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Adaptive survey designs to minimize survey

mode effects
A case study on the Dutch Labor Force Survey

Melania Calinescu, Barry Schouten

Summary: Assessing the impact of mode effects on survey estimates has become a cru-
cial question due to the increasing appeal of mized-mode designs. Despite the advantages
of a mized-mode design such as lower costs and increased coverage, there is sufficient
evidence that mode effects may sometimes be large relative to the precision. They may
lead to incomparable statistics in time or over population subgroups and they may in-
crease bias. Adaptive survey designs offer a flexible mathematical framework to obtain
the optimal balance between survey quality and costs. In this paper we employ adaptive
destgns in order to minimize mode effects. We illustrate our optimization model by
means of a case-study on the Dutch Labor Force Survey. We focus on item-dependent
mode effects and we evaluate the impact on survey quality by comparison to a “gold
standard”.

Keywords: Mode effects; Survey costs; Survey quality; Adaptive survey designs.

Acknowledgements: The authors would like to thank dr. Sandjai Bhulai (VU University
Amsterdam) for his constructive comments on the mathematical framework presented in
the current paper. The authors also thank Boukje Janssen (CBS) and Martijn Souren
(CBS) for processing the raw field data for analysis and Joep Burger (CBS) for his
comments that helped improve this paper.

1 Introduction

Survey mode effects appear when differences are noticed between estimates obtained
from surveys using different survey modes, i.e., when the same question asked in differ-
ent modes receives different answers. Assessing the impact of mode effects on survey
estimates has become a crucial question due to the increasing appeal of mixed-mode
designs. There are multiple reasons why survey practitioners prefer less and less uni-
mode designs such as increased costs in carrying out face-to-face surveys, decreasing
coverage in telephone surveys and low participation in online surveys (FAN AND YAN
2010). As a consequence, survey organizations have been steadily restructuring their
unimode designs into mixed-mode designs. However, there is significant theoretical and
practical evidence (see JACKLE ET AL. 2010 and DILLMAN ET AL. 2009) that mode ef-
fects may sometimes be large relative to the precision. They may lead to incomparable



statistics in time or over population subgroups and they may increase bias. Assessment
of mode effects does not however follow a generally accepted technique. Literature and
experimental studies note various viewpoints on what survey components suffer more
from mode effects and how to test for manifestation of mode effects. The common
ground among these perspectives is determining whether mode effects are item-specific
or systematic phenomena (KLAUSCH ET AL. 2013). Subsequently, when they are item-
specific, changes to the survey design can be made in order to address the corresponding
mode effects. If however, systematic errors are observed, then modes are incomparable
and carrying out a mixed-mode design could result into misleading conclusions.

In the current paper, we investigate adaptive survey designs that address item-
specific mode effects. Adaptive survey designs optimize quality of survey response given
constraints on costs, or vice versa. For a general introduction to adaptive survey designs,
see SCHOUTEN ET AL. (2013a). Survey mode effects stream from mode selection effect,
i.e., different people have access to different modes, and mode measurement effects.
However, as reported in SCHOUTEN ET AL. (2013b), for the Dutch Labor Force Survey
(LFS), the mode selection effect for target variables can be adjusted for, due to strong
auxiliary information available from registers. As a consequence, in the LF'S case, the
analysis may focus only on mode measurement effects. Moreover, it enables analysis of
the adjusted mode effects, i.e., analysis of differences between modes after nonresponse
adjustments.

In our analysis, we consider three survey modes, namely, web (CAWT), phone (CATTI)
and face-to-face (CAPI). As observed from historical data, web surveys are cheap to
run but possibly more prone to measurement effects than CATT or CAPI. At the same
time, CAPI surveys produce more reliable survey estimates but they are very expensive
to run. A mixed-mode design balances costs but the mode measurement effects that
may thus occur are harder to quantify and control. Therefore, in the current paper we
investigate what mode combinations, from a specified list of combinations, should form
the adaptive design such that overall mode measurement effects are minimized.

We focus our analysis on minimizing mode measurement effects that may impact the
unemployment rate estimate, one of the key statistics produced in the LFS. In the recent
years, the LFS design underwent a series of changes in its transition from a full face-
to-face survey to a mixed-mode survey. Thus, extensive knowledge on the interaction
between survey design features, survey mode in particular, and the response process is
available. However, the approach we propose in quantifying mode measurement effects
is survey item-dependent. For surveys with multiple survey variables, one would need
to summarize mode effects across survey items. The method presented in CALINESCU
AND SCHOUTEN (2013), where measurement profiles and response styles are used to
summarize measurement effects across survey items, is designed for these settings.

The outline of the paper is as follows. Section 2 enumerates some of the difficul-
ties that arise in the attempt to quantify mode effects and gives recommendations on
possible techniques to deal with such issues. Section 3 presents the model formulation
where we evaluate the mode measurement effect by comparison to a selected benchmark
estimate and Section 4 describes the optimization algorithm. The optimization results
are presented in Section 5 and Section 6 concludes the paper.



2 Survey mode effects: an introduction

Running mixed-mode surveys offers many advantages compared to unimode surveys
such as lower costs and increased coverage. However, their implementation comes with
a series of potential difficulties of which most troublesome is data comparability across
modes. DE LEEUW (2005) and JACKLE ET AL. (2010) note that before designing and
implementing mixed-mode surveys survey practitioners should be able to understand
and quantify the impact of mode effects on data quality. Therefore, extensive research
by means of field studies and testing of mode differences is strongly recommended.

The most common framework to assess mode effects is given by the cognitive models
of survey response process (see TOURANGEAU ET AL. 2000) which analyze the phases
of the response process, i.e., interpretation and comprehension of the survey question,
information retrieval, judgment and reporting of the answer, that are influenced by
mode. As a result, manifestation of an answering behavior, e.g., social desirability,
satistificing, is perceived as a mode effect that can lead to response bias. Another
method for assessing mode effects is to test for differences in various quality indicators
and response distributions (see LINK AND MOKDAD 2005, GREENFIELD ET AL. 2000).
If significant differences are displayed across modes then the analyzed survey items or
indicators are subject to mode effects. A third approach is a model-based approach
that analyzes the impact of various modes on the probability of providing the same
answer under the different modes for two persons that possess the same true state on
the question topic (see MILLSAP 2011).

Although sufficient tools are available to identify response differences across modes,
the main challenge is how to decide that such differences translate into data quality
difference between surveys (see BIEMER 1988). Differences in mode coverage, sampling
frames and nonresponse bias could easily perturb responses, making it hard for the
researchers to disentangle the mode effect. Additionally, differences in questionnaire
design across modes are an easy trap for overstatement of the mode effects existence
(see DILLMAN 2000). The reason is that even if a questionnaire is designed specifically
for a given survey mode, mode effects may still occur. Furthermore, mode effects may
impact only certain survey estimates (see DE LEEUW 1992). DILLMAN ET AL. (2009)
have shown that different people are attracted by different modes which results in an
inhomogeneous sample creating thus a selection effect next to a measurement effect.

As suggested by BIEMER (1988), evaluating the mode effect impact on data quality
could be done by comparing responses to a “gold standard” such as external records or
prior knowledge on the direction of error. Following this recommendation we develop a
mode effect indicator that aims at quantifying the deviation caused by mode on a survey
item against a selected benchmark. Subsequently, we develop an optimization model
that assigns optimally survey resources in order to minimize the mode effect impact on
data quality given the mode effect indicator. We apply this evaluation method on the
Dutch LFS in order to assess the mode effect on one of the survey items, i.e., the unem-
ployment rate estimate. In the following we present the optimization model to develop
an adaptive design that minimizes the mode effects given the selected benchmark and
the mode effect indicator.



