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Estimating the validity of administrative and survey
variables through structural equation modeling: a
simulation study on robustness

Sander Scholtus and Bart F.M. Bakker

Summary: Over the past years, the use of administrative data in both of-
ficial statistics and academic research has grown. This development has
made the problem of assessing the quality of administrative sources for
statistical use increasingly important. Two of the main aspects of this are
validity and reliability of measurement. Although this problem is often
mentioned in qualitative terms, so far, not much research has been done
on methods that assess the validity or reliability of administrative vari-
ables in a quantitative way. The objective of this paper is to describe a
quantitative method for estimating validity and to present results obtained
with this method in a simulation study.

Following Bakker (2012), the classical test theory can be applied to es-
timate the validity of administrative variables. This approach requires
linked data from at least two sources (surveys and/or registers) that are
supposed to measure the same concepts. The validity of the observed vari-
ables for measuring these concepts is estimated through a linear struc-

tural equation model with a measurement component.

We performed a simulation study to test the robustness of this method to
different amounts of measurement error, to misspecification of the mea-
surement model, and to small sample size. The results of these simula-
tions indicate that the method provides reasonable estimates of validity
in many situations. Although partial misspecification of the measurement
model typically yields biased validity estimates for the variables that are
directly involved, it appears that these effects are not propagated to the
rest of the model. In addition, a moderate sample size appears to be suffi-
cient to obtain stable parameter estimates unless the model contains many

variables with low validity.

Keywords: administrative data; validity, structural equation model; mea-

surement model; simulation study



1 Introduction

Over the past years the use of administrative data has grown, both in official statistics
and academic research. As a result, it has become increasingly important to assess
and compare the quality of administrative sources for statistical use (Bakker and Daas,
2012). Two important aspects of this are validity (absence of bias) and reliability of
measurement. In general, the concept that is measured for administrative purposes may
differ to some extent from the concept that is needed for statistical purposes. If these
two concepts are substantially different, one should expect the administrative variable
to have a low validity for statistical use. Although this problem has been recognised
in recent years, so far, not much research has been done on methodology for assessing
the validity or reliability of administrative variables in a quantitative way.

An approach that is sometimes used in practice proceeds by linking and comparing
administrative data to data from a reference source (e.g. a survey) that are — implicitly
or explicitly — assumed to be error-free. Obviously, this assumption greatly simplifies
matters: it implies that a value in the administrative data set is measured correctly if,
and only if, it matches the corresponding value in the reference data set. It seems
doubtful, however, that any data set obtained under real-world conditions can be as-
sumed to be completely free of measurement error. Therefore, this approach may be
used as a first approximation at best, provided that the validity of the reference data
is high.! Without the assumption of error-free reference data, the above set-up can be
used to assess differences in measurement between sources rather than errors of mea-
surement in one source, which may also be useful (Groen, 2012). In the remainder of
this paper, however, we are interested in obtaining direct estimates of the validity of
administrative variables when error-free reference data are not available.

More precisely, we consider the situation that a second data source is available but that
the validity of this data is not high enough to warrant their use as error-free reference
data (not even as a first approximation). Bakker (2012) suggested that the classical test
theory can be applied in this context to estimate the validity of administrative variables
as well as survey variables. This requires linked data from at least two sources (surveys
and/or registers) that are supposed to measure the same concepts. The validity of the
observed variables for measuring these concepts is estimated through a linear structural
equation model with a measurement component (Bollen, 1989; Saris and Andrews,
1991). In this way, the amount of measurement error is estimated for each variable in
each linked data source. A more detailed description is given in Section 2 below.

Structural equation modeling is a well-established technique for assessing the valid-
ity and reliability of survey data, in particular in the context of questionnaire design
(Andrews, 1984; Saris and Gallhofer, 2007). The present application to administrative
data is somewhat different, however. For instance, applications in the context of ques-
tionnaire design typically include at least three versions of each survey item (being
different with respect to the wording of the question, the response scale, etc.), which
means that each concept in the model is measured by three or more indicators. In
the application considered here, by contrast, each concept is measured at most twice:

'The same remark applies to the more common reverse approach of using an administrative source
for reference data to assess the quality of survey data.



once in a register and once in a survey. It is therefore important to gain insight into the
usefulness and limitations of this method when applied to administrative data.

