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Model-based estimation of discontinuities for small domains
in the Dutch Crime Victimization Survey

Jan van den Brakel, Bart Buelens and Harm-Jan Boonstra

During redesigns of repeated surveys, the old and the new approach are often conducted

in parallel to quantify discontinuities which are initiated by the modifications in the

survey process. Due to budget limitations, the sample size allocated to the alternative

approach is often considerably smaller, compared to the regular survey that is also

used for official publication purposes. In this paper, small area estimation techniques

are considered to improve the accuracy of domain estimates obtained under the al-

ternative approach. Besides auxiliary information available from registrations, direct

domain estimates available from the regular survey are useful auxiliary variables to

construct model-based small area estimators. These methods are applied to a redesign

of the Dutch Crime Victimization Survey.

Keywords: Area level models, Empirical Best Linear Unbiased Prediction, Hierarchical

Bayes, Small area estimation, Survey Sampling

3



1 Introduction

Sample surveys conducted by national statistical institutes are generally conducted re-

peatedly over time with the purpose to construct time series that describe the evolution

of finite population variables of interest. Modifications and redesigns of the underlying

survey process generally affect the various sources of non-sampling errors in a survey and

therefore have a systematic effect on the outcomes of a sample survey. Survey processes of

long-standing surveys are generally kept unchanged as long as possible with the purpose

to maintain uninterrupted series. It remains, however, inevitable to redesign the survey

process from time to time. To avoid the confounding of real developments with systematic

effects that are induced by the redesign, it is important to quantify the discontinuities

that arise from a redesign of a survey process.

Several possibilities are available to quantify the discontinuity induced by a survey

redesign. A straightforward approach is to conduct the old and new design in parallel

for some period of time through a large scale field experiment to compare and analyze

systematic differences between the direct estimates obtained under both approaches, see

e.g. Van den Brakel (2008). Significance and power constraints necessary to establish

prespecified contrasts generally require large sample sizes for both the old and the new

survey in the parallel run. This is often not tenable due to budget constraints or limited

field work capacity available to conduct an alternative approach in parallel with the regular

survey. In Van den Brakel and Roels (2010) an intervention analysis approach using

state-space models is proposed to quantify discontinuities in series for situations where

no overlap or parallel run is available. In the intermediate case, there is only limited

budget for a parallel run. In these cases the regular survey, used for official publication

purposes, will be conducted in full scale while the alternative approach is conducted with

a limited sample size. The design-based approach followed by Van den Brakel (2008) is

appropriate to quantify discontinuities at the national level. The sample size allocated

to the alternative approach, however, will often be insufficient to produce design-based

estimates of discontinuities of adequate precision for subpopulations or domains.

In the case of small domain sample sizes, model-based estimators can be used. These

estimators employ sample information observed in other domains through an explicit sta-

tistical model and thus increase the effective sample size in the separate domains. In

survey methodology, this type of estimation techniques is known as small area estimation,

see Rao (2003) for a comprehensive overview. In this paper small area estimation methods

are considered to improve the precision of the domain estimates in a parallel run and thus

the efficiency of estimating discontinuities, particularly in situations where the sample size

allocated to the alternative approach is substantially smaller than the sample size of the

regular survey.

In small area estimation, Empirical Best Linear Unbiased Prediction

(EBLUP) estimators and Hierarchical Bayesian (HB) estimators are derived from a ran-

dom effect model. In most cases they can be considered as a weighted average of a direct
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or design-based estimator based on the sample information observed in the domain for

which an estimate is required and a synthetic estimator, where the weights are based on

the model error variance and the sampling error variance. In a parallel run, the use of

small area prediction can be considered as an intermediate form of the purely design-based

approach for embedded experiments considered in Van den Brakel (2008) where inference

about the discontinuities is completely based on sample information obtained in the par-

allel run, and the time series modeling approach considered in Van den Brakel and Roels

(2010) where sample information from a parallel run is missing and discontinuities are

estimated through an appropriate intervention model.

The extent to which model-based small area predictions result in a reduction of the

mean squared error strongly depends on the information available to define models that

explain the variation between the domains of interest. In most applications, models borrow

strength from auxiliary information which is available from censuses and registrations. In

the case of a parallel run, however, direct estimates for the same variables and the same

domains are available from the regular survey. For the planned domains, these direct

estimates will be sufficiently precise and are potential auxiliary variables to be used in the

random effect model that is used to construct an EBLUP or an HB estimator. Since these

variables are subject to sampling errors, this is an interesting application of the paper by

Ybarra and Lohr (2008), where EBLUP estimators are considered for small areas using

the basic area level model with auxiliary information measured with error.

In the Netherlands information on crime victimization, public safety and satisfaction

with police performance is obtained by the Dutch Crime Victimization Survey (CVS).

This is a long-standing survey that has been redesigned several times. Between 2006 and

2008 this survey was referred to as the Dutch National Safety Monitor (NSM). In 2008

the NSM was redesigned and changed to the Integrated Safety Monitor (ISM). In order

to maintain consistent series, the NSM is conducted in parallel on a considerably smaller

scale in 2008. With this sample reliable design-based estimates can be obtained at the

national level but not for the most important planned domains of this survey. Therefore,

model-based estimators are considered in this paper to construct estimates of sufficient

accuracy for these domains.

The purpose of this paper is to discuss the use of small area estimation techniques in a

parallel run aimed to quantify discontinuities induced by a redesign of the survey process.

Questions addressed are which small area estimation techniques can be considered to take

advantage of the additional auxiliary information typically available in a parallel run to

construct model-based predictions for discontinuities and how to estimate the MSEs of

these predictions. EBLUP and HB estimators for the area level model are applied to

the parallel run that was part of the redesign of the Dutch CVS. Optimal models are

obtained with a step forward model selection procedure based on conditional AIC. The

HB approach is used to analyze discontinuities, since this approach gives the most realistic

point and MSE estimates. The MSE of the HB predictions is estimated with the posterior
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variance of the HB estimator. To calculate variances of the discontinuities, the variance of

the general regression estimator that is applied to the regular survey, has to be combined

with the posterior variance of the HB estimator applied to the parallel run. To treat the

uncertainty of both point estimates in a similar way, a design-based estimator for the MSE

of the HB predictions is derived as an alternative. The performance of the two analytic

MSEs for the HB estimator and the variances of the discontinuities are studied with a

bootstrap procedure.

The paper starts with a description of the redesign of the Dutch CVS in section 2.

Section 3 describes the different small area estimation procedures that can be applied to

the data obtained in the parallel run of the redesign. Analytic expressions for the variance

of the discontinuities are derived. The results of this application to the CVS data including

the results of the bootstrap are presented in section 4. Section 5 concludes the paper with

a discussion.

2 Redesign of the Crime Victimization Survey

The NSM is an annual survey conducted in the first quarter from 2006 through 2008 at

full scale, with about 19,000 respondents. It is designed to provide sufficiently precise

direct estimates at the national level and at the level of police districts, a subdivision of

the Netherlands in 25 regions. In 2008 the NSM was redesigned and changed to the ISM,

which is from that moment on conducted in the fourth quarter of each year with a sample

size that is equal to that of the NSM. Besides the field work period, the questionnaire and

the data collection modes changed during this redesign.

The NSM and the ISM are based on a stratified sample design of persons aged 15

years or older residing in the Netherlands, where the 25 police districts are used as the

stratification variable. The sample is equally divided over the strata resulting in a target

response of a minimum of 750 respondents in each stratum. Selection probabilities are

chosen such that within each stratum a self-weighted sample is drawn. Since police dis-

tricts have unequal population sizes, inclusion probabilities vary between police districts.

This results in an allocation which is optimal for estimating parameters at the level of

police districts. Under both survey designs, the generalized regression (GREG) estimator

(Särndal et al., 1992) is used to estimate population parameters at the national level and

for police districts.

In order to maintain consistent series, the NSM is conducted in parallel to the ISM

with a size of about 6,000 respondents in 2008. The sample is designed to provide direct

estimates with sufficient precision at the national level only. The selection probabilities are

chosen such that a self-weighted sample design is obtained. This results in a proportional

allocation of the sample over the strata, which is optimal for estimating parameters at

the national level but suboptimal for estimating parameters at police district level. Users

of the CVS, nevertheless, expect that discontinuities are also quantified at the level of

the 25 police districts. This requires sufficiently precise estimates for the variables of
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interest based on the ISM and the NSM for the 25 police districts. Therefore, model-

based estimators are considered to construct estimates of sufficient accuracy for these

domains under the NSM.

