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1. Introduction

1.1 Project background 

Record linkage is becoming more and more common in statistical and academic research. 
Linking records makes it possible to combine data from different sources to answer research 
questions that are very difficult to answer using data from just one source. The advantages 
of combining different sources have been demonstrated by among others Newcombe et 
al., (1959); Wallgren and Wallgren (2007); and Bakker and Daas (2012). In many situations, 
record linkage is an efficient way to collect data and can reduce the inconvenience of asking 
sensitive questions (Fournel et al., 2009; Herings, 1993). The challenge in record linkage is 
to link records that belong to the same individual from different sources. Missed links lead 
to the same problems as nonresponse in surveys. If certain groups of individuals are more 
difficult to link, estimations could be biased. Similarly, incorrect links, defined as combining 
the information of two different persons into one record, lead to errors that are similar to 
measurement error (Bakker and Daas, 2012). The quality of linkage procedures and thus 
the reliability of the datasets are difficult to determine, and this constitutes a major issue in 
record linkage.

In health research, linkage has become a popular way to combine data, despite the sensitivity 
of the information and strict regulations for preventing disclosure of information. Biobanks 
– collections of biomedical samples with medical, genetic and/or genealogic data (see 
glossary of terms) – can be greatly enriched by linking them to certain registers, for example 
for assessing the effect of exposures on health outcomes (Pukkala, 2008). The same holds 
for longitudinal cohort health data, i.e. information about particular groups of persons. In 
the Netherlands, many high-quality medical and socioeconomic registers, covering more 
general population groups, are available for linkage to biobanks and cohorts (Bakker, 2002). 
The potential of record linkage in health research has been extensively demonstrated (Vink 
et al., 2006; Eussen et al., 2010; Bozkurt et al., 2009; Schelleman et al., 2006; Bergman et 
al., 2000). For example, linkage of the Netherlands Cancer Register to the nationwide Dutch 
Pathology database (PALGA) has been proven to be useful to study the risk and prognosis 
of endometrial cancer after treatment with tamoxifen (Bergman et al., 2000). Also, linking 
pharmacy records to biobanks has provided an opportunity to investigate the interactions 
between thiazide diuretics and genetic variation in the renin-angiotensin-system on the risk 
of type 2 diabetes mellitus (Bozkurt et al., 2009).

In spite of the fact that record linkage has proven its value in research, it is not just a 
case of simply following a protocol. Researchers who intend to enrich their data with 
information from another source need to choose an approach that takes into account the 
available identifying variables in both sources, a linkage algorithm that combines records 
based on those variables, and all ethical and legal issues involved. In the present paper, we 
demonstrate the influence that the choice of variables and linkage algorithms has on linkage 
results, but also the importance of the properties of the data sources. 

The current paper was written as part of Biolink NL, one of the so-called rainbow projects 
funded by the Dutch Biobanking and Biomolecular Resources Research Infrastructure 
(BBMRI-NL). BBMRI-NL aims to stimulate collaboration and data sharing between research 
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institutes (mostly biobanks), building on existing infrastructures, resources and technologies. 
The Biolink NL project is a combined effort of researchers from a number of academic 
research institutes and Statistics Netherlands.

1.2 Challenges

In general, universities and research institutes wishing to enrich their data by linking their 
own source to external data sources face three challenges. Firstly, privacy laws restrict the 
use of personal identifiers that can be used to identify the same person in different datasets. 
Research cohorts are not allowed to store the National Identification Number (NIN, in Dutch: 
Burger Service Nummer, BSN or Citizen Service Number) in any form. Typically, only personal 
identifiers such as name, date of birth, etc. are available in their data. Data linkage based on 
NIN requires permission from the authority concerned and is regulated by a strict protocol to 
warrant confidentiality. However, even when the NIN can be used for linking, many biobanks 
or cohorts contain individuals without a NIN. 

Secondly, as both biobanks and registers are governed by the statutory legal framework, 
linking them to other registers may be restricted by law. In addition, access to individual 
medical registers and biobanks is controlled by various parties with different regulations and 
committees. Some biobanks use an informed consent procedure that allows their data to be 
linked with other registers, whereas others do not have such an explicit consent procedure. 

Thirdly, and this is not only a challenge for universities and research institutes but also for 
statistical offices, there is an emerging need to assess linkage quality. Linkage quality is 
seldomly assessed and almost never on a regular basis after implementation of a new or 
changed linkage procedure. Linkage quality can be determined by means of a validation, 
typically by comparing the consistency or the plausibility of research variables (also known as 
content variables, for example disease history, medicine use, etc.) in the linked records, if the 
access to such variables is not restricted. While such a procedure is legitimate, one should be 
aware of potential discrepancies between the content variables due to possible differences in 
definitions. Moreover, if the target population is changed, the validation must be performed 
again. 

Most of the aforementioned challenges apply to biobanks and research institutes, but not to 
Statistics Netherlands, which has a unique legal position allowing it to use the NIN for linkage 
purposes. The compilation of social statistics, including health statistics, is largely based on 
linked register data (Arts et al., 2000b; de Bruin et al., 2003). These linkages are based on the 
NIN and therefore linkage quality is high, but Statistics Netherlands is still very interested in 
the further development of linkage methods. Nowadays, big data mean that large volumes 
of information are becoming available alongside registers and survey data. The possibilities 
for linking such data are limited, because the number of potential linkage variables is usually 
small, and unique identifiers are missing. In this respect, the challenge is to develop new 
linkage methods that take these aspects into account. 

1.3 Study goals

The main goal of the present study is to compare the performance of various record linkage 
methods in health data when only personal identifiers can be used for linkage. The study 
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findings will be published into two white papers. The present – first – paper compares the 
properties of different linkage methods using simulation datasets, while a second report will 
be published after real datasets have been linked in three or four demonstration projects.

Previous studies have shown that the combination of personal identifiers provides a feasible 
alternative if a unique identifier such as the NIN is not available (see for example, Van den 
Brandt et al., 1990a; Pasquali et al., 2010; Meray et al., 2007; Newcombe et al., 1992). The 
strength of such combinations is determined by the number of identifiers included, as well 
as their individual discriminative power (Newcombe et al., 1992; Reitsma, 1999). Although 
it is tempting to increase the power of the linkage key by combining as many identifiers as 
possible, in practice variable values contain errors and may change in the course of time, 
leading to discrepancies in the linkage keys. Moreover, some personal information may not 
be used as a linkage variable because of privacy concerns. 

For example, the identifier surname can be a powerful linkage variable. At the same time, 
this identifier is error-prone and considered highly sensitive, which restricts its usage even 
when encrypted. In most situations, the use of this identifier requires additional work such 
as pre-processing in order to reduce any inconsistency due to either spelling variation or 
typographical errors. Therefore, it is necessary to recognize in which situations surname 
should be included for linking. 

In this study, we investigate the performance of record linkage methods when certain 
combinations of personal identifiers are used as linkage variables, taking into consideration 
that these are not error-free. We select a set of identifiers likely to be present in real data. 
Another aspect affecting linkage success is the size of the data sources involved. For example, 
linking large datasets may increase the likelihood of linking the wrong records; it is important 
to take this into account, as this project comprises various sized data sources. 

The overall goal of our study is to improve existing record linkage practice, with the following 
sub goals:
1. To identify which combinations of personal identifiers are indispensable to obtain an 

acceptable proportion of correct links;
2. To compare the performance of deterministic and probabilistic approaches;
3. To describe the influence of dataset size and quality on linkage results.

For both practical and privacy-related reasons, we first evaluate record linkage methods using 
simulated datasets, in which the true links are known. We compare their performance with 
different combinations of linkage variables, focusing on identifiers commonly available in 
cohorts and registers. Because in reality very few databases are completely error-free, errors 
were introduced into the simulation as well. 

We intend to apply the same linkage methods to real data and work together with 
researchers who have more detailed knowledge of the research topic in the near future. 
Using these real datasets, we plan to identify which population subgroups, if any, are more 
difficult to link than others, and hence could give rise to selection bias and inaccurate 
research outcomes. The findings of these linkages will be presented in a separate white 
paper.
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1.4 Study approach

This paper consists of five chapters. In the following chapter we introduce the basic theory of 
record linkage methods. Chapter 3 is a short literature review that focuses on record linkage 
methodology.

Chapter 4 describes in detail how the datasets for linkage simulation were created in such a 
way that these resemble existing data in biobanks and registers, including specific population 
characteristics and varying data quality. Subsequently, the performance of different linkage 
approaches is compared, using these simulated files.

In short, the following steps were taken:

1. Linkage variables selection. We want to link records using identifiers that are highly 
discriminative when combined and that are commonly available in registers and biobanks. 
Content-specific variables, such as types of disease, should be used only as optional linkage 
variables or as a tool to validate the linking results. 

2. Dataset simulation. Different registers and biobanks cover different parts of the 
population. For example, the general population register (in Dutch: Gemeentelijke 
Basisadministratie personen, GBA) covers the vast majority of the Dutch population, while 
a specific disease cohort register covers a specific part of the population and does not 
necessarily reflect the Dutch population. Because of these differences, a particular linkage 
strategy may work perfectly for a certain type of register (or combination thereof), but might 
be less suitable for another type. Because our goal is to examine a linkage strategy that can 
handle different types of registers and biobanks, it is desirable to test the same methodology 
on various types of data: 

 − A dataset covering the population in general (such as the GBA)
 − A dataset covering a specific part of the population (such as specific disease registrations)
 − A dataset covering a very specific part of the population (such as birth cohort, females, 

twins register)

We created simulation datasets that have the properties of the specific datasets proposed 
above. Chapter 4 describes how, and Appendix I contains more details.

3. Data error simulation. To simulate various degrees of data quality, we introduced errors 
into the identifiers. For example, the postal code may not be up-to-date and the date of birth 
may not be always known for non-natives (Arts et al., 2000). Furthermore, we introduced 
realistic typographical errors (Oberaigner, 2007; Christen and Pudjijono, 2009).

4. Record linkage simulation. We evaluated the chosen linkage methods in a number of 
scenarios based on both availability and quality of the linking variables, as well as different 
overlaps between data sources. 

The final chapter summarises the conclusions from the simulation study.
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2. Record linkage theory

This chapter describes a number of factors to be considered when data from different sources 
need to be linked. Following this, we provide the description of deterministic and probabilistic 
method in more detail. 

2.1 Record linkage: an introduction

Biobanks, research, and health care organizations may have information related to the same 
individual. This information is kept in their records for specific purposes; for example to 
monitor health progress, or to detect possible side effects of medicine (Herings, 1993), etc. 
Each database containing these records has been developed independently to serve a certain 
organization’s specific purpose, and not other purposes. When combined, records from these 
data sources can provide substantial information about an individual. Two kinds of combined 
data can be distinguished: those that consist of records on different persons who share the 
same characteristics, and those that consist of records on the same person. While the former 
can be achieved by aggregating the records with respect to the relevant characteristics, the 
latter requires linking these records at a person level. In most health research, linking records 
at a person level is preferred (Newcombe, 1994; Reitsma, 1999). Record linkage can be 
defined as combining different records concerning the same person into one record (Fellegi 
and Sunter, 1969; Newcombe et al., 1959; Winkler, 2006). 

The main challenge in record linkage is to establish whether records from different sources 
concern the same person. If there is no unique identifier across the data sources1), a set of 
variables (or fields/attributes) that exist in all records can be used to assist in the decision 
process. The variables used for linking can be referred to as linkage variables, while the 
set of all these variables together is called a linkage key: every variable provides a piece of 
information, and together they form certain information about a specific person (or subject, 
or entity in a more general sense). Note that information provided by the variables is not 
uniform: some variables render more information (i.e. are more discriminative) than others. 
Generally, when two records share the same values on their common variables, they probably 
refer to the same person (Newcombe et al., 1959).

Deterministic and probabilistic record linkage methods, or a combination the two, are the 
most commonly applied methods in record linkage. In a deterministic approach, every linkage 
variable used generally has the same level of importance. If they concur, this would suggest 
that the respective records belong to the same person and this pair can be considered as a 
link. In practice, a deterministic approach can be implemented less strictly; for example by 
leaving out some linkage variables deemed less important, or by relaxing the match criteria 
for certain variables. A probabilistic approach, on the other hand, explicitly signifies that 
linkage variables vary in both their discriminative power and quality, and hence agreement 
or disagreement on them should be treated differently. Agreement on a highly discriminative 
variable will receive a higher weight than other variables, while disagreement on a variable 
with a low error rate will have a higher penalty. The overall score on this agreement and 
disagreement indicates whether a record pair can be linked. This feature makes probabilistic 

1) Or databases.
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methods, although computationally more complex, more attractive than deterministic ones. 
In addition to deterministic and probabilistic methods, new techniques are being developed 
in database and data mining research, such as rule-based record comparison methods 
(Hernandez and Stolfo, 1995), machine learning (Elfeky et al., 2002), and Bayesian decision 
model (Verykios et al., 2002). 