3 Problem formulation

The most influential survey design features are the mode and the number of visits/calls,
which is due to their significant influence on survey costs and quality. Therefore, for our
adaptive design framework, we focus on various combinations survey mode - number of
attempts, further denoted as survey strategies, and we let the decision variables denote
the allocation probability of a survey strategy to the survey units. For example, the set
of survey strategies in the case study in Section 5 is given by

S = {CAWI, CATI2, CATI2+, CAPI3, CAPI3+,
CAWI-CATI2, CAWI-CATI2+, CAWI-CAPI3, CAWI-CAPI3+, &},

where CAPI denotes face-to-face interviews, CATI telephone interviews and CAWI web
survey. Note that the strategies alternate between no restriction of calls, i.e., CATI2+
and CAPI3+, and limitation to two calls for CATI, i.e., CATI2, and three for CAPI, i.e.,
CAPI3. Mixed-mode strategies, e.g., CAWI-CATI2+, are also considered in the case
study, where the first mode (CAWI) is available for all sample units at the beginning of
the survey fieldwork and the second mode (CATI2+) is employed later in the fieldwork
to approach the nonrespondents from the first mode. Note that the sampling design is
addressed explicitly in the model by including the nonsampling strategy ® in the survey
strategy set. In other words, allocating strategy ® to population units denotes that such
units are not sampled. The specified maximum number of attempts has been selected
given the available historical data, where the greatest proportion of the overall response
is obtained within the specified number of attempts. The selected mode combinations
are a result of current practice, where web is part of most mixed-mode designs due to
its reduced costs. Additionally, we are interested in discerning the mode measurement
effect between unimode and mixed-mode strategies.

Population units are clustered into G = {1,...,G} groups given a set of character-
istics X such as age, ethnicity, that can be extracted from external sources of data. Let
p (s, g) be the allocation probability of strategy s to group g. Note that in the current
paper, we implicity model the sampling probabilities. In other words, if p(s,g) > 0,
then a proportion p (s, g) from group g is sampled and approached through strategy s.
Denote by p (®, g) the nonsampling probability. We then have that

> p(s,9)+p(®,g)=1,Vgeq. (1)
seS

We define the mode effect measure as the nonresponse adjusted difference between the
survey estimate s, and a benchmark estimate sy of the population mean Y, where
the survey estimate ys 4 is obtained by allocating strategy s € S to group g € G. Let
D(s,g) denote this difference. The mode effect measure is expressed as

D(S;g):gs,g_gBM7 vsesvgeg’ (2)

with values in the same domain as s 4 and gzy. We further refer to D(s,g) as the
mode effect measure or the mode difference. The mode effect measure considers the



adjusted mode measurement effects, i.e., the survey estimates have been adjusted for
nonresponse. For convenience, we refer in the following to mode effects but they are
always adjusted for selection effects. The population average mode difference with
respect to the indicated benchmark BM is given by

wep (s,9) p(s,9) D(s,g)
sesP(s',9)p (s, 9)

DBM -

where Ny is the population size of group g, wy = Ny/N represents the proportion of
group ¢ in the entire population N and p (s, g) the response probability for group g if
strategy s is assigned. In other words, the impact of any mode differences that arise
when applying strategy s to group g are moderated by the contribution of the obtained
group response to the total response, weighted by the group size. Since only response
could trigger mode effects, the contribution of each group g to the overall mode effect
measure needs to be proportional to the group’s contribution to the overall response.
Dy, takes values in the same domain as D(s,g). Our goal is to minimize the overall
mode effect Dy,, by optimally assigning strategies s € S to groups g € G, i.e.,

wyp (s,9) p(s,9) D(s, g) (3)

minimize Dy, =
o Zs,esp(s’,g)p(s’,g)

p(s,9)

S’g

Note that , 4 is a nonresponse adjusted estimate of Y, while p (s, g) is an unweighted
estimate of the group g response probability in strategy s (see for details Section 5.2).
We assume that the nonresponse adjustment does not influence the contribution of each
group and strategy to the overall response. This allows us to write the objective function
as in (3), while performing nonresponse adjustment within the optimization would be
a very complex perhaps even irrealizable technique.

Scarcity in resources and other practical aspects impose a number of constraints in
our model. A limited budget B is available to setup and run the survey. Let ¢ (s, g) be
the unit cost of applying strategy s to one unit in group g (for estimation details, see
Section 5.4). The cost constraint is formulated as follows

> Nyp(s,g)c(s,g) < B. (4)

To ensure a minimal precision for the survey estimate of Y, a minimum number R,
of respondents per group is required. This translates to the following constraint

Y Nyp(s.9)p(s,9) = Ry, Vg €G. (5)

In addition to the objective function we address the mode effect also through a
constraint. The structure of the objective function could lead to an unbalanced solution.
For example, let a group g; be assigned a strategy s such that the corresponding D(s, g;)
is a large negative value and the other groups g € G\g; receive strategies that yield
positive D(s, g) values. Thus, the large negative D(s, g;) is canceled out but group g;



will have a very different behavior compared to the other groups, which renders mutual
comparison among groups impossible. To prevent the occurrence of such solutions, we
limit the absolute difference in the mode effect measured for any two groups by the
following constraint

2 sesP(5:91)p (5,9:)D(s:9i) > esP(5,95)p (5,95)D (s 95) -
Y ees? (.90 (5.9) Sespegpteg) | a €O

Given the definition of the absolute value, i.e., |f(z)] < M & —M < f(z) < M,
reformulation of (6) such that the absolute value signs are discarded yields the following

_M< Zsesp(svgi)p (Sagi)D(s7gi) . Esesp(sagj)p (Svgj)D(Sagj) < M, vg“g] c g

T Y eesp(s,90)p (s, 9) > ses P (s,95)p (s, 95)

Furthermore, given that the two inequalities must hold for any g;, g; € G, it follows that
(6) is equivalent to

YeesP (5,900 (5,9)D(5,91)  YoesP(5,95)p (5,97)D(s, 95) .
2ises P (5:90)p (5, 9:) SespGap gy Vs ed ()

For practical reasons we also introduce a constraint on the maximum sample size, i.e.,

> Ngp(5,9) < Smaa- 8)

s?g

The constraints on the decision variables p (s, g) concern their definition as allocation
probabilities, i.e.,

0<p(s,9)<1,VseS,geg
D pls,g) <1, Vgeg, (9)

seS

where inequality is sufficient since every p (s, g) implies assignment of strategy s after
sampling from group ¢g. Equality is necessary when taking into account the nonsam-
pling probability p (®,g) as in (1). However, since mode effects cannot be defined in
case of nonsampling, we have excluded this variable from the model and adjusted the
constraints accordingly. Additionally, we require that at least one p (s, g) be strictly
positive,

> pls,9)>0, Vg€, (10)

seS

to avoid computational errors such as division by zero.

Objective function (3) together with constraints (4) — (10) form the optimization
model to minimize overall mode effects in the context of adaptive survey designs, which
leads to a nonconvex nonlinear problem (NNLP).



4 Algorithm

The previous section dealt with defining an adaptive design that optimally allocates
survey resources in order to minimize mode effects. The model formulation however
poses difficulties in terms of finding a suitable algorithm to solve the problem to opti-
mality. The constraints on the maximum difference between group mode effects make
the problem nonconvex and hard to solve. Therefore, most general-purpose nonlinear
solvers cannot do better than a local optimum. In such cases, the choice for a starting
point of search for an optimum plays an important role in trying to achieve the best
local optimum. Given these considerations, we opt for a two-step approach where, in
the first step, we solve a linear programming problem (LP) that addresses the linear
constraints (4), (5) and (8) — (10) and use the optimal solution thus obtained as a
starting point for a local search algorithm to solve the NNLP.