This parallel run enables separating the total effect of the survey redesign and real

developments of the variables of interest. Quantifying the separate effects of the modifi-

cations in the questionnaire and the data collection mode requires a randomized factorial

experiment.

3 Methods

3.1 Auxiliary information

In small area estimation, two types of models are commonly used. The first one is the

basic area level model, also known as the Fay-Herriot model (Fay and Herriot, 1979),

where the input data for the model are the direct estimates for the domains. The second

one is the nested error regression model of Battese et al. (1988), which is often referred to

as the basic unit level model. In this model the input data are the observations obtained

from the sampling units. Through these models, other relevant information can be used

to improve the estimation of small domain parameters. In the case of one cross-sectional

survey auxiliary information is generally available from registrations or censuses. An im-

portant source of auxiliary data in this study is the Police Register of Reported Offences

(PRRO). This information is available at an aggregated level per police district. In addi-

tion, demographic information available or derived from the municipal administrations is

used.

Long-standing surveys, like the Dutch CVS, are conducted repeatedly in time. In these

cases there is also sample information available from preceding periods. One way to com-

bine sample information from other domains and preceding periods is to allow for random

domain and random time effects in a linear mixed model and apply an EBLUP estima-

tor. Rao and Yu (1994) extended the area level model with an AR(1) model to combine

cross-sectional data with information observed in preceding periods. In EURAREA (2004)

linear mixed models that allow for spatial and temporal autocorrelation in the random

terms are proposed for area and unit level models. A different approach is followed by

Pfeffermann and Burck (1990) and Pfeffermann and Bleuer (1993). They combine time

series data with cross-sectional data by modeling the correlation between the parameters

of the separate domains in a multivariate structural time series model. Pfeffermann and

Burck (1990) show how the Kalman filter recursions under particular state-space models

can be restructured, like the EBLUP estimators, as a weighted average of a design-based

estimator and a synthetic regression type estimator based on information observed in

preceding sample surveys and other small domains.

If the redesign of the survey is accompanied by a parallel run, then there is a third

source of auxiliary information. Indeed, the regular survey is conducted in parallel to the
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alternative approach to measure discontinuities due to the planned survey redesign. The

regular survey is conducted with full sample size, since it is used for official publication pur-

poses. Therefore sufficiently precise direct estimates are available at least for the planned

domains, which are specified in the design stage of the sample survey. In situations were

the sample allocated to the alternative approach in a parallel run is substantially smaller

compared to the sample size allocated to the regular survey, the sample size will be too

small to obtain sufficiently precise direct estimates even for the planned domains. In such

cases EBLUP or HB estimators can be used as an alternative using the direct estimates for

the same variables and the same domains from the regular design as auxiliary variables in

the random effect model. Ybarra and Lohr (2008) consider EBLUP estimators for small

areas using the basic area level model with auxiliary information which is measured with

error. As an alternative the domain estimates of the regular and alternative approach

can be modeled simultaneously in a bivariate random effect model. Fay (1987) and Datta

et al. (1991), proposed a multivariate version of the area level model. This approach treats

the available sample information in a more symmetric way. The correlation between the

two domain parameters can result in more efficient small area predictions, particular for

the alternative approach but also for the regular approach. This method is not applied

in this paper since official statistics of the CVS are based on the GREG estimator. A

bivariate area level model would alter the point estimates of the regular survey as well as

the estimated discontinuities based thereon.

3.2 EBLUP for the area level model

Auxiliary information from other sample surveys is typically available at the level of do-

mains. Also the auxiliary information from the police registration (PRRO) is available

at the domain level only. Therefore the basic area level model (Fay and Herriot, 1979)

is considered in this application. Another advantage of the area level model is that the

complexity of the sample design is taken into account, since the dependent variables of the

model are the design-based estimates derived from the probability sample and available

auxiliary information used in the weighting model of the GREG estimator.

Let θ̂i denote the direct estimates of the target variables θi for the domains i = 1, . . . ,m.

In this application θ̂i is the GREG estimator obtained under the alternative approach, i.e.

the NSM. In the case of the area level model, the direct domain estimates are modeled

with a measurement error model, i.e. θ̂i = θi + ei, where ei denotes the sampling error

with design variance ψi. Furthermore, the unknown domain parameter is modeled with

available covariates for the i−th domain, i.e. θi = ztiβ + vi, with zi a K-vector with the

covariates zi,k for domain i, β the corresponding K-vector with fixed effects and vi the

random area effects with variance σ2v . For each variable a separate univariate model is

assumed. Combining both components gives rise to the basic area level model, originally

proposed by Fay and Herriot (1979):

θ̂i = ztiβ + vi + ei, (1)
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with model assumptions

vi
iid∼ N (0, σ2v) and ei

ind∼ N (0, ψi). (2)

Furthermore, it is assumed that vi and ei are independent and that ψi is known. Model

(1) is a linear mixed model and estimation proceeds using Best Linear Unbiased Predic-

tion (BLUP), Rao (2003). In the case of auxiliary information that is observed without

sampling error, the BLUP estimator for θi based on model (1) is given by

θ̃BLUPi = γiθ̂i + (1− γi)zti β̂, (3)

β̂ =

(
m∑
i=1

γiziz
t
i

)−1 m∑
i=1

γiziθ̂i, (4)

γi =
σ2v

σ2v + ψi
, (5)

V BLUP
i = γiψi + (1− γi)2σ2vzti

(
m∑
i=1

γiziz
t
i

)−1
zi. (6)

The BLUP estimator can be viewed as the weighted average of the direct estimator θ̂i

and the synthetic estimator zti β̂, where the weights are given in terms of their measures

of uncertainty. Generally σ2v is unknown. Several methods are available in the literature

to estimate σ2v , see Rao (2003). In this paper Restricted Maximum Likelihood (REML) is

used to estimate σ2v , see Rao (2003) section 6.2.4. Inserting the REML estimator for σ2v

into (5), results in the Empirical BLUP (EBLUP):

θ̃EBLUPi = γ̂iθ̂i + (1− γ̂i)zti β̂, (7)

where γ̂i is obtained by (5) where σ2v is replaced by the REML estimator σ̂2v . An estimator

for the MSE of the EBLUP estimator that accounts for the variability of estimating σ2v

requires an additional term in (6) that is given by Rao (2003), section 7.1.5, which is used

in this paper.

Estimates for the design variances ψi are available from the GREG estimator but

are used in the EBLUP estimator as if the true design variances are known, which is

a standard assumption in small area estimation. Therefore it is important to provide

reliable estimates for ψi, since the weights γi directly depend on them. The stability of

the estimates for ψi can be improved using the following ANOVA-type pooled variance

estimator

ψi =
1− fi
ni

S2
p ,

S2
p =

1

n−m

m∑
i=1

(ni − 1)S2
i;GREG,

with fi the sample fraction in domain i, ni the sample size in domain i, n =
∑m
i ni and

S2
i;GREG the estimated population variance of the GREG residuals. The sensitivity of

an EBLUP estimator derived from the basic area level model for the variability due to

estimating the sampling error variance is studied in Bell (2008). An estimator for the
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MSE of an EBLUP estimator for area level models that accounts for the variability of

estimating the design variance is proposed by Wang and Fuller (2003).

3.3 Hierarchical Bayesian approach for the area level model

Frequently applied methods to estimate the variance of random area effects, σ2v , are the

Fay-Herriot moment estimator, maximum likelihood and restricted maximum likelihood

estimation. A weakness of these methods is that in some situations the estimated model

variance tends to zero, see e.g. Bell (1999) and Rao (2003). Zero estimates can occur when

the number of areas is small, resulting in imprecise variance estimates. Zero estimates

can also occur when the between area variation controlled for the covariates is small,

for example in the case of strong auxiliary information. This is the case in the present

application of the NSM. A zero or a significantly underestimated model variance leads to

undesirable situations. In these cases the EBLUP estimator (7) gives too much weight

to the synthetic regression part and too little weight to direct estimates, even in domains

with larger sample sizes, and results in less plausible domain predictions. Furthermore

there is a large risk of MSE underestimation because the area effects are estimated at zero

and the variation between areas is associated with the variation in the auxiliary variables,

which is in most cases not realistic.