The choice for a deterministic or a probabilistic approach depends on the availability 
and quality of linkage variables. For instance, when the variables are of high quality, a 
deterministic approach is often preferred over probabilistic methods (L.Gu et al., 2003). When 
a lower data quality is assumed, a probabilistic approach is often chosen (van Herk-Sukel et 
al., 2012; Herings, 1993; Reitsma, 1999). In practice, particularly when the data size is very 
large, a combination of deterministic and probabilistic methods will be used. In the following 
subsections we discuss the selection procedure for linkage variables, potential errors in these 
variables and privacy considerations. 

2.1.1 Choosing linkage variables
Different registrations may hold a different set of variables about the same person. These 
variables can be divided into the following groups.

 − Primary variable: a variable that uniquely identifies each person (e.g. NIN);
 − Personal identifiers: variables related to general information about a person (e.g. name, 

date of birth, sex, address, postal code);
 − Content (research) variables: variables related to specific information about a person (e.g. 

types of disease this person has).

If for any reason a primary variable cannot be used as a linkage variable, personal identifiers, 
and to some extent content variables, will be used as a substitute. Ideally, these variables 
should be time invariant, be registered using the same definition, and not be correlated, in 
order to avoid redundancy of information. The use of content variables in combination with 
personal identifiers is often not preferred, because of privacy issues. For our simulation, we 
chose a conservative approach and considered identifiers that are commonly available in 
registrations: surname, date of birth, sex, and postal code. 

2.1.2 Errors in linkage variables
To link records from different data sources, researchers use variables shared by these data 
sources and establish whether the values in the different data sources that correspond to 
the same variable match. These variables may be of various types, and each type poses 
a different challenge. For instance, evaluating similarity between two names requires a 
different approach than judging similarity of two different time periods. The former may need 
some knowledge on semantics and morphology, while the latter can be directly observed. 
The task of evaluating similarity between variables is far from trivial, due to errors or 
inconsistency in the variables.

In general, linkage variables can be categorized as follows:
 − String (name, address, postal code, text representations of a date, etc.);
 − Numeric (age, measurement values such as blood pressure, cholesterol level, etc.);
 − Categorical (gender, ethnic group, education level, marital status, etc.).

In most situations, the patterns of errors or inconsistencies in the records are specific to the 
type of variables:
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 − String variables could be prone to spelling mistakes. When typing string variables into 
a registration, various errors may occur: mistakenly added extra strings (insertion), 
accidently placing the strings in a wrong order (transposition), accidentally removing 
some characters (deletion), and randomly changing some characters (replacement). 

 − Numeric variables are more likely to have inconsistencies due to rounding, which is 
subject to personal preferences especially when there is no explicit convention in writing 
them. 

 − Categorical variables were thought to be more rigid as they typically consist of only a 
short code and hence minimize potential errors in typing them. However, when errors or 
inconsistencies occur, for example in a situation involving judgment for classification, their 
effect on misclassifications would be serious. 

These errors occur variably, depending on the protocol used in the registration systems, as 
different registration systems may employ different approaches in how they register, store 
and update the information. For instance, the same variable may be saved as a numeric type 
in one system, but as a string in another; surname prefix may be saved separately in one 
system but saved together with the surname elsewhere; the existence of the postal code is 
checked upon entry in one system but not in another, etc. Also, they vary by how familiar one 
is with the inputs: for example, typing unfamiliar names might result in more mistakes than 
typing familiar names. 

All these factors result in significant inconsistency when records from different systems need 
to be linked. A standardization procedure during the processing stage is usually effective only 
for certain problems, mostly related to variations in the variable types and, to some extent, 
typographical errors. For other problems, such as different surname for the same person, 
different address due to the time-lag, or different criteria for the same disease, these cannot 
be solved by standardization alone. 

Based on all the factors that may cause errors, we distinguish two types of potential errors in 
linkage variables: random errors and systematic errors.

Random errors. We define random errors as errors that do not depend on the identifier 
value and may thus occur in any record. How these errors occur, however, is not random. For 
instance, for string variables it is assumed that most errors arise from the middle position 
of the string, as people usually tend to type the first characters more carefully (Porter and 
Winkler, 1997).

Systematic errors. We define systematic errors as errors that are more likely to take place in 
records with certain values; thus their occurrence does depend on a specific identifier. For 
instance, typing the name of a foreigner is more likely to result in more errors than typing 
a familiar name (see Oberaigner, 2007). Likewise, married women may be registered under 
their maiden name in one registration system and under their partner’s name in the other 
system. Such inconsistencies are hard to detect.

2.1.3 Privacy considerations
Because medical files contain sensitive information, it is common practice to separate 
personal identifying variables from clinical or medical information. Researchers who wish to 
analyze the linked data receive datasets that do not contain identifying variables. 
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Modern practi ce in medical record linkage dictates the use of a protocol to protect sensiti ve 
data (Schnell et al., 2009; Giersiepen et al., 2010). Before variables are shared between 
insti tuti ons, they need to be standardized and encrypted. Someti mes this encrypti on is 
irreversible, but that is not required by all insti tutes. In reality, multi ple encrypti ons can take 
place before performing the linkage. In Figure 2.1.3 we illustrate a simplifi ed linking protocol 
where a Trusted Third Party (TTP) is involved.

Personal	  Identifiers	  
-‐plain	  text-‐	  

 

Personal	  Identifiers	  
-‐encrypted-‐	  

 

Data	  source	  A	  

 

TTP	  

 

Personal	  Identifiers	  
-‐plain	  text-‐	  

 

Personal	  Identifiers	  
-‐encrypted-‐	  

 

Data	  source	  B	  

 

TTP	  

 
	  	  Record	  Linkage	  

 

In this example, record linkage is applied based on these encrypted values. Because of the 
encrypti on, it is no longer possible to judge the similarity between values. As a consequence, 
a typical distance functi on such as Jaro-Winkler and Levenshtein distance cannot be used 
(Durham et al., 2012). This problem may be overcome by the reducti on of potenti al errors 
in linkage variables during the standardizati on procedure before encrypti on. In the literature 
review secti on we identi fy possible methods that can be employed in a privacy preserving 
record linkage as well. 

2.2  Record linkage methods

2.2.1 Deterministic record linkage
In deterministi c record linkage, each value of the linkage variables will be compared pair-by-
pair. Generally, when records agree on all linkage variables, the pair will be considered to be 
a link. However, if errors are present in the linkage variables, a true match will disagree on 
these variables, resulti ng in a missed link. With this in mind, both the importance and the 
quality of each linkage variable should be taken into account. For instance, agreement on 
variables that are less important and prone to error will be considered opti onal.

We will generalize the deterministi c method as follows. Suppose we defi ne agreement and 
disagreement on linkage variable k = 1,2,…,K as

y
i, j

kij =
1 if record  pair ( )  agrees on  linkage variable  kk
0 otherwise



     

(2.1)

Comparison on all linkage variable for record pair (i,j) can be denoted as

fij kij
k

=∑γ          (2.2)

2.1.3 Simplified TTP linkage protocol
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The decision rule for whether or not a record pair (i,j) is selected as link

x
f

ij
ij=
≥




1

0

β

otherwise

        

(2.3)

where β ε {k – n, ... , k – 1, k} and n denotes the number of linkage variables allowed to 
disagree, 0 ≤ n < k. This model states that record pair (i,j) will be considered as a link if 
their values agree on at least k-n linkage variables. When matching on all linkage variables is 
strictly required, then n will be 0. However, to obtain more links, n is usually permitted to be 
more than 0, which means leaving out some variables. In most applications, n is limited to 1 
(generally known as stepwise deterministic).

2.2.2 Probabilistic record linkage
The probabilistic record linkage method is based on the idea that for two files I and J, 
all possible pairs of these files can be divided into two disjoint sets M (Matched) and U 
(Unmatched). A pair of records (i,j) is a member of M if the two records are truly related 
to the same person. Otherwise it is a member of U. In reality, the members of M and U 
are unknown. The record linkage process in this method aims to classify each record pair 
as belonging to either M or U, by observing whether the actual values on corresponding 
linkage variables within each pair agree (Fellegi and Sunter, 1969). The observation takes 
place for each linkage variable k. By using the same agreement definition as introduced in 
equation (2.1), we divide the agreement probability into agreement among true links and 
agreement among true non-links. Agreement among true links is related to the errors in 
linking variable k; thus, if this variable contains negligible error, the associated probability 
of agreement among true links will be close to 1. On the other hand, the agreement among 
true non-links will correspond to the discriminating power of the variable k. Intuitively, a 
discriminative variable will elicit a low probability of agreement among true non-links (also 
called agreement by chance, see e.g. Jaro, 1995). 

Suppose for each linking variable k, we call agreement probability among true links mk and 
agreement probability among non-links uk, then these probabilities can be written as:

m i j M

u i j U

k kij

k kij

= = ∈{ }
= = ∈{ }
P | ( , )

P | ( , )

γ

γ

1

1         
(2.4)

where γkij represents binary outcome of the comparison between two records (i,j) on variable k.

Then, assuming independence among variable k,

P | ( )

P | ( )

γ

γ

γ γ

γ γ

kij k k
k

K

kij k k

M m m

U u u

kij kij

kij

{ } = −

{ } = −

−

=

−

∏ 1

1

1

1

1 kkij

k

K

=
∏
1       

(2.5)

The odds ratio between these probabilities can be used as a test for whether or not (i,j) can 
be linked:

P |

P |

γ

γ
kij

kij

M

U
{ }
{ }          (2.6)

Because M and U are unknown, m and u have to be estimated. To model the relationship 
between m and u (Jaro, 1989) let all record pairs be defined as:
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g
M

ij =
∈( , )

( , )
1 0
0 1

if record  pair (i,j)   
if record  pair (i,,j)   ∈



 U        (2.7)

and suppose the complete data vector can be defined as

G = γ ij ijg,         (2.8)

The complete data likelihood involving all record pairs (i,j) can be written as 

f m u p pg M p g Uij ij ij ij
i j

( | , , ) P( | ) ( ) P( | )
( , )

G = + −∏ γ γ1
   

(2.9)

where p represents the proportion of record pairs (i,j) that belong to M, and (1-p) for the 
proportion of record pairs belong to U, accordingly.

Solving equation (2.9) directly to obtain m, u, and p is impossible, as the values for agreement 
indicator in equation (2.1) are observable, while the values for the indicator variable in 
equation (2.7) are unknown. To solve this problem, one can apply an Expected-Maximization 
(EM) algorithm proposed by Dempster et al. (1977).

An EM algorithm consists of two steps: expectation and maximization steps, which are 
executed iteratively. It starts by using initial estimates of the parameters: in our case m, u, and 
p). These initial estimates are used to construct the values of the missing variable (in our case 
g). This procedure is called the expectation step. Once the values of g have been obtained, 
they will be used as inputs for equation (2.9) where the new values for m, u, and p will be 
obtained by maximizing this equation. The whole process is repeated until the estimates for 
m, u, and p converge. Because this approach is an approximation method, it is advisable to 
repeat the whole procedure using different values for initial estimates. Jaro (1989) provided 
practical details on how to obtain g, m, u, and p by using an EM algorithm and argued that the 
algorithm is relatively stable as long as the initial values for m estimates are higher than those 
for u estimates. Bauman Jr. (2006) shared his code for the implementation of EM algorithm in 
SAS. 

The obtained estimates of m and u will be used to calculate the odds ratio for agreement and 
disagreement as specified in equation (2.6). Logs are used for convenience in calculation. This 
odds ratio is known as weight. Specifically: 

w m
u

k 

w m

k
a k

k

k
d

=










=
−

log

log

2

2

1

if linkage variable  agrees

kk

ku
k

1−








 if linkage variable   disagrees       

(2.10)

where wk
a refers to agreement weight and wk

d  disagreement weight on variable k. Assuming 
independence among the linkage variables and using the logs, the total weight is simply the 
sum of these weights. Following Winkler’s suggestion (Porter and Winkler, 1997), the total 
weight Tij for record-pair (i,j) can be generally formulated as

T w w wij k
a

k
d

kij k
d

k
= − +∑ ( )δ

    
(2.11)

where 0 ≤ δkij ≤ 1. Note that for a strict agreement and disagreement comparison on variable 
k,

 
δkij

 
will correspond to 1 and 0, respectively. 

