�̂�𝑗 - . . . .

�̂�
𝑗
𝜖 . . . . .

Equations (.)-(.) and the estimated parameter vector �̂� are used to generate S= series

of artificial data. State disturbances (remember survey errors are also modelled as state

variables) are randomly drawn from their joint normal distribution𝑁(𝟎,𝜴(�̂�)), and series are

generated unconditionally on the true data. Within each simulation, first the trend, seasonal

and RGB components are simulated and summed up to comprise the wave-signals

𝑙
𝑡−𝑗
𝑡,𝑠 , 𝑗 = {0, 3, 6, 9, 12}. These are used to generate the design standard errors 𝑧

𝑡−𝑗
𝑡,𝑠 according to

the process described in (.). As soon as an artificial data set is generated, 𝜌 is re-estimated

and saved as �̂�𝑠, whereafter the hyperparameter quasi-ML estimates are obtained. These are

stored in �̂�𝒔 and used by the Kalman filter to produce the state estimates �̂�𝒕,𝒔. Both �̂�𝑠 and �̂�𝒔

are used to generate bootstrap samples. Note that the same set of design standard errors 𝒛𝒕,𝒔 is

used to both generate and estimate bootstrap series within simulation 𝑠.

In order to obtain the true MSEs, the DLFSmodel is simulated a large number of times

𝑀 = 50000, each of these replications being restricted to the same limits as before, i.e.

between zero and  mln unemployed. The true MSE is calculated in the following way using the

true state vector𝜶𝒎,𝒕 values known for every simulation𝑚:

𝑴𝑺𝑬𝒕𝒓𝒖𝒆𝒕 =
𝟏

𝑴

𝑴



𝒎=𝟏

[(�̂�𝒎,𝒕(�̂�𝒎) − 𝜶𝒎,𝒕)(�̂�𝒎,𝒕(�̂�𝒎) − 𝜶𝒎,𝒕)
′]. (.)

The true MSE of the signal is calculated in the same way by using the true wave-signal values

𝒍𝒎,𝒕.

5 MSEApproximationApproacheswith

Application to the DLFS

The focus of this simulation study is the true MSEs of the trend and of the population signal.

The latter consists of the trend and seasonal components and is therefore equal to the signal of

the first wave. This study considers four models that differ in terms of the number of

hyperparameters to be estimated with the MLmethod. The most complete model - Model  - is

the one currently in use at Statistics Netherlands, but with the white noise component 𝜀𝑡

removed from the true population parameter 𝜉𝑡. This component has turned out to have an

insignificant variance in the case of the DLFS. Moreover, an attempt to estimate its variance
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disturbed estimation of other marginally significant hyperparameters. In order to avoid this

instability, this irregular component 𝜀𝑡 can be removed from themodel. This formulation

implies that the population parameter 𝜉𝑡 does not suffer from any unusual irregularities that

cannot be picked up by the stochastic structure of the trend and seasonal components. This

assumption can be advocated by a relative rigidity of labour markets. Any alterations of

unemployment levels are usually of a gradual character and therefore must be largely

incorporated into the stochastic trendmovements. The other three models are special cases of

Model , thus with 𝜀𝑡 component removed (see Table ).
Table 2 Hyperparameters estimated in the four versions of the DLFS model; the

disturbance variances estimated on a log-scale

Models Description Parameters estimated

M complete model 𝜌, 𝜎2
𝑅, 𝜎

2
𝛾 , 𝜎

2
𝜆 , 𝜎

2
𝜈1
, 𝜎2

𝜈2
, 𝜎2

𝜈3
, 𝜎2

𝜈4
, 𝜎2

𝜈5

M seasonal time-independent 𝜌, 𝜎2
𝑅, 𝜎

2
𝜆 , 𝜎

2
𝜈1
, 𝜎2

𝜈2
, 𝜎2

𝜈3
, 𝜎2

𝜈4
, 𝜎2

𝜈5

M RGB time-independent 𝜌, 𝜎2
𝑅, 𝜎

2
𝛾 , 𝜎

2
𝜈1
, 𝜎2

𝜈2
, 𝜎2

𝜈3
, 𝜎2

𝜈4
, 𝜎2

𝜈5

M seasonal, RGB fixed 𝜌, 𝜎2
𝑅, 𝜎

2
𝜈1
, 𝜎2

𝜈2
, 𝜎2

𝜈3
, 𝜎2

𝜈4
, 𝜎2

𝜈5

Note that the disturbance variances are estimated on a log-scale in order to avoid negative