In the following we present a reformulation of the mode effect problem such that
the absolute value signs are discarded.

minimize ¢

wyp (s,9)p (s, 9) D(s,g)
subject to Z Zs esp 7 g) 5.0) <t

wyp(8,9)p(s,9)
> wesP (s, 9)p

<t

D(s,
(s'

$H59

9) .
S,g )
> Nyp(s.g)c(s,g) < B

> Nyp(s,9)p(s,9) > Ry, Vg€ G

Zp (Sagi) p(svgi) D(Svgi) Zp(sagj) P (sagj) D(Sagj)

ses - s€8 < M) v.gl)g] € g

Zp(sagi)p(shgi) Zp(‘S?gj)p(svgj)

seS SES
Z ng (5)9) < Smax

0<p(s,9)<1,VseS,geg
> pl(s,9) <1, Vgeg

seS
0<t.

(11)

Since |f(z)| = max{f(x),—f(x)}, we can rewrite the objective function via an addi-
tional variable ¢ and impose that f(z) < ¢t and —f(x) < t. Moreover, ¢ has to be
nonnegative. The constraints do not change from their initial formulation.

Before we sketch the LP, note that the dummy variable ¢ in (11) appears only in
two nonlinear constraints that would not be part of the LP. Hence, formulating the



LP with the same objective function as (11) is senseless. Consequently, one of the
linear constraints should be reformulated as the objective function. We choose for
minimization of costs as the LP objective. The resulting problem formulation is given
in (12).

To solve the linear problem, we use the simplex method available in R in package
boot. Our proposed two-step algorithm thus handles (12) in the first step. Denote by
x7 p the optimal solution obtained in the LP. In the second step, x7 p is submitted to a
nonlinear optimization algorithm as a starting point in order to solve (11). For this step,
we use nonlinear algorithms available in NLOPT (see JOHNSON 2013), an open-source
library for nonlinear optimization that can be called from R through the nloptr package.

min Y Nyp(s,g)c(s,g)
s7g

st. Y Nygp(s,9)p(s,9) > Ry, Vg €G
> Nyp(5,9) < Smas (12)
5,9

0<p(s,9)<1,VseS,g€eg
D p(s,g) <1, Vgeg.

seS

Note that the choice for the LP objective function is also motivated by the intention
to shorten the runtime in case of infeasibility due to limited budget. The algorithm
does not perform the second optimization step if the LP objective value, i.e., minimum
necessary budget to satisfy the survey design constraints, is larger than the available
budget B.

Given that the performance of these algorithms is problem-dependent, we choose to
combine two local search algorithms in order to increase the convergence speed. Global
optimization algorithms are available in the NLOPT library but their performance for
our problem was significantly worse than the selected local optimization algorithms. The
two selected local search algorithms are COBYLA (Constrained Optimization by Linear
Approximations), introduced by POWELL (1998) (see Roy 2007 for an implementation
in C) and the Augmented Lagrangian Algorithm (AUGLAG), described in CONN ET AL.
(1991) and BIRGIN AND MARTINEZ (2008). The COBYLA method builds successive
linear approximations of the objective function and constraints via a simplex of n +
1 points (in n dimensions), and optimizes these approximations in a trust region at
each step. The AUGLAG method combines the objective function and the nonlinear
constraints into a single function, i.e., the objective plus a penalty for any violated
constraint. The resulting function is then passed to another optimization algorithm
as an unconstrained problem. If the constraints are violated by the solution of this
sub-problem, then the size of the penalties is increased and the process is repeated.
Eventually, the process must converge to the desired solution, if that exists.

As local optimizer for the AUGLAG method we choose MMA (Method of Moving
Asymptotes, introduced in SVANBERG 2002), based on its performance for our numerical
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experiments. The concept behind MMA is as follows. At each point x, MMA forms
a local approximation, that is both convex and separable, using the gradient of f(x)
and the constraint functions, plus a quadratic penalty term to make the approximations
conservative, e.g., upper bounds for the exact functions. Optimizing the approximation
leads to a new candidate point x. If the constraints are met, then the process continues
from the new point x, otherwise, the penalty term is increased and the process is
repeated.

The reason for using two local search algorithms is that AUGLAG performs better
in finding the neighborhood of the global optimum but COBYLA provides a greater
accuracy in locating the optimum. Therefore, the LP optimal solution is first submitted
to AUGLAG and after a number of iterations, when the improvement in the objective
value is below a specified threshold, the current solution of AUGLAG is submitted to
COBYLA for increased accuracy. For our case study, given the precision requirements of
the obtained statistics in the survey (0.5%), the results are considered accurate enough
if the obtained objective value is within 10™% away from the global optimum. Any
further accuracy gains are completely blurred by the sampling variation and accuracy
of the input parameters themselves. The computational times can run up to a few
hours, which is not necessarily a practical issue since the optimization problem needs
to be solved only once in several years.

5 Case study: the Dutch Labor Force Survey

The Dutch LFS is a monthly household survey using a rotating panel with five waves
at quarterly intervals. The first wave was conducted using face-to-face interviews up to
2009. Over the years 2010-2012, the first wave was gradually redesigned to a mixed-
mode survey employing web, telephone and face-to-face. In the four subsequent waves,
data are collected by telephone. During these re-interviews, a condensed questionnaire
is applied to establish changes in the labor market position of the respondents. The
face-to-face contact strategy for the LFS consists of a maximum of six visits to the
address. If no contact was made at the sixth visit, then the address is processed as a
noncontact.

The key statistics produced based on the LFS data are estimates of the percentage
of persons employed, unemployed and not in the labor force in the Netherlands and in
various regional and socio-demographic subpopulations. The target population consists
of persons aged 15 years and older (i.e., the potential labor force population). For all
members of participating households, demographic variables are observed. For the tar-
get variables, only persons aged 15 years and older are interviewed. When a household
member cannot be contacted, proxy interviewing is allowed by members of the same
household. Households in which one or more members do not respond are treated as
nonresponding households.

In order to keep the exposition simple, we restrict ourselves to the first wave. We
use 2010-2012 LFS data to estimate various input parameters for the optimization
model. Although the LFS sample is based on addresses, it is possible to zoom in on the

11
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FIGURE 1: Parallel runs LFS redesign from unimode (CAPI) to mixed-mode.

individual level using the municipal registration of population data. Erroneous records
such as in-existent addresses or empty house addresses are removed from the sample.

In order to investigate mode effects, we augmented the LFS with data from the
POLIS and UWYV registers. The POLIS register contains information about income
from employment and social benefits; it does not however contain information on in-
come from self-employment. From this register we can determine whether a person is
employed and the number of jobs they have. The UWYV assists unemployed people in
finding a job. Unemployment benefits can be received only by those registered at UWV.

The redesign of the LFS from a unimode (CAPI) to a mixed-mode design involved
two parallel runs of different designs (see Figure 1). As a consequence, adjustment across
the parallel runs is necessary for certain input parameters (see Section 5.3). The first
LFS mixed-mode run involved a parallel CATI-CAPI design where sample units were
approached in CAPI only if no registered phone number was available or if the household
size exceeded 3. The current mixed-mode design (second run) offers all sample units
a web questionnaire. CAWI nonrespondents are subsequently approached in CATI or
CAPI given availability of registered phone and the household size, following the same
rules as in the first mixed-mode design. Thus, households with more than 3 members
or without a publicly available phone number are approached in CAPI. Due to this
structure, a CAWI-CAPI design, where all CAWI nonrespondents would be approached
in a CAPI follow-up, is not observable. Sections 5.2 and 5.3 discuss an approximation
method for producing suitable estimates of the optimization input parameters in the
absence of such historical information.
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We note here that accuracy in the estimators of the optimization input parameters
(i.e., response probabilities p (s, g), unit costs ¢ (s,g) and mode differences D(s,g)) is
crucial for a successful implementation of the optimal design in practice. However, in
this paper, we have not performed sensitivity analyses, which would be necessary to
assess the robustness of the optimal design.