The total weight will be used to classify which pairs should be considered as links, non-links, 
or possible links (which need a clerical review). An optimal decision should consider possible 
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errors in making the classification decision. Suppose we define μ and λ as the probability 
of making a wrong decision, respectively assigning true non-links into links, and vice versa. 
Acceptable values for these probabilities can be chosen in advance. 

Fellegi-Sunter proposed to arrange the agreement pattern z with respect to its total weight in 
a decreasing order. Let this be z=1,2,…,z’,…,z’’, …,Z . If there are four linkage variables, then 
there will be in total 16 agreement patterns, assuming a simple yes/no agreement. Then the 
probability of assigning true non-links to links can be written as a cumulative probability of 
agreement under U (for readability we ignore index k,i,j):

µ γ=
=
∑P( | )
'

z

z

z

U
1         (2.12)

As we can deduce from the order of agreement patterns, P (ϒ1|U) has the lowest value. 
Likewise, the probability of assigning true links to non-links can be written as a cumulative 
probability of agreement under M:

λ γ=
=
∑ P( | )
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(2.13)
For the same reason,  P (ϒZ|M) has the lowest value.

When μ and λ are fixed, their corresponding weight will be:
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And from the order of agreement pattern z we can see: Tμ > Tλ.

The linking decision will be to choose any agreement pattern whose total weight is at least 
equal to Tμ and assigning the associated record pairs as links. Likewise, record pairs associated 
with any agreement pattern whose total weight is no more than Tλ will be considered non-
links. Pairs whose total weight is between Tλ  and Tμ will be considered to be possible links.

The optimal linking decision according to Fellegi-Sunter will be to choose the value of μ and λ 
in such a way that the number of possible links will be minimized. 

2.2.3 Practical considerations
Blocking. It is computationally inefficient to examine all possible record pairs for comparison 
purposes. By way of illustration: consider file I and J each have 1,000 records. The complete 
number of record pairs will be 1,000 x 1,000, while the number of true links will be only 1,000 
at the most (assuming the linking is restricted to one-to-one). This implies that the majority 
of the record pairs are non-links, so it is unnecessary to include all of them in the comparison 
process. To reduce the number of record pairs considered for this process, blocking is applied 
by filtering the record pairs on the basis of their value on some variables (known as blocking 
variables). Literature on probabilistic record linkage suggests using variables with the least 
errors as blocking variables, see e.g. (Gu et al., 2003). Possible blocking methods include 
sorted neighbourhood (Hernandez and Stolfo, 1998) and canopy clustering (McCallum et al., 
2000). 
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Matching. In addition to exact matching, similar matching can be incorporated in the weights 
in the probabilistic approach. In similar matching, the value δkij in equation (2.11) will be 
between 0 and 1, and will lead to a lower weight if two values of the same linkage variable 
are similar than if they are exactly the same. The Jaro-Winkler distance method (Porter and 
Winkler, 1997) is widely used in record linkage to calculate similarity between two strings. 
Other popular methods are Levenshtein distance (Levenhstein, 1966) and the n-gram method 
(Churches and Christen, 2004a).

Linking. Alternative methods include the Bayesian decision model, where the cost of making 
a misclassification is minimized (Verykios et al., 2002) and a mathematical programming 
model where the total weight is maximized (Jaro, 1989). 

Summary
This chapter has presented a basic and general theoretical background on record linkage. 
It has explained that the choice of linkage variables is often determined by availability in 
the data sources and is limited by privacy regulations. Linkage methods include the use of 
different algorithms, that can be either classified as deterministic or probabilistic. The next 
chapter reviews the literature on the theory of record linkage in health care settings.

3. Record linkage: a literature 
review

This section summarizes how deterministic and probabilistic methods are applied in the 
health data context. A literature review was conducted for this purpose.

As record linkage covers a very broad range of applications – marketing, fraud detection, 
government administration, healthcare research – the terminology used varies. In order to 
gain some idea of the terminology, we started by looking for published and unpublished 
papers that provide an overview of record linkage or a literature review on record linkage. 
This resulted in papers written by researchers in various fields, ranging from government 
researchers to university scholars (Silveira and Artmann, 2009; L.Gu et al., 2003; Winkler, 
2006).

We used the following terms: ‘record link*’ and (health or epidemi* or cohort) in Web of 
Knowledge and PiCarta to narrow our search to published papers only2). To take into account 
the most recent technological developments, we included papers published from 2007 
onwards, with some exceptions. We only included papers in which the linkage methods were 
explained. 

As methods and data sources vary considerably, it is difficult to compare the linkage success 
of different studies. This review aims to identify certain conditions that are required to 
achieve successful linkage, and to learn how others assessed the correctness of the linkage.

2) The authors wish to thank Caroline Planting and the VUMC library staffs who have helped us searching and 
finding the papers.



CBS | 2014 Record Linkage in Health Data: a simulation study 16

3.1 Deterministic record linkage 

In the deterministic method, all linkage variables used for comparison have the same level of 
importance. This implies that, generally, agreement on all linkage variables is required to infer 
that the corresponding pair of records belongs to the same person (a link). 

The literature related to the application of the deterministic method suggests that there are 
two ways to evaluate agreement between linkage variables: 

1. Exact matching. Agreement or disagreement is determined by directly observing 
whether the values of every linkage variable are exactly the same. Generally, this can be done 
in two ways: fully matching or partial matching. Fully matching uses the complete or full 
value of the linkage variables; for example, matching on the full surname, the complete date 
of birth, the complete address. Partial matching, on the other hand, uses only a partial value 
of the linkage variables, such as a substring of the first four characters of the surname.

2. Similar matching. While exact matching compares the value directly, similar matching 
compares the value in a less stringent way. It makes use of a number of criteria to judge 
whether two different values can be considered similar, i.e. whether their difference is still 
within an acceptable margin.

3.1.1 Literature review: deterministic methods
 

 Strategy In which situations?

Type of 
Linkage 
Variables Sources

Suitable for 
PPRL? Study origin

 

Exact fully matching: allowing 
unmatched on one of the linkage 
variables (K-1 deterministic)

When the variables are of high 
quality. 

String (name, 
date of birth, 
SSN)

(Theis et al., 
2010) 

Yes 
 

US 
 

Exact fully matching combined with 
similar matching: allowing some 
(unimportant) linkage variables to 
slightly differ in their values. 

When dealing with variables that have 
a less precision level. 
 

String (various 
dates) 
 

(Pasquali et al., 
2010; Hammill 
et al., 2009) 

Yes if the 
unimportant 
variables are 
not encrypted

US
 

 

Exact matching (fully and partial) 
followed by similar matching: using 
different linkage variables in each 
sequent, where linkage variables 
become less restrictive.

When many linkages are already 
found using a restricted criterion. 
Additional linkages can be found by 
relaxing the criterion.

 
 
 
 

String (name, 
dob) 
Categorical 
(sex, race)

 
 
 
 

(Arts et al., 
2000a; Vink et 
al., 2006; 
Gomatam et 
al., 2002; Hser 
and Evans, 
2008; 
Florentinus et 
al., 2006)

Yes if the 
unimportant 
variables are 
not encrypted

 
 
 
 

US, NL 
 
 
 
 
 
 
 

Exact matching partial value: match 
on the first four letters of the last 
name, on month and year of the date 
of birth, etc.

When the variables contain 
typographical errors. The errors can 
presumably be reduced by using only 
the partial value of the variables. 
 
 
 
 
 
 
 

String 
 
 
 
 
 
 
 
 
 
 

(Van den 
Brandt et al., 
1990b; McCoy 
et al., 2010; 
Karmel et al., 
2010; Hockley 
et al., 2008; 
Turchin et al., 
2010; Adams et 
al., 1997; 
Weber et al., 
2012)

Yes 
 
 
 
 
 
 
 
 
 
 

Aus, UK, US, 
NL 
 
 
 
 
 
 
 
 
 

Similar matching: use a similarity 
criterion between a pair of record by 
means of a distance metric.

When the variables contain minor 
errors. These errors can be tolerated 
if the distance between the variables’ 
value is acceptable.

String 
Categorical 
 

(Pacheco et al., 
2008) 
 

Yes 
 
 

Brazil 
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Most applications of the deterministic method in the reviewed papers apply exact matching, 
and to a lesser extent, similar matching, simply because exact matching is more convenient 
as – unlike similar matching – it involves objective judgment. The disadvantage of exact 
matching, particularly fully matching, is that true links will be missed when there are errors 
in the linkage variables. Therefore researchers seldom use the deterministic method in just a 
single run. Instead, they use a stepwise or sequential approach, where either partial matching 
or similar matching is done in subsequent steps included. 

The literature summary is given in Table 3.1.1. We classify and group similar algorithms into 
one strategy for ease of comparison. Each strategy is case-dependent, which means that it 
has been proposed to suit a specific problem related to both the availability and the quality of 
the linkage variables, as well as the size of the datasets. Reporting the linkage results will be 
less helpful because the datasets and their quality are not the same in these studies. On the 
other hand, knowing the reasons that researchers chose a particular strategy gives us a fair 
amount of information to assess whether this strategy will work for the Biolink record linkage. 
In addition, we also examine whether the strategies will also work in Privacy-preserving 
record linkage (PPRL).

3.2 Probabilistic record linkage 

As opposed to the deterministic method, in the probabilistic method each linkage variable 
has a certain weight. These weights are determined by the discriminative power and 
possible errors. The overall weight of the linkage variables is used to decide whether or not a 
corresponding record pair can be linked, as described in section 2.2.2. 

Users of probabilistic methods must take into consideration the following aspects of m and u 
estimation, weight assignment, and the choice of cut-off value. 

Estimation on m and u. The complete data log-likelihood as originally proposed by 
Dempster et al. (1977) (see equation 2.9 in section 2.2.2) takes all record pairs into account. 
Because the number of non-links is very dominant, there will be bias in the estimation  
of m and p. To correct for this, the data log-likelihood should be adjusted to obtain sensible 
m and p estimates (Yancey, 2002). The literature provides a number of ways to obtain 
m and u:

1. Using prior information on the probability distribution of the linkage variables as well 
as the probabilities of different type of error resulting from the record generation process 
(Fellegi and Sunter, 1969). For example, one can calculate m as equal to one minus the error 
rate of the identifier, if this is known (Jaro, 1995).

2. Using standard estimation methods, such as expectation maximization (EM) algorithm 
and maximum likelihood estimation (MLE) (Tromp et al., 2011; Jaro, 1995; Dempster et al., 
1977), with some adjustment. Thus, instead of using all record pairs, only the frequency of 
the patterns will be used (see, e.g., (Tromp et al., 2011; Jaro, 1995)). 

3. Using a fuzzy algorithm. For example, by observing the number of agreements, 
disagreements, and no-decisions (when at least one value is missing) on each linkage 
variable, for each pair of records selected by a series of random sampling (with replacement) 
and pairing them as a Cartesian product. The average value of these numbers is used 
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to estimate m (in this case m refers to the reliability of the linkage variables) and u (the 
probability of matching by chance) (Victor and Mera, 2001). 

Weight assignment. The weights are calculated as described in section 2.2.2, with some 
alteration to deal with missing data. For example, Tromp et al. (2006) do not apply a penalty 
for a variable whose value is missing. Instead, they give no weight value as no decision 
concerning agreement or disagreement can be made.

Cut-off value. Theoretically, the cut-off values should be chosen to balance the trade-off 
between the number of false positives and false negatives, while minimizing the number of 
links that require manual review (Fellegi and Sunter, 1969). In most papers reviewed in this 
study, only one cut-off value is chosen. The rationale behind the choice of cut-off varies from 
study to study; for instance, prudent approach (Dean et al., 2001; Newgard et al., 2012), 
guidance from the past experiences (Gorelick et al., 2007), or manual inspection of the 
weight distribution (Tromp et al., 2009; Lyons et al., 2009).

Probabilistic record linkage allows for disagreement on some of the linkage keys. Usually 
linkage keys are compared using exact agreement measures: a key either matches for a pair 
(value 1) or doesn’t match (value 0). However, as discussed in section 2.2.2 (see equation 
2.11) it is also possible to use a similarity measure to compare some (or all) of the linkage 
keys. This leads to various modifications in the implementation of probabilistic methods in a 

3.2.1 Literature review: probabilistic methods
 

 Strategy In which situations?

