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 Sampling and estimation techniques for household 
panels 

Jan van den Brakel 

A problem with using households as sampling units in the sample design of panels is the instability of 

these sampling units over time. Changes in the household composition affect the inclusion 

probabilities required for design-based and model-assisted inference procedures. The required 

information to derive correct inclusion probabilities is often not available. This problem can be 

circumvented by sampling persons which are followed over time. At each period the household 

members of these sampled persons are included in the sample. This comes down to sampling with 

probabilities proportional to household size where households can be selected more than once but 

with a maximum equal to the number of household members. In this paper properties of this sample 

design are described and applied to the Dutch Regional Income Survey. 

Keywords: probabilities proportional to size, sampling with replacement, consistent weighting of 

persons and households, Regional Income Survey. 
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1. Introduction 

Households are often considered as the sampling units in panels conducted to collect information on 

the level of households and persons, see e.g. Lynn (2009). Using households as sampling unit in a 

panel design has, however, some major disadvantages due to their instability over time. As time 

proceeds, households might disintegrate, join or split, new members might enter the households and 

other members might leave the households for all kind of reasons. As explained in the next 

paragraph, these changes can affect the selection probabilities of the households in the sample. 

Reconstruction of the correct inclusion probabilities of the sampling units is essential to derive 

correct weights for analysis purposes, but might become very complicated or even impossible, 

depending on the applied sampling design.  

Consider a panel where households are selected by means of simple random sampling, say at time t. 

In many panels, people that enter a sampled household at later stage are also included in the panel. 

Consider for example household A, which is selected in the sample when the panel started. If, after 

some period of time, this household merges with another household B, which was initially not 

selected for the panel at time t, then the selection probability of this new household is the sum of 

the selection probabilities of household A and B at time t. The required information, to reconstruct 

the correct inclusion probabilities of the households observed in the panel is often not available. If 

time proceeds, more and more information about the history of all households in the target 

population is required to derive inclusion probabilities. If time proceeds, larger households will tend 

to be overrepresented in the aforementioned sample design. Not correcting for this 

overrepresentation through correct inclusion probabilities leads to biased inference.  

Statistics Netherlands conducts two important sample surveys to describe the income and wealth 

situation of the Dutch population. First the Dutch Regional Income Survey (RIS) provides a global 

description of the income and wealth situation, being accurate at a very detailed regional level. This 

is accomplished by publishing accurate income distributions for persons and households at a level of 

neighbourhoods on a yearly basis. Second the Income Panel Survey (IPS) publishes yearly a precise 

detailed overview of income and wealth characteristics of the Dutch population on a global regional 

level.  

The RIS and the IPS are both based on a panel and are conducted to collect information on the level 

of households and persons. To avoid the problems with panels using households as sampling units, 

an alternative design is developed. Instead of households, so-called core persons are drawn, which 

are followed over time. All household members belonging to the household of a core person at each 

particular period are included in the sample. This results in a sample design where households are 

drawn proportionally to the household size and households can be selected more than once, but 

with a maximum that is equal to the household size. The major advantage of this design is that the 

problems with reconstructing selection probabilities, as pointed out in the preceding paragraph, are 

circumvented.  
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The purpose of this paper is to describe a sample design with an estimation technique that is useful 

for panels that collect information on person and household level. This methodology is of general 

interest since the proposed sample design avoids the instability problems if households are used as 

sampling units. Particularly the use of web panels is frequently considered as a cost effective data 

collection mode to collect information on various social demographic themes. The proposed 

methodology is employed in the RIS and this application is used throughout the paper for illustration 

purposes. 

The paper starts in Section 2, with a description of the sample design. In Section 3 the concept of 

inclusion expectations is introduced as a convenient practical alternative for inclusion probabilities. 

Subsequently first and second order inclusion expectations are derived for the proposed sampling 

design. The key target variables for the RIS are estimated income distributions. In Section 4 formulas 

for the minimum required sample size are derived based on a precision measure for estimated 

income distributions. Since households can be selected more than once, an expression for the 

expected number of unique households is derived in Section 4. Some additional remarks about the 

use of this sample design for panels are made in Section 5.  

The estimation procedure of the RIS and the IPS is based on linear weighting and is described in 

Section 6. The starting point is the  -estimator or Horvitz-Thompson estimator, developed by 

Narain (1951), and Horvitz and Thompson (1952) for unequal probability sampling from finite 

populations without replacement. The observations are weighted with the inverse of the inclusion 

expectations, derived in Section 3, and account for the overrepresentation of large households. The 

precision of the Horvitz-Thompson estimator can be improved by taking advantage of available 

auxiliary information about the target population using the general regression estimator developed 

by Särndal et al. (1992). Finally the method of Lemaître and Dufour (1987) is considered to obtain 

consistent estimates for person and household based estimates. In Section 7 variance 

approximations for the general regression estimator under the proposed sample design are derived. 

An application to the RIS is provided in Section 8. The paper concludes with a discussion in Section 9. 
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2. Sampling design 

The target population of the RIS are all natural persons aged 15 years or older residing in the 

Netherlands. The sample frame is a register containing all natural persons residing in the Netherlands 

as far as they are known to the Tax Office. From this register a stratified simple random sample of so-

called core persons is drawn with a sample fraction of 0.16. Neighbourhoods are used as the 

stratification variable. At each period, all household members of the core persons are also included 

in the sample. Persons that leave the household of a core person also leave the panel. New persons 

entering the household of the core person are followed in the panel as long as this person stays in 

the household of a core person.  As a result, a sample of households is obtained where the 

households are selected with probabilities proportional to the number of persons aged 15 years or 

older belonging to a  household. Households can be selected more than once, but with a maximum 

that equals the number of household members, aged 15 year or older. In this paper the term core 

persons is used to refer to the persons that are initially included in the sample and are followed over 

time in the panel. The term persons is used to refer to the sample obtained if also all the household 

members at a particular period are included in the sample. 