5.1 Population groups

The population units are clustered into G = {g1, g2, ...,99} homogeneous groups (see
Table 1) given the following characteristics, X = (age, household size, UWV registra-
tion, POLIS registration of employment, ethnicity). The proportion w, of each group in
the total population is also provided. The characteristics enumerated in X were selected
based on their close relationship to the survey target variables and the sampling frame
variables. The list of characteristics may be extended, but the resulting groups should
be big enough to ensure satisfactory precision of the optimization parameters.

Characteristic g1 g2 gs ga gs Jde gr gs go
UWYV registration 1 0 0 0 0 0 0 0 0
Household size > 3 0 0 0 0 0 0 0 1
65+ 1 0 0 0
15— 26 1 0 0 1 0 0
POLIS employed 0 0 0 0 1 1 1
Ethnicity non-western 1 0 1
wy (%) 746 19.77 238 1.53 1097 1559 3.91 33.50 4.89

TABLE 1: Population clustering given set of characteristics X

The listed characteristics in Table 1 are interpreted as follows. UWYV registration:
at least one person in the household is registered by the UWYV; household size > 3:
more than three members of the household are aged 15 or older; 65+: at least one
person in the household is 65 years of age or older; 15 — 26: at least one person in the
household is between 15 and 26 years of age; POLIS employed: at least one person in
the household is employed according to the POLIS register; ethnicity non-western: at
least one person in the household is of non-western ethnicity. Presence of 0-1 marks
whether the stated characteristic (1) or its complement (0) is active for the given group.
Consequently, absence of 0-1 marks that the specified characteristic is not active for
the given group. For example, group 1 clusters population units that are registered
at UWV. For this group, none of the other characteristics are active. For group 4, a
number of characteristics are used in defining the cluster, namely, UWYV registration
(households in this group do not have any member registered at the UWV), household
size (households in this group have at most 3 members older than 15 years of age), age
(households in this group do not have members older than 65 or younger than 26 years
of age), POLIS registration of employment (according the POLIS records, at least one
member of the household in this group is not employed) and ethnicity (population units
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in this group have non-western origins).

The LF'S targets people with age between 15 and 64 years; therefore, undersampling
occurs for addresses with households consisting only of persons of 65 years of age and
higher. Moreover, households with persons of age between 15 and 26 or from non-
western countries present more interest; therefore, such households are oversampled.
Let G" = {4}, 65,--.,95} be the clustering of population units according to the set of
characteristics X' = (age, UWV registration, ethnicity)’ (see Table 2) that have unequal
sampling probabilities. This clustering occurs before the random sampling procedure
has been carried out and we further refer to G’ as the sampling strata. Information in
Table 2 should be interpreted analogously to Table 1.

/

Characteristic ¢} ¢5 g5 9, G5

65+ 1 0 0 0

UWYV registration 1 0 0 O
15— 26 1 0 0

Ethnicity non-western 1 0

TABLE 2: Sampling strata definition.

Similarly to constraint (5), we impose that a minimum number of households in
each ¢’ € G’ should be a respondent by the end of the survey. To formulate such a
constraint, the response probabilities have to estimated at (g, ¢’) level (see Section 5.2).
The corresponding constraint is given by

Z Ng,gl p (879) P (8797 g/) Z Rg’, Vg/ c g/,
s7g
where N, , represents the population size for group (g, J ).

5.2 Estimation of response probabilities

In every survey each population unit is assigned a non-zero probability of being sampled
through a random selection procedure. Let d” be the inverse of this probability for a
population unit ¢ which is most commonly known as the design weight. The sample
estimate of a population mean Y is then computed as

37=% >, dPv,

i € sample

where Y; is the value of parameter Y for unit ¢. This yields an unbiased estimate of the
population mean and it is also known as the Horvitz-Thompson estimator. To account
for nonresponse, SARNDAL ET AL. (1992) modify the Horvitz-Thompson estimator as
follows

1 dPy;
=T — 7 (2
V=5 E P

i Eresp
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where p; represents the unknown response probability of unit ¢ and resp the respondent
sample. The unknown response probabilities can be replaced by their corresponding esti-
mates based on auxiliary information (see SARNDAL 1981) or by the Horvitz-Thompson
estimator for the mean response probability (see BETHLEHEM 1988) that also uses aux-
iliary information. Let df‘ be the inverse of the Horvitz-Thompson estimator for the
mean response probability. We then have

1 D 1A
y:NE:@Qn
1ETresp
In order to prevent large capacity variations between subsequent modes in mixed-mode
surveys, a subsampling of the remaining nonrespondents is carried out before the follow-
up mode. In this case, the Horvitz-Thompson estimator for mixed-mode designs be-

comes

N 1
Yun = N 4 Z d;Y;,
1Eresp

with
d; = dPdid?,

the total adjusted weight and df is the subsampling rate. Note that y{;,, can be used
for unimode surveys if df is set to 1 for all units ¢ that did not respond in the first mode
but were respondents in the follow-up mode.

Aggregating individual response probabilities to group g level yields the following

Zieg dZést
Zieg lef 7

where Rf € {0,1} indicates whether unit ¢ is a respondent through strategy s.

A final step in the estimation of the response probabilities is the sub-/over-sampling
of rate of the sampling strata G’. Let z(g') be the sub-/over-sampling rate for stratum
g € G, relative to a base stratum g;, ... Then the unadjusted design weight for group

. . . . . . . D _
g, i.e., the design weight in the absence of sub-/over-sampling, is given by dy ox =

p(s,g) =

2(4") dP . The sample size is computed as

base
_ E : D
n = dg’,UNNg/7
glegl

with Ny the population size of stratum ¢’. Assuming all N, are known, we can now
derive d? by replacing d5) . accordingly. With this adjustment, the response prob-

b g',UN
. . “base .
abilities estimates are given by

Zie(g,g/) deNd;ng
Zie(g,g’) lef ’

p(s,9,9') = (13)
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p(s,9) g1 g2 g3 g4 gs g6 g7 gs go
23.2% 23.6% 15.5% 10.8% 27.9% 27.7% 17.5% 36.7% 22.4%

CAWL0.3)  (0.6)  (0.6) (0.6) (0.4) (0.2) (0.5 (0.2)  (0.5)
12.2% 31.4% 85%  47% 197% 13.3% 7.2% 181% 21.2%
CATEE(05)  (L1)  (0.8)  (0.8)  (0.6) (0.4) (0.5  (0.4)  (0.8)
20.8% 41.3% 152% 8.6% 31.1% 23.8% 14.3% 33.3% 37.5%

CATEE - 06)  (1.1)  (1.0)  (1.0) (0.7) (0.5  (0.7)  (0.5)  (0.9)
435% 535% 422% 34.1% 451% 45.3% 35.9% 46.7% 54.6%

CAPE L 15) (7)) (24)  (24)  (L1)  (09)  (1.5)  (0.7)  (1.4)
52.4% 58.3% 51.0% 41.2% 51.2% 54.9% 46.0% 56.8% 61.4%

CAPBY . (13)  (1.6)  (25)  (22) (L1)  (08) (1.4) (0.7)  (1.3)
oawioar, | 283%  4L0%  20.2% 13.9% 363% 34.0% 20.8% 445% 23.1%