estimates. The rationale behind studying the other threemodels becomes clear after inspecting

the hyperparameter distribution of Model  after a large number of replications. The simulation

has shown that the stochastic term variances of the seasonal and, in particular, RGB

components are often estimated to be close to zero. This causes bi-modality in the distribution

of these variance estimates with a significant mass concentrated around zero. Apart from that,

an attempt to estimate both of the hyperparameters, as in Model , seems to bring about

certain instability to the hyperparameter estimates, such that even normality in

𝑙𝑛(�̂�2𝜈3), 𝑙𝑛(�̂�
2
𝜈4
) and 𝑙𝑛(�̂�2𝜈5) (where indices , , and  stand for the numbers of the waves) is

severely violated with extreme outliers and/or a huge kurtosis (see Fig. B. in the appendix,

where the x-axis is extended due to the outliers). Making the seasonal component

time-invariant, as in Model , hardly changes the situation for the slope and RGB

hyperparameters. Instead, it may even be seen as suboptimal due to more extreme outliers and

excess kurtosis in the distribution of all the five survey error hyperparameters (Fig. B.). By

contrast, under both models where the RGB-component is fixed over time (Models  and ), all

hyperparameters corresponding to the survey error component have turned out to be normally

distributed, see Fig. B. and Fig. B.. Under Model , distributions are still skewed for the slope

and seasonal components (skewness of -. and -., and excess kurtosis of . and .,

respectively). Fixing 𝜎2𝛾 to zero under Model  results in only a marginal improvement: the

distribution of 𝑙𝑛(�̂�2𝑅) is negatively skewed (-.) with an excess kurtosis of ..

This simulation evidence suggests that the preference in modelling the DLFS series may be

given to the more parsimonious Model , where only the RGB disturbance variance is set equal

to zero. This hyperparameter is however retained for production purposes at Statistics

Netherlands to secure the model robustness against sudden changes in the underlying process.

The distribution of the survey error autoregressive parameter 𝜌 is hardly affected by model

reformulations and ranges between  and  percent. The simulation procedure described in

the previous section and the analysis of bootstrap methods that follows is performed separately

for all the four models.

The performance of the Kalman filter at estimated parameter values, as well as of the five

approximation methods mentioned in Section  is evaluated with the help of the MSE relative

bias. First, the approximated MSEs from (.), (.), (.), and (.) are averaged over 

simulations, and the Kalman filter MSE estimates over  simulations, as mentioned at the

beginning of Section . These averagedMSE estimates for Model  (except for AA for the

reason that will become clear soon) are depicted in Fig. ., . and . for three different series
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lengths, skipping the first 𝑑 = 30 time points of the sample. This is the time needed for the

diffuse part of the state covariance matrix to decay (see Koopman () for initialisation of

non-stationary state variables). The percentage relative bias is calculated as

𝑅𝐵𝑏𝑡 = 
𝑀𝑆𝐸

𝑏
𝑡|𝑡

𝑀𝑆𝐸𝑡𝑟𝑢𝑒𝑡|𝑡

− 1 ⋅ 100%, where 𝑏 defines a particular approximation method. The core

variables of interest for users of the DLFS are the signal and trend. The percentage relative MSE

biases averaged over time (skipping the first 𝑑 = 30 time points) for the signal, the trend and

seasonal components are presented in Tables , , and .