For each person that is included in the sample, the necessary information for the RIS variables is 

obtained from the registers of the Tax Office. Problems encountered with data collection where 

sampling units are asked to complete a questionnaire, for example nonresponse, do not occur. Of 

course other types of measurement errors are encountered with a survey that is based on 

registrations, see for example Wallgren and Wallgren (2007). It is assumed that all the required 

information about income to estimate the target parameters of the RIS, are available in these 

registers. Since all the required information is available in a register, a complete enumeration of the 

population is possible. In the past, however, the IT infrastructure was insufficient to produce timely 

regional income statistics based on a complete enumeration of the Dutch population. Therefore the 

RIS was traditionally based on a large sample with a fraction of 0.16 core persons. 
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3. First and second order inclusion expectations 

The Horvitz-Thompson estimator, widely applied in design-based inference of probability sampling, is 

based on the concept of expanding the observations in the sample with the inverse of the inclusion 

probabilities. In the case of sampling with replacement, or partially with and partially without 

replacement as in the case of the proposed sampling design, it is convenient to generalise this 

concept to inclusion expectations, Bethlehem (2009), Chapter 2. Let 
k

a  denote the number of times 

that unit k is selected in the sample for each element in the population. For the moment, a unit can 

be both a household or a person. In the proposed sample design ],...,1,0[
kk

ga  , with 
k

g  the 

maximum number of times that unit k can be selected in the sample, i.e. 
k

g  is the size of household 

k (if the units are households) or the household size of the household where person k belongs to (if 

the units are persons). Let E(.) denote the expectation with respect to the sample design. Now 

)(E
kk

a  denotes the inclusion expectation of sampling unit k. Since 
k

a  can be larger than one, 

k
  can also take values larges than one and can therefore no longer be interpreted as an inclusion 

probability. It can, however, be interpreted as an expectation.  

The HT estimator for a population total can be defined as  
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with N the total number of units in the population. Since 
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a )(E , it follows that this HT 

estimator is design unbiased. Let 
'kk

  denote the inclusion expectation of units k and k’ , i.e. 
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Note that in the case of sampling without replacement 
k

a  is a dummy taking values zero or one 

indicating whether unit k is selected in the sample. In this case 
k

  and 
'kk

  are the usual first and 

second order inclusion probabilities. This illustrates that the standard HT estimator, based on 

inclusion probabilities, can be extended easily to inclusion expectations. In the case of sample 

designs where units can be selected more than once, it is more convenient to work with inclusion 

expectations, since they are derived relatively easy. In the remainder of this section, first and second 

order inclusion expectations for the sample design described in Section 2, are derived. 

Result 3.1: Consider a sample design where so called core persons are drawn by means of stratified 

simple random sampling. Let 
h

N  denote the number of persons in the population of stratum h, 
h

n  

the number of core persons selected in the sample from stratum h and 
kh

g  the number of persons, 

belonging to household k from stratum h. All household members of the sampled core persons are 
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included in the sample. First and second order inclusion expectations for households in this sample 

design are given by 

.
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Proof: The first order inclusion expectation of the k-th household equals 
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with 
kh

a  the number of times that household k from stratum h is selected. The enumerator of the 

ratio in (3.1) is the number of times that i persons from a household of size 
kh

g  and in
h
  persons 

can be drawn from the remaining population of size 
khh

gN  . The denominator is the number of 

times that a sample of 
h

n  persons can be drawn from a population of size 
h

N . Consequently the 

ratio is the probability that i persons form household k of size 
kh

g  are drawn from a population of 

size 
h

N  with a simple random sample of size 
h

n . Equation (3.1) can be expressed as 
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In Mood, Graybill and Boes (1974, page 531) it is proved that 
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By changing to 1 ij  and applying formula (3.3), it follows that (3.2) can be simplified to 
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Second order inclusion expectations for households k  and 'k  for 'kk   belonging to the same 

stratum h, equal 



9 

 

 

 

 

 

































































kh hk

kh hk

g

i

g

i

h

h

h

hkkhhhkkh

g

i

g

i

hkkhhkkhhkk

n

N

iin

ggN

i

g

i

g

ii

iaiaiiaa

1 1'

''

1 1'

'''

'

'

''
'

)',(P')(E

.      (3.5) 

Using similar arguments as specified following equation (3.1), the ratio in (3.5) is the probability that i 

persons form household k of size 
kh

g  and 'i  persons form household 'k  of size 
hk

g
'

, both belonging 

to the same stratum h, are drawn from a population of size 
h

N  with a simple random sample of size 

h
n . Equation (3.5) can be simplified to 
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By changing to 1 ij  and 1''  ij  and applying formula (3.3) twice, it follows that (3.6) simplifies 

to 
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The second order inclusion expectation for 'kk   for households from the same stratum h, is given 

by 

)(E))1((E)(E
khkhkhkhkhkkh

aaaaa  .      (3.8) 

An expression for the first order inclusion expectation )(E
kh

a  is already given by (3.4). The first term 

on the right hand side of (3.8) can be elaborated as follows: 
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Changing to 2 ij  and applying formula (3.3) gives 
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Inserting the expressions (3.4) and (3.10) into (3.8) gives 
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Second order inclusion expectations for households k  and 'k  for 'kk   belonging to two different 

strata h and 'h  equal 
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This result is straightforward, since samples in different strata are drawn independently from each 

other. Collecting the results obtained in formula’s (3.4), (3.8), (3.11), and (3.12), proves result 3.1.

            ■ 

Result 3.2: Since all members of a selected household are included in the sample, it follows for the 

sample design considered in result 3.1 that: 

1. The first order inclusion expectations for persons belonging to household k are equal to the 

first order inclusion expectation of household k, i.e. 
kh

 . 

2. The second order inclusion expectations for persons from two different households k and 'k , 

are equal to the second order inclusion expectations of these households, i.e. 
hkk '

  for two 

households from the same stratum or 
''hhkk

  for two households from two different strata. 