(04) (0.8) (0.7) (0.8) (0.4) (0.3) (0.5  (0.3)  (0.5)
32.8% 48.4% 23.8% 17.5% 42.1% 41.1% 25.8% 52.1% 24.4%
(0.4) (0.7)  (0.8)  (0.9) (0.5 (0.3) (0.6) (0.3)  (0.5)
46.3% 57.7% 38.6% 32.7% 50.0% 51.0% 39.3% 58.9% 50.0%
(0.5) (1.0) (1.0) (1.0) (0.6) (0.4) (0.7)  (0.4)  (0.5)
49.8% 58.3% 43.4% 36.6% 52.6% 54.7% 44.3% 62.0% 54.2%
(0.5)  (0.9) (0.9) (0.9) (0.5) (0.4) (0.6) (0.4)  (0.5)

CAWI-CATI2+

CAWI-CAPI3

CAWI-CAPI3+

TABLE 3: Estimated response probabilities per strategy s and group g.

where the summation is taken only over units in (g, ¢'). Aggregating over all sampling
strata we obtain the response probability estimates for group g, i.e.,

N,
p(s,9)=> ng(s,mg’), Vs€S,g€g. (14)
g'eg’ g

Table 3 presents the estimated response probabilities p (s, g) from available data. Note
that given the complex definition of these estimates, it is not possible to compute di-
rectly their standard deviations. We perform a bootstrap analysis in order to assess the
standard errors that are provided in brackets. Additionally, given the weighting tech-
nique necessary to estimate the response propensities, the weights d; need to be adjusted
in the bootstrap analysis in order to correctly scale up bootstrap sample estimates to
the same population composition.

As expected, restricted strategies, i.e., strategies with a cap on the number of at-
tempts, yield lower response probabilities than full strategies. The only reason why
restricted strategies may be present in the optimal solution would be the incurred lower
costs (see Section 5.4). Additionally, note that all mixed-mode strategies yield higher re-
sponse probabilities than the CAWI-only strategy and the mixed-mode involving CAPI
is more appealing in terms of response than mixed-mode involving CATI. However, in
terms of costs, the situation is opposite, i.e., mixed-mode with CATI being significantly
less expensive than mixed-mode with CAPI.

However, when the selected strategy s does not have historical support, i.e., there is
no survey design in historical data that matches the strategy s specific combination of
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survey mode - number of attempts, additional modeling is necessary. The structure of
the current LFS mixed-mode design assigns CAWI nonrespondents to CATI or CAPI
given availability of phone numbers. Thus, CAWI nonrespondents with a publicly avail-
able phone number are approached in CATTI in the follow-up. Correspondingly, CAWI
nonrespondents without a publicly available phone number are approached in CAPI in
the follow-up. For our analysis this translates to lack of historical information for strate-
gies CAWI-CAPI3 and CAWI-CAPI3+ that assign all CAWI nonrespondents to CAPI.
As a consequence, we must build approximations for response probabilities p (ss, g,9’)
and p (s9,g,g’). This is done as follows

Zie(gy’) dlDdefg
Zie(g,g’) ding
D S ps D S ps
p (55,9, 9 )Mg,9) | Ziee) U4 GWRT  Dietgg) & i B
P (837 9, gl) Zie(g,g’) dZRf7 Zie(g,g’) dZRfl ,

Yic(gg A7 R
no__ ’ i€(g,g") 1 Y tY
p(887g)g)_p(897gag)z )dlDdZSng

p(s9,9,9") =

(15)

i€(g,g’

where A(g, ¢’) represents the probability for registered phone number in group (g, ¢’).
More specifically, the response probability for strategy CAWI-CAPI3+, p(sg,g,d),
sums up two terms. The first term computes the response probability for strategy
sg according to formula (13). The second term adjusts this result for the available
historical data, where sg is not a stand-alone design. Thus, the second term repre-
sents an approximation of the response probability CATI respondents would have if
approached in CAPI in the mixed-mode design. This probability is obtained by sub-
tracting p (s1,9,¢’) from p (s7,9,4"), i.e., removing CAWI respondents from the pool of
respondents to strategy CAWI-CATI2+, and adjusting the result by the probability for
registered phone for respondents in CAPI3+ and the response ratio between strategies
CAPI3+ and CATI2+. Table 4 shows the estimated probability for registered phone
A(g), where we aggregate from the (g, g’) level similarly to the response probabilities,
ie.,

N,
Mg)= D - Ma.g) Vg (16)
g'eg’ g

The response probability for sg is computed analogously to p(sg, g,¢’), with the dis-
tinction that only units that respond within three CAPI visits in the follow-up are
considered.

5.3 Estimation of the mode effect measure D(s, g)

For the mode effect measure D(s, g), two benchmarks were selected after consultation
with practitioners, i.e., BMy = yoap; and BMy = 1/3 % (Yoawr + Yoarr + Jearr), Where
Ymode TEPresents the average unemployment rate estimated via the indicated survey
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g 9 92 93 ga gs ge g7 g8 9o

Ag) SE1% T6A%  30.2%  224% 60.0% 389% 32.0% 534% 62.4%
9 09 (16 (200 (22 (11 (07 (13 (06) (1.2)

TABLE 4: Estimated probabilities for registered phone for group g € G.

mode. The first benchmark assumes that the average unemployment rate estimated
via CAPI only, i.e., when the LFS was carried out only as a face-to-face interview,
represents the true average unemployment rate. The second benchmark assumes there
is no preferred mode, hence, it assigns an equal weight to each of the three modes.
Given a benchmark, the mode effect measure for group g under strategy s is computed
as

ps , unemployed
Zieg dZRi Y

) unemployed employed lab
2ieg 4 B (y; +y; + o)

D(Svg) =

- gBM7 (17)

where gg), represents the benchmark estimate of the unemployment rate, y; """ toyed ¢1)
number of unemployed household members, y;"" loyed the number of employed household
members and y{wnlabo’” the number of household members aged younger than 15. Note
that the unemployment rate estimate is a quantity in [0, 1], therefore D(s, g) € [—1,1]
which implies that Dy, € [0,1].

As remarked in Section 5.2, due to the structure of the mixed-mode design, estima-
tion of D(s, g) for s € {CAWI-CAPI3,CAWI-CAPI3+} cannot be carried out directly.
Moreover, adjustments are necessary to account for estimation of quantities across the
parallel runs of the LFS. Let D(s, s', g) = s,y —¥s,g be such an adjustment step between
estimates of the unemployment rate obtained in strategies s and s’. Then,

€

D(s,g9) = D(s',9) + D(s,5,g), for s’ # s. (18)

Using (18), the adjusted mode differences are computed as

D(s1,9) = D(s3,9) + D(s1,53,9)

D(s6,9) = D(s6, s2,9) + D(s2,9)

D(s7,9) = D(s7,53,9) + D(s3,9) (19)
D(ss,9) = peawrD(s1,9) + (1 = peawr)D(s4, g)

D(SQaQ) = pCAWID(Slag)a

for all g € G, with peay, the proportion of CAWI respondents in the total respondent
sample in the mixed-mode design. Tables 5 and 6 present the estimated mode differences
against the two benchmarks.