Two issues that require clarification are the following. Firstly, one would intuitively
expect the method to perform better for larger samples and for observed variables with
higher validities. Conversely, the method may give inappropriate results if the sample
is too small and/or if the validities of some variables in the model are too low. We
would like to make this statement more precise: what is a ‘too small’ sample size and
what is a ‘too low’ validity? Secondly, we would like to know whether the method is
robust to certain forms of misspecification of the measurement model. In particular,
we are interested in the case that certain measurement errors are correlated and the
model does not take this into account. In principle, having a misspecified model may
completely invalidate the outcome of the method. However, the method may be robust
against partial misspecification of the model and yield reasonable estimates for the
validity of variables that are not directly involved in the misspecified part. In other
words, it would be convenient if a partial misspecification only has a ‘local’ effect on
the outcome of the method.

In order to investigate the above properties, we performed a simulation study. In this
study, the method was applied to various artificial data sets for which the data gener-
ating mechanism was known. In this way, we could compare the estimated validities
of the observed variables with their theoretical values. The results of this simulation
study are described in Sections 3 and 4 below. We also give some theoretical argu-
ments to clarify the observed results. A discussion and conclusion follow in Section 5.
Finally, some more technical material is provided in two appendices.

2 Validity and Measurement Models

2.1 Estimating Validity through Structural Equation Modeling

The classical test theory [e.g. Novick (1966)] distinguishes two aspects of measure-
ment quality: reliability and validity. According to McCall (2001, p. 308), reliability
‘refers to whether the measurement procedures assign the same value to a character-
istic each time it is measured under essentially the same circumstances’. Reliability
is associated with random measurement error. A perfectly reliable measure yields ex-
actly the same value every time it is used (provided the circumstances are ‘essentially
the same’). Note that a perfectly reliable measure may still be biased. Validity, on the
other hand, ‘refers to the extent to which the measurement procedures assign values
that accurately reflect the conceptual variable being measured’ (McCall, 2001, p. 309).
Validity is associated with systematic measurement error, i.e. bias. In the present pa-
per we will focus on estimating validity, although the method discussed here can be
extended to also estimate reliability (see Section 2.3).

Consider the following simple measurement model for a variable y that is supposed to
measure a conceptual variable 1:

y=An+e, ey



where it is assumed that €, the measurement error, has mean O and is uncorrelated
with the concept 1. In addition, we assume that both y and 7] are standardised to have
zero mean and unit variance. We take the factor loading A as a measure of the validity
of y for measuring the concept .2 In regression terms, A2 represents the fraction of
the total variance in y that is explained by 1. Clearly, a higher fraction of explained
variance corresponds to a more valid measurement process. The values A = 1 and
A = 0 occur in the special cases of perfect measurement and absence of correlation
between y and 1), respectively. Alternatively, the quantity

sd(e) = /1— A2

can be taken as a measure of invalidity.

Obviously, a single instance of model (1) cannot be estimated, as we do not have
access to the scores of the latent variable 17.> Estimation may become possible if we
simultaneously consider several variables that measure several concepts, as well as the
causal relations between these concepts. It is convenient to formulate this as a linear
structural equation model (SEM) with a measurement component (Saris and Andrews,
1991).

To introduce the notation used in the rest of this paper, we briefly discuss the SEM in
general before continuing with the application to estimating validity. More technical
details are given in Appendix A. The general set-up will be illustrated with an example

in Section 2.2.

The first part of an SEM concerns the causal relations between the latent variables.
It is customary to distinguish endogenous and exogenous latent variables, represented
by N1,...,Mm and &;,...,&,, respectively. The relations between these variables are

expressed in a set of m linear equations (one for each endogenous variable):

mn n
ni= Zﬁii/ni/—l—z%jéj—l—ci’ i=1,...,m, )
i'=1 j=1
with §; a disturbance term that is assumed to be uncorrelated with &;,...,&,. The

coefficients B;» and 7;; represent the direct effects from 7y to 1; and from &; to 1,
respectively. By definition, B; = 0 for all i. Further model parameters define the
covariance structures of the disturbances and the exogenous factors: y;; = cov(&;, &)
and @, = cov(§;,§;). Usually when a model is formulated, some of the f3, 7, y, and
¢ parameters are fixed to zero.