3. The second order inclusion expectations for persons from the same household, are equal to 

the second order inclusion expectation for this household, i.e. 
kkh

 . 
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4. Sample size determination 

The purpose of the RIS is to publish income distributions for households and persons at different 

geographical levels. The most detailed level is neighbourhoods, which are also used as the 

stratification variable in the sample design. Income distributions for households for region r are 

defined as 

 
r

lr

lr
M

M
P



 , l=1,…,L,         (4.1) 

where 
lr

M  denotes the number of households from region r, belonging to the l-th income category, 

and 
 l lrr

MM , the total number of households in region r. This income distribution is 

estimated as 
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M
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ˆ , l=1,…,L,         (4.2) 

where 
lr

M̂  denotes an appropriate direct estimator for the total number of households from region 

r, classified to the l-th income category. For the moment the Horvitz-Thompson estimator is assumed 

as an appropriate estimator for 
lr

M , i.e. 
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where 1
khl

y  if household k from stratum h is classified to the l-th income class and 0
khl

y  

otherwise and 
h

m  the total number of households selected in stratum h. In the RIS L=10. Income 

distributions for persons are defined and estimated accordingly to (4.1), (4.2), and (4.3). 

For sample size determination, precision specifications for the estimated income distributions are 

required. If precision requirements are specified for the separated classes of the income 

distributions, then the income class with the largest population variance determines the minimum 

required sample size, resulting in unnecessary large sample sizes. This can be avoided by specifying 

an alternative precision measure which is defined as the square root of the mean over the variances 

of the estimated income classes of an income distribution: 






L

l

lr
PV

L
s

1

)ˆ(
1

.         (4.4) 

In this paragraph an exact expression for s will be derived as well as an approximation that can be 

used to estimate the minimum required sample size which does not require information about 

income distributions or variances.  

Since neighbourhoods are the most detailed regions for which income distributions are published, 

precision requirements for sample size determination are specified at this regional level. Since 
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neighbourhoods are used as the stratification variable in the sample design, expressions for s can be 

derived under simple random sampling without replacement of core persons within each region. 

Result 4.1: Consider a sample of 
h

n  core persons, drawn by means of simple random sampling 

without replacement from a finite population of size 
h

N . An expression for the average precision 

measure 
h

s  in (4.4) for an income distribution is given by 
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Proof: An expression for the variance of the estimated fraction of households in income class l can be 

derived from the general expression for the variance of the Horvitz-Thompson estimator, Särndal et 

al. (1992), Section 2.8: 
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Inserting first and second order inclusion expectations specified in result 3.1 and taking advantage of 

the property that 2

khlkhl
yy   since the values of the target variable are restricted to zero or one, it 

follows after some algebra that (4.5) can be simplified to 
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Result 4.1 is obtained by inserting (4.6) into (4.4).       ■ 

Remark: If 1
kh

g  for all households in the population of region h, then it follows that 
hh

NM   

and that formula (4.6) simplifies to 

 )1(
1

)ˆ(
lhlh

hhh

hh

lh
PP

nNn

nN
PV 




 ,      (4.7) 

which can be recognized as the variance of an estimated fraction under simple random sampling 

without replacement, Cochran (1977), Chapter 3. 

Result 4.2: The average precision measure 
h

s  for an income distribution, specified in result 4.1 can be 

approximated by 


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with 
th

M  the number of households of size t in region h, and t the size of an household. 

Proof: The population of households in region h can be divided in T subpopulations of equally sized 

households. Let 
th

M  denote the number of households of size t in region h. Now it follows for the 

double summation between brackets for the expression of s in result 4.1 that 
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According to the Chauchy-Schwartz inequality (Cochran, 1977, Section 5.5) it follows for the single 

summation between brackets for the expression of 
h

s  in result 4.1 that 

L
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.        (4.9) 

Result 4.2 is obtained by inserting (4.8) and (4.9) in the expression for s in result 4.1.   ■ 

Remark: If 1
kh

g  for all households in the population of region h and the number of classes of the 

income distribution L=2, then it follows that the approximation for the average precision measure 
h

s  

in result 4.2 can be simplified to 
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s ,                       (4.10) 

which equals the square root of the maximum variance of an estimated fraction at 5.0ˆ P  under 

simple random sampling. This illustrates that the approximation for the average precision measure in 

result 4.2 can be interpreted as a generalization of the approximation of the maximum variance of an 

estimated fraction at 5.0ˆ P , often used in sample size determination. The average precision 

measure has its maximum value in the case of an equal distribution of the households over the 

income categories, i.e. LP
lh

/1ˆ   for l=1, …, L. In this situation the approximation for 
h

s  is exact, 

which follows directly from equation (4.9). 

Remark: Equating the expression for 
h

s  in result 4.2 to a pre-specified maximum value, say 
h

 , 

results in the following expression for the minimum sample size of core persons 
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.                 (4.11) 

The information required to estimate the minimum sample size is the total number of persons and 

the total number of equally sized households for neighbourhoods. No information about the 

expected income distribution or its variance is required. More precise estimates for the minimum 

sample size can be obtained with the expression in result 4.1, but require sample information from, 

for example, previous periods about the income distributions. 