The AA-method turned out to be inapplicable to the models with marginally significant

hyperparameters. When some of the hyperparameters are estimated close to zero, the matrix

𝑰−𝟏(�̂�𝑴𝑳|𝜌𝜋(𝜌|𝒀))) is numerically either singular, leading to a failure in the procedure, or nearly

singular. In the latter case, the asymptotic variance becomes excessively large and thus not

reliable. Taking this into account, the AA-method could only be considered for Model . As

expected, the method performs poorly in short series, with positive biases of about  percent.

The performance for 𝑇 = 114 and 𝑇 = 200 is comparable to that of the PT-bootstrap, but

significantly worse than the PT performance.

The simulation results for 𝑇 = 80 suggest that, when averaged over time (starting from

𝑡 = 30), the relative bias of the signal MSE obtained with the Kalman filter ranges between -.

and -. percent for the four models considered in the paper. This bias tends to decrease as the

series length increases. The KF-biases are quite small for the case of 𝑇 = 200, such that none of

the approximation methods offers a smaller bias in absolute terms. One could still apply the

best approximation method with positive biases in order to get a range of values containing the

true MSE.

What one immediately sees is negative biases for the RR-bootstrap and positive ones for the

PT-method. Against the claim of Rodriguez and Ruiz () that their approach has better finite

sample properties compared to the approach of Pfeffermann and Tiller (), the case of the

DLFS suggests that the RR-estimates, both parametric and non-parametric ones, are evenmore

negatively biased than the uncorrected KF-estimates across all the models and series lengths

(except for RR in Model , 𝑇 = 80 and 𝑇 = 114). The PT-methods never produce negative

biases. While the PT-bootstrap is proven to have satisfactory asymptotic properties in

Pfeffermann and Tiller (), Rodriguez and Ruiz () illustrate the superiority of their

method in small samples based on a simple model (a randomwalk plus noise). The present

simulation study reveals that the RR-methodmay not behave well in more complex

applications.
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Figure 5.1 Signal MSE comparison for Model 3, T=80 months
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Figure 5.2 Signal MSE comparison for Model 3, T=114 months
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Figure 5.3 Signal MSE comparison for Model 3, T=200 months
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For series of lengths 𝑇 = 114 and 𝑇 = 80, positive biases produced by the PT-bootstrap may

slightly exceed the KF-biases in absolute values for models with insignificant hyperparameters

(Models  and ). In the more stable models (Models  and ), the positive biases are smaller

than the KF negative biases in absolute values.

Table 3 MSE relative bias averaged over time (d=30) in the DLFS model, percent,

T=80

Signal Trend Seasonal

Models M M M M M M M M M M M M

KF -. -. -. -. -. -. -. -. . . . .

AA N/A N/A N/A . N/A N/A N/A . N/A N/A N/A .

PT . . . . . . . . . . . .

PT . . . . . . . . . . . .

RR -. -. -. -. -. -. -. -. -. -. -. -.

RR . -. -. -. . -. -. -. . -. -. -.

Table 4 MSE relative bias averaged over time (d=30) in the DLFS model, percent,

T=114

Signal Trend Seasonal

Models M M M M M M M M M M M M

KF -. -. -. -. -. -. -. -. . -. -. -.

AA N/A N/A N/A . N/A N/A N/A . N/A N/A N/A .

PT . . . . . . . . . . . .

PT . . . . . . . . . -. . .

RR -. -. -. -. -. -. -. -. -. -. -. -.

RR -. -. -. -. -. -. -. -. . -. -. -.

Table 5 MSE relative bias averaged over time (d=30) in the DLFS model, percent,

T=200

Signal Trend Seasonal

Models M M M M M M M M M M M M

KF -. -. -. -. -. -. -. -. . -. -. -.

AA N/A N/A N/A . N/A N/A N/A . N/A N/A N/A .

PT . . . . . . . . . . . .

PT . . . . . . . . . . . .

RR -. -. -. -. -. -. -. -. -. -. -. -.

RR -. -. -. -. -. -. -. -. . -. -. -.