Type of 
Linkage 
Variables Sources

Suitable for 
PPRL? Study origin

 

Agreement based on exact 
comparison.

When not all variables contain error 
(confidence in the quality of most 
variables).

 
 
 

String, 
Numeric, 
Categorical

 
 
 

(Blakely et al., 
2000; Lain et 
al., 2009; 
Meray et al., 
2007; Jaro, 
1995; Herings, 
1993)

Yes 
 
 
 
 
 

Aus, US, NL, 
NZ. 
 
 
 
 

Agreement based on similarity 
measure for some variables.

When the blocking and other variables 
contain few typographical errors, 
which may lead to similar matching 
instead of exact matching.

  
 

String, 
Numeric, 
Categorical

 
 
 

(van Herk-Sukel 
et al., 2012; 
Tromp et al., 
2009; Dean et 
al., 2001; 
Newgard et al., 
2012)

Yes, if the 
variables for 
similar 
matching are 
not encrypted.

 

Italy, US, NL. 
 
 
 
 
 

Agreement based on similarity (for 
some variables); exact agreement 
treated differently than partial 
agreement.

When the values of the variables can 
be classified into the same, similar, 
and different. The practitioners were 
not sure whether the similarity was 
due to error.

String, 
Numeric, 
Categorical

 

(Tromp et al., 
2006; Zhu et 
al., 2009)

 

Yes if the 
unimportant 
variables are 
not encrypted

US, NL 
 
 
 

Probabilistic record linkage is 
combined with deterministic linkage.

When the datasets are considered 
very large (>10,000 records). 
 
 
 
 
 
 
 

String 
 

 
  
 
 
 
 

(Lyons et al., 
2009; Roos et 
al., 1996; 
Gorelick et al., 
2007; Victor 
and Mera, 
2001; Marquez 
Cid et al., 2008; 
Giersiepen et 
al., 2010)

Yes 
 
 
 
 
 
 
 
 

Germany, UK, 
US, Spain. 
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number of papers, mostly to accommodate specific problems faced during implementation. 
We summarize our review on the application of probabilistic methods in table 3.2.1. In 
this table, the first three strategies describe different ways of handling similarity measures 
in probabilistic linkage. The fourth combines deterministic linkage (which requires exact 
matching) with probabilistic linkage. 

3.3 Privacy-preserving record linkage 

In privacy-preserving record linkage, the original values of linkage variables are not revealed 
during linkage, as both data sources encrypt their variables beforehand. If variables in both 
data sources are consistent and error-free, the encrypted values concerning the same person 
will also be the same. However, it is difficult to judge similarity (or close agreement) between 
two encrypted variables when the original values contain errors. 

A number of strategies have been proposed to perform string comparisons in the privacy-
preserving environment when the linkage variables contain errors. We summarize them as 
follows. 

 − Partial use of linkage variables strategy (Weber et al., 2012). This strategy makes use 
of part of the linkage variables (e.g. the first four letters of the surname), based on the 
notion that typographical errors are less likely to occur in the beginning of a string. The 
encryption takes place on this partial format.

 − Phonetic filtering strategy (Quantin et al., 2005; Fournel et al., 2009). This strategy aims 
to reduce the effect of typographical errors by transforming similar phonetic sounds into 
the same code. For example, Meijer and Meyer are phonetically similar and are thus 
assigned the same code. The resulting phonetic codes are encrypted and the comparisons 
are made on these encrypted values. The Soundex and Metaphone (Karakasidis and 
Verykios, 2009) algorithm can be used to reduce variations in surnames based on English 
pronunciation for example. 

 − n-gram strategy (Durham et al., 2012; Churches and Christen, 2004b; Trepetin, 2008) This 
method aims to localize the effect of typographical errors by ‘cutting’ a string into a series 
of n-overlap fragments. In record linkage, bigram or 2-gram is considered sufficient. As an 
example, the bigrams of Meijer consist of the following elements: _M, me, ei, ij, je, er, r_. 
Every combination of the elements is encrypted and the similarity between two names is 
determined by calculating how many bigrams they share. Clearly, such a method requires 
a huge capacity to store all possible combinations of the n-gram. 

 − n-gram in combination with bloom filter strategy (Schnell et al., 2009). This approach 
basically employs the n-gram strategy, but in a compact format, and is considered 
more secure. In this method, instead of encrypting each combination of the elements 
separately, independent hash functions are used to encrypt each element and store the 
results in an array of fragments of a predefined length. All fragments are initialized to 
0, and those corresponding to the encrypted element are set to 1. Similarity between 
two bloom filters is evaluated by comparing them fragment by fragment. It is possible 
that two different functions map two different elements into the same fragments, thus 
increasing the likelihood of false links. Kirsch and Mitzenmacher (2008) suggest that two 
independent hash functions are adequate to minimize the occurrence of false positives. 
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3.4 Assessing linkage quality 

To assess the correctness of the linkage, it is essential to know whether the links obtained 
actually refer to the same entity, i.e. whether they are true links. If true links are known, the 
number of false positives (false links) and false negatives (false non-links) can be calculated. 
Figure 3.4.1 depicts possible combinations between real and observed values.

As in practice real values are often unknown, researchers use an approximation with 
additional information to infer which links are probably true links. Their approaches vary 
depending on the quality of their data and the availability of the information. In general, they 
can be summarized as follows.

 − Manual or clerical review (see for example: Karmel et al., 2010; Meray et al., 2007; Victor 
and Mera, 2001; Zhu et al., 2009; Turchin et al., 2010). This is considered as the gold 
standard, although it is expensive and time-consuming. Therefore, in practice, only a 
sample of the linkages are chosen for evaluation.

 − With the aid of a sensitive or unique identifier, such as a full name or a Social Service 
Number (e.g. Weber et al., 2012). These identifiers should be complete and of high 
quality. 

 − Comparison using different linkage keys, i.e. cross-validation (see e.g. Lyons et al., 2009; 
DuVall et al., 2010; Hser and Evans, 2008; Herings, 1993), or using a different linkage 
method; for example, by comparing the result of deterministic linkage to probabilistic 
linkage (e.g. Adams et al.,1997). This approach is seen as an inexpensive alternative and 
there is thus no restriction on the number of links that can be included for evaluation.

In privacy-preserving record linkage, where all linkage variables are encrypted and an access 
to content variables is prohibited, direct assessment of the linking results is not possible. 
However, since the occurrences of false positives, and to a lesser extent false negatives, can 
have a serious effect on the research conclusions, some researchers request permission from 
the authority to examine the correctness of the linkage using real identifiers (e.g. Weber et 
al., 2012; Giersiepen et al., 2010).

3.5 Summary

The literature on linkage in health care provides several solutions for the difficulties caused by 
errors within personal identifiers such as names, birthdates, and addresses. Small variations 
exist within the deterministic approach, such as exact full matching, partial (substring) exact 
matching or similar (e.g. phonetic) matching. Probabilistic linkage algorithms make use of 
weights and cut-off values, which can be varied depending on the situation. In this way, 

3.4.1 Real value and possible linking outcomes
 

Real value
 

True Link True Non-link
 

Observation Link True Positive (TP) False Positive (FP)

Non-link False Negative (FN) True Negative (TN)
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researchers are flexible in allowing disagreement between records. Several techniques for 
both deterministic and probabilistic methods for privacy-preserving record linkage have been 
described. In the following chapter we use information from this review and describe how 
the simulation study on record linkage in a health-care setting was performed. 

4. Record linkage simulation

4.1 Introduction

The potential for the use of biobanks, registers and health care databases for research can be 
greatly enhanced by linking them with external data collections. The main purpose of record 
linkage in health research is to bring together information on individual persons recorded 
in various data sources. In the previous chapters we have discussed the added value of 
linkage and the challenges of working with health data, have given a theoretical background, 
and presented an overview of the literature. Given all these theoretical possibilities for 
methodological choices, we have tried to investigate and visualise how these choices actually 
impact linkage in a simulation study. In this chapter, we describe this simulation study to give 
more insight into the impact of practical choices for linking methodology. 

4.1.1 Aim
We conducted a simulation of typical applications involving linkage of biobanks and 
registers without a unique identifier in either data source; unique (universal) identifiers 
such as national identification numbers (NIN; or in Dutch Burger Service Nummer/BSN) 
can often not be used as they are intentionally not included or may not be used because 
of legal restrictions. Other linkage variables must then be selected in combination with an 
appropriate linkage algorithm. The aim of the simulation study was to compare generic 
linkage procedures that can be used to link health research data without a unique identifier. 

The following sections explain the scope, goal and outcome, and set-up of the simulations. 
Ideal linkage means that all records in one data source concerning one person are linked to 
all records in the other data source concerning exactly the same person. At the same time no 
false positive and no false negative linkages are made. Section 4.2.4 explains in more detail 
how linkage quality is assessed according to the research question to be studied with the 
created dataset.

4.1.2 Scope 
For the purpose of health care research, the result of linking two or more data sources to 
create enriched datasets depends not only on the nature of the data sources and accuracy 
of source data, but also on how the properties of the different sources relate to each other. 
In other words, we can define two properties, because establishing the correct links and 
discarding the wrong links depend on both (i) the possible combinations and (ii) the ease of 
detecting or identifying individual persons in a dataset. In this simulation we translate these 
properties to factors that vary in datasets typically used in ‘real life’ health care research. 
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Size influences the number of possible links, either correct or wrong, between data sources. 
What is the effect of varying source sizes on link quality? And similarly: what is the effect of 
variation in the degree of shared individuals or overlap between data sources.

The variation in the type of population covered by the data source influences identification of 
individuals. To illustrate this we created simulation datasets from registers covering the entire 
Dutch population and registers covering a specific part of the population, such as people 
with a specific disease, or women treated for fertility problems. The variation in the type 
of dataset is expected to influence the identification of persons by effects on variability in 
the linkage keys caused by the selective design (e.g. women, certain age cohorts, frequently 
moving students, etc.) and availability of linkage keys in the data source. Furthermore, errors 
in the quality or accuracy of these identifiers caused by things like typing errors, changes of 
address and name changes through marriage all affect identification.

Within the scope of the simulation, we attempted to cover and address examples of the 
abovementioned variation by creating dedicated simulation datasets (see 4.2.1). This enabled 
us to manipulate and investigate the following factors related to these types of datasets and 
that may pose challenges for linkage: 
a. Variation in size and type of registration 

 − Variation in the size of the registrations 
 − Variation in the type of population they cover (i.e., population characteristics);

b. Variation in the proportion of a shared population (overlap);
c. Variation in available linkage variables. Datasets differ in terms of the available linkage 

variables as a result of differences in design or confidentiality aspects;
d. Accuracy of linkage variables. Various errors will be introduced in the datasets to mimic 

inaccuracy of data entry and data conversions.

Factors a, b, and d are covered by the creation of a variety of simulation datasets and by the 
simulation (see 4.1.2) determining which datasets will be linked in the simulations. Factor c is 
simulated by manipulating the inclusion of linkage variables in the linkage key.

This outline of typical data-related challenges of health care data sources defines the scope of 
our simulation in terms of variation affecting the data sources. In addition, we provide some 
guidance on how to perform this linkage.

4.1.3 Deliverables 
Given the aim and scope described above, the simulation should result in the following 
deliverables :

1. Development of a linkage strategy that takes into account the variations in health care data 
sources: differences in size and type, overlap, available linkage variables and accuracy or 
error level of linkage variables (see 4.1.2). 

2. A specific description of a scenario in which no surnames are available as linkage variables, 
as in reality names may be excluded from datasets for confidentiality reasons. 

The simulations will result in linkages showing different performances depending on input 
and methods that make them more or less suitable for certain research questions. The end 
product of this whitepaper will be a recommendation that provides guidance to decide on 
how the ideal linkage should be applied in specific situations, depending on available data 
sources and research requirements.
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4.1.4 Questions the simulations should answer
Summing up the considerations mentioned in the previous sections, the simulation should 
answer the following questions to serve as input for methodological choices for linking a 
given combination of datasets:
1. Which linking method is suitable given the following variations: size and type of 

registrations, possible overlap size, accuracy and error, and exclusion of surname from the 
linkage key? 