The second part of an SEM describes the relations between the latent variables and the
observed variables that measure them. The observed variables corresponding to the
endogenous and exogenous concepts are denoted by yy,...,y, and x1,...,x,, respec-
tively. For our present purpose, we can assume that each observed variable measures

2To simplify matters, we assume throughout this paper that all factor loadings are positive. In general,
validity would be measured by the absolute value of A.

3For some theoretical concepts — ‘intelligence’ being the canonical example — direct measurement is
intrinsically impossible. In the context of official statistics, we are often dealing with relatively concrete
concepts that could, in theory, be measured exactly, given sufficient resources. Examples considered
below include ‘age’, ‘gender’, and ‘hourly wages’. In practice, however, measurement is never without
error and we can only obtain imperfect measures of these concepts.



a single latent variable. With this simplifying assumption, the measurement model is
as follows:

yk:)tykni(k)+8ka kzl?'”7p7 (3)
xl:)l'xléj(l)+6la I=1,...,q, 4)

where i(k) represents the index of the endogenous latent variable that is measured by
Y, and similarly for j(I). The covariances of the error terms are denoted by O =
cov (&, &) and Og; = cov(dy, Oy ).

The above model formulation requires that all variables (latent and observed) are cen-
tered to have zero mean and that the measurement errors are such that all pairs (&;, &),
(G, &), (&j,€), (&j,81), and (&, &) are uncorrelated (Bollen, 1989). In addition, we
will assume here that all ;, & j» Yk» and x; are standardised to have unit variance and
that the covariance matrices of the disturbances and measurement errors are diagonal.

The SEM given by (2), (3), and (4) can be estimated from the observed joint covariance
matrix* of Yis-..,Yp and xi,...,x, (Bollen, 1989; Joreskog and Sorbom, 1996); see
also Appendix A. Various software packages are available for estimating and analysing
SEMs; see Narayanan (2012) for a recent overview.

For the analysis of an SEM, it is important that all parameters of the model are iden-
tified. In general, model identification requires that we have at least two observed
variables for each latent variable. In the absence of sufficient observed variables, iden-
tification can be enforced by fixing certain model parameters to a constant; obviously,
this increases the risk of misspecification. Bollen (1989) discusses various criteria for
establishing model identification as well as measures of model fit. A common test of
overall model fit uses a statistic X that is (under an assumption of multivariate normal
data) asymptotically chi-square distributed for correct models; see Appendix A.

We now return to the application at hand. As mentioned in the introduction, we as-
sume that there are two linked data sets available that are supposed to measure the
same concepts. The relations between the observed variables and the concepts that
they are supposed to measure, as well as the relations between these concepts can be
modeled as an SEM by specifying appropriate instances of the equations (2)—(4). We
also assume that previous substantive research provides information on plausible val-
ues for the structural parameters in the model, i.e. the direct effects between the latent
concepts.

Having estimated the model parameters and assuming that the model fits the data suf-
ficiently to not be rejected, we may now assess the validity of the observed variables
for measuring the associated concepts as follows (Bakker, 2012). First, the estimated
direct effects B;z and 7;; between the latent variables are inspected and compared with
their expected values from previous research. If these estimated effects are implau-
sible, we have to conclude that at least some of the latent variables in the model do
not correspond with the theoretical concepts that they are supposed to represent. This
might be due to undetected misspecification of the model or to very large measurement
errors in at least one of the observed variables. On the other hand, if the estimated ef-

fects are plausible, then we are confident that the latent variables in the model represent

4Given that the observed variables are standardised, this is actually a correlation matrix.
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Figure 1: Structural equation model for estimating the validity of register and survey
variables; adapted from Bakker (2012).

the posited theoretical concepts. In this case, in analogy with the basic model (1), we
take the factor loading lyk (resp. A,y) as a measure of the validity of y; (resp. x;) for
measuring the concept ;) (resp. & (1))

2.2 Example

Bakker (2012) described an application of the above method, which we summarise
here both as an illustration and as a starting point for the simulation study described
below. The application concerned four concepts (‘age’, ‘gender’, ‘educational attain-
ment’, and ‘In hourly wages after taxes’) that were measured in a register (the Social
Statistical Database at Statistics Netherlands; SSD) and a survey (the OSA supply
panel 2004). In addition, the model contained one concept (‘occupational level’) that
was only measured in the survey. Linked data were available for a sample of N = 574
Dutch persons between 15 and 50 years of age.