These problems can be avoided with the Hierarchical Bayesian (HB) approach, Rao

(2003), section 10.3. The basic area level model is expressed as an HB model for the case

that σ2v is known by (1), (2) and a flat prior on β. Subsequently the HB estimator for θi

and its MSE are obtained as the posterior mean and variance of θi. The posterior density

of θi given θ̂ = (θ̂1, . . . , θ̂m)t and σ2v , i.e. p(θi|θ̂, σ2v), is normal with the mean equal to the

BLUP estimator of θi and variance equal to the MSE of this BLUP estimator. As a result

the HB estimator of θi given σ2v , say θ̃
HB|σ2

v
i , is given by (3) and the posterior variance of

θi, say V
HB|σ2

v
i , is given by (6).

If σ2v is unknown, this uncertainty is taken into account by assuming a flat prior on

σ2v . Other choices for a non-informative prior on σ2v are possible. The choice of the

prior is particularly essential for applications with a very small number of domains. In

Gelman (2006) the use of a flat prior instead of the more common inverse-gamma is

recommended as a less informative prior. The HB estimates for the domain parameters

and its MSEs are obtained by averaging p(θi|θ̂, σ2v) over the posterior density of σ2v , i.e.

p(θi|θ̂) =
∫∞
0 p(θi|θ̂, σ2v)p(σ2v |θ̂)dσ2v . As a result the HB estimator for θi is given by

θ̃HBi = Eσ2
v

(
θ̃
HB|σ2

v
i

)
=

∫ ∞
0

θ̃
HB|σ2

v
i p(σ2v |θ̂)dσ2v . (8)

The posterior variance of θi is given by

V HB
i = Eσ2

v

(
V
HB|σ2

v
i

)
+ Vσ2

v

(
θ̃
HB|σ2

v
i

)
=

∫ ∞
0

(
V
HB|σ2

v
i + (θ̃

HB|σ2
v

i − θ̃HBi )2
)
p(σ2v |θ̂)dσ2v (9)
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By Bayes’ rule, the posterior density for σ2v is p(σ2v |θ̂) ∝ p(σ2v)p(θ̂|σ2v). Since a flat prior

on σ2v is assumed, it follows that the posterior p(σ2v |θ̂) as a function of σ2v is proportional

to the marginal likelihood

p(θ̂|σ2v)∝
(
m∏
i=1

(σ2v+ψi)
− 1

2

)[
det

(
m∑
i=1

ziz
t
i

σ2v + ψi

)]− 1
2

exp

(
−1

2

m∑
i=1

(θ̂i − zti β̂)2

σ2v + ψi

)
. (10)

The determinant factor in this expression arises from the Gaussian integral over β as

p(θ̂|σ2v) =
∫

dβp(θ̂|β, σ2v)p(β|σ2v). Expressions (8) and (9) are evaluated with 2m separate

one-dimensional numerical integrations. This approach follows the standard convention

that the design variances ψi are known. You and Chapman (2006) developed an HB

estimator that accounts for the uncertainty of estimating the sampling error variances.

The HB estimate for σ2v is obtained as the posterior mean

σ̂2vHB =

∫∞
0 σ2vp(θ̂|σ2v)dσ2v∫∞
0 p(θ̂|σ2v)dσ2v

. (11)

Expression (11) is evaluated with two separate one-dimensional numerical integrations.

Since this estimator is always unique and positive, the HB approach results in more plau-

sible parameter and MSE estimates for the domain variables than the EBLUP estimator,

Rao (2003), section 10.3.

3.4 Auxiliary information with sampling error

An important part of the available auxiliary information in a parallel run is based on a

sample survey, as explained in section 3.1, resulting in auxiliary variables observed with

sampling errors. Ybarra and Lohr (2008) developed the following measurement error

EBLUP estimator under the basic area level model to account for sampling variability in

the auxiliary variables

θ̃ME
i = γ̂iθ̂i + (1− γ̂i)ẑti β̂, (12)

γ̂i =
σ̂2v + β̂tCiβ̂

σ̂2v + β̂tCiβ̂ + ψi
, (13)

with ẑi a design-based estimator for the auxiliary variables zi and Ci the covariance matrix

of ẑi. They use an iterative least squares procedure to account for the variability in ẑi

for estimating β, and an estimator for σ2v that is not inflated with the sampling error of

the auxiliary variables. This is particularly important for situations where the Cis vary

across the domains. Finally they propose MSE estimators that account for the variability

of estimating β, σ2v and zi and follow the standard convention that Ci and ψi are known.

In the present application the sampling error in the auxiliary variables is approximately

constant over the domains, since the allocation of the sample in the regular survey of the

NSM and the ISM is designed such that about 750 respondents are obtained within each

police district, as explained in section 2. If prediction is the purpose, it follows from

Fuller (1987), p. 75, and Buonaccorsi (1995) that the measurement error in the auxiliary
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variables can be ignored in the estimator for β if the variance in the auxiliary information

is the same for each unit. If the estimated auxiliary information is treated in the EBLUP

or HB approach as if it is observed without error, then the sampling error in the auxiliary

variables will inflate the estimate for the model variance σ2v , resulting in a larger weight

γ̂i for the direct estimate in the EBLUP or HB estimate as well as an increase of the

estimated MSE. Since the sampling error in the auxiliary information is constant over the

domains, there is no need to avoid the inflation of σ̂2v with the variance of the sampling

error and correct the weights γ̂i in (13) for the sampling variance separately for each

domain. Moreover, Ybarra and Lohr (2008) concluded from a simulation study that in

the case of constant sampling errors, the standard EBLUP estimator (7) performs better

than the measurement error EBLUP estimator (12). Therefore the estimated auxiliary

variables are substituted for their unknown values in the EBLUP and the HB estimator

and treated as if observed without error in this application. The main advantage of this

approach is that the standard HB estimator can be used to avoid the problems with zero

estimates for the model variance.

3.5 Model selection

The covariates for the models are selected from a set of suitable auxiliary variables through

a step forward variable selection procedure. The conditional Akaike Information Criterion

(cAIC) is used as a comparison measure to select the most suitable models. The cAIC is

proposed by Vaida and Blanchard (2005) for mixed models where the focus is on prediction

at the level of clusters or areas. It is defined as cAIC = −2L+2p, where L is the conditional

log-likelihood and p a penalty based on a measure for the model complexity. In the case

of a fixed effect model, p is the number of model parameters. The random part of a mixed

model also contributes to the number of model degrees of freedom p with a value between

0 in the case of no domain effects (i.e. σ̂2v = 0) and the total number of domains m in

the case of fixed domain effects (i.e. σ̂2v → ∞). In the cAIC, p is the effective degrees of

freedom of the mixed model and is defined as the trace of the hat matrix H, which maps

the observed data to the fitted values, i.e. ŷ = Hy, see Hodges and Sargent (2001). In the

case of the area level model, the conditional likelihood is given by

L = log p(θ̂|β̂, v̂) = log

(
m∏
i=1

1√
2πψi

exp

(
−1

2

(θ̂i − zti β̂ − v̂i)2

ψi

))

= −m
2

log(2π)− 1

2

m∑
i=1

log(ψi)−
1

2

m∑
i=1

ψi
(σ̂2vHB + ψi)2

(θ̂i − zti β̂)2,

where

v̂i =
σ̂2vHB

(σ̂2vHB + ψi)
(θ̂i − zti β̂).

In this application σ̂2vHB is used for model selection. Note, however, that if σ2v << ψi,

then the choice between the REML estimate (σ̂2v) and the HB estimate (σ̂2vHB) hardly

affects the conditional likelihood.
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3.6 Analyzing discontinuities

Discontinuities can be calculated as the contrast between the direct estimate obtained

with the regular survey and the EBLUP or HB estimate obtained under the alternative

approach, and are defined as ∆̂i = ŷregi − θ̃ai , where ŷregi denotes the GREG estimate

obtained with the regular survey and θ̃ai the EBLUP estimate (a = EBLUP ) or the HB

estimate (a = HB) for the same parameter obtained under the alternative survey. The

significance of this contrast can be tested with a standard t-statistic, but requires an

expression for the variance of ∆̂i. Since sample estimates from the regular survey are also

used as auxiliary variables in the models for θ̃ai , a non-zero covariance term arises in the

expression for the variance of the contrast, i.e.

Var(∆̂i) = Var(ŷregi ) + MSE(θ̃ai )− 2Cov(ŷregi , θ̃ai ). (14)

Expressions for MSE(θ̃ai ) are discussed in the preceding subsections. Expressions for the

design variance, Var(ŷregi ), and design-based estimators V̂ar(ŷregi ) can be found in Särndal

et al. (1992).