Generally, Dgy,(s,9) > Dgu,(s,g) for strategies involving CAWI. This is under-
standable since BM>, as a mode mix, is “closer” to CAWI than BM;. Furthermore, for
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Dpuny(s,9) @1 g2 g3 g4 gs gs g7 gs go
1.5% 0.0% —2.3% —4.5% 0.9% —0.4% —2.2% 0.6% —0.4%

CAWE(10) (05)  (15)  (3.1) (0.7)  (0.4) (1.5) (0.5 (0.6)
—0.2% —0.1% —2.6% —6.8% —1.0% —0.9% —1.1% 0.2% —1.3%

CATE 07y (0.1) (0.9)  (1.8) (0.4) (0.3) (L1) (0.4) (0.4)
~0.1% —0.1% —2.3% —4.9% —0.6% —1.0% —0.8% —0.2% —1.2%

AT 07y (01)  (0.8)  (1.7)  (0.4) (0.3)  (1.0) (0.3) (0.4)
~0.5% —0.1% 0.0% 0.7% —0.1% 0.0% 05% 0.3% 0.1%

CAPEE T 0.3)  (0.1)  (0.4)  (0.6) (0.1) (0.1) (0.3) (0.1) (0.1)
0.0% 0.0% 0.0% 0.0% 0.0% 00% 0.0% 00% 0.0%
CAPEIE0.0)  (0.0)  (0.0)  (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)
cnvronpy | 09%  0.0% —24% -34% ~01% —0.1% —44%  09% —0.7%

(1.0) (0.4) (1.5) (3.7) (0.6) (0.5) (1.9) (0.5 (0.6)
0.9% —0.1% -3.7% —-1.7% 05% —0.7% —-3.0% 0.6% —0.4%
0.9) (0.3) (14) (3.2) (0.7) (04) (1.4) (0.5) (0.6)
0.7% 0.0% —1.2% —-1.6% 0.6% —0.3% —1.0% 0.5% —0.2%
(0.6) (0.3) (0.8) (14) (0.5) (0.3) (0.8) (0.3) (0.3)
0.9% 0.0% —1.2% —2.0% 0.6% —0.3% —1.2% 0.4% —0.2%
(0.6) (0.3) (0.8) (1.4) (0.5) (0.3) (0.8) (0.3) (0.3)

CAWI-CATI2+

CAWI-CAPI3

CAWI-CAPI3+

TABLE 5: Estimated mode differences against benchmark BM7 = §oap;-

BMj, the mode differences D(s1,g) are higher than D(s, g) for s # s1. Looking at dif-
ferences across groups, group 4 produces the highest D(s, g) relative to the other groups
for both benchmarks. Although units in this group do not have a UWYV registration,
i.e,. they are not looking for a job, they are registered as unemployed. Moreover, it has
been observed in the past that unemployment rates for non-western ethnicities are gen-
erally higher than for other ethnicities. Additionally, group 3, that includes unemployed
young people (15-26), displays slightly higher mode differences than the other groups.
Population group 2 yields usually very low values, which can be explained by the fact
that most population units aged 65 and higher fall into this group. Most often, such
persons are either retired or employed, therefore producing a group unemployment rate
very close to 0. Note that the standard deviations of Dg,, (CAPI3+, g) will always be
0 since its value is constant across bootstrap runs, i.e., it is always equal to zero given
the definitions of the survey strategy and the benchmark, respectively.

5.4 Estimation of unit costs

The cost estimation process follows closely the actual cost computations from practice.
This means that all major cost-incurring activities are taken into consideration such
as average number of attempts until contact, interview time and travel time. Other
costs such as questionnaire design or interviewer training, are considered one-time costs
that occur before the start of the data collection, hence, they do not depend on the
selected strategy or group. Consequently, it is not necessary to include overhead costs
in the analysis. Furthermore, we assume that LFS workload for CAPI and CATI in-
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Dpun,(s,9) a1 g2 g3 g4 gs gs g7 gs go
1.0% 0.1% —0.8% —1.4% 0.8% 0.1% —12% 05% 0.1%

CAWE05)  (0.3) (0.9)  (1.8) (0.4) (0.2) (0.8) (0.2) (0.3)
~0.6% —0.1% —1.0% —3.7% —1.2% —0.5% —0.1% 0.1% —0.8%

AT 0.3)  (0.2)  (0.6) (1.4)  (0.2) (0.2) (0.8) (0.2) (0.2)
—0.6% —0.1% —0.8% —1.7% —0.7% —0.5% 0.2% —0.3% —0.6%
CATIEY(02)  (0.2) (0.5) (1.0) (0.2) (0.1) (0.5) (0.1) (0.2)
~1.0% —0.1% 1.6% 3.8% —02% 0.5% 15% 02% 0.6%
CAPEE07) (02)  (0.8)  (1.6) (0.4) (0.2) (0.8) (0.3) (0.3)
—05%  0.0% 1.6% 3.1% —0.1% 0.5% 1.0% —0.1% 0.5%

CAPBE (05)  (0.2)  (0.7)  (1.4) (04) (0.2) (0.7) (0.3) (0.3)
cnvoar | 0A%  0.0% —0.9% —0.3% —0.2% —0.2% —3.4% 0.7% —0.1%

05) (0.3) (1.0) (29) (0.4) (0.3) (1.5) (0.3) (0.4)
05% 0.0% —21% 15% 04% —02% —2.0% 05% 0.1%
(0.4) (0.2) (0.8) (20) (0.4) (0.2) (0.8) (0.2) (0.3)
03% 0.0% 04% 15% 05% 02% 0.0% 0.4% 0.3%
0.2) (0.1) (0.3) (0.6) (0.2) (0.1) (0.3) (0.1) (0.1)
04% 0.0% 04% 1.1% 05% 02% —0.2% 0.3% 0.3%
(0.1) (0.1) (0.3) (0.5 (0.2) (0.1) (0.3) (0.1) (0.1)

CAWI-CATI2+

CAWI-CAPI3

CAWI-CAPI3+

TABLE 6: Estimated mode differences against benchmark
BMjy = 1/3 % (Joawr + Joarr + Ycarr)-

terviewers resulting from the optimization model gets subsumed in regular interviewer
workloads, i.e., small allocated samples can be treated as larger ones since they are part
of larger workloads. With these assumptions we do not have to account for clustering
of addresses. Essentially, the ¢ (s, g) estimate represents the expected costs to address
one population unit from group ¢ using strategy s, i.e., it includes the corresponding
response probability p (s, g) such that the outcome of the survey attempt is considered.

Note that in the case of ¢ (s1,g) the standard deviation will always be 0. The costs
for the CAWT-only strategy do not depend on the response rate but only on the sample
size, i.e., sending a web questionnaire to all sample units, which is constant across the
bootstrap runs.

5.5 Optimization results

In our numerical experiments, we explore the solution structure for various values of
the constraint thresholds, namely we let

B € {160,000; 170,000; 180,000}
M € {1%;0.5%;0.25%}
Smaz € {9,500;12,000; 15,000}.
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c(s,9) a1 g2 g3 ga gs gs g7 gs g9
16 16 16 15 16 16 16 16 15

GAWE0.0)  (0.0)  (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)
o A9 B8 43 39 53 53 44 56 72
(0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.0) (0.1)
60 66 50 43 63 68 53 74 100
CATET(0.1)  (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.2)
38.8 345 364 357 359 399 387 397 454
CAPIE04)  (0.5)  (0.5) (0.8) (0.3) (0.2) (0.5) (0.2) (0.5)
462 387 43.9 433 416 AT.6 477 475 512
CAPBIT0.6)  (0.6)  (0.7) (1.1) (0.4) (0.3) (0.6) (0.2) (0.5)
37 42 39 39 36 37 38 33 34
CAWI-CATI2

(0.0) (0.1) (0.1) (0.1) (0.0) (0.0) (0.0) (0.0) (0.0)
4.1 4.6 4.2 4.2 4.0 4.3 4.3 3.9 3.6
(0.1) (0.1) (0.1) (0.1) (0.1) (0.0) (0.1) (0.0) (0.0)
27.5 25.6 28.1 30.4 24.7 26.7 31.1 24.0 31.3
(0.3) (0.7) (0.6) (0.8) (0.4) (0.3) (0.5) (0.2) (0.4)
33.0 27.3 35.2 36.5 30.2 32.5 38.5 29.5 36.2
(0.4) (0.7) (0.9) (1.2) (0.6) (0.4) (0.8) (0.3) (0.6)

CAWI-CATI2+

CAWI-CAPI3

CAWI-CAPI3+

TABLE 7: Estimated unit costs (in euros) per strategy s and group g.