Expression (4.11) gives the minimum sample size for core persons. Subsequently all household 

members of each core person are included in the sample. As a result, households can be included in 

the sample more than once and the sample size in terms of unique households and unique persons is 

random. To plan a survey and control survey costs, it is necessary to know the expected number of 

unique households and unique persons if a sample of core persons of size 
h

n  is drawn. 
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Result 4.3: The expected number of unique households in a sample of 
h

n  core persons, drawn by 

means of simple random sampling without replacement from a finite population of size 
h

N  is given 

by 
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Proof: Let 
tkh

~  denote the inclusion probability for household k from stratum h of size t. Since 

equally sized households share the same first order probabilities, it follows that 
thhtktkh

 ~~~
'
 . 

Let 
tkh

I  denote an indicator variable, taking value 1 if household k from stratum h of size t is included 

in the sample and zero otherwise. The expected number of unique households can be derived as 
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Result 4.4: The expected number of unique persons in a sample of 
h

n  core persons, drawn by means 

of simple random sampling without replacement from a finite population of size 
h

N  follows directly 

from result 4.3 and is given by 
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Sample size calculations are conducted at the level of neighbourhoods, which have an average 

population size of about 5.000 persons. It was finally decided to select core persons with a sampling 

fraction of 1/6. With this sample size, the maximum value for the average precision measure 
h

s  at 

the level of neighbourhoods amounts about 0.01 for the estimated household income distributions. 

With a total population of about 12.000.000 persons, this resulted in a sample size of about 

2.100.000 core persons and an expected sample size of about 4.600.000 unique persons. This sample 

was drawn in 1994, which was the start of the panel for the Dutch RIS. 
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5. Panel design 

 

The RIS is since 1994 conducted as a panel. Each year, it is determined which part of the population 

enters the target population of the RIS through birth and immigration. From this subpopulation a 

stratified simple random sample of core persons with a sample fraction of 1/6 is selected. These core 

persons are added to the panel of the RIS, with the purpose to maintain a representative sample. 

As already explained in the introduction, households are inappropriate units to be used in a panel 

due to its relatively instable nature. As an alternative the core persons included in the sample are 

followed in the panel. Each year the household composition of the core persons is derived and the 

relevant information about income and wealth is gathered from registrations. The advantage of a 

self-weighted sample design for the core persons is that inclusion expectations for households and 

persons can be derived in a straightforward manner from the observed household composition at 

each point in time, since the inclusion expectations are proportional to the household size to which a 

core person in a particular year belongs. 

Complications arise if different sampling fractions are applied in different strata. Consider a sample 

design where sample fractions vary over the strata. If new persons enter the household of a core 

person that originates from strata where different sample fractions are applied, then the inclusion 

expectation for this household is the sum over the inclusion expectations of the household members. 

This implies that the correct derivation of the inclusion expectations, at each point in time, requires 

information about the selection expectations for the entire population at the moment that the 

sample for the panel was drawn. 

The situation becomes more complicated if households are used as sampling units, even in the case 

of self-weighted sampling designs. Integration and disintegration of households over time affects the 

inclusion probabilities of the households observed in the panel at particular time periods. In this case 

the correct reconstruction requires historical information about the household compositions in the 

population. 
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6. Linear weighting 

For household surveys, estimates are required for person characteristics as well as household 

characteristics. Let 
y

t  denote the total of a target variable y. With linear weighting, an estimator for 

a person based target variable is defined as: 

    
  



H

h

m

k ki

ikhikhy

h

ywt

1 1

ˆ ,        (6.1) 

with 
ikh

w  a weight for person i belonging to household k and stratum h and 
ikh

y  the value of the 

target variable for person (i,k,h). An estimator for a household based target variable is given by: 

 
 



H

h

m

k

khkhy

h

ywt

1 1

ˆ ,         (6.2) 

with 
kh

w  a weight for household k from stratum h and 
kh

y  the corresponding value of the target 

variable.  

The weights can be obtained by means of the general regression estimator, Särndal et al. (1992). The 

regression based method uses auxiliary variables which are observed in the sample and for which the 

population totals are known from other sources. Consequently, the weights reflect the (unequal) 

inclusion expectations of the sampling units and an adjustment such that for auxiliary variables the 

weighted observations sum to the known population totals. Often categorical variables like gender, 

age, marital status or region are used as auxiliary variables. Due to the fact that the values of 

auxiliary variables differ from person to person within the same household, different weights can be 

derived for the same household. Therefore, it is relevant to apply a weighting method which yields 

one unique household weight for all its household members and still fulfil the additional requirement 

that the weighted auxiliary variables of the sampling units sum to the known population totals for 

persons. If the weights for persons within a household are the same, then household and person 

based estimates of the same target variables are consistent with each other (for example the total 

income estimated from households and that from persons).  

Lemaître and Dufour (1987) proposed a method where it is forced that the weights for persons 

within a household are the same. They applied the linear weighting method at a person’s level to 

obtain person weights. The original auxiliary variables defined at the person level are replaced by the 

corresponding household mean. Since members of the same household have the same inclusion 

expectation and share the same auxiliary information, the resulting weights based on the regression 

estimator are forced to be the same. In this paper, a slightly more general and direct approach is 

presented by applying the linear weighting method at the household level, where the auxiliary 

information of person based characteristics is aggregated at the household level. The method 

proposed by Lemaître and Dufour (1987) is a special case of this approach. The generalisation 

provides an interpretation of Lemaître and Dufour’s method, since it explains under which variance 

structure the approach is efficient. 
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Let 
kh

x  denote a q vector containing q auxiliary variables for household k from stratum h. Person 

based characteristics are aggregated to household totals. The general regression estimator is derived 

from a linear regression model that specifies the relationship between the target variable and the 

available auxiliary variables for which population totals are known, and is defined as 

kh

t

khkh
ey  βx , with         (6.3) 

0)(E 
khm