Figure 1 displays the SEM used in the form of a path diagram. The structural part of
this model —i.e. the part corresponding to (2) — is known as an earnings function model.
We refer to Bakker (2012) and the references therein for an overview of previous
research on earnings function models, as well as a discussion of the data sources and
the procedure used to link the survey data to the register data.

Bakker (2012) estimated the above model using the LISREL software (Joreskog and
Sorbom, 1996). The first panel in Table 1 shows the estimated direct effects in the
earnings function model. Based on previous research, these effects were considered
sufficiently plausible. In a chi-square test of overall fit, the value of the test statistic
was 48 at 18 degrees of freedom, which was also deemed acceptable for the present
purpose. The second panel in Table 1 shows the estimated variances of the disturbance
terms in the model. In addition, the correlation between the exogenous concepts ‘age’
and ‘gender’ was estimated at ¢, = —0.07.

The third panel in Table 1 shows the estimated factor loadings A,; and Z,yk from the
model. Since ‘occupational level” was only measured in the survey, the factor loading



for this variable (y3) was fixed to 1 in order to have an identified model; nothing could
be concluded from this about the validity of y3. For the remaining variables, the factor
loadings were interpreted as measures of validity. Thus, for ‘educational attainment’
the register provided a more valid measurement than the survey (A,» = 0.94 vs. ;1 =
0.82), while for ‘hourly wages’ it was the other way around (4,5 = 0.87 vs. A,4 = 0.95).
In addition, ‘age’ and ‘gender’ were measured more or less perfectly in both data

sources.
Table 1: Estimated parameters in the model of Figure 1.
from \ to edu.att. (1) occ.lev. (n2) h.wages (13)
age (&) Y1 =-022 1= 013 7p= 032
gender (52) Y= 0.00 7y =-0.09 Y2 = —0.18
educational attainment (1) - Por= 059 PBs= 036
occupational level (12) - - Bp= 032

edu.att. (1) occ.lev. (n2) h.wages (13)
unexplained variance Y1 =0.95 Y = 0.66 y33 =0.54

concept OSA survey  SSD register
age (&) Ax1 = 1.00 A =1.00
gender (&) Az = 1.00 At = 1.00
educational attainment (1) Ay =0.82 Ay =0.94
occupational level (12) (Ay3 =1.00) —
In hourly wages (13) Ay =0.95 Ays =0.87

2.3 A More Complex Measurement Model

As far as the measurement component is concerned, the SEM of Figure 1 consists of
several instances of the basic model (1). This measurement model is very simple, in
particular because it does not distinguish between different sources of errors.> More
complex measurement models have been proposed in the literature on nonsampling
errors. While we will not pursue the use of these models in this paper, it is interesting
to consider briefly their relation to the basic model (1).

Saris and Andrews (1991) and Scherpenzeel and Saris (1997) proposed the following
general measurement model (using the notation of the second reference):

yi = hyT) +e;, )
T) = byjF; + guMi + u;. (6)

In this model, the observed variable y; is decomposed into a stable part 7; and a ran-
dom part e;, where ‘stable’ refers to a component that would be observed again if the
measurement procedure were repeated under identical circumstances. The stable part
is decomposed further into three components: Fj, being the concept that one wishes
to measure [7 in our model (1)]; Mg, being a stable component specific to the method

5]t can be shown that, as a result of this simplification, A in (1) expresses both the validity and the
reliability of y as a measure for 1; see Biemer and Stokes (1991).



of observation; and u;, being a stable component that depends on the interaction of
the method and the concept being observed. An assumption of this model is that all
components are mutually uncorrelated.

Following Heise and Bohrnstedt (1970), Saris and Andrews (1991) proposed to use the
coefficient b;; to quantify the validity of y; as a measure for the concept F}, and to use
h;; to quantify the reliability. On the other hand, our A would correspond with b, ihir
under the model (5)—(6). This quantity is also a commonly used measure of validity
(Andrews, 1984). To distinguish the two types, Saris and Andrews (1991) suggested
the terms frue score validity for b;; and indicator validity for b;jh;. A potential draw-
back of using indicator validity is that it is not a ‘pure’ measure of validity, since it is
also influenced by random measurement errors.