2. What choice of linkage key (combination of linkage variables, see 4.2.1) is most 
appropriate?

4.2 Methods

The methods used for this simulation study are described in terms of the design of the 
simulation, performance indicators and quality, and the simulation procedure. We start with 
the design of the simulation to explain what is simulated and what type of data are used. 
To enable the evaluation of our simulation efforts, our definition of quality of linkage in this 
whitepaper is elaborated in more detail in section 4.2.4. Lastly in section 4.3 we describe the 
simulation procedure and the results. 

4.2.1 Simulation design 
In the design of the simulation we explain the creation of datasets, the addition of errors, 
dimensions or variations to be explored in the simulation, the choice of linkage keys and lastly 
the algorithms used and their specific applications.

Simulation datasets
To mimic real life representative electronic health care registers encountered in research 
linkage, the simulation datasets should vary in size and population coverage. 

Therefore, we created the following basic datasets as combinations of size and type:
 − Large dataset: represents the Dutch population in general (160,000 records)
 − Medium dataset: represents a specific population group (16,000 records)
 − Small dataset: represents a more specific population (1,600 records)

To mimic the properties of the various types of datasets, we analysed three existing real 
life datasets for frequency distributions of sex, names, years of birth, and postal codes 
(geographical distribution) to construct a blueprint of the dataset types. The frequency 
distributions were then included in the algorithm to create the simulation datasets. Basic 
sets containing a unique identifier, surname, date of birth, sex, and postal code, as well as 
ethnic code, were generated. More details on the creation of simulation datasets are given 
in Appendix I. No records from any of the abovementioned data sources themselves were 
included.

The large dataset was based on the characteristics of the ‘general population statistics’ of 
Statistics Netherlands, obtained from the 2011 figures in StatLine. 

The medium dataset was based on the properties of the cancer statistics from the Dutch 
Cancer Register (in Dutch: Nederlandse Kanker Registratie/NKR). Patients included in this 
register have been diagnosed with cancer and have been treated by a healthcare professional 
who reports to this register. As the risk for cancer is age dependent and, for many cancers, 
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has a familial or environmental component, age, family names, and addresses may not be 
randomly distributed.

The small dataset was created based on a blueprint of OMEGA, a female cohort registration 
based on data from the Dutch fertility clinics in 1996. Variability in the content of linkage 
variables in this dataset is further restricted as it contains only women. 

The first step in creating the basic simulation datasets is illustrated in Figure 4.2.1.1. Within 
these basic datasets, linkage combination sets, such as small-medium, small-large, and 
medium-large, were created by adding a different-sized sample from the smallest set of the 
two to the larger one. Thus in the actual linkage process, records sampled from the smallest 
set and added to the larger set should be traced back in that combination set. By varying the 
size of the sample of the smallest set to 10, 60 or 90 percent of the smaller set, we could 
control the overlap between the datasets.

4.2.1.1 Creation of simulation datasets – steps 1 and 2
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Just as in real life, the datasets contain errors. As the precise numbers and types of errors 
in the real datasets we used for prototyping are unknown, we applied typical errors as 
mentioned in the literature (Arts et al., 2000; Oberaigner, 2007; Christen and Pudjijono, 
2009). We distinguish between random errors that affect linkage variables equally (mostly 
typographical errors), and systematic errors that occur more often in specific groups. 
Specifically, we introduced the following errors:

1. Random errors are usually caused by typing errors: inserting a new character, removing a 
character, replacing a character with another, or wrong placement of a character. For our 
simulation, these errors translate to minor changes in surname, date of birth, or postal 
code.

2. Systematic errors occur typically in records with specific values. We assumed the following 
systematic errors:

 – Women of a certain age were more likely to be married and use their partner’s  
  surname;

 – Young people and senior citizens were more likely to change their address ;
 – Non-native people were more likely to have a ‘standard’ or missing date of birth;
 – Residents of urban areas were more likely to move within their neighbourhood.

Appendix I contains a detailed overview of the types of errors added to records of the 
simulation sets.

Dimensions explored in simulation 
Using the simulated datasets, we created a number of possible linking scenarios, which are 
the combinations of the following factors or dimensions:

 − Data source combinations with various sizes and specific types of the population covered. 
Three combinations between any of the three basic simulation sets were made linking 
medium (specific) data to large (general) data, small (very specific) data to large data, and 
small to medium data, or M-L, S-L, and S-M, respectively.

 − Overlap size. Three levels of overlap between datasets were defined (small: 10 percent, 
medium: 60 percent, and large: 90 percent). Samples of 10 percent, 60 percent, and 90 
percent (small, medium, large overlap) of the smallest dataset in any combination were 
drawn and added to the larger dataset.

 − Error rates. Three rates – respectively 10 percent, 20 percent, and 30 percent of records 
with at least one error. 

Thus, a possible linking scenario would be: linking small data to medium data, where the 
overlap size is small and the data have a 10 percent error rate. 

Each of three data source combinations (medium-large, small-medium, small-large) will have 
(3×3) nine unique combinations of overlap level and error rate. As sampling of records for 
overlap and application of errors are random processes, creating a total of nine simulation 
sets to cover all combinations of overlap and error size for each data source combination is 
not sufficient. Therefore, we extend the number of simulation datasets to 40 for each data 
source combination, which we believe will adequately cover the linking scenarios and the 
random process. 

Choice of linkage keys
We assume that the personal identifiers surname, date of birth, sex and postal code are 
commonly available in many registrations. However, privacy concerns may prohibit using all of 
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them at once, as this could easily lead to disclosure of sensitive personal information. To take 
into account these real-life restrictions, we need to include this aspect in our simulations. To 
find smaller subsets of linkage variables that still provide satisfactory linking results, we chose 
four combinations of three linkage variables and compared their performance with a scenario 
where all four linkage variables are used:

 − all identifiers, versus
 − surname, date of birth, sex
 − surname, date of birth, postal code
 − surname, sex, postal code
 − sex, date of birth, postal code

Chapter 2 contains a more theoretical discussion of the considerations for linkage variables. 
It should also be noted that the identifiers are not error-free, and some (e.g. surname) are 
more error prone than others. We use surnames without their prefixes, which means that 
people named ‘van den Kamp’ share the same surname as people named ‘Kamp’. 

Selection of linking methods and algorithms
Linking health care data requires linking methods that are able to deal with errors in the 
identifiers and that can ideally also be used with encrypted identifiers, as this is required to 
comply with privacy requirements. Based on the literature review, the following algorithms 
are deemed to be capable of handling errors in the identifiers:

1. Deterministic In this linking algorithm, in general all linkage variables should match 
exactly on content. This simple method has proven to be effective in many situations, 
especially when data quality is high. In simulations using the linkage variable surname, only 
the first four characters will be used to reduce the effect of typing errors in this identifier.

2. Probabilistic In these algorithms, every agreement and disagreement on the value of the 
identifier will receive an agreement weight (reward) and a disagreement weight (penalty) 
respectively. The net weight determines whether or not the pair should be considered to be a 
link, a possible link (requiring manual review), or a non-link. The choice of a certain threshold 
may be subjective. A higher threshold is more stringent, as it will result in more correct links, 
but at the cost of missing other links (that receive lower weights due to identifier errors). 
Fellegi-Sunter suggested choosing a threshold in such a way that the number in the category 
of undetermined ‘possible links’ is minimal (see Chapter 3 for more details).
a. Simple probabilistic If ‘surname’ is included for linking, agreement or disagreement on this 

identifier will be based on the first four characters of the surname.
b. Jaro-Winkler The Jaro-Winkler method calculates the similarity between two names. The 

probabilistic method that makes use of Jaro-Winkler will not penalize two names that are 
not exactly the same; rather, based on their similarity, the respective pair will be assigned 
a weight that is lower than that assigned for total agreement (i.e. the weight is adjusted 
to the similarity level). In this simulation, the Jaro-Winkler method is only applicable if 
surname is included for linking.

c. Bigram Unlike Jaro-Winkler, Bigram does not calculate the similarity between two names. 
Instead, it cuts a name into a series of two overlapping characters and calculates the 
shared proportion of these between two names (see Chapter 3 for more details). In 
this simulation, the Bigram method is only applied if surname is included for linking. In 
practice, the Bloom filter is used for this method (see 3.3). However, evaluation of Bigram 
in combination with the Bloom filter is beyond the scope of this simulation, as it requires 
choices on the hash functions used and filter length. 
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The literature finds that Jaro-Winkler is superior for name linkage, but it cannot be applied 
with encrypted identifiers (Durham et al., 2012). However, it is included here to check 
how far it outperforms the other methods. The Bigram method does not perform as well 
as Jaro-Winkler, but it can handle encrypted identifiers. The Bigram method requires a 
more sophisticated linking protocol, which makes it attractive to check whether the simple 
probabilistic can do the task and achieve similar results. This would make it an interesting 
alternative for Bigram. 

4.2.2 Blocking
Blocking is essential in the probabilistic linking method to enhance computation efficiency. 
The main goal of blocking is to remove all pairs that are not good candidates for linking 
(Newcombe et al., 1959). Blocking is applied by filtering the record-pairs on the basis of their 
value on a number of variables (blocking variables). Although it is desirable to use error-free 
blocking variables (Fellegi and Sunter, 1969), in most practical situations it is not realistic to 
expect them to be completely error-free. For this reason, blocking is often applied in a multi-
pass way; i.e. other blocking variables are used as a subsequent filter to capture candidate 
matches missed by initial blocking (variables).

For both practical and fairness considerations, in the simulations we apply the same 
blocking scheme to all linking scenarios by using only partial value of the identifiers to block. 
Specifically, we use the combination of the year of birth and the first two digits of the postal 
code as blocking variables. Our main goal in this case is to obtain a selection for candidate 
matches that is large enough to enable comparisons between various linking scenarios. With 
this blocking scheme, the number of pairs for comparison varies from around 8,000 (S-M) to 
more than 600,000 (M-L), see further details in Appendix II.

For real datasets, it is advisable to use a multi-pass approach for blocking, in order to 
compensate for the uncertainty in the quality of the blocking variables.

4.2.3 Determinating weight thresholds
In the probabilistic method, a cut-off value is the minimum weight value required for the 
record pairs to be classified as a link. A higher cut-off value results in a smaller number of 
links, and vice versa. Fellegi and Sunter (Fellegi and Sunter, 1969) advised choosing two 
cut-offs, to distinguish links from possible links and non-links. The cut-offs were selected 
by balancing the rates of false positives and false negatives in such a way that the number 
of possible links is minimized. These rates were calculated from the estimated m and u 
probabilities. However, the estimation of m and u may be susceptible to bias (Jaro, 1995), 
especially when overlap is small (Fienberg and Manrique-Vallier, 2009). Alternatively, if the 
true link status is known, the cut-off can be chosen in such a way that the number of false 
positives and false negatives is minimized (van der Laan, 2013).

In this simulation study, we propose an alternative approach to determine a cut-off value that 
does not rely directly on the estimation of m and u probability, and that can be applied if the 
true link status is unknown. Our approach is based on the assumption that the deterministic 
method will yield mainly correct links, i.e. it has a high precision, but because of errors in 
the linking variables, it will miss a number of links. The literature suggests that probabilistic 
methods can cope with errors in the linkage variables, and can thus identify more links (see 
e.g. Tromp et al., 2006; Dean et al., 2001; Newgard et al., 2012). Our idea is that appropriate 
weight thresholds can be chosen in such a way that the number of links obtained by 
probabilistic linkage should equal the number of links obtained by deterministic linkage, 
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multiplied by a factor α, where the value of α corresponds with the expected error rate. We 
illustrate this idea as follows.

Suppose we can specify the expected number of total links as:

NT = NDet + NLoss + ε,       (4.1)

where
NT  the expected number of total matches
NDet the number of links obtained by deterministic linking
NLoss the number of links missed mostly due to error in the identifiers
ε  the number of links missed due to other factors than errors, e.g. incomplete  
  datasets,

and all of them are non-negative.

NT  can be derived from prior knowledge, for instance, from similar studies or literature, and 
usually, ε and NLOSS are unknown.

Assuming the probabilistic method can identify the links that contain error in their records, its 
total number of links at a cut-off c can be written as:

NProb (c) = NDet + NLoss       (4.2)

or, equally

NProb (c) =  α NDet , with α = +1 N
N
Loss

Det
     (4.3)

Based on equation (4.1), we can establish the following relationship:

NDet ≤ NT – ε ≤ NT
       (4.4)

which implies:

N
N

N
N

N
N

Loss

T

Loss

T

Loss

Det

≤
−

≤
ε          

(4.5)
Equation (4.5) tells us that using NLoss / NDet as part of α will ignore a possibility that there are 
factors other than errors in the identifiers that contribute to links missed by the deterministic 
method. As in most situations ε and NLoss  are both unknown, it is more sensible to use  
NLoss / NT as part of α. In this case, although NLoss  is unknown, NLoss / NT can be roughly 
approximated by the error rate. The simulation will explore whether knowing the exact error 
rate is crucial.