e , 2
)(V

khkhm
e  . 

In (6.3) β  denotes a vector containing the q regression coefficients of the regression of 
kh

y  on 
kh

x  

and 
kh

e  the residuals and 
m

E  and 
m

V  denote the expectation and variance with respect to the 

regression model. It is required that all 2

kh
  be known up to a common scale factor, that is 

khkh


22
 , with 

kh
  known. 

The general regression estimator for the population total of y is defined as (Särndal et al., 1992, Ch.6) 

)ˆ(ˆˆˆ
xπx

ttb 
t

yy
tt


,        (6.4) 

with 
y

t̂  the Horvitz-Thompson estimator for 
y

t , 
x

t  a q vector containing the known population 

totals of the auxiliary variables x , 
xπ

t̂  the Horvitz-Thompson estimator for 
x

t , 

yΣΠXX)ΣΠ(Xb
11111ˆ 


tt  a design-based estimator for the regression coefficients in the 

population, i.e. yΣXX)Σ(Xb
111 


tt  and therefore also for β  in (6.3). Furthermore, X  denotes 

an m×q matrix containing the auxiliary variables for the households observed in the sample, y  an m 

vector containing the values of the target variables of the households observed in the sample, Σ  an 

m×m diagonal matrix with the residual variances 2

kh
  of all households in the sample and Π  an m×m 

diagonal matrix containing the first order inclusion expectations.  

An alternative expression for the general regression estimator is given by (Särndal et al. 1992, Ch. 6) 

wy
t

y
t ˆ ,          (6.5) 

with  

))ˆ()((
11111

xπx
ttXΣΠXXΣjΠw 

 t      (6.6) 

an m vector containing the weights 
kh

w  obtained with the general regression estimator for the 

households observed in the sample and j an m vector with each element equal to one. The weights 

are calculated at the household level and can be used for weighting person based characteristics of 

the corresponding household members, using formula (6.1) since 
khikh

ww   for all persons 

belonging to the same household k. 

The role of the linear regression model (6.3) is to describe the finite population in order to derive an 

estimator for the target variable. If the linear model explains the variation of the target parameter in 

the finite population reasonably well, then this will result in a reduction of the design variance of the 

Horvitz-Thompson estimator and decrease the bias due to selective non-response, Särndal and 

Swenson (1987), Bethlehem (1988), and Särndal and Lundström (2005). Another important property 

is that the general regression estimator ensures that for the auxiliary variables the weighted 
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observations sum to the known population totals. This property is used to enforce consistency 

between the marginal totals of different publication tables. 

Result 6.1: The integrated method for weighting persons and households proposed by Lemaître and 

Dufour (1987) follows as a special case from (6.6) if person based characteristics in X  are 

aggregated to household totals and Σ  is a diagonal matrix containing the household size at the 

diagonal elements. The latter condition implies that the variance of the residuals in the underlying 

regression model (6.3) are assumed to be proportional to the household size, i.e. 
khkh


22

  with 

kh
  the size of household (k,h). 

Proof: The weighting procedure proposed by Lemaître and Dufour (1987) is a person based 

approach, assuming the following regression model for each person in the population; 

ikh

t

ikhikh
ey  βz . The auxiliary information for each person in 

ikh
z  is replaced by its household 

mean. Furthermore they implicitly assume that the residuals are independently distributed with 

equal variance, i.e. 2
)(V 

ikhm
e . In this case the regression weights are obtained by 
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 .      (6.7) 

Let n denote the number of persons observed in the sample. Now 
p

w  is an n-vector, containing the 

regression weights 
ikh

w  for the persons observed in the sample, 
p

Π  an n×n diagonal matrix 

containing the first order inclusion expectations for the persons selected in the sample, and Z  

denotes an n×q matrix containing the auxiliary variables 
ikh

z . For the auxiliary information it follows 

that 
xz

tt   and 
 xz

tt ˆˆ  . Finally L is an n×m matrix, introduced to link person based information 

to household based information, Elements 
ik

l  of this matrix are equal to one if person of the i-th row 

belongs to the household of the k-th column. Now we have the following relations: 
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LΠΠL

11 
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If both sides of (6.7) are premultiplied with tt
LLL

1
)(
 , then it follows from the relations specified in 

(6.8), that the resulting vector of weights is exactly equal to the vector specified in (6.6), under the 

condition that Σ  is a diagonal matrix with the household size as diagonal elements. This proof was 

initially proposed by Nieuwenbroek (1993).        ■ 

In the light of the model assisted approach of Särndal et al. (1992), result 6.1 provides an additional 

interpretation of this weighting technique, in particular concerning the choice of the variance 

structure for the residuals in (6.3). If 
kh

y  is a household characteristic derived from summing the 

individual information of household members, then a suggestion is to assume a variance structure 

proportional to the household size, as implied by the method of Lemaître and Dufour. 
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7. Variance estimation 

Since general regression estimators are non-linear,  variances are obtained from a linearized 

approximation, obtained by means of a Taylor series expansion of the general regression estimator 

that is truncated at the first order term. Therefore general regression estimators are approximately 

design-unbiased, see Särndal et al (1992) for details.  

Parameters of the RIS, are estimated as the ratio of two population totals 
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where 
y

t̂  and 
z

t̂  are defined by (6.1) or (6.2) in the case of person-based or household-based  target 

variables, respectively.  

Result 7.1: The variance of (7.1) under a sample design where core persons are drawn by means of 

stratified simple random sampling, and all household members of these core persons are included in 

the sample is given by 
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y
b  and 
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b  the finite population 

regression coefficients of the regression of 
kh

y  respectively 
kh

z  on 
kh

x . 

Proof: A general approximation for the variance of the ratio of two general regression estimators is 

given by (Särndal et al. 1992, Section 7.13): 
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After inserting first and second order inclusion expectations specified in result 3.1, it follows that 

(7.2) can be simplified to the variance expression defined in result 7.1.     ■ 

 

Result 7.2: An estimator for the variance specified in Result 7.1 is given by 
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khkhy

t

khkhkh
zRye bxbx   and 

y
b̂  and 

z
b̂  the Horvitz-Thompson type estimators 

for 
y

b  and 
z

b , defined by (6.5). 

Proof: An estimator for the variance approximation (7.2) is given by (Särndal et al. 1992, Section 

7.13): 
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where 
khkhkh

wc /  are the correction weights. After inserting first and second order inclusion 

expectations specified in result 3.1 and some algebra, it follows that (7.3) equals 
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which is also equal to the estimator defined in result 7.2.      ■ 

Note that the expressions for the variance are equal to the variance of stratified simple random 

sampling using transformed target variables 
khkh

gy / , 
khkh

gz /  and transformed auxiliary variables 

khkh
g/x . Indeed, expression (6.6) can also be expressed as 

wΓttXΛΠXXΛjΠΓw
xπx

~
))]ˆ()