For the minimal precision constraints, we keep the constraints’ right-hand side terms
unchanged, with the following values

Ry, = (165.35,533.50, 1359.34, 303.03,2135.15)
R, = (533.69,162.07,142.47,84.77, 529.79, 933.66, 215.83, 1603.43, 290.63).

These values have been computed such that a 95% confidence interval is built for the
population unemployment rate given the survey estimate. Since Dyy, € [0, 1], it follows
that the left hand side of (7) also takes values in the [0,1] interval. The low values
chosen for the threshold M are determined by the maximum absolute differences in
mode effects observed among the groups when z7 p, the LP optimal solution, is applied
(see Table 8). If for example, M > 2.06%, the optimal solution for Sy, = 9,500 and
BM; would simply be the LP solution. Table 9 provides an overview of the optimization
results for the original nonlinear problem in (11).

Two conclusions can be drawn. First, increasing the sample size and/or the budget
brings the objective value down, reaching 0 for S,q. = 15,000 and B = 180,000 for
all levels of M. Second, using BMjy as benchmark, yields lower objective values than
BM, (except the case of Syap = 9,500), which is mainly due to the smaller values of
D(s,g). Additionally, there is an increased similarity among groups with respect to the
deviation from the benchmark, i.e., Dgy, (s, g)’s are close in absolute value. This allows
feasibility even for M = 0.01% and for B = 180,000 and S,,,4; the algorithm still yields
an objective value very close to 0 (0.00001%).

A more counterintuitive effect is shown by the invariance of the objective value
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Sample size  Objective value Mode effect Max difference in  Response
Benchmark

(Smaz) (min costs) (Dgumr) mode effects (M) rate
BM; 0.16% 2.06%

9,500 123,748.50 BM, 0.29% 3.31% 48.0%
BM; 0.05% 5.97%

11,000 88,408.95 BM, 0.19% 2.98% 39.9%
BM;, 0.08% 5.97%

12,500 82,270.72 BM, 0.21% 2.98% 36.9%
BM; 0.12% 5.97%

15,000 74,350.44 BM, 0.25% 2.39% 29.4%

TABLE 8: Overview optimization results linear programming formulation
- minimize costs.

given decreasing values of M for BMs. The reason is that the yielded solution is a point
contained in all three feasible regions, i.e., a stricter bound on the maximum difference in
group mode effects does not remove this point from the larger feasible region. The same
holds for the invariance of Dy, with respect to increasing budget for Sy,.. = 9,500,
where larger feasible regions do not add points that could improve the objective value.
For Dy, on the other hand, any change in the budget level or a lower value of M causes
a change in the objective value. Note that the improvement step in the objective value
decreases when tighter bounds are imposed on the group differences in mode effects.

We can analyze the impact of the sample size by comparing the optimal solutions
for Spae = 9,500 and Sp,ae = 15,000. Consider B = 170,000, M = 1% and BM; with
the corresponding optimal solutions given in Tables 10 and 11. For a clearer exposition
of the results, we do not provide the values of p (s, g) directly, since they can be as small
as 107, but instead a derived quantity, namely the probability of being assigned a
strategy after having been sampled, which is computed as

p(s.9)
1 —p(@,g).

Additionally, Table 12 presents the corresponding sampling probabilities, i.e., 1—p (@, g),
which allows the reader to derive the individual values of p (s, g). Note that in Table 12,
the sampling probabilities for groups g3, g4 and g5 are only rounded to 0%, otherwise
constraint (10) would be violated, and their actual value is equal to 0.0000001%. The
very low sampling rates for these groups can be explained through their large deviations
in mode effect from the benchmark that cannot be balanced by other groups when the
maximum sample size is small. For larger sample sizes, e.g., Spmaz = 15,000, we see
that the sampled proportion of these groups increases significantly. Consequently, the
proportion of other population groups may go down in order to lower the average mode
difference Dy, e.g., groups gg and go.

The impact of available budget can be most clearly seen for Sy, = 12,000 and
BM;, when the objective value drops from 0.097% for B = 160,000 to 0.009% for
B = 180,000. The corresponding solutions are provided in Tables 13 and 14 and the
sampling probabilities are given in Table 15. Strategy CAPI3+ is often chosen in

P{assign|sample} =
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Smaz B BM M Dpy M Dpy M Dpy
BM, 0.155%

160,000 AL 1% 0.170% 0.5% Infeasible 0.25% Infeasible
9,500 170,000 g%; 1% 81?7)(1)2 0.5% Infeasible 0.25% Infeasible
180,000 g%; 1% giggzz 0.5% Infeasible 0.25% Infeasible
160,000 g%; 1% gzgigzz 0.5% Sjéing; 0.25% 8:522
2000 170000 Tt U GEE 08 GGat 0% oo
oo w00 osn (U o (0
160,000 g]\]\z 1% gjggézz 0.5% 8:83@;‘3 0.25% 8:3(1)22
15,000 170,000 g%; 1% 8:8(2)%2 0.5% 8:82%; 0.25% 8:831?;
180,000 g]\]\z 1% 8:8822 0.5% 8:8335; 0-25% 8:8322

TABLE 9: Overview optimization results nonlinear problem
- minimize overall mode effects in LFS.

large proportions when the available budget is sufficient, which leads to a low objective
function. On the other hand, for smaller budget levels, the optimal solution presents
a mix between telephone strategies and mixed-mode strategies. Although it may seem
appropriate to assign CAWTI strategies that are cheapest, the corresponding mode effect
deviations from benchmark are significantly higher (see again the group mode differences
in Table 5).

A more careful consideration of the optimal solution reveals that its implementa-
tion in practice may be difficult from a logistics point of view. Take for example, the
solution from Table 10. Carrying out the survey design prescribed by this solution
implies offering a CAWI-only survey to only 3 sample units due to the fact the group
g4 is small. Additionally, only 4% of group go, i.e., 73 sample units, would receive
CAWI-CATI2, while the remaining 96% would receive CAWI-CATI2+. If we adjust
this solution by sending the three units from CAWI to one of the interviewer-assisted
modes and approach entire group go in CAWI-CATI2+, then the costs will increase by
0.2% and the objective function will decrease by 0.22%. It follows that, if slightly more
budget becomes available, then the optimization yields a better objective value and the
corresponding optimal solution becomes more practical.

6 Discussion

Survey research has tried to improve designs of surveys such that the quality of the
estimates is high. The development of technology and case management systems allows
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g1 g2 g3 g4 gs ge gr gs g9

CAWI 0% 0% 0% 1% 0% 0% 0% 0% 0%
CATI2 0% 0% 14% 22% 31% 0% 0% 0% 0%
catiz+ 0% 0% 6% 2%  12% 0% 0% 0% 0%
CAPI3 39% 0% 3% 4% 2% 0% 0% 0% 0%
capiz+ 0% 0% 0% T71% 5% 0% 65% 0% 0%
CAWI-CATI2 0% 4% 0% 0% 0% 0% 0% 0% 0%
cawl-catiz+ 0%  96% 2% 0% 45% 43% 0%  100% 0%
CAWI-CAPI3 0% 0% 0% 0% 2%  29% 0% 0% 100%
cawl-cAaPI3+  61% 0% 5% 0% 2%  29% 35% 0% 0%

TABLE 10: Strategy assignment given optimal solution for
Smaz = 9,500, B = 170,000, M = 1%, BM,.