Technically, the model (5)-(6) is an SEM (Saris and Andrews, 1991). Therefore, on
paper, estimating validity and reliability under this model is a straightforward exten-
sion of the method discussed here. However, identification of the extended model
places additional requirements on the data: more observed variables from different
sources are needed for each concept. See e.g. Scherpenzeel and Saris (1997) for a
discussion of methods to estimate a model of the form (5)—(6) in the context of survey
data. It remains an open question how these methods can be adapted to the context of
administrative data, where a researcher has much less control over the data collection
process.

It should be noted that under the model (5)—(6), the simplified model (1) is still appro-
priate for the purpose of estimating indicator validity (as opposed to true score validity
or reliability). Namely, this model subsumes various components under one new error
term that are irrelevant to indicator validity. Moreover, by examining the plausibility of
the direct effects between the latent variables in the SEM as described in Section 2.1,
we are actually testing whether it can be assumed that 7; = F;. In that case, the true
score validity equals 1 by definition.

3 Simulation Study, Part 1: Multinormal Data

3.1 Introduction

To investigate the robustness of the method of Section 2 for estimating validity in var-
ious situations, we performed a simulation study. For this study, we generated a large
number of data sets with the same variable structure as in the example of Section 2.2,
in which synthetic measurement errors were introduced according to various known
mechanisms. Subsequently, we estimated the validity of the variables in these syn-
thetic data sets through the SEM of Figure 1. As the distribution of the measurement
errors was known in this study, the appropriateness of the estimated validities could be
assessed.

For the first part of our simulation study, we worked with synthetic data drawn from a
multivariate normal distribution. This represents an idealised situation, since exactly
multinormal data are virtually never encountered in practice. For the second part of the
study, to be described in Section 4, we worked with more realistic data sets. Through-

10



out, we used the statistical software R to generate data and analyse the results and we
used LISREL (version 8.8) to fit the SEMs.

In general, the estimated parameters of an SEM imply an estimated covariance struc-
ture for the latent variables in the model. That is, along with the parameter esti-
mates we obtain an estimated covariance matrix for the vectors 7 = (1y,...,7n,) and

—

§=(&,-..,&)'. given by

win - E0 E0D) (€ o),

EE7N) E(SS) G &
where the entries in the matrices C, G, and & are known functions of the parame-
ters in the model; see Appendix A. In all simulations with multivariate normal data
considered below, we drew scores for the latent variables (1;,12,13,&1,&) from a
multinormal distribution with mean zero and the covariance matrix as implied by the
parameter estimates from Section 2.2. Rounded to three decimals, this implied covari-
ance matrix is

ull m ns &1 &
m [ 1.000
m| 0563  1.000
ns| 0462 0535  1.000 . (7)

& | —0.219  0.004  0.259 1.000
& 0.020 —-0.088 —0.225 —-0.073 1.000

In particular, this means that in all simulations the true values of the structural para-
meters were the same as in Section 2.2.

3.2 Correctly Specified Measurement Models

We first considered various cases for which the measurement model posited in Figure 1
is an adequate description of the mechanism that generated the measurement errors.
More precisely, we drew random vectors

/

(17171727”3751;62781’"'7857617"‘a64)

from a joint multinormal distribution having the zero vector as its mean and the fol-

lowing covariance matrix:

© O o

2

C* G O
N ®)

O 0 @ O

0O 0 0 e

SRR T
Q
*
)
*

where the top left part is given by (7), O denotes a block of zeros, and O and O
are diagonal matrices having pre-specified values 6, ,...,6;55 and 65,,,...,05,, (all
between 0 and 1) on their main diagonal.® From each realisation of this random vector

©We use an asterisk to indicate that a parameter belongs to the data generating model. The parameters
of the SEM used for estimating validity do not have asterisks. This distinction will become important
when we consider model misspecification.
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we computed the observed variables in our data set as follows:

yio= Ajmte,
2 = Apmtée,
3 o= Azmté&s,
ya = AuM3+es,
ys = Asmtss, ©)

x1 = Ah&+46,
Xy = l)?zél + &,
3 = A6 +08;,
x4 = A&+,

with A, = /167, and A = /1 — 05, By construction, var(yy) = var(x;) = 1 for

all k and /. Moreover, by comparison with the basic model (1) it is seen that the correct