~~~
(

~
(

~
[

1111111 


t  

with 1
 ΣΓΛ , Γ an nn   diagonal matrix with elements 

kh
g , Π

~
 a n×n diagonal matrix with 

elements 
hh

Nn /  and XΓX
1~ 

 , a matrix with the transformed auxiliary information. Inserting 

wΓw
~1

  in to (6.1) or (6.2) shows that these general regression estimators can be interpreted as a 

weighting applied to the transformed target and auxiliary variables under stratified simple random 

sampling. There is, however, no clear interpretation for the variance structure Λ . 
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8. Application 

In the RIS, core persons are selected from the population aged 15 years and older through stratified 

simple random sampling without replacement with a sample fraction of 0.16. In this application 

results are presented for a large municipality (Rotterdam), a municipality of intermediate size 

(Enschede) and a small municipality (Sevenum) for three subsequent years 2006, 2007 and 2008. 

Population and sample sizes for these three municipalities are summarized in Table 1.  

Target variables of interest for the RIS are: 

- Income distribution of households in ten classes where the categories are based on ten 

percentage quintile points of the national distribution (abbreviated as Inc. distr. hh.) 

- Mean income households (abbreviated as HHinc) 

- Mean income persons (abbreviated as Pinc) 

 

Municipality Population Sample 

 Households Persons 15 and 
older 

Core 
persons 

Unique 
households 

Unique 
persons 

Rotterdam 293400 484000 73000 67600 171400 

Enschede 74200 128000 19300 17600 46300 

Sevenum 2950 6100 870 750 2500 

Table 1: population and sample size RIS for three Dutch municipalities. 

Estimates for official publications of the RIS are obtained with the GREG estimator using the method 

of Lemaître and Dufour (1987). Since this survey does not suffer from nonresponse, auxiliary 

information is used in the estimation for variance reduction and consistency between the marginal of 

different publication tables. Inclusion expectations are based on the formulas derived in Section 3. 

For each municipality the following weighting scheme is applied in the GREG estimator:  

Age(7)×Gender + Age(4)×Gender×MaritalStatus(2) + Address(3). 

All auxiliary variables are categorical. The number between brackets denote the number of 

categories. MaritalStatus distinguishes between people who are married and other forms of marital 

status. Address distinguish between addresses where one person is residing, one family is residing 

and other types of addresses. Standard errors for these GREG estimates are based on the 

approximations derived in Section 7. Estimates for the aforementioned target variables with their 

standard errors based on the HT estimator, the GREG estimator and the GREG estimator with the 

method of Lemaître and Dufour are given in Tables 2, 3, and 4 for Rotterdam, Enschede and 

Sevenum respectively. 

For each municipality there is a steady increase over time of the mean of the income for households 

and persons. Also the income distributions for each municipality show a stable pattern over the 

years. This can be expected if a panel is applied in combination with large sample sizes to estimate 

phenomena that are not very volatile in time. Differences in precision between the HT estimator and 
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the GREG estimator are small for large samples like Rotterdam. For smaller samples like Sevenum, 

the use of auxiliary information through the GREG estimator results in an increase of precision. 

Comparing GREG estimates with and without using the method of Lemaître and Dufour shows that 

standard errors of estimated household parameters are smaller if the method of Lemaître and 

Dufour is applied. This is particularly visible for the mean household income in the small sample of 

Sevenum. For estimated person based parameters, on the other hand, the method of Lemaître and 

Dufour increases the standard error compared with the regular GREG estimator. For the household 

income distributions, which are defined as the mean over an indicator variable at the household 

level, the standard errors are more or less equal. This can be explained with the interpretation for 

the method of Lemaître and Dufour provided in Section 6. Lemaître and Dufour implies a linear 

regression model with a residual variance proportional to the household size. This assumption is 

reasonable for household variables that are obtained by summing the individual information from 

household members, like the mean household income, but less efficient for personal based 

characteristics. The additional advantage of Lemaître and Dufour is that totals for household and 

person based income, which can be derived directly from their means, are consistent. 

 

Rotterdam 2006 

Variable HT GREG GREG consistent (L&D) 

Inc. distr. hh.  1 0.2380 (0.0019) 0.2233 (0.0016) 0.2260 (0.0016) 

                       2 0.1876 (0.0017) 0.1797 (0.0016) 0.1838 (0.0016) 

                       3 0.1335 (0.0014) 0.1319 (0.0013) 0.1346 (0.0014) 

                       4 0.1022 (0.0012) 0.1026 (0.0012) 0.1043 (0.0012) 

                       5 0.0764 (0.0010) 0.0789 (0.0010) 0.0794 (0.0010) 

                       6 0.0651 (0.0009) 0.0687 (0.0009) 0.0678 (0.0009) 

                       7 0.0574 (0.0008) 0.0617 (0.0008) 0.0596 (0.0008) 

                       8 0.0509 (0.0007) 0.0552 (0.0007) 0.0523 (0.0007) 

                       9 0.0463 (0.0007) 0.0508 (0.0007) 0.0470 (0.0006) 

                      10 0.0424 (0.0006) 0.0469 (0.0006) 0.0449 (0.0006) 

HHinc 19790 (83) 20134 (80) 20161 (76) 

PPinc 22074 (94) 22219 (84) 22233 (93) 
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Rotterdam 2007 

Variable HT GREG GREG consistent (L&D) 

Inc. distr. hh.  1 0.2370 (0.0019) 0.2223 (0.0016) 0.2242 (0.0016) 

                       2 0.1911 (0.0017) 0.1832 (0.0016) 0.1878 (0.0016) 