The signal MSE of Model , which could be considered a better option for production of official

DLFS figures, is best approximated by the PT approach, with relative biases of . and .

percent for 𝑇 = 80 and 𝑇 = 114, respectively. The PT-bootstrap also seems to be the best

method for 𝑇 = 200, but, as has been said, the negative KF biases are already quite small for

series of this length.

Note that for both the PT- and RR-bootstraps, the absolute values of relative biases are smaller

in the case of the non-parametric approaches, compared to their parametric counterparts. The

superiority of the non-parametric approach over the parametric one can be explained by the

disturbed normality of the error distribution in the models.

In order to see if the STSmodel-based approach still offers some reduction in the design

variance estimates after correcting for hyperparameter uncertainty, percentage reductions in

the standard errors of the GREG estimates are presented in Table . These reductions come

from applying the DLFSmodel to the GREG estimates without correcting for hyperparameter

uncertainty (KF), as well as after this uncertainty has been taken into account with the help of

the five differentmethods. Note that the RGB and seasonal hyperparameter estimates obtained
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from the original DLFS data set are quite small. Therefore, there are no noticeable differences

between the point-estimates of the four models. However, these hyperparameter estimates are

not small enough to cause the problemsmentioned before with regard to the AA-approach, so

the results for this approximation method are reported in Table  as well. It may first seem that

the AA-method accounts for the parameter uncertainty best of all other methods. However,

keeping in mind that the AAmay on average have some severe positive biases, especially in the

case of small hyperparameters, one should feel more secure with the PT non-parametric

approach that offers about  percent reduction in the estimated GREG standard errors. This

means that the model-based approach even after accounting for parameter uncertainty offers a

significant variance reduction compared with the traditional design-based approach.
Table 6 Reductions in the GREG SE estimates of the DLFS, averaged over time

(d=30), and percentage increase in the model SE after approximation in ( )

Model  Model  Model  Model 

KF -. -. -. -.

AA -. (.) -. (.) -. (.) -. (.)

PT -. (.) -. (.) -. (.) -. (.)

PT -. (.) -. (.) -. (.) -. (.)

RR -. (-.) -. (-.) -. (-.) -. (-.)

RR -. (-.) -. (-.) -. (-.) -. (-.)

6 Conclusion

Most applications of small area estimation procedures in the literature are based onmultilevel

models. In the framework of this approach, it is common practice to account for the

hyperparameter uncertainty in estimated MSEs. The literature on structural time series models

applied in the context of SAE is still rather limited, with most applications ignoring the

hyperparameter uncertainty when computing the MSEs of small area predictions. This renders

MSE estimates negatively biased when series are not long enough, which may be a serious issue

when it comes to such important economic indicators as unemployment.

The literature offers several procedures to correct for the negative bias in the MSE estimates

produced by STSmodels. The present work aimed at establishing the best approximation

approach to the true MSE of a small area estimation approach applied to the DLFS for official

production of estimated numbers of the unemployed in the Netherlands.

A simulation study conducted for this purpose reveals that the asymptotic approximation is not

applicable to cases with hyperparameters close to zero due to failures when inverting the

information matrix of the hyperparameter estimates. The simulation results suggest that the

non-parametric bootstraps, being free of normality assumptions about the error distribution,

perform better than their parametric counterparts in both Pfeffermann and Tiller () and

Rodriguez and Ruiz () methods. A more important finding, however, is that the

Pfeffermann and Tiller () bootstrap approaches with their positive biases consistently

outperform the respective approaches of Rodriguez and Ruiz (), where the biases are

generally negative and larger than those of the Kalman filter in absolute terms. This is contrary

to the claim of Rodriguez and Ruiz () about the superiority of their method in short time

series. Apparently, their findings are purely heuristic and are based on a simple model

simulation (randomwalk plus noise), while Pfeffermann and Tiller () prove that their

bootstrapping approach produces MSE estimates with a bias of a correct order.