As the error rate is known for the simulation data, it is less informative to use it directly when 
choosing the value for α. Therefore, we assume the highest error rate possible, which is  
30 percent, and apply it for all the simulation scenarios. Specifically, we choose α =1.3 and 
apply it to all linking scenarios, regardless of their exact error rate. This value is in line with 
the α calculated from the papers mentioned in section 3.2, which varied from 1.16 (Lyons et 
al., 2009) to 1.35 (Meray et al., 2007). 
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It is important to note that the α chosen in this study is quite high. When applied 
appropriately, the deterministic linkage method can still identify links whose records contain 
some minor error, which implies that in a real situation, a reasonable value for α would be 
lower than 1 plus the error rate. Nevertheless, our main motivation for choosing a relatively 
high value for α is to observe to what extent such a value is applicable or is justified across 
all possible linking scenarios covered in our simulation. This information can be particularly 
useful if the error rate is unknown.

4.2.4 Performance indicators and quality criteria
In this simulation, we use precision and sensitivity as performance indicators. Precision is 
defined as the proportion of correct links found in the linkage divided by the total number of 
links obtained. Sensitivity is defined as the ratio between correct links and the total number 
of true links in the dataset. 

In terms of quality, we aim to achieve the highest precision and highest sensitivity possible. 
In practice, high precision corresponds with lower sensitivity, and vice versa. The optimal 
balance depends on the specific research application for which the linkage is performed. 
In this simulation, we report both precision and sensitivity without giving rigid guidance on 
which weighs heavier. 

4.3 Simulation results

The simulation results will be presented as follows:
1. First, the effect of the threshold on linkage performance will be investigated in section 

4.3.1. 
2. Next, the cut-off will be set as described previously, and the effect of overlap, linkage 

method and error rate on the performance will be investigated in section 4.3.2.
3. Section 4.3.3 summarizes the performance of linking methods, given the data source 

combination, overlap size, and available linkage variables, mostly because these factors are 
observable. Thus we hope to come up with a linking strategy based on these factors.

4.3.1 Varying the cut-off values 
In the probabilistic linking method, the number of links obtained depends on the cut-off 
value used as the threshold. The higher the cut-off value, the smaller the number of links 
obtained, as only record pairs with a higher weight value will be selected as links. Record 
pairs with a high weight value are more likely to be true links, and accordingly, those with a 
low weight value are least likely to be true links. However, although selecting only pairs with 
the highest weight value would be a reasonable option, as this would result in a virtually 
non-existent number of false links, this might exclude correct links that, because of errors 
or inconsistencies in their attributes or variables, receive a lower weight than they should. 
Fewer cases for analysis because of false negatives or missed links could cause bias (Tromp et 
al., 2009). Therefore, in practice researchers attempt to optimize the trade-off between the 
number of additional links and the respective number of possible false links (see e.g. Karmel 
et al., 2010).
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4.3.1.1 The number of total links obtained at each cut-off divided by the number of total links obtained by  
4.3.1.1 deterministic linkage (i.e., α)
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4.3.1.2 The average precision at different cut-off values
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We start by observing the weight distribution. Although this information is usually displayed 
in a histogram, we choose to plot a series of cut-off values against the respective number of 
retrieved links. We do this by plotting the number of retrieved links obtained by probabilistic 
methods divided by the number obtained by deterministic ones (i.e. we plot α obtained at 
each cut-off value or α[c]). The results are shown in Figure 4.3.1.1. Subsequently, we plot the 
corresponding precision and sensitivity values, which are presented in Figures 4.3.1.2 and 
4.3.1.3, respectively. In these figures, only the results obtained by using all identifiers are 
reported. For the other linkage keys, the results are presented in Appendix III.

Based on the results presented in Figure 4.3.1.1, we observe the following: 
 − The effect of overlap size. The results suggest a strong correlation between overlap size 

and variations in the values of α in the linking methods, particularly at lower cut-off 
values. The smallest overlap, in this case 10 percent, gives the largest variations. This is 
because retrieved links at lower cut-off values are strongly dominated by record pairs that 
share only partial values on some identifiers. When the overlap size is largest, 90 percent, 
the variations practically disappear. 

 − The effect of data source combination. A weaker correlation is found between variations 
in the number of retrieved links and data source combination. We see in Figure 4.3.1.1 
that the variation is less pronounced for small datasets linked with moderate sized 
datasets (S-M), even at lower cut-off values. This is because the number of pairs – and 
therefore also the number of possible links – strongly depends on the size of the datasets. 

 − The effect of error rate. The variation in the number of retrieved links correlates least with 
the error rate (results not shown). This means there is still a large variation at lower cut-

4.3.1.3 The average sensitivity at different cut-off values
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offs, regardless of the error rate. We presume that the simulated error rates, in our case 
up to 30 percent, are not large enough to result in noticeable differences in the patterns.

 − The effect of linkage key. The results shown in Figure 4.3.1.1 are based on use of all 
identifiers for linking. If only a subset of identifiers is used (see results in Appendix III), we 
still observe the same patterns shown in Figure 4.3.1.1, but only for the combination of 
surname-date of birth-postal code, and date of birth-sex-postal code.

Furthermore, the pattern of the number of retrieved links is in accordance with the precision. 
Based on the assumption that the number of retrieved links usually corresponds to precision, 
we would expect from Figure 4.3.1.1, for instance, that in the case of a small overlap and 
linked datasets with at least 16,000 records each (M-L), a cut-off value close to 15 should lead 
to a relatively high precision. Lastly, the number of retrieved links is less likely to correspond 
to sensitivity. The results in Figure 4.3.1.3 indicate that overall sensitivity patterns are not 
greatly influenced by overlap size and data source combination. This suggests that it would 
be less straightforward to detect the sensitivity level based on the number of retrieved links 
alone.

Conclusion. As these figures indicate, a large overlap will be less problematical than a small 
overlap, in the sense that high precision is less probable with a small overlap than with large 
overlap. In addition, the results suggest that plotting the α would help us detect a possible 
overlap size. Figure 4.3.1.1 shows that when the overlap is the largest, the value of α is less 
than 1.3, which implies that even though α is fixed at 1.3, the number of additional links 
obtained by probabilistic methods will be less than 30 percent. In other words, a relatively 
high α will not affect the performance of the probabilistic methods if the overlap is large, 
which suggests that it is not necessary to know the error rate beforehand and thus in this 
case, a high value of α can be chosen. This is not the case for the smallest overlap. In the 
following section we discuss the implication of choosing such a value for α. 

4.3.2 Setting the cut-off value
This section discusses the precision and sensitivity with respect to the error rate when α = 1.3 
is applied for the cut-off, regardless of the overlap size, data source combination and error 
rate. We aim to investigate when such a choice is justified. Figures 4.3.2.1 and 4.3.2.2 show 
precision and sensitivity respectively, specified for each error rate.

 − Effect of overlap size. When the overlap size is the smallest (in our case 10 percent), as 
shown in Figure 4.3.1.1 the number of retrieved links fluctuates greatly between the 
linking methods. As a result, applying the same value of α would also lead to differences 
in the precision level between the linking methods when the overlap size is small. For 
the simple probabilistic method, this gives a precision close to that of the deterministic 
method, while for Jaro-Winkler and Bigram, it results in a much lower precision, especially 
when the error rate is the smallest. We suspect this occurs because the deterministic 
method performs very well when the error rate is low. Because Jaro-Winkler and Bigram 
provide a higher number of retrieved links than the simple probabilistic method, this 
would also increase the probability of false links. When the overlap size increases, all 
probabilistic linking methods perform much better than the deterministic linking method.

 − Effect of data source combination. Linkage of relatively small datasets (in our case a small 
dataset linked to a medium-sized dataset, S-M) poses less of a challenge than linkage of 
large datasets. For the latter case, it would be more likely to increase the number of false 
positives, particularly in combination with small overlap size.
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4.3.2.1 Average precision at a fixed cut-off value, given the error rate

data[[xvar]][sel]

da
ta

[[y
va

r]]
[s

el
]

S−M

85

90

95

100

data[[xvar]][sel]

da
ta

[[y
va

r]]
[s

el
]

S−L

data[[xvar]][sel]

da
ta

[[y
va

r]]
[s

el
]

M−L

0.
1

data[[xvar]][sel]

da
ta

[[y
va

r]]
[s

el
]

85

90

95

100

data[[xvar]][sel]

da
ta

[[y
va

r]]
[s

el
]

data[[xvar]][sel]

da
ta

[[y
va

r]]
[s

el
]

0.
6

data[[xvar]][sel]

da
ta

[[y
va

r]]
[s

el
]

0.10 0.15 0.20 0.25 0.30

85

90

95

100

data[[xvar]][sel]

da
ta

[[y
va

r]]
[s

el
]

0.10 0.15 0.20 0.25 0.30

data[[xvar]][sel]

da
ta

[[y
va

r]]
[s

el
]

0.10 0.15 0.20 0.25 0.30

0.
9

Error Rate

Pr
ec

is
io

n 
(%

)

O
ve

rla
p

Datasets

Deterministic
Prob.Simple

Prob.Jaro
Prob.Bigram

4.3.2.2 Average sensitivity at a fixed cut-off value, given the error rate
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 − Effect of error rate. As we see in Figures 4.3.2.1 and 4.3.2.2, the performance of the 
deterministic method is in line with the level of error. This confirms the notion that the 
deterministic method is the most appropriate for linking high quality data (in this case 
small error numbers in the linking variables). In such situations, applying probabilistic 
methods would not lead to significant improvement. In fact, especially when both overlap 
size and error rates are relatively small (in this case 10 percent), the deterministic method 
is able to achieve high precision and sensitivity. As sensitivity is already high, using 
probabilistic methods by setting α=1.3 would be less effective as it might give additional 
links that would be mostly incorrect. This can be resolved by lowering the predefined 
value allowed for the maximum number of additional links (α would be less than 1.3), 
which implies that both the deterministic and probabilistic method would yield a similar 
number of links. On the other hand, probabilistic methods are more capable in terms of 
dealing with high error rates than the deterministic method, especially when the overlap 
is large.

 − Effect of linkage key. If not all identifiers are used for linking, the deterministic method 
is still able to maintain high precision, as opposed to probabilistic methods. Specifically, 
the combinations name-date of birth-postal code and date of birth-sex-postal code would 
yield similar precision to when all identifiers are used for linking, and are even able to 
improve sensitivity. (See Appendix III for the figures.)

Conclusion. The deterministic linking method seems to be the safest choice when overlap is 
small and the error rate is expected to be small. Probabilistic methods can effectively deal 
with high error rate, but only when the overlap is large. One possible explanation for this is 
that in the case of a large overlap, any link identified by the probabilistic method has a higher 
chance of being correct than when overlap is small. If the error rate is low, no substantial 
improvement can be made. 

4.4 Summary of the simulation results

In this section we summarize the simulation results. Specifically, we observe to which extent 
data source combination, overlap size as well as available identifiers for linking influence 
the performance of the linking methods. For the sake of brevity, we choose precision and 
sensitivity as the criteria for performance measurement. The average of precision and 
sensitivity are presented in Figures 4.4.1 and 4.4.2 respectively. 

Figures 4.4.1 and 4.4.2 confirm the general expectation that there is a trade-off between 
precision and sensitivity. On average, the deterministic method provides the highest precision 
level at the cost of resulting in the lowest sensitivity level. The probabilistic method, on the 
other hand, is believed to be capable of increasing the sensitivity level, although at the cost 
of a lower precision level. In our case, in general all probabilistic methods evaluated lead to a 
slightly lower precision level, but are able to increase the sensitivity level to around  
10 percent on average. However, there are certain situations where this is not the case. 

Our simulation results indicate that no single method outperforms all others in each of 
the linking scenarios included in this study. This implies that the choice of linkage method 
depends on certain linking scenarios. This motivates us to evaluate the performance of the 
linking methods, based on a number of observable factors: linkage keys, overlap size and data 
source combination. We discuss these factors in more detail below. 
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 − The influence of data source combination 
 − Small to medium-sized datasets (S-M): This data source combination appears to be the 

easiest case. All linking methods manage to achieve similar precision levels when all 
identifiers were used. But there are still some differences in performance when not all 
identifiers were used for linking and the overlap is smallest.