If the fixed part in the multilevel model θi = ẑtiβ + vi contains auxiliary variables that

are estimated from the regular survey, then θ̃ai and ŷregi will be correlated. Both ẑi and

β̂ =

(
m∑
i=1

γiẑiẑ
t
i

)−1 m∑
i=1

γiẑiθ̂i,

contain auxiliary variables that are estimated from the regular survey that are correlated

with ŷregi . In addition, the fixed part ẑti β̂ is nonlinear, since both components contain

survey estimates from the regular survey. To account for the variability of β̂ in ẑti β̂,

a Taylor approximation for ẑti β̂ is derived. Let β̂ = T̂−1t̂, with T̂ =
∑m
i=1 γ̂iẑiẑ

t
i and

t̂ =
∑m
i=1 γ̂iẑiθ̂i. In the appendix it is shown that a Taylor approximation for ẑti β̂ around

its true population values zi and θi, i = 1, . . . ,m, and truncated at the first order terms,

equals

ẑiβ̂ ≈ zti β̂0 +
m∑
j=1

Bi,j(ẑj − zj) +
m∑
j=1

Ci,j(θ̂j − θj), (15)

with Bi,j a K vector defined by

Bi,j = (δi,j − γ̂jztiT−1zj)β̂t0 + γ̂j(θj − ztj β̂0)ztiT−1 (16)

and Ci,j a scalar, defined by

Ci,j = ztiT
−1zj γ̂j . (17)

Here δi,j = 1 if j = i and δi,j = 0 if j 6= i, β̂0 is the GLS estimator for β in its real points

zi and θi, i = 1, . . . ,m, and T =
∑m
i=1 γ̂iziz

t
i .

Since domains coincide with the strata of the sampling design, only the auxiliary

variables obtained form the regular survey from domain i are correlated with ŷregi . The
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direct estimates θ̂i are also uncorrelated with ŷregi , since they are based on two independent

samples. As a result, the design covariance between θ̃ai and ŷregi can be approximated with

Cov(ŷregi , θ̃ai ) = Cov(ŷregi , γ̂iθ̂i + (1− γ̂i)ẑti β̂) = (1− γ̂i)Cov(ŷregi , ẑti β̂) (18)

≈ (1− γ̂i)[(1− γ̂iztiT−1zi)β̂t0 + γ̂i(θi − β̂t0zi)ztiT−1]Cov(ŷregi , ẑi),

where Cov(ŷregi , ẑi) denotes a K vector containing the covariances between ŷregi and ẑi.

For auxiliary variables that are obtained from other sources than the regular survey, the

covariances in Cov(ŷregi , ẑi) are zero. If one of the ẑi,k = ŷregi , then the corresponding

component in Cov(ŷregi , ẑi) simplifies to Var(ŷregi ). An estimator for (18) is obtained by

replacing the unknown population values for their survey estimates and is given by

Ĉov(ŷregi , θ̃ai )=(1−γ̂i)[(1−γ̂iẑti T̂−1ẑi)β̂t+γ̂i(θ̂i−β̂tẑi)ẑti T̂−1]Ĉov(ŷregi , ẑi), (19)

where Ĉov(ŷregi , ẑi) is a K vector containing the estimates for the design covariances be-

tween ŷregi and ẑi. For an expression and estimator of the design covariance Cov(ŷregi , ẑi,k),

see Särndal et al. (1992), section 5.9.

The Cov(ŷregi , θ̃ai ) depends on the weight γ̂i that is attached to the direct estimator θ̂i

in θ̃ai . If θ̃ai is completely based on the direct estimate θ̂i, then γ̂i = 1 and (19) is equal

to zero, since ∆̂i is completely based on the information of two separated samples in this

situation. If θ̃ai is completely based on the synthetic part zti β̂, then γ̂i = 0 and (19) reduces

to β̂tĈov(ŷregi , ẑi).

In (14), the MSE of θ̃ai is approximated from a model-based perspective, i.e. the

posterior variance of the HB estimator or the MSE of the EBLUP, while the covariance

between θ̃ai and ŷregi is treated from a design-based perspective. A more symmetrical

alternative is obtained if the model-based approximation for the MSE of θ̃ai is replaced by

a design-based approximation. From (15) it follows that a Taylor approximation for θ̃ai is

given by

θ̃ai ≈ γ̂iθ̂i + (1− γ̂i)[zti β̂0 +
m∑
j=1

Bi,j(ẑj − zj) +
m∑
j=1

Ci,j(θ̂j − θj)]. (20)

An expression for the design variance of θ̃i follows from (20) and is given by

Var(θ̃ai ) = γ̂2i Var(θ̂i) + (1− γ̂i)2
 m∑
j=1

Bi,jCov(ẑj)B
t
i,j +

m∑
j=1

C2
i,jVar(θ̂j)


+2γ̂i(1− γ̂i)Ci,iVar(θ̂i). (21)

Here Cov(ẑj) is a K ×K design-covariance matrix of the vector with auxiliary variables.

This covariance matrix contains the design variances and covariances for auxiliary variables

observed in the regular survey. Elements for corresponding auxiliary variables obtained

from other sources are zero. Furthermore, Var(θ̂i) are scalars that contain the design

variances of the target variables observed in the parallel run. An estimator for (21) is

V̂ar(θ̃ai ) = γ̂2i V̂ar(θ̂i) + (1− γ̂i)2
 m∑
j=1

B̂i,jĈov(ẑj)B̂
t
i,j +

m∑
j=1

Ĉ2
i,jV̂ar(θ̂j)


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+2γ̂i(1− γ̂i)Ĉi,iV̂ar(θ̂i), (22)

B̂i,j = (δi,j − γ̂j ẑti T̂−1ẑj)β̂t + γ̂j(θ̂j − ẑtj β̂)ẑti T̂
−1,

Ĉi,j = ẑti T̂
−1ẑj γ̂j ,

and Ĉov(ẑj) and V̂ar(θ̂i) are the estimators for the design variances and covariances in

Cov(ẑj) and Var(θ̂i) respectively.

The posterior variance of θ̃HBi and the MSE of θ̃EBLUPi account for the model un-

certainty in β̂ and σ̂2v . The uncertainty of replacing auxiliary variables by design-based

estimates is implicitly accounted for by an increase of the model variance σ̂2v . A simu-

lation confirms that σ̂2v increases proportionally with the sampling error in the auxiliary

variables, see the appendix for details. The design-based approximation (22) ignores the

variability of σ̂2v but explicitly accounts for the sampling error of using estimated auxil-

iary variables. Under this design-based approach, β is considered as a finite population

parameter and (22) accounts for the uncertainty of using sample estimates for θ and z in

β̂ instead of their true population values.

An alternative approach is to estimate (14) by means of a bootstrap. This amounts to

repeatedly drawing resamples r from the regular sample and the alternative sample. The

resampling procedure must reflect the complexity of the sampling design used to draw

the regular and the alternative sample from the finite target population, see e.g. Särndal

et al. (1992), chapter 11 or Shao and Tu (1995), chapter 6. This is accomplished with the

following non-parametric bootstrap. The ISM and the NSM both apply a stratified simple

random sampling design. Let nregh denote the size of the regular sample sregh and nalth the

size of the alternative sample salth observed in stratum h. For each replicate, nregh sampling

units are selected from sregh from each stratum h by means of simple random sampling

with replacement for the regular survey. In a similar way, nalth sampling units are selected

from sregh from each stratum for the alternative survey. The direct estimate for the target

variable is calculated for the r-th resample from the regular survey, say ŷreg;ri and the

alternative survey, say θ̂ri . Also the auxiliary variables as far as observed from the regular

survey, ẑri , are re-estimated for each bootstrap sample. Finally the EBLUP or the HB

estimate for the r-th resample from the alternative survey, say θ̃a;ri and the corresponding

discontinuity ∆̂r
i = ŷreg;ri − θ̃a;ri are computed. This step is repeated R times and

Ŝ2(∆̂i) =
1

R

R∑
r=1

(
∆̂r
i −

¯̂
∆i

)2
, (23)

is an estimator for (14), with
¯̂
∆i the mean over the R bootstrap replicates ∆̂r

i .