Another result of this simulation study has revealed that it might be worth considering a more

restricted version of the DLFSmodel, with the variance of the RGB component and of the
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population parameter noise set equal to zero. For this model, the relative bias of the signal MSE

produced by the Kalman filter can be reduced from about -. to . percent with the

non-parametric Pfeffermann and Tiller () bootstrap approach. Even with this slightly

positive bias, the standard errors of the GREG estimates are reduced by about  percent. The

computation time for bootstrapping the original DLFSmodel according to the non-parametric

Pfeffermann and Tiller () procedure is about  hour for  bootstrap iterations. For the

DLFS application, the bias in the Kalman filter MSE estimates is relatively small, therefore it

may be deemed sufficient to rely on these naive MSE estimates for publication purposes.
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Appendices

A SomeDetails on the State-Space Form

of the DLFS Model

Themeasurement equation design matrix is a composite of a four matrices:

𝒁𝒕 = (𝒁𝝃 𝒁𝝀 𝒁𝒆𝒕 𝑶𝟓×𝟖), where𝑶𝟓×𝟖 denotes a null-matrix of a dimension specified in the

subscript,

𝒁
𝝃
𝒕 = [𝟏𝟓 ⨂ (1 0 1 0 1 0 1 0 1 0 1 0 1)] selects the level 𝐿𝑡 and the six seasonal harmonics

𝛾𝑡,1, ...𝛾𝑡,6 for each of the five waves,
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𝒁𝝀𝒕 = 
𝟎′𝟒
𝑰𝟒
 selects the four RGB components for the corresponding waves, and

𝒁𝒆𝒕 = 𝐷𝑖𝑎𝑔(𝑧𝑡𝑡 𝑧
𝑡−3
𝑡 𝑧𝑡−6𝑡 𝑧𝑡−9𝑡 𝑧𝑡−12𝑡 )multiplies the five survey error components �̃�

𝑡−𝑗
𝑡 with the

design standard errors. Vectors 𝟏𝟓 and 𝟎
′
𝟒 denote a vertical vector of ones and a horizontal

vector of zeros, respectively, of a dimension specified in the subscript.

The transition matrix 𝑻 is specified below:

𝑻 = 𝐵𝑙𝑜𝑐𝑘𝑑𝑖𝑎𝑔(𝑻𝑳 𝑻𝜸 𝑻𝝀 𝑻𝒆),

where 𝑻𝑳 = 
1 1

0 1
 , 𝑻𝜸 = 𝐵𝑙𝑜𝑐𝑘𝑑𝑖𝑎𝑔(𝑪𝟏...𝑪𝟓 − 1),

𝑪𝒍 = 
𝑐𝑜𝑠(

𝑙𝜋

6
) 𝑠𝑖𝑛(

𝑙𝜋

6
)

−𝑠𝑖𝑛(
𝑙𝜋

6
) 𝑐𝑜𝑠(

𝑙𝜋

6
)
 , 𝑙 = {1, ..., 5},

𝑻𝝀 = 𝑰𝟒,

𝑻𝒆 = 

𝟎′𝟒 0 𝟎′𝟒 𝟎′𝟒
𝑶𝟒×𝟒 𝟎𝟒 𝜌𝑰𝟒 𝑶𝟒×𝟒

𝑶𝟒×𝟒 𝟎𝟒 𝑶𝟒×𝟒 𝑰𝟒
𝑰𝟒 𝟎𝟒 𝑶𝟒×𝟒 𝑶𝟒×𝟒

 .

Vector 𝜼𝒕 contains stochastic terms of the state vector𝜶𝒕:

𝜼𝒕 =

(0𝜂𝑅,𝑡𝜔𝑡,1𝜔
∗
𝑡,1𝜔𝑡,2𝜔

∗
𝑡,2...𝜔𝑡,5𝜔

∗
𝑡,5𝜔𝑡,6 𝜂

𝑡−3
𝜆,𝑡 𝜂

𝑡−6
𝜆,𝑡 𝜂

𝑡−9
𝜆,𝑡 𝜂

𝑡−12
𝜆,𝑡 𝜈𝑡𝑡𝜈

𝑡−3
𝑡 𝜈𝑡−6𝑡 𝜈𝑡−9𝑡 𝜈𝑡−12𝑡 00000000)′.