g1 g2 g3 g4 g5 ge g7 gs g9

CAWI 2% 10% 0% 0% 0% 99% 0% 7% 0%
CATI2 1% 13% 0% 20% 0% 0% 41% 3% 0%
cariz+ 5% 4% 1% 2% 0% 0% 0% 5% 0%
CAPI3 22% 0% 0% 7% 0% 0% 3% 1% 6%
capz+ 8% % 81% 0% 0% 0% 45% 56% 85%
CAWI-CATI2 0% 1% 1% 0% 98% 0% 0% 14% 0%
cawrcatiz+  60% 39% 0% 0% 0% 0% 10% 6% 0%
CAWI-CAPI3 2% 5% 1% 0% 0% 1% 0% 8% 7%
cawrcapiz+ 0% 20% 1% 1% 1% 0% 0% 0% 2%

TABLE 11: Strategy assignment given optimal solution for
Smaz = 15,000, B = 170,000, M = 1%, BM,.

for detailed monitoring of the data collection process, which in turn gives more informa-
tion about the response process. Additionally, introducing mixed-mode surveys helped
getting a better grasp on the budget spendings. However, the added mode effects may
have a strong impact on the accuracy of statistics. As JACKLE ET AL. (2010) point
out, many mode effects are nonlinear in nature and appropriate adjustment methods
are still not available. Therefore, additional research effort should be put into analyzing
and reducing the occurrence and magnitude of mode effects in the context of developing
new survey designs.

In the current paper, we discuss an optimization model that combines the math-
ematical framework of adaptive designs with mode effect assessment methods in an
attempt to minimize mode effects for a given survey. To our best knowledge, this is the
first research attempt of its kind and due to its flexibility, our methodology can be used
as a basis for more complex settings that aim at addressing mode effects. However,
our method requires that candidate strategies have been implemented and accurate
estimates exist of mode differences in response and survey outcomes.

We use the adjusted mode effect for the comparison between the survey estimate and
a “gold standard” as suggested by BIEMER (1988). We propose an optimization model
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Smaz 91 g2 93 g4 gs ge g7 g8 9o

9500 0.06% 0.07% 0.00% 0.00% 0.00% 0.22% 0.23% 0.17% 0.09%
15000 0.08% 0.08% 0.21% 0.06% 0.55% 0.36% 0.36% 0.04% 0.01%

TABLE 12: Sampling probabilities for S;,q: = 9,500 and S;,q, = 15,000,
when B = 170,000, M = 1%, BM;.

g1 g2 g3 94 g5 ge g7 gs 99

CAWI 2% 0% 0% 0% 0% 2% 3% 0% 0%
CATI2 3% 1% 28% 0% 2% 1% 1% 2% 3%
catre+  45% 94% 12% %  62% 0% 80% 44% 21%
CAPI3 42% 0% 40% 1% 0% 0% 12% 2% 14%
capiz+ 0% 0% % 8% 0% 1% 0% 3% 3%
CAWI-CATI2 1% 2% 2% 0% 0% 0% 0% 1%  59%
cawl-caTiz+ 0% 1% 1% 1% 36% 79% 0% 4T% 0%
CAWI-CAPI3 6% 1% 7% 3% 0% 16% 3% 0% 0%
cAwWL-CAPI3+ 0% 0% 2% 1% 0% 1% 1% 1% 0%

TABLE 13: Strategy assignment given optimal solution for
Smaz = 12,000, B = 160,000, M = 1%, BM,.

g1 g2 g3 g4 gs ge g7 gs go

CAWI 42% 0% 0% 0% 0% 100% 0% 63% 20%
CATI2 0% 0% 0% 0% 10% 0% 01% 0% 21%
catrz+ 0% 0% 0% 0% 32% 0% 0% 0% 7%
CAPI3 0% 0% 5%  73% 57% 0% 0% 0% 4%
capis+  58% 0% 67% 3% 1% 0% 55% 31% 20%
CAWI-CATI2 0% 0% 0% 0% 0% 0% 0% 0% 1%
cawl-catiz+ 0%  100% 0% 0% 0% 0% 0% 6% 1%
CAWI-CAPI3 0% 0% 28% 1% 0% 0% 45% 0% 1%
cawL-cAaPI3+ 0% 0% 0% 22% 0% 0% 0% 0% 25%

TABLE 14: Strategy assignment given optimal solution for
Smae = 12,000, B = 180,000, M = 1%, BM;.

B g1 g2 g3 g4 gs g6 g7 g8 9o

160000 0.09% 0.09% 0.02% 0.48% 0.53% 0.27% 0.17% 0.06% 0.03%
180000 0.07% 0.07% 0.00% 0.00% 0.00% 0.42% 0.24% 0.20% 0.00%

TABLE 15: Sampling probabilities for B = 160,000 and B = 180,000,
when Sp,q. = 12,000, M = 1%, BM;.

that develops an adaptive survey design such that the overall population mode effect is
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minimized, subject to constraints on differences in mode effects between important pop-
ulation groups. If it is the designer’s choice to focus on a different survey item, then the
method is still applicable. Note that, in this case, an appropriate “gold standard” must
be specified and the optimization input parameters must change accordingly. If it is the
designer’s choice to address multiple items simultaneously, then a composite indicator of
the mode effects influencing these items must be developed. We find this a challenging
task since the survey mode may have different effects on different survey items. In this
case, an approach similar to the one suggested in CALINESCU AND SCHOUTEN (2013)
may be more suitable, where an indicator that summarizes measurement effects across
survey items, namely the measurement profile, is employed.

We illustrate our methodology on the unemployment rate, one of the key statistics
of the Labor Force Survey (LFS). In our case study on LFS data, we are able to focus
on mode measurement effects since mode selection effect can largely be adjusted for
given auxiliary information, as concluded by SCHOUTEN ET AL. (2013b). We find that,
for realistic values of the input parameters, the overall mode effect can be brought to
zero. We also study the differences between applying two different “gold standards”
in the definition of the mode effect measure. It follows that, if the population groups
have similar behavior with respect to the benchmark, then it is easy to lower the overall
mode effect even for low budget levels.

The accuracy of input parameters to the optimization model requires additional
consideration. Section 5.2 dealt with the estimation of the optimization input param-
eters, i.e., response probabilities, unit costs and mode differences, for all considered
population groups and survey strategies. This analysis step is of crucial importance for
a successful implementation of the yielded optimal solution. Hence, sufficient historical
data should be available to produce reliable optimization input parameters. However,
since implementation of mixed-mode designs is rather new, it could happen that certain
survey strategies are not backed up by historical data, as it was also the case for our
numerical experiments. In such situations, approximation methods could be applied.
As a consequence, sensitivity analysis should be performed to test the robustness of the
optimal solution in case of small perturbations in the input parameters. Future research
should develop a robust and effective model.

In this paper, we have chosen to optimize quality given constraints on the sample
size, the budget and the precision of survey estimates. The dual problem, where cost is
minimized given a constraint on quality, can be optimized almost analogously, leading,
however, to different solutions in general. In fact, any constraint can be used as the
objective function in the optimization. Practical implementations of our method may
consist of a small number of repeating iterations alternating the optimization of quality
and the optimization of costs in order to reach the right tradeoff.

This paper is part of a larger project at Statistics Netherlands, called Refining the
Data Collection Strategy, (in Dutch: Verfijning Waarneemstrategie). This project aims
at detailing the quality-cost tradeoff in the Statistics Netherlands mixed-mode data col-
lection strategy for social surveys, introducing adaptive survey designs, restructuring
monitoring and analysis of mixed-mode survey data and paradata, and increasing ro-
bustness of mixed-mode data collection for unexpected changes in quality. The results
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of this paper are input to a follow-up project in which a sensitivity analysis is performed
and practical and logistical constraints are added to the optimization.
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