4 Results

4.1 Data

The NSM survey reports on many different outcome variables. In the present study five

key survey variables are considered, see Table 1. Variables sourced from administrative

15



registers are listed in Table 2. Table 3 shows the variables obtained from the Police Regis-

ter of Reported Offences. Table 4 lists the variables from the ISM and past NSM surveys

considered for use as covariates. These include the five target variables under considera-

tion, extended with seven more variables of potential benefit. All auxiliary variables are

named with prefixes indicating their source.

variable description

nuisance perceived nuisance in the neighborhood on a ten point

scale; this includes nuisance by drunk people, neig-

bours, or groups of youngsters, harassment, and drug

related problems

unsafe percentage of people feeling unsafe at times

propvict percentage of people saying to have been victim to

property crime in the last 12 months

offtot total number of offenses per 100 people

satispol percentage of people satisfied with police at their last

contact (if contact in last 12 months)

Table 1. Five key NSM survey variables considered in the present study.

variable description

adm\_immigr percentage of immigrants in population

adm\_immigrnw percentage of non-western immigrants in population

adm\_young percentage of young people (aged 15 to 25)

adm\_old percentage of elderly people (aged over 65)

adm\_urban level of urbanization (in 5 categories)

adm\_house mean house price

adm\_benefit percentage of social benefit claimants

Table 2. Auxiliary data from administrative registers. Data are at police district level.

4.2 Model selection

In the present application, cAIC is used for model selection. A cross validation (CV) mea-

sure was considered as an alternative, Boonstra et al. (2008). It was found that models

determined using cAIC generally have a smaller number of covariates than models deter-

mined using CV. Furthermore, the cAIC models are often nested within the larger CV

models. Since there are only 25 small areas in this application, the smaller cAIC models

are preferred.

The cAIC criterion is used to assess the importance of various sets of covariates. Table

5 lists the cAIC values of optimal models. The value given in brackets is the average
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variable description

prro\_propcrim property crimes

prro\_bicycle bicycle thefts (subset of property crimes)

prro\_violcrim violent crimes

prro\_assault physical assaults (subset of violent crimes)

prro\_threat threats (subset of violent crimes)

prro\_traffic traffic offences

prro\_drugs illicit drug offences

prro\_weapon weapon offences

prro\_damage damage to public and private property

prro\_puborder disturbance of public order

Table 3. Auxiliary data from the Police Register of Reported Offences. Figures are

reported offences per 100 inhabitants.

reduction in the coefficient of variation (cv) achieved under these optimal models. The

average is taken over police districts, and the reduction reflects the gain of the HB esti-

mates compared to the direct estimates of the NSM. Five sets of covariates are considered,

corresponding to the columns in this table. The first and smallest set consists of admin-

istrative data only. This set is increasingly expanded by adding PRRO variables, then

either ISM variables from the parallel runs, or NSM variables from the previous full scale

NSM survey, held in the first quarter of 2008, and finally both ISM and NSM variables.

Models using only administrative data are generally worse than those including PRRO

data, which in turn are worse than those also including ISM variables. Models involving

only NSM variables from preceding editions of the survey are not as good as models with

ISM variables. Including both as potential covariates does not lead to better models than

using ISM variables only. The variable propvict benefits least from using data from

other surveys. In this case PRRO variables seem to be the best predictors, which is not

surprising since this variable is closely related to the police reported offenses.

Since the number of domains in this application is limited to 25 police districts, models

with more than a few covariates will easily overfit the data. Therefore, principal component

analysis is applied to reduce the dimension of the covariate space, see e.g. Hastie et al.

(2003). The principal component models are never better than the models using the

variables directly. A possible reason why principal components are not advantageous is

that the set of covariates contains many variables with little predictive power. These

variables do contribute to the principal components, but they do not get selected in the

model selection process when using variables directly. In this way, the latter models make

use of the covariates more efficiently. Alternative approaches such as partial least squares

or canonical component analysis could prove useful, but are not investigated in the present

research.
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variable description

surv\_nuisance perceived nuisance in the neighborhood on a ten point

scale; this includes nuisance by drunk people, neig-

bours, or groups of youngsters, harassment, and drug

related problems

surv\_unsafe percentage of people feeling unsafe at times

surv\_propvict percentage of people saying to have been victim to

property crime in the last 12 months

surv\_violvict percentage of people saying to have been victim to

violent crime in the last 12 months

surv\_satispol percentage of people satisfied with police at their last

contact (if contact in last 12 months)

surv\_degrad perceived degradation of the neighbourhood, on a ten

point scale

surv\_funcpol opinion on functioning of the police, on a ten point

scale

surv\_victim percentage of people saying to have been victim to

crime

surv\_offtot number of offenses per 100 inhabitants (derived from

victim reports)

surv\_propcrim number of property crimes per 100 inhabitants

surv\_violcrim number of violent crimes per 100 inhabitants

surv\_bicycle number of bicycle thefts per 100 inhabitants

Table 4. Auxiliary data from the parallel ISM surveys, and from the past NSM survey.

The first five variables correspond to the NSM survey target variables. The prefix surv is

either ism or nsm, reflecting the source of the variable.

variable admin + PRRO + ISM + NSM + ISM + NSM

offtot 155.1 (47%) 152.1 (49%) 148.8 (56%) 153.1 (48%) 148.8 (56%)

unsafe 135.1 (24%) 134.7 (29%) 127.3 (37%) 127.7 (39%) 127.7 (39%)

nuisance -20.7 (29%) -22.5 (35%) -34.8 (51%) -30.2 (45%) -34.8 (51%)

satispol 165.5 (50%) 164.4 (50%) 161.5 (55%) 164.2 (49%) 161.5 (55%)

propvict 108.9 (49%) 104.6 (49%) 105.0 (51%) 104.6 (49%) 105.0 (51%)

Table 5. cAIC values for optimal models based on different sets of covariates. Between

brackets is the percentage improvement in coefficient of variation of the HB estimates

compared to the direct estimates, averaged over districts.

Hence, the models to proceed with in the present application are those associated with
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the minimal cAIC values in Table 5. The models for offtot, unsafe, nuisance and

satispol contain one or more variables from the ISM. In the model for propvict no ISM

variables are selected. Here the PRRO variables play a more dominant role.

The optimal models for the five target variables of the NSM, that are finally selected

for small area prediction are based on the original auxiliary variables and are specified in

Table 6. No variables from the previous edition of the NSM were selected.

variable cAIC-based model

offtot ISM\_victim

unsafe ISM\_nuisance, adm\_benefit, prro\_propcrim, prro\_drugs

nuisance ISM\_nuisance, adm\_old

satispol ISM\_funcpol

propvict prro\_propcrim, adm\_old

Table 6. Optimal models for the five key survey variables. All models also include an

intercept (not shown).

4.3 Model diagnostics

Small area estimates can be benchmarked to the national direct estimates. Benchmarking

can be conducted for cosmetic purposes, since it restores the required consistency between

the national estimates and the underlying domain estimates. Pfeffermann and Burck

(1990) and Pfeffermann and Bleuer (1993) proposed benchmarking in the context of small

area estimation with state space models as a build in mechanism against model miss-

specification. The size of the calibration adjustments that are required can be viewed as

a model diagnostic, see Brown et al. (2001). Small area estimates can be benchmarked to

the direct estimates at the national level by formulating an appropriate Lagrange function

such that the discrepancies between the direct estimate and the small area estimates are

distributed proportional to the MSEs of the small area estimates. The benchmarked small

area estimates have smaller or equal MSEs than the unadjusted small area estimates. The

interpretation of this MSE reduction is that the restriction add additional information

to the model that is applied to construct the small area estimates. See e.g. Van den

Brakel and Roels (2010) for details and expressions of the Lagrange multiplier approach,

including an expression for the MSE of the adjusted small area estimates. An alternative

point of view is taken by You et al. (2003). They consider the differences between the

original and the benchmarked estimates as a bias, whose squared value is added to the

MSE of the original estimate.

The HB small area estimates, obtained with the optimal models described in Table 6,

are benchmarked to the national direct estimates. In this application, the adjustments are

very small, all less than 0.4% (see Table 7). This confirms the choice of models. Since the

calibration adjustments are so small in the present application, no MSE adjustments are

19



made. Table 7 shows the mean squared adjustments, the mean mse, and the percentage

of the former to the latter: all but one are less than 0.1%.

variable calibration (%) mean bias mean mse percentage bias

offtot -0.222% 5.61E-03 5.970 0.096%

unsafe 0.048% 9.39E-05 3.170 0.003%

nuisance 0.006% 5.63E-09 0.004 0.000%

satispol 0.132% 5.42E-03 9.103 0.061%

propvict 0.343% 1.23E-03 1.261 0.111%

Table 7. For each variable the percentage calibration adjustment required is shown in the

third column. The next columns contain the mean squared calibration adjustment, the

mean mse estimate, and the percentage of the former to the latter.