The covariance matrix of the state stochastic terms is diagonal:

𝜴 = 𝐵𝑙𝑜𝑐𝑘𝑑𝑖𝑎𝑔(0 𝜎2𝑅 [𝜎
2
𝜔𝟏

′
𝟏𝟏] 𝜴

𝝀 𝜴𝒆),

𝜴𝝀 = 𝜎2𝜆 𝑰𝟒,

𝜴𝒆 = 𝐷𝑖𝑎𝑔(𝜎2
𝜈1
𝜎2
𝜈2
𝜎2
𝜈3
𝜎2
𝜈4
𝜎2
𝜈5
𝟎′𝟖).

In the case of the LFS, all the hyperparameters estimated with the ML-method are contained in

the𝜴-matrix, whereas the hyperparameter 𝜌 in the transition matrix 𝑻.
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B HyperparameterDistributionsunder

Four Versions of the DLFS Model

Figure B.1 Parameter distribution under the complete DLFS model (Model 1), left to

right: 𝑙𝑛(�̂�2𝑅), 𝑙𝑛(�̂�
2
𝛾 ), 𝑙𝑛(�̂�

2
𝜆 ), 𝑙𝑛(�̂�

2
𝜈1
), 𝑙𝑛(�̂�2𝜈2), 𝑙𝑛(�̂�

2
𝜈3
), 𝑙𝑛(�̂�2𝜈4), 𝑙𝑛(�̂�

2
𝜈5
); the normal density

with the same mean and variance superimposed; 50000 simulations, T=114.
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Figure B.2 Parameter distribution under Model 2, left to right:

𝑙𝑛(�̂�2𝑅), 𝑙𝑛(�̂�
2
𝜆 ), 𝑙𝑛(�̂�

2
𝜈1
), 𝑙𝑛(�̂�2𝜈2), 𝑙𝑛(�̂�

2
𝜈3
), 𝑙𝑛(�̂�2𝜈4), 𝑙𝑛(�̂�

2
𝜈5
); the normal density with the

same mean and variance superimposed; 50000 simulations, T=114.
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Figure B.3 Parameter distribution under Model 3, left to right:

𝑙𝑛(�̂�2𝑅), 𝑙𝑛(�̂�
2
𝛾 ), 𝑙𝑛(�̂�

2
𝜈1
), 𝑙𝑛(�̂�2𝜈2), 𝑙𝑛(�̂�

2
𝜈3
), 𝑙𝑛(�̂�2𝜈4), 𝑙𝑛(�̂�

2
𝜈5
); the normal density with the

same mean and variance superimposed; 50000 simulations, T=114.

Statistics Netherlands | Discussion paper, June 2015|04   



Figure B.4 Parameter distribution under Model 4, left to right:

𝑙𝑛(�̂�2𝑅), 𝑙𝑛(�̂�
2
𝜈1
), 𝑙𝑛(�̂�2𝜈2), 𝑙𝑛(�̂�

2
𝜈3
), 𝑙𝑛(�̂�2𝜈4), 𝑙𝑛(�̂�

2
𝜈5
); the normal density with the same mean

and variance superimposed; 50000 simulations, T=114.
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Explanation of symbols

 . Data not available
 * Provisional figure
 ** Revised provisional figure (but not definite)
 x Publication prohibited (confidential figure)
 – Nil
 – (Between two figures) inclusive
 0 (0.0) Less than half of unit concerned
 empty cell Not applicable
 2014–2015 2014 to 2015 inclusive
 2014/2015 Average for 2014 to 2015 inclusive
 2014/’15 Crop year, financial year, school year, etc., beginning in 2014 and ending in 2015
 2012/’13–2014/’15 Crop year, financial year, etc., 2012/’13 to 2014/’15 inclusive
 
  Due to rounding, some totals may not correspond to the sum of the separate figures.
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