                       3 0.1327 (0.0014) 0.1312 (0.0013) 0.1346 (0.0013) 

                       4 0.1045 (0.0012) 0.1053 (0.0012) 0.1074 (0.0012) 

                       5 0.0770 (0.0010) 0.0797 (0.0010) 0.0798 (0.0010) 

                       6 0.0628 (0.0009) 0.0663 (0.0009) 0.0660 (0.0009) 

                       7 0.0561 (0.0008) 0.0600 (0.0008) 0.0576 (0.0008) 

                       8 0.0503 (0.0007) 0.0546 (0.0007) 0.0514 (0.0007) 

                       9 0.0460 (0.0007) 0.0506 (0.0007) 0.0467 (0.0006) 

                      10 0.04256 (0.0006) 0.04696 (0.0006) 0.0445 (0.0006) 

HHinc 22306 (73) 22950 (64) 22866 (64) 

PPinc 24094 (82) 24362 (75) 24432 (78) 

 

Rotterdam 2008 

Variable HT GREG GREG consistent (L&D) 

Inc. distr. hh.  1 0.2355 (0.0019) 0.2201 (0.0016) 0.2222 (0.0016) 

                       2 0.1887 (0.0017) 0.1807 (0.0016) 0.1851 (0.0016) 

                       3 0.1335 (0.0014) 0.1317 (0.0013) 0.1350 (0.0014) 

                       4 0.1048 (0.0012) 0.1056 (0.0012) 0.1070 (0.0012) 

                       5 0.0760 (0.0010) 0.0788 (0.0010) 0.0792 (0.0010) 

                       6 0.0641 (0.0009) 0.0677 (0.0009) 0.0671 (0.0009) 

                       7 0.0577 (0.0008) 0.0621 (0.0008) 0.0601 (0.0008) 

                       8 0.0510 (0.0007) 0.0557 (0.0007) 0.0526 (0.0007) 

                       9 0.0465 (0.0007) 0.0511 (0.0007) 0.0472 (0.0006) 

                      10 0.0421 (0.0006) 0.0467 (0.0006) 0.0444 (0.0006) 

HHinc 23750 (78) 24511 (69) 24410 (68) 

PPinc 25325 (84) 25625 (75) 25705 (78) 

 

Table 2: Estimation results RIS for Rotterdam (large Dutch municipality), standard errors between 

brackets. 
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Enschede 2006 

Variable HT GREG GREG consistent (L&D) 

Inc. distr. hh.  1 0.2572 (0.0038) 0.2360 (0.0030) 0.2398 (0.0029) 

                       2 0.1782 (0.0033) 0.1695 (0.0030) 0.1701 (0.0029) 

                       3 0.1283 (0.0026) 0.1258 (0.0025) 0.1268 (0.0025) 

                       4 0.1024 (0.0022) 0.1041 (0.0022) 0.1050 (0.0021) 

                       5 0.0849 (0.0019) 0.0906 (0.0019) 0.0916 (0.0019) 

                       6 0.0682 (0.0017) 0.0745 (0.0017) 0.0748 (0.0017) 

                       7 0.0587 (0.0015) 0.0644 (0.0015) 0.0630 (0.0015) 

                       8 0.0496 (0.0013) 0.0550 (0.0014) 0.0528 (0.0013) 

                       9 0.0411 (0.0012) 0.0462 (0.0012) 0.0435 (0.0012) 

                      10 0.0314 (0.0011) 0.0341 (0.0011) 0.0327 (0.0010) 

HHinc 19810 (128) 20353 (111) 20300 (107) 

Pinc 20402 (102) 20608 (92) 20590 (92) 

 

Enschede 2007 

Variable HT GREG GREG consistent (L&D) 

Inc. distr. hh.  1 0.2621 (0.0039) 0.2397 (0.0030) 0.2427 (0.0029) 

                       2 0.1728 (0.0033) 0.1647 (0.0030) 0.1658 (0.0029) 

                       3 0.1273 (0.0026) 0.1248 (0.0025) 0.1264 (0.0025) 

                       4 0.1035 (0.0022) 0.1054 (0.0022) 0.1060 (0.0022) 

                       5 0.0845 (0.0019) 0.0899 (0.0019) 0.0909 (0.0019) 

                       6 0.0692 (0.0017) 0.0756 (0.0017) 0.0764 (0.0017) 

                       7 0.0583 (0.0015) 0.0645 (0.0015) 0.0635 (0.0015) 

                       8 0.0502 (0.0014) 0.0555 (0.0014) 0.0527 (0.0013) 

                       9 0.0407 (0.0012) 0.0456 (0.0012) 0.0431 (0.0012) 

                      10 0.0315 (0.0011) 0.0343 (0.0011) 0.0325 (0.0010) 

HHinc 20878 (128) 21716 (107) 21753 (105) 

Pinc 21387 (115) 21751 (103) 21852 (106) 
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Enschede 2008 

Variable HT GREG GREG consistent (L&D) 

Inc. distr. hh.  1 0.2672 (0.0038) 0.2432 (0.0029) 0.2469 (0.0029) 

                       2 0.1725 (0.0033) 0.1641 (0.0029) 0.1651 (0.0029) 

                       3 0.1264 (0.0026) 0.1240 (0.0025) 0.1252 (0.0025) 

                       4 0.0989 (0.0022) 0.1011 (0.0021) 0.1019 (0.0021) 

                       5 0.0868 (0.0020) 0.0924 (0.0019) 0.0934 (0.0019) 

                       6 0.0686 (0.0016) 0.0759 (0.0017) 0.0765 (0.0017) 

                       7 0.0588 (0.0015) 0.0649 (0.0015) 0.0637 (0.0015) 

                       8 0.0490 (0.0013) 0.0549 (0.0014) 0.0526 (0.0013) 

                       9 0.0408 (0.0012) 0.0453 (0.0012) 0.0422 (0.0012) 

                      10 0.0310 (0.0010) 0.0343 (0.0011) 0.0326 (0.0010) 

HHinc 22254 (148) 23235 (125) 23237 (123) 

Pinc 22235 (123) 22659 (110) 22724 (114) 

 

Table 3: Estimation results RIS for Enschede (Dutch municipality of intermediate size), standard errors 

between brackets. 