 − Small to large datasets (S-L): This data source combination seems to be the most 
challenging linkage compared to the other types. Even when all identifiers were used 
for linking, we observe that Jaro-Winkler and Bigram methods underperformed when 
the overlap is not high (in our simulation to 60 percent). 

 − Medium to large datasets (M-L): This data source combination shows some similarity 
with the previous type, but performs less well. The probabilistic linking methods are 
able obtain high precision close to that obtained by deterministic method when the 
overlap increases (in this case 60%).

 − The influence of overlap size 
 − Small overlap: Generally, the performance of the deterministic method would be less 

influenced by overlap size, than that of the probabilistic methods. All probabilistic 
methods perform poorly when overlap size is small, even when all identifiers are used 
for linking. 
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4.4.1 Precision (average), given the linkage key

* All (all identifiers are used for linking), ndp (surname-dob-postal code), nsd (surname-sex-dob), nsp (surname-sex-postal code), and sdp (sex-dob-postal 
code).
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 − Medium and large overlap: When the overlap is relatively large (in this case 60 percent) 
the probabilistic methods result in a precision level similar to that of the deterministic 
method, but with a much higher sensitivity level. When the overlap is largest, the 
precision level of the probabilistic methods is close to that of the deterministic method, 
while the sensitivity level is greatly improved.

 − The influence of linkage keys 
 − All identifiers: When all identifiers are used for linking, we expect to obtain the highest 

precision regardless of the linking method used. For the deterministic method, this 
high precision level is accompanied by a much lower sensitivity level. The probabilistic 
methods employed in this study yield a precision level close to that of the deterministic 
method, but with a much higher sensitivity level. The simple probabilistic method gives 
a precision level slightly lower than that of the deterministic method, followed by Jaro-
Winkler and Bigram. The simple probabilistic method has a lower sensitivity level than 
Jaro-Winkler and Bigram. 

 − Subset of identifiers: If not all identifiers are used for linking, leaving out the identifier 
surname would still lead to high precision, but only for the deterministic method. The 
deterministic method and, to a lesser extent, the simple probabilistic method can 
handle fewer variables and still provide high precision. However, when the identifier 
date of birth is excluded for linking, the performance of the deterministic method 
is poorest. The simple probabilistic method performs poorest when the identifier 
surname is excluded, except in the situation where only relatively small datasets are 
linked (in our case at most 16,000 records). On the other hand, the precision level of 

4.4.2 Sensitivity (average), given the linkage key*
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the Jaro-Winkler and Bigram methods decreases when not all identifiers are used, 
which suggests that for them to work, all identifiers should be used for linking.

Conclusion. In the ideal situation when all identifiers can be used for linking, the probabilistic 
methods produce a precision of at least 97.5 percent, which is very close to the precision 
level of the deterministic method, while they are also able to improve the sensitivity level to 
at least 86.8 percent (compared to 77.9 percent with the deterministic model), but only when 
the overlap size is relatively large (in our case at least 60 percent). For the linkage of small to 
medium-sized datasets, probabilistic methods are able to achieve the same precision  
(98.3 percent) as that of the deterministic method (100 percent), while they manage to 
increase the sensitivity by more than 10 percent, regardless of the overlap size. These 
outcomes suggest that probabilistic methods can still perform well even when overlap is 
small, as long as the linked datasets do not contain a very large number of records; in our 
case, no more than 16,000 records. 

In the situation where only a subset of identifiers can be used for linking, but the surname 
is included, the probabilistic methods would produce lower precision levels than the 
deterministic method, while sensitivity is not much improved. For example, the precision of 
the probabilistic method is on average 95.4 percent (compared to 98.8 percent for  
the deterministic method), while sensitivity is on average 88.7 percent (compared to  
83.2 percent). The differences are most pronounced for linkages involving a large dataset  
(in this simulation 160,000 records).

Our simulation results further suggest that excluding identifier surname for linking would still 
lead to high precision levels only for deterministic methods. Probabilistic methods can still be 
applied, but only if small linked datasets are linked. For large datasets, the use of probabilistic 
methods would improve the sensitivity level, but lead to a larger decrease in precision.

5. Conclusions

Our simulation results indicate that no single method outperforms others in all of the linking 
scenarios included in this study. This implies that the choice of linkage method depends 
on the scenario. Based on the results of our simulation, we summarize our conclusions as 
follows. 

 − Probabilistic linking showed the best performance in the source combination Small-
Medium. This is the set with the smallest number of possible links. In theory it is 
conceivable that as the size of the dataset increases, the number of possible false links 
will increase much faster than the number of correct links 

 − For the other combinations, in order to choose appropriate linking methods, it is essential 
to know the possible overlap size and the availability of identifiers for linking. Our 
simulation results indicate that small overlap, as well as a small number of identifiers, may 
seriously hinder the performance of the probabilistic linking methods evaluated in this 
study. 

 − The simulation results suggest that when fewer identifiers are available for linking (in our 
case, fewer than four) the deterministic method is preferable to probabilistic methods. 
For the deterministic method, the combinations surname-date of birth-postal code and 
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date of birth-sex-postal code yield a level of precision similar to when all four identifiers 
were used. The exclusion of identifier surname in deterministic linking even leads to a 
higher sensitivity, regardless of data source combination and overlap size. On the other 
hand, the exclusion of date-of-birth leads to much lower precision, even for large overlap. 
A possible implication for this is that when the deterministic method is applied in a 
stepwise manner, where one identifier is relaxed sequentially, it would be better not to 
relax the date of birth identifier.

 − Jaro-Winkler performs slightly better than the Bigram method. Both perform particularly 
well in situations where overlap is highest (in our case 90 percent), and all identifiers 
(in our case four) are available for linking. The results suggest that these methods can 
be applied to improve the performance of the deterministic method (i.e. improving 
sensitivity), given these conditions.

 − The performance of simple probabilistic linkage is similar to Jaro-Winkler and Bigram. In 
fact, the simple probabilistic method is more effective when the overlap is fairly small (up 
to 60 percent in this case). The reason Jaro-Winkler does not perform better might be the 
limited variation in the Dutch names included in our simulated data. 

 − The application of the proposed method in determining the weight threshold as proposed 
in section 4.2.3 depends on the overlap. When overlap is small, it is essential to know 
the exact error rate, and if this information is lacking, it is advisable to choose a rather 
conservative approach, namely a low value for α. When overlap is large, it is not necessary 
to know the exact error rate and a high value can be chosen to reflect the possible error 
rate. Further investigation is needed to assess the effectiveness of this method when real 
datasets are linked.

The simulation study described here provided useful information about dataset 
characteristics that influence the performance of different linkage strategies. Nevertheless, 
real life linkage may not always resemble these controlled circumstances and therefore lead 
to different conclusions. For example, the error rates of real datasets are usually unknown. 
Variables may have changed since they were recorded, especially if a database has not been 
updated for some time. Other differences may result from the greater variation in names that 
occurs in the population, and certain subgroups may be more difficult to link than the general 
population. Databases vary greatly in their number of records and certain databases contain 
a much higher number of records than our simulated datasets. In such situations it may be 
useful to apply a deterministic linkage first, followed by a probabilistic approach. 

Having compared several linkage approaches in a simulated setting where true links are 
known, the next step is to apply the same linkage methods to real life datasets in which error 
rates and true links are unknown. We are doing this in a number of demonstration projects 
that include health care data. These demonstration projects have been chosen in such a way 
that they differ from each other in terms of population characteristics, time span of data 
collection, number of records per dataset, and expected overlap between the linked data 
sources. In a separate white paper we shall describe how each method performs under these 
different circumstances, and in the end provide a practical guide for researchers who wish to 
link their data to external registrations.
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I. Appendix 
I. Simulation datasets and errors

I.1 Simulation datasets

Purpose: to develop simulation datasets that are representative for registers or biobanks 
involved in the record linkage project Biolink NL. 

We assume that the population in a general register covers most of the populations in the 
other registers. However, while population characteristics in a general register reflect the 
general population, the population characteristics in the other registers do not necessarily. 
We specify the population characteristics of the registers based on variations on the following 
attribute values:

General population characteristics: 
 male-female, a large age interval, and large variations in ethnic groups;
Specific population characteristics: 
 male-female, a smaller age interval, and small variations in ethnic groups;
Very specific population characteristics: 
 only female, relatively similar age (or a very small age interval), and small variations in 

ethnic groups. 

Although ethnicity can usually be approximated by surname, this is not always 
straightforward. For example, people may use their partner’s name, and children usually take 
their father’s name, while he may belong to a different ethnic group. To resolve this problem, 
we use surnames not to represent ethnicity per se, but to represent variations in the 
datasets. For example, when we assume a large variation in ethnic groups, a higher number 
of unique surnames will be used, while a small variation will be represented by a smaller 
number of unique surnames. We do identify each record with an ethnicity code (in this case 
we use only two groups: native and non-native). This code, possibly in combination with 
other attributes such as sex and age, will be used as a guidance when errors are introduced in 
the datasets.

I.2 Data population

A pool containing the values of the identifiers will be used to generate simulated datasets. 
We start by constructing a set of surnames and a set of postal codes that are selected from 
the real values. Approximately 300,000 unique surnames were present in the municipal 
database in 2007 (representing a total population of around 16.3 million people), while 
470,000 postal codes were in use in 2005 (source of information: Meertens Institute of 
Genealogy and TNT Post). Rescaling these numbers to adjust for the size of our simulation 
datasets (with a maximum number of records of around 160,000), we use 3,000 unique most 
popular Dutch names and 5,000 postal codes. These values serve as a pool for the surnames 
and postal codes from which we draw the values for the simulation datasets. Postal codes are 
selected in proportion to the density of the Dutch population.
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The following sections describe in more detail how the datasets are created. The summary 
will be given in Table I.2.2.

I.2.1 General population characteristics
The following restrictions are taken into consideration when constructing a dataset reflecting 
the overall general population:

 − Each person is assigned to a household.
 − A household consists of at least one adult. 
 − A household consisting of at least two persons may have different surnames.
 − Approximately 37 percent of total households are one-person households (source of 

information: household figure 2011 SN).
 − One postal code will be assigned to 20–25 households (source of information: TNT Post).
 − A surname can be shared by more than one person. Approximately 10 percent of the total 

population share a few surnames.
 − The ratio between men and women is equal.
 − The variation in ethnic groups is large (23 percent non-native)

I.2.2 Specific population characteristics
The following restrictions are taken into consideration when constructing a dataset reflecting 
a specific population:

 − No households are used when generating this dataset. Instead, we use the following 
information:

 − Specific age interval relates to the occurrence of a specific disease
 − Specific sex relates to the occurrence of a specific disease
 − Small variation in ethnic groups (10 percent non-native)

I.2.3 Very specific population characteristics
The following restrictions are taken into consideration when constructing a dataset reflecting 
a very specific population:

 − No households are used when generating this dataset. Instead, we use the following 
information:

 − A small age interval
 − Only one sex (female)
 − Small variation in ethnic groups (less than 10 percent non-native)

I.2.4 Simulation dataset sizes
For our simulation, we adjust the size of each dataset proportionally to its original data size, 
which leads to the following sizes:

 − Dataset representing general population: 160,000 (individual) records
 − Dataset representing specific population: 16,000 (individual) records
 − Dataset representing a very specific population: 1,600 (individual) records



CBS | 2014 Record Linkage in Health Data: a simulation study 41

I.2.1 Creation of simulation datasets
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I.2.2
 

Population General Specific Very specific
 

 

Sources of information Statline, Meertens Dutch Cancer 
Register (NKR) 

Dutch National  
CancerInstitute (NKI) 

Total number of records created 160,000 16,000 1,600 

Unique number of surname (%) 19 30 * 575 

Sex (in %)
  male 501 522 − 

  female 499 478 100 

Ethnicity (in %)
  native 798 90 .0* 924 

  non-native 202 10 .0* 76 

Age category (in %)
   0–20 yr 176 11 0 

  21–45 yr 429 47 46 

  46–65 yr 268 354 949 

  66–80 yr 99 293 04 

  older than 80 yr 29 294 001 

Household type (in %)
  one-person household 370 n.a n.a

  other household 630 n.a n.a

Postal code region (in %)
  North 106 10 .6* 10 .6*

  East 202 20 .2* 20 .2*

  West 477 47 .7* 47 .7*

  South 215 21 .5* 21 .5*
  

* Assumption
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Step 1. Generate basic simulation sets with ID, sex, birth date, postal code, and surname 
Step 2. Generate nine linkage combinations from three data source combinations at three 
levels of overlap. 
Step 3. Repeat step 2 and apply three different error levels (10, 20 and 30 percent) to the 
whole simulation set.
Step 4. Repeat steps 2 and 3 until the fourth run, resulting in 36 sets per data source 
combination. Subsequently, four additional sets are created with random selection from the 
error levels and overlap sizes, to achieve a total of 40 sets per data source combination.