In Figure 2, HB estimates for nuisance and propvict are plotted against direct es-

timates. The dashed line is a linear regression line fitted to the data. As is commonly

seen, the SAE estimates are smoothed compared to the direct estimates, as indicated by

the slope of the regression line being smaller than 1. This can be expected since the direct

estimates have larger variances than the HB estimates, while there should not be an over-

all bias as the HB estimates are calibrated to the direct estimates at national level. The

difference between direct and HB estimates is smaller for nuisance than for propvict.

The residuals, i.e. the differences between the direct and HB estimates, are shown

using a QQ-plot in Figure 3. The distributions do not deviate much from normal, not

giving indications of model misspecification.

4.4 Small area estimates

The optimal models are used to produce estimates. The cv’s of the direct estimates are

compared with the HB estimates in Table 8. The values shown are averaged over police

districts. For most variables reductions of between 40% and 50% are achieved, with a

lower reduction for unsafe.

variable cv direct cv HB percentage change

offtot 0.180 0.075 -56

unsafe 0.153 0.092 -37

nuisance 0.108 0.051 -51

satispol 0.125 0.055 -55

propvict 0.245 0.113 -49

Table 8. Coefficients of variation of the direct and HB estimates, and their percentage

change. The coefficients shown are averages taken over all areas.

As discussed in section 3.3, REML estimation of the model variance σ2v can be prob-
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lematic in instances where the likelihood has its maximum at zero. Table 9 shows the

REML and Bayesian estimates of σ2v in the present application. The REML estimates are

zero for all variables, which implies that the EBLUP estimates are completely based on

the synthetic regression part. This demonstrates the advantage of the HB approach in

this application, which always assigns a positive weight to the direct estimates in the HB

prediction.

variable Posterior mean REML

offtot 4.995 0.000

unsafe 2.997 0.000

nuisance 0.003 0.000

satispol 7.725 0.000

propvict 0.805 0.000

Table 9. Posterior mean and REML estimates of the model variance σ2v .

For two variables, nuisance and propvict, some results are presented in more detail,

as averaging over the areas may conceal important aspects of the applied methods. Figure

4 shows details at the area level for nuisance and propvict. The cv’s of the direct and

HB estimates are plotted for each police district, with the districts ordered by increasing

population size. Since the NSM employs a proportional allocation over the strata, in this

case the districts, the ordering is also according to NSM sample size. On average, the

smaller areas benefit more than the larger areas from applying small area models, as their

cv’s are reduced more than the larger areas’ cv. Nevertheless, there are gains too for the

largest police districts. The cv’s of the HB estimates do not vary a lot among areas, while

the cv’s of the direct estimates decrease with increasing area size.

4.5 Discontinuities

Discontinuities for the five variables from Table 1 are analyzed at the level of districts.

For the ISM, domain estimates are based on the GREG estimator. For the NSM, the HB

estimator developed in the preceding section is used. Two analytic variance estimates are

compared with the bootstrap estimates. The first analytic estimator for (14) uses V̂ar(ŷregi )

as an estimator for the variance of the ISM GREG estimates, the posterior variance for the

MSE of θ̃HBi and (19) for the covariance between θ̃HBi and ŷregi . This estimator is referred

to as the model-based standard error approximation. The second analytic estimator for

(14) uses (22) as a design-based estimator for the MSE of θ̃HBi instead of the posterior

variance. This estimator is referred to as the design-based standard error approximation.

Bootstrap simulations are based on 2000 resamples. Plots of the bootstrap variance of the

discontinuities (23) against the number of replications indicate that the bootstrap variance

converges to a stable value after 1000 to 1500 resamples.

First the GREG and HB estimates are compared with their bootstrap estimates. Then
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results for the discontinuities are presented. Table 10 compares the analytic and bootstrap

estimates for the GREG estimates and its standard errors for the five target variables of

the ISM and the NSM, averaged over the 25 police districts. The bootstrap approximations

are close to the analytic point and standard error estimates. To give an indication of the

fluctuation of the differences between the districts, the mean of the absolute difference

between analytic and bootstrap estimates over the 25 domains is also calculated and is

called the absolute mean difference (AMD). It shows that differences between the NSM

are somewhat larger than the ISM, which can be attributed to the smaller sample size of

the NSM.

variable Analytic NSM Bootstrap NSM AMD NSM

GREG SE GREG SE GREG SE

offtot 33.28 5.73 33.29 5.50 0.24 0.84

unsafe 19.86 2.87 19.85 2.82 0.05 0.21

nuisance 1.28 0.13 1.28 0.13 0.00 0.01

satispol 55.58 6.88 55.56 6.86 0.29 0.43

propvict 9.78 2.19 9.79 2.10 0.04 0.23

variable Analytic ISM Bootstrap ISM AMD ISM

GREG SE GREG SE GREG SE

offtot 42.29 4.73 42.31 4.73 0.09 0.10

unsafe 24.38 2.03 24.38 1.98 0.04 0.07

nuisance 1.61 0.11 1.61 0.11 0.00 0.00

satispol 60.61 4.23 60.62 4.20 0.07 0.08

propvict 12.55 1.60 12.57 1.61 0.03 0.04

Table 10. Comparison analytic and bootstrap GREG estimates ISM and NSM averaged

over districts.

Table 11 compares the analytic HB estimates, the model-based standard errors (SE1)

and the design-based standard errors (SE2) with the bootstrap means of the HB estimates

and the bootstrap approximations for the standard errors of the HB estimates averaged

over the 25 districts for the NSM. The AMD refers to the average absolute differences

between the analytic HB estimates and the bootstrap estimates. Figure 5 compares the

design-based, the model-based and the bootstrap standard errors of the HB estimates for

nuisance and propvict for the 25 districts. For offtot and nuisance the design-based

standard errors are on average larger than the model-based standard errors. For the other

three variables the model-based standard errors are on average larger. Recall from section

4.1 that propvict is the only variable that did not select an auxiliary variable in the

optimal model from the ISM. The bootstrap standard errors are always larger than the

two analytic approximations.

Table 12 compares the analytic point estimates for the discontinuities, the model-based
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variable Analytic Bootstrap AMD

HB est. SE(1) SE(2) HB est. SE HB est. SE(1) SE(2)

offtot 33.21 2.43 2.90 33.29 3.13 0.88 0.74 0.39

unsafe 19.83 1.76 1.64 19.84 1.92 0.57 0.19 0.29

nuisance 1.29 0.06 0.08 1.28 0.08 0.03 0.02 0.01

satispol 55.09 3.00 2.54 55.29 3.58 1.14 0.59 1.05

propvict 9.85 1.09 0.84 9.88 1.12 0.25 0.11 0.28

Table 11. Comparison HB point and SE estimates with bootstrap results averaged over

districts.

standard errors (SE1) and the design-based standard errors (SE2) with the bootstrap

means of the discontinuities and the bootstrap approximations for the standard errors of

the HB estimates, averaged over the 25 districts. The AMDs specify the average absolute

differences between the analytic HB estimates and the bootstrap estimates. Figure 6

compares the design-based, the model-based and the bootstrap standard errors of the

discontinuities for nuisance and propvict for the 25 districts. The results show the same

pattern as for the HB estimates; for offtot and nuisance the design-based standard errors

are on average larger, for the other variables the model-based standard errors are larger.

The bootstrap standard errors are always larger than the two analytic approximations.