 

Sevenum 2006 

Variable HT GREG GREG consistent (L&D) 

Inc. distr. hh.  1 0.0880 (0.0131) 0.0835 (0.0112) 0.0821 (0.0108) 

                       2 0.1195 (0.0145) 0.1148 (0.0123) 0.1153 (0.0121) 

                       3 0.1079 (0.0125) 0.1013 (0.0111) 0.1043 (0.0111) 

                       4 0.0908 (0.0107) 0.0885 (0.0100) 0.0885 (0.0100) 

                       5 0.0911 (0.0101) 0.0928 (0.0100) 0.1001 (0.0100) 

                       6 0.0900 (0.0094) 0.0968 (0.0092) 0.0980 (0.0093) 

                       7 0.1345 (0.0111) 0.1352 (0.0105) 0.1346 (0.0103) 

                       8 0.1001 (0.0094) 0.1018 (0.0091) 0.0984 (0.0090) 

                       9 0.0829 (0.0082) 0.0859 (0.0081) 0.0841 (0.0081) 

                      10 0.0952 (0.0090) 0.0996 (0.0089) 0.0946 (0.0086) 

HHinc 25696 (799) 25698 (734) 25968 (711) 

Pinc 21328 (466) 21680 (428) 21712 (428) 

 



26 

 

 

Sevenum 2007 

Variable HT GREG GREG consistent (L&D) 

Inc. distr. hh.  1 0.0851 (0.0129) 0.0818 (0.0106) 0.0800 (0.0103) 

                       2 0.1343 (0.0153) 0.1162 (0.0116) 0.1165 (0.0116) 

                       3 0.1014 (0.0120) 0.0951 (0.0107) 0.0977 (0.0108) 

                       4 0.0879 (0.0107) 0.0866 (0.0100) 0.0883 (0.0101) 

                       5 0.0966 (0.0102) 0.0989 (0.0098) 0.1020 (0.0101) 

                       6 0.1058 (0.0104) 0.1090 (0.0100) 0.1118 (0.0102) 

                       7 0.1191 (0.0103) 0.1257 (0.0100) 0.1254 (0.0100) 

                       8 0.1110 (0.0098) 0.1172 (0.0095) 0.1147 (0.0093) 

                       9 0.0768 (0.0078) 0.0821 (0.0078) 0.0803 (0.0078) 

                      10 0.0820 (0.0083) 0.0873 (0.0080) 0.0836 (0.0078) 

HHinc 28207 (618) 28901 (520) 29026 (490) 

Pinc 24056 (456) 24219 (396) 24459 (393) 

Sevenum 2008 

Variable HT GREG GREG consistent (L&D) 

Inc. distr. hh.  1 0.0920 (0.0133) 0.0843 (0.0110) 0.0798 (0.0107) 

                       2 0.1331 (0.0154) 0.1187 (0.0119) 0.1199 (0.0119) 

                       3 0.1071 (0.0124) 0.1001 (0.0107) 0.1038 (0.0109) 

                       4 0.0733 (0.0097) 0.0711 (0.0089) 0.0752 (0.0087) 

                       5 0.0865 (0.0098) 0.0866 (0.0091) 0.0898 (0.0091) 

                       6 0.1098 (0.0104) 0.1176 (0.0103) 0.1206 (0.0104) 

                       7 0.1347 (0.0114) 0.1421 (0.0112) 0.1411 (0.0112) 

                       8 0.0946 (0.0090) 0.1011 (0.0089) 0.0996 (0.0089) 

                       9 0.0786 (0.0081) 0.0838 (0.0081) 0.0813 (0.0081) 

                      10 0.0904 (0.0088) 0.0948 (0.0085) 0.0889 (0.0082) 

HHinc 31466 (795) 32372 (715) 32536 (694) 

Pinc 24980 (468) 25482 (426) 25644 (455) 

 

Table 4: Estimation results RIS for Sevenum (small Dutch municipality), standard errors between 

brackets. 
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9. Discussion 

Households are inappropriate as sampling units in panels conducted to collect information at the 

level of households or persons. Since the internal composition of households changes over time the 

reconstruction of the correct inclusion probabilities, required for design-based and model-assisted 

inference, can become very complicated or even impossible. To avoid these complications, a sample 

design is prosed in this paper where persons are drawn through a self-weighted sample design.  At 

each point in time, the household members of these so-called core persons are included in the 

sample. This results in a sample where households can be drawn more than once but with a 

maximum that is equal to the household size.  

It is shown that first and second order inclusion expectations for this sample design can be derived in 

a relatively straightforward manner from the household composition of the core persons at each 

point in time. No additional information about the history of changes in the household composition 

in the past is required. These inclusion expectations can be used in a similar way in design-based and 

model-assisted inference as the more common inclusion probabilities. Expressions for minimum 

sample sizes to meet a pre-specified precision for estimated distributions as well as the expected 

number of unique households in a sample are derived.    

In this context weighting procedures that enforce equal regression weights for persons within the 

same household are relevant in order to enforce consistency between person based and household 

based estimates. In this paper an approach that is slightly more general compared to the procedure 

proposed by Lemaître and Dufour (1987) is described. It also provides an interpretation of the 

method of Lemaître and Dufour since it shows that the underlying regression model assumes a 

residual variance that is proportional to the household size. An application to the RIS illustrates that 

this assumption is reasonable for household based estimates since it decreases the standard error of 

the GREG estimates. For person based characteristics Lemaître and Dufour increases the standard 

errors, which is the price paid for enforcing consistency between person and household based 

parameters. 
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