I.3 Methods for introduction of errors in linkage variables

Error generation requires knowledge of the typical error distribution in the real data. Because 
we have no prior information on this, we consulted the relevant literature (Arts et al., 2000a; 
Oberaigner, 2007; Christen and Pudjijono, 2009) on observation of errors in real data. It 
distinguishes the following types of errors:

 − Typographical errors (insertion, deletion, transposition, substitution)
 − Optical recognition errors (1 and l)
 − Phonetic errors (ph versus f)
 − Missing values 

For our simulation study, we include typographical errors and missing values, and we add 
another type of error that we believe is more relevant for the Dutch situation. Specifically, we 
distinguish two main types of error: 

 − Random errors 
 − Systematic errors

I.3.1 Random errors
We define random errors as errors that may occur in any record and that are mostly 
typographical errors. Their occurrence does not depend on the attributed value (linkage 
variable value). However, these errors may not occur randomly. For instance, for string 
variables, it is commonly assumed that most errors occur in the middle position of the string 
(Porter and Winkler, 1997). 

I.3.2 Systematic errors
These errors occur in certain records; in other words, their occurrence depends on the 
linkage variable value. To illustrate this, we consider the following errors to occur depending 
on the value of certain variable: 

 − Name inconsistency is more likely to occur for women in certain age groups;
 − Name errors are more likely to occur among non-native persons;
 − Some kind of standard date of birth is more likely to be assigned to non-native people, as 

the real value may be unknown;
 − Differences in postal code are more likely to occur for those living in urban areas, for 

young people, and older people. 

Systematic errors are stronger than random errors. For example, a random error may consist 
of ‘Chang’ becoming ‘Channg’, but in the case of a systematic error, it may become ‘Zhang’. 
Also, the value may be totally different; for example ‘Chang’ can become ‘de Jong’ if the 
person uses his/her partner’s name. 
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I.3.3 General procedure to create errors
The procedure starts by selecting a subset of records that will contain errors in their identifier 
values. Each of these records receives a score for the following identifiers: sex, age, ethnicity 
and residential area. For each identifier, we create interval values, where each interval is 
associated with a certain interval score.

The total score for record i is defined as:

 Score total(i)= score(sex[i]) + score(age[i]) + score(ethnicity[i]) + score(residential area[i])

We choose the median (x1), and the third quartile (x3) of all total scores as threshold values 
to determine whether the record will be assigned a random error only, a systematic error 
only, or both, as follows:

 Score total(i) in [0, x1] -> random error only
 Score total(i) in (x1, x3] -> systematic error only
 Other score -> both errors

This decision is based on our assumption that most errors are related to random errors. To 
include some kind of perturbation in the process, the record i will acquire the assigned type 
of error only if an arbitrarily chosen value is greater than 0.05. Otherwise, we choose another 
type of error (arbitrarily). Thus, 5 percent of the records will have a deviation in the type of 
errors. 

Once the type of errors has been determined, the next step is to decide how many identifiers 
in the record concerned will be assigned an error. Thus, for a record that is to be assigned a 
random error only, we have to select which identifier(s) will be assigned the error. This will 
result in, for example, only the surname, or in a most extreme case surname, date of birth, 
and postal code, in this record being given the random error. For records assigned both 
random and systematic errors, the minimum number of identifiers receiving an error will be 
two. 

This approach leads to a majority of records with random errors only, a number of records 
with systematic errors only, and few records with both types of errors. For example:

 

Error type Surname Date of Birth (YYYY-MM-DD) Postal code
 

 

No errors Maas 1954-06-16 2037KJ

Only one random error Maas 1954-06-08 2037KJ

Only one systematic error Purperhart 1954-06-16 2037KJ

Random and systematic error Purperhart 1954-06-08 2037KJ

No errors Koedam 1947-05-23 8442HK

More than one random error Koudam 1947-05-09 8442HK

More than one systematic error Lier 1947-05-23 3752NG

Random and systematic errors Koudam 1947-05-09 3752NG
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In this project we use the following code for errors (see Table I.3.3.1). For the simulation, 
we use errors with codes R1, R3, R5 to create random errors, codes R2, R4, R7, R9 to create 
systematic errors, and R6 to create missing values. 

I.3.3.1 Error types
 

Code Description
 

R1 Random error in identifier surname.
Typographical errors (following general convention that errors start to occur in the middle position, which is 
determined randomly)
– insertion  (mischa to misscha)
– deletion (mischa to misha)
– substitution (mischa to miscya)
– transposition (mischa to micsha)
Studies reported in Pollock and Zamora,1984, Kukich, 1992, and Peterson, 1986 suggest that most 
typographical errors relate to one character only.

Note that it is not necessary to distribute each type of error uniformly, as there is no evidence that a certain 
type occurs more frequently than other types.

R2 Systematic error in identifier surname.
Include typographical errors that do not following general convention
– insertion
– deletion
– substitution
– transposition
all of which are randomly assigned in any position.

R3 Random error in identifier date of birth.
(following general convention that errors are most likely to occur in the day, and least likely in the)
– in most cases: change the day (30 <–> 13, random)
– in some cases: change the year (random)
– in some cases: substitute day for month if day ≤ 12 G18
– in few cases: change month (6 <–> 7, random)
We do not take into account the ‘neighbourhood' errors (6 to 9 to 3).

R4 Systematic error in identifier date of birth.
Completely at random.

R5 Random error in identifier postal code (following our assumption that errors are more likely to occur at the last 
2 digits).
in most cases: exchange last 2 digits 1234AB into 1243AB

R6 Missing values
In this case we delete date of birth or postal code

R7 Systematic error in the identifier postal code for residents in urban areas (i.e. third to sixth position of the 
postal code changed).

R9 Systematic error that changes the value of surname or postal code completely.
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II. Appendix 
II. Blocking results

II.2 Blocking results
 

Overlap Error

Average number 
of pairs in 

blocking

Average 
number of 

True Positives 
in blocking

Total  
number of  

True Positives a/b
 

 

a b % 

   

S-M 01 01 8,262 159 160 994 

S-M 01 02 8,644 156 160 974 

S-M 01 03 9,221 154 160 965 

S-M 06 01 9,556 948 960 987 

S-M 06 02 11,224 930 960 968 

S-M 06 03 11,634 911 960 949 

S-M 09 01 12,150 1,419 1,440 985 

S-M 09 02 12,089 1,397 1,440 970 

S-M 09 03 15,185 1,367 1,440 949 

S-L 01 01 56,474 158 160 985 

S-L 01 02 63,813 157 160 983 

S-L 01 03 79,899 151 160 946 

S-L 06 01 60,297 944 960 984 

S-L 06 02 78,920 923 960 961 

S-L 06 03 75,065 910 960 947 

S-L 09 01 60,398 1,412 1,440 981 

S-L 09 02 68,672 1,392 1,440 966 

S-L 09 03 76,899 1,360 1,440 944 

M-L 01 01 427,973 1,541 1,600 963 

M-L 01 02 472,520 1,506 1,600 941 

M-L 01 03 582,814 1,411 1,600 882 

M-L 06 01 453,165 9,241 9,600 963 

M-L 06 02 511,257 8,861 9,600 923 

M-L 06 03 602,118 8,646 9,600 901 

M-L 09 01 465,063 13,862 14,400 963 

M-L 09 02 595,455 13,418 14,400 932 

M-L 09 03 673,702 12,907 14,400 896 
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III. Appendix 
III. Simulation results for other  
III. linkage keys
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4.3.1.1A The number of total links obtained at each cut-off divided by the number of total links obtained by  
4.3.1.1A deterministic. Linkage key: Surname – Date of Birth – Postal code (ndp)

 
4.3.1.2A The average of precision. Linkage key: Surname – Date of Birth – Postal code (ndp)
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4.3.1.3A The average of precision. Linkage key: Surname – Date of Birth – Postal code (ndp)

4.3.1.1B The number of total links obtained at each cut-off divided by the number of total links obtained by  
4.3.1.1B deterministic. Linkage key: Surname – Sex – Date of Birth (nsd)
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4.3.1.2B The average of precision. Linkage key: Surname – Sex – Date of Birth (nsd)

 
4.3.1.3B The average of sensitivity. Linkage key: Surname – Sex – Date of Birth (nsd)
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4.3.1.1C The number of total links obtained at each cut-off divided by the number of total links obtained by  
4.3.1.1B deterministic. Linkage key: Surname – Sex – Postal code (nsp)

 
4.3.1.2C The average of precision. Linkage key: Surname – Sex – Postal code (nsp)
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4.3.1.3C The average of sensitivity. Linkage key: Surname – Sex – Postal code (nsp)

4.3.1.1D The number of total links obtained at each cut-off divided by the number of total links obtained by  
4.3.1.1B deterministic. Linkage key: Sex– Date of Birth – Postal code (sdp)
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4.3.1.2D The average of precision. Linkage key: Sex– Date of Birth – Postal code (sdp)

 
4.3.1.3D The average of sensitivity. Linkage key: Sex– Date of Birth – Postal code (sdp)
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4.3.2.1A Average precision value at a fixed cut-off value, given the error rate. Linkage key: Surname – Date of  
4.3.1.1B Birth – Postal code (ndp)

4.3.2.2A Average sensitivity value at a fixed cut-off value, given the error rate. Linkage key: Surname – Date  
4.3.1.1B of Birth – Postal code (ndp)
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4.3.2.1B Average precision value at a fixed cut-off value, given the error rate. Linkage key: Surname – Sex –  
4.3.1.1B Date of Birth (nsd)

4.3.2.2B Average sensitivity value at a fixed cut-off value, given the error rate. Linkage key: Surname – Sex –  
4.3.1.1B Date of Birth (nsd)
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4.3.2.1C Average precision value at a fixed cut-off value, given the error rate. Linkage key: Surname – Sex –  
4.3.1.1B Postal code (nsp)

4.3.2.1C Average precision value at a fixed cut-off value, given the error rate. Linkage key: Surname – Sex –  
4.3.1.1B Postal code (nsp)
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4.3.2.1D Average precision value at a fixed cut-off value, given the error rate. Linkage key: Sex– Date of  
4.3.1.1B Birth – Postal code (sdp)

4.3.2.2D Average sensitivity value at a fixed cut-off value, given the error rate. Linkage key: Sex– Date of  
4.3.1.1B Birth – Postal code (sdp)
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Glossary 

Biobank 
A collection of biomedical samples along with medical, genetic, genealogic, and other data 
about the donors (subjects), for research purposes. (Brandsma, M., Meerjarenplan BBMRI-NL 
Fase 1 (2009–2012), 2010, p 25).

Unlike registers and cohorts, a biobank usually contains objects without complete personal 
data.

Cohort
Any designated group of persons followed or traced over a period of time to examine health 
or mortality experience. Cohorts can be subsets of registers and databases.

Example: The DCIS (Ductal Carcinoma in Situ) cohort is a part of the National Cancer Register 
in the Netherlands: all women diagnosed with DCIS as the first tumour between 1989–2004.

Database
An electronic data collection that is systematically organized and has a logical structure and 
relationship. Data from registers, cohorts, or biobanks can be stored in a database.

Register
A collection of data about samples or subjects designed to fulfil a specific purpose.
A register is a database whose records meet all the criteria defined by the purpose of the register. 

Example: the National Cancer Register in the Netherlands (NKR) collects data on patients 
who have developed cancer, while Dutch Municipal Administration (GBA) registers the Dutch 
population.
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Explanation of symbols

 . Data not available
 * Provisional figure
 ** Revised provisional figure (but not definite)
 x Publication prohibited (confidential figure)
 – Nil
 – (Between two figures) inclusive
 0 (0.0) Less than half of unit concerned
 empty cell Not applicable
 2013–2014 2013 to 2014 inclusive
 2013/2014 Average for 2013 to 2014 inclusive
 2013/’14 Crop year, financial year, school year, etc., beginning in 2013 and ending in 2014
 2011/’12–2013/’14 Crop year, financial year, etc., 2011/’12 to 2013/’14 inclusive
 
  Due to rounding, some totals may not correspond to the sum of the separate figures.
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