The last two columns of Table 12 contain the GREG estimates for the discontinuities,

i.e. the difference between the GREG estimate of the ISM and the GREG estimate of the

NSM and its standard error. The standard errors for the discontinuities that are based on

the HB estimator are substantially smaller compared to the GREG estimates. The use of

the HB estimator for the NSM variables increases the precision of the model predictions

for θi substantially. Moreover, the use of direct estimates of the target variable and related

variables from the regular survey as auxiliary variables in the model for the HB estimator

results in a positive correlation between ŷregi and θ̃ai , which further reduced (14).

variable Analytic Bootstrap AMD (Analytic) GREG

Disc. SE(1) SE(2) Disc. SE Disc. SE(1) SE(2) Disc. SE

offtot 9.08 3.54 3.92 9.02 4.92 0.89 1.38 1.00 9.01 7.69

unsafe 4.55 2.54 2.46 4.54 2.69 0.56 0.20 0.25 4.52 3.57

nuisance 0.33 0.05* 0.07 0.33 0.11 0.03 0.06 0.03 0.33 0.17

satispol 5.52 4.98 4.72 5.33 5.43 1.15 0.45 0.70 5.04 8.21

propvict 2.70 1.95 1.84 2.70 1.97 0.25 0.08 0.14 2.78 2.77

Table 12. Analysis results discontinuities averaged over districts. *: For nuisance 2 dis-

tricts with negative variance estimates for the estimated discontinuity are truncated at

zero.
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For nuisance in two districts negative variance estimates for the discontinuities with

the model-based standard error approximation are obtained. These problems do not oc-

cur with the design-based standard error approximation. The bootstrap standard errors,

obtained with (23) are always positive by definition.

The bootstrap standard errors of the HB predictions and the discontinuities are always

larger compared to the two analytic approximations. Recall that the posterior variance

of the HB predictions accounts implicitly for the additional uncertainty of using auxiliary

information with sampling error through an increase of σ̂2v , see also the simulation in the

appendix. The design-based standard error approximation of the HB predictions accounts

explicitly for the sampling error in the auxiliary variables.

The main reason that the bootstrap standard errors are larger than the two analytic

standard error approximations is an increase of the σ̂2v in the bootstrap resamples. A

second reason why the bootstrap standard errors are larger is that the analytic standard

error approximation of the HB estimator ignores the variability of the variance of the direct

estimator for the domains. This variability is also captured by the bootstrap standard

errors.

The variance estimates of the random effects (σ2v) and the cAIC based on the original

sample are compared with their median in the bootstrap distributions in Table 13. The

median of the REML estimate and the posterior mean of σ2v and the cAIC in the bootstrap

distribution are considerably larger compared to their values in the original sample. This

is the result of two factors. First, the bootstrap tends to increase the between domain

variance of the target variables, particularly in situations were the between domain vari-

ance is small compared to the within domain variance. This also applies to a parametric

bootstrap, which therefore does not resolve this problem. Second, this is an indication

that the data are over-fitted by the model, which can be a result of the small number of

domains in combination with the extensive model selection procedure. This can result in a

model that perfectly describes the particular structure in the original data of the NSM and

ISM, but is on average less optimal for the resamples observed in the bootstrap. If within

each bootstrap resample a new optimal model is selected, then different optimal models

are selected (results not presented). These are indications that the data are over-fitted by

the applied model selection procedure. Over-fitting of the data by the model results in

smaller model variances σ̂2v and smaller weights γ̂i on the direct estimate in the EBLUP or

HB estimator. As a result, the contribution of the covariance term (19) in the estimator

for (14) becomes too large. This increases the differences between the bootstrap standard

errors for the discontinuities and the two analytic approximations.

The bootstrap standard errors of the discontinuities are finally used, since they are

the most conservative approximations. They are still smaller compared to the standard

errors of the direct estimates. Discontinuities with 95% confidence intervals are plotted

for nuisance in Figure 7, propvict in Figure 8, unsafe in Figure 9, offtot in Figure 10,

and satispol in Figure 11. Confidence intervals are based on bootstrap standard errors.
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Results initial sample Bootstrap median

variable Post. mean REML cAIC Post. mean REML cAIC

offtot 4.995 0.000 148.8 26.180 15.360 167.1

unsafe 2.997 0.000 127.7 10.870 6.967 137.6

nuisance 0.003 0.000 -34.8 0.019 0.012 -18.06

satispol 7.725 0.000 161.5 37.120 19.890 177.6

propvict 0.805 0.000 105.0 2.842 1.064 118.4

Table 13. Posterior mean and REML estimates of the model variance σ2v , and cAIC.

Estimated discontinuities are used to correct the NSM to the level of the ISM before the

change-over using correction methods discussed in Van den Brakel et al. (2008).

4.6 Software

For the computation of the HB estimates, the R package hbsae (Boonstra, 2012) has

been used. The R function uses one-dimensional deterministic numerical integration of

the BLUP expressions over the posterior distribution of σ2v to compute the HB estimates

and their MSEs. This way, the full Bayesian approach is followed without relying on

more time-consuming Monte Carlo methods. Alternatively, plug-in estimates of σ2v , such

as its REML estimate or posterior mean can be used. The output of the R function

also includes the estimated model parameters and a number of model selection measures

including cross-validation and cAIC.

5 Discussion

To quantify the systematic effects induced by a redesign of repeatedly conducted surveys,

the old and new approach are often run in parallel for some period. Due to budget

constraints, the sample size for the alternative approach is often considerably smaller

compared to the regular survey used for official publication purposes. In such cases, small

area estimation procedures can be considered to obtain more precise domain estimates.

In the case of a parallel run there are, besides information from registers, sample

estimates for the same target variable and related variables observed under the regular

approach and generally also in preceding periods available. This information can be used

for model building and selection, since strong correlations can be expected between sample

estimates for the same variables, observed under two alternative survey designs.

In the SAE literature various approaches are available to incorporate this information

in an appropriate estimation procedure. In this paper, an HB estimator for the area

level model is developed to estimate discontinuities due to a redesign of the Dutch Crime

Victimization Survey. The sample estimates from the regular survey are used as auxiliary

information as if observed without sampling error. Ignoring the sampling error is legitimate
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in this application, since the sampling error of the estimated auxiliary information is

approximately equal for the different domains. In this situation the sampling error of the

auxiliary information is implicitly reflected by an increase of the variance of the random

effects of the area level model. This allows the application of the full HB approach,

which guarantees strictly positive estimates for the model variance. REML estimation

indeed resulted in zero model variance estimates for all of the variables considered in this

application.

The variance of the discontinuities contains the variance of the GREG estimator of

the regular survey and the MSE of the HB estimator of the alternative approach. If

sample estimates from the regular survey are used as auxiliary information in the area

level model of the HB estimator, then the direct estimates from the regular survey will

be correlated with the HB estimates for the alternative approach. An approximation

for the design covariance between the direct estimator for the regular survey and the

HB estimator for the alternative approach is derived. Using the posterior variance as

an approximation for the MSE of the HB estimator has the conceptual drawback that

the uncertainty of the HB estimator is measured from a model-based perspective, while

the covariance between the HB estimator and the GREG estimator is evaluated from

a design-based perspective. For one target variable this approach resulted in negative

variance estimates for the discontinuities.

As an alternative, a design-based approximation for the MSE of the HB estimator is

derived. In this application problems with negative variance estimates for the discontinu-

ities are avoided with this MSE approximation. This design-based MSE approximation

does not account for the uncertainty of using an estimator for the variance of the ran-

dom effects of the area level model. The additional advantage of using the HB estimator

in combination with this design-based MSE approximation is that a non-zero weight is

attached to the direct estimator in the HB estimator for the domains.

The design-based MSE approximation accounts for the uncertainty of using sample

estimates in the estimated regression coefficients of the fixed part of the area level model.

It can be considered as a simplified alternative for the method proposed by Ybarra and

Lohr (2008) to account for sampling error in the auxiliary variables of the area level model,

but only for situations where the sampling error in the auxiliary variables is approximately

constant over the domains. For situations where the sampling error in the auxiliary vari-

ables varies across the domains, the EBLUP proposed by Ybarra and Lohr (2008) gives

the correct weight on the synthetic and the direct estimator in the EBLUP for the domain

estimates.

Using sample estimates from the regular survey as well as from preceding periods as

auxiliary information in the area level model significantly increases the precision of the

HB estimates, compared to models that only use information available from registrations.

The variance of the discontinuities is further decreased since selecting sample estimates

from the regular survey as auxiliary variables in the area level model, results in strong
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positive correlations between the HB estimates for the alternative survey and the direct

estimates of the regular survey.

There are no systematic differences between the posterior variance and the design-based

MSE of the HB estimator. Estimating the MSE of the HB estimator with a bootstrap

indicates that the MSE approximation of the HB estimator is an under estimation of the

real MSEs. A possible reason is that for several variables the models obtained with the

model selection procedure over-fit the data. This suggests further research in alternative

model selection procedures that are more robust against selection of models that over-fit

the data. There are also indications that the bootstrap tends to over-estimate the MSE

of the HB estimator. In this application the bootstrap approximations are used as a

conservative approximation for the standard error of the discontinuities, which are still

considerably smaller compared to the standard errors of the discontinuities that uses the

GREG estimator for both the regular and alternative survey approach.

A topic for further research is to consider a bivariate area level model for the two

estimates observed in the regular survey and the parallel run. Under this approach two

model-based SAE estimates for the variable under both the alternative and the regular

approach are obtained. In this case standard errors of both estimates can mutually take

advantage of their correlation. This approach is not followed in this application, since

official statistics obtained with the regular survey are based on the GREG estimator and

the approach used to approximate discontinuities should be as close as possible to the

procedures followed in the regular survey.
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Taylor approximation for small area predictions

In this section a Taylor approximation for the small area predictions based on the area

level model, i.e.

θ̃ai = γ̂iθ̂i + (1− γ̂i)ẑti β̂,

β̂ =

(
m∑
i=1

γ̂iẑiẑ
t
i

)−1 m∑
i=1

γ̂iẑiθ̂i,

is derived. The auxiliary variables ẑi can contain sampling error if they are based on

a sample survey. A Taylor approximation for the synthetic component is obtained by

considering ẑti β̂ as a function in ẑj and θ̂j , j = 1, ...,m, that can be approximated around

its real population values z = (z1, . . . , zm) and θ = (θ1, . . . , θm):

fi(ẑ, θ̂) ≈ fi(z, θ) +
m∑
j=1

K∑
k=1

∂fi(ẑ, θ̂)

∂ẑj,k

∣∣∣∣∣
(ẑ,θ̂)=(z,θ)

(ẑj,k − zj,k)

+
m∑
j=1

∂fi(ẑ, θ̂)

∂θ̂j

∣∣∣∣∣
(ẑ,θ̂)=(z,θ)

(θ̂j − θj). (24)
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Using standard rules from matrix differentiation for fi(ẑ, θ̂) = ẑti β̂ gives

∂fi(ẑ, θ̂)

∂ẑj,k
=

∂ẑti
∂ẑj,k

β̂ + ẑti
∂T̂−1

∂ẑj,k
t̂+ ẑti T̂

−1 ∂t̂

∂ẑj,k

= δi,j β̂
tλk − ẑti T̂−1Λ̂j,kT̂−1γ̂j t̂+ ẑti T̂

−1λkθ̂j γ̂j , (25)

with λk a K vector with the k-th element equal to one and the other elements equal to

zero, T̂ =
∑m
i=1 γ̂iẑiẑ

t
i and t̂ =

∑m
i=1 γ̂iẑiθ̂i,

Λ̂j,k =



0 0 . . . ẑj,1 . . . 0

0 0 . . . ẑj,2 . . . 0
...

...
...

...

ẑj,1 ẑj,2 . . . 2ẑj,k . . . ẑj,K
...

...
...

...

0 0 . . . ẑj,K . . . 0


, (26)

and δi,j = 1 if j = i and δi,j = 0 if j 6= i. Further more,

∂fi(ẑ, θ̂)

∂θ̂j
= ẑti T̂

−1ẑj γ̂j , (27)

Evaluating (25) and (27) in its real points gives:

∂fi(ẑ, θ̂)

∂ẑj,k

∣∣∣∣∣
(ẑ,θ̂)=(z,θ)

= δi,j β̂
t
0λk − ztiT−1Λj,kβ̂0γ̂j + ztiT

−1λkθj γ̂j , (28)

∂fi(ẑ, θ̂)

∂θ̂j

∣∣∣∣∣
(ẑ,θ̂)=(z,θ)

= ztiT
−1zj γ̂j , (29)

with β̂0 the GLS estimator for β in its real points zi and θi, i.e.

β̂0 =

(
m∑
i=1

γ̂iziz
t
i

)−1 m∑
i=1

γ̂iziθi,

and T =
∑m
i=1 γ̂iziz

t
i . Inserting (28) and (29) in (24) gives

fi(ẑ, θ̂) ≈ zti β̂0 + β̂t0(ẑi − zi)−
m∑
j=1

γ̂jz
t
iT
−1zj β̂

t
0(ẑj − zj)−

m∑
j=1

γ̂jz
t
j β̂0z

t
iT
−1(ẑj − zj)

+
m∑
j=1

ztiT
−1θj γ̂j(ẑj − zj) +

m∑
j=1

ztiT
−1zj γ̂j(θ̂j − θj)

= zti β̂0+
m∑
j=1

[(δi,j − γ̂jztiT−1zj)β̂t0 + γ̂j(θj − ztj β̂0)ztiT−1](ẑj − zj)

+
m∑
j=1

ztiT
−1zj γ̂j(θ̂j − θj)

≡ zti β̂0 +
m∑
j=1

Bi,j(ẑj − zj) +
m∑
j=1

Ci,j(θ̂j − θj),
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with Bi,j a K vector defined by

Bi,j = [(δi,j − γ̂jztiT−1zj)β̂t0 + γ̂j(θj − ztj β̂0)ztiT−1],

and Ci,j a scalar, defined by

Ci,j = ztiT
−1zj γ̂j .

A Taylor approximation for θ̃i is given by

θ̃ai = γ̂iθ̂i + (1− γ̂i)ẑti β̂

≈ γ̂iθ̂i + (1− γ̂i)[zti β̂0 +
m∑
j=1

Bi,j(ẑj − zj) +
m∑
j=1

Ci,j(θ̂j − θj)].

Simulating auxiliary variables with survey error

In section 3.4 and 3.6 it is argued that auxiliary information that is measured with error

can be treated as if it is measured without error in the situation that the error distribution

does not vary between domains. The estimate of the model variance σ2v will absorb the

variance of the errors. A simulation is conducted to illustrate this effect.

The NSM variable propvict is considered, indicating the percentage of people that have

been victim of property crime in the last 12 months. A strong predictor is the registered

number of property crimes, which is taken to be the only covariate in the model used in

this simulation study.

In the simulation, normally distributed errors are added to the covariate, with zero

mean, and a standard deviation that increases from 0 to 50 in steps of 2. For each error

distribution considered, 2,000 bootstrap iterations are run. In each iteration, the model

is fit and the estimate of the model variance is retained. The values reported here are

means taken over the 2,000 iterations. The goal of the simulation is an assessment of the

extent to which the estimate of the model variance increases with increasing error variance.

Considering the area level model, ztiβ + vi + ei, adding errors εi to the covariate zi can

be expected to increase the variance of the random effects vi by β′2σ2ε + (β′ − β)2Var(zi),

with β′ the regression coefficient of the covariates with error, and σ2ε the variance of the

errors. This increase is caused by the error variance itself, as well as by a reduction in the

correlation between the covariate and the dependent variable.

Figure 1 shows how the estimate of the model variance increases when error is added

to the covariate. On the horizontal axis the standard deviation of the errors is shown.

The solid line shows the result of the simulation. The dashed line represents the increase

one could expect. In the situation without errors added to the covariate, σ̂2v = 1.30. The

standard deviation of the covariates without error is 10.8. With relatively small errors

added, the estimate of the model variance is properly inflated to the expected levels. For

large errors, the increase is even more than expected. This result confirms that the MSE

of the EBLUP and HB predictions implicitly account for the additional uncertainty of
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Figure 1. The effect of adding errors to the covariate on the estimation of the model

variance.

covariates with errors if these errors are constant over the domains, which is inline with

the results of Ybarra and Lohr (2008).
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Figure 2. HB versus direct estimates for the two variables under consideration. The solid

line is the diagonal, y = x, and the dashed line is a linear regression line fitted to the data.
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Figure 3. Normal QQ-plots of the residues of nuisance and propvict.
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Figure 4. Coefficients of variation (cv) of direct (NSM) and HB estimates for two variables.
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Figure 5. Comparison standard errors HB predictions nuisance and propvict.
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Figure 6. Comparison standard errors discontinuities nuisance and propvict.
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Figure 7. Discontinuities for nuisance with 95% confidence interval.
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Figure 8. Discontinuities for propvict with 95% confidence interval.

37



0

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
police district

di
sc

on
tin

ui
ty

Discontinuities unsafe

Figure 9. Discontinuities for unsafe with 95% confidence interval.
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Figure 10. Discontinuities for offtot with 95% confidence interval.
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Figure 11. Discontinuities for satispol with 95% confidence interval.
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