*

o Tespectively.

validities of y; and x; are given by ity*k and

Note that different versions of the above model can be specified by varying the choice
of 6;1,...,0;55 and 65, ,,...,05,,. Each of these parameters corresponds to the frac-
tion of the total variance in an observed variable that is due to measurement error. For
any choice of these parameters, the data generating model (9) is in complete agreement
with the SEM of Section 2.2.” Thus, one would intuitively expect the factor loadings
Ay and Ay to be identical to the above validities y*k and AJ. In fact, it is not difficult
to show that this identity would hold exactly if the population covariance matrix were
analysed; see Appendix A. In practice, however, one has to work with an estimate of
the population covariance matrix based on a finite sample and this introduces estima-
tion uncertainty. The resulting estimated factor loadings are still consistent estimators
for the validities ;‘k and l;l under rather general regularity conditions (Bollen, 1989,
p. 416ff.). Thus, for large samples, we expect them to agree closely with the true
validities.

We also conjecture that, for smaller samples in particular, the behaviour of the es-
timated validities is likely to become erratic as 6, and 65, get close to 1. In this
situation, the observed variables are mainly determined by random measurement er-
ror. Therefore, a typical realisation of the sample covariance matrix may be relatively
far from the population covariance matrix, making it difficult to estimate the SEM.

In our first set of simulations, we generated and analysed data sets according to the
following versions of the above model.

1. Increasing amounts of measurement error in all observed variables:

a. all error variances equal to 0.1;
b. all error variances equal to 0.2;
c. all error variances equal to 0.5;
d. all error variances equal to 0.9.

2. Increasing amounts of measurement error in one observed variable for one exogenous factor:

a. error variance of x; equal to 0.2; all other error variances equal to 0.1;

TThere is one exception: the model of Section 2.2 cannot handle errors in y3 because the factor loading
of this variable is fixed to 1. This point will be taken up later.

12



b. error variance of x; equal to 0.5; all other error variances equal to 0.1;

c. error variance of x| equal to 0.9; all other error variances equal to 0.1.

3. Increasing amounts of measurement error in both observed variables for one exogenous factor:
a. error variances of x| and x; equal to 0.2; all other error variances equal to 0.1;
b. error variances of x; and x, equal to 0.5; all other error variances equal to 0.1;
c. error variances of x; and x; equal to 0.9; all other error variances equal to 0.1.

4. Increasing amounts of measurement error in one observed variable for one endogenous factor:
a. error variance of y5 equal to 0.2; all other error variances equal to 0.1;
b. error variance of y5 equal to 0.5; all other error variances equal to 0.1;
c. error variance of y5 equal to 0.9; all other error variances equal to 0.1.

5. Increasing amounts of measurement error in both observed variables for one endogenous factor:
a. error variances of y4 and ys equal to 0.2; all other error variances equal to 0.1;
b. error variances of y4 and ys equal to 0.5; all other error variances equal to 0.1;

c. error variances of y4 and ys equal to 0.9; all other error variances equal to 0.1.

The theoretical validities corresponding to the above error variances are given in Ta-
ble 2.

Table 2: Theoretical validities for different error variances.

error variance 0.1 0.2 0.5 0.9
validity 0.95 0.89 0.71 0.32

It should be noted that we fixed 6;3; to O in this set of simulations. Recall that the
factor loading of ys is fixed to 1 in the SEM of Section 2.2 to ensure identification. As
a result, any measurement errors in y3 would be seen as part of the disturbance term
&> and hence could have an adverse effect on the outcome of the method. This effect
was investigated in a later simulation (see Section 3.3), but it was excluded here.

We used a moderate sample size of N = 600, which is comparable to the real-world
example of Section 2.2. As a benchmark, we repeated the same analyses with a very
large sample size (N = 60000). For each combination of a model and a sample size
we performed R = 100 simulations.

Table 3 displays the results for N = 600. The second column lists the number of sim-
ulations R, for which LISREL converged® to an optimal solution. Severe problems
with convergence occurred only for the model with all error variances equal to 0.9
(model 1d). However, even if an optimal solution is found, it may contain negative es-
timates for certain variance parameters in the model (or, equivalently, factor loadings
with A > 1). This invalidates the solution to some extent and complicates the inter-
pretation of the estimated parameters. The third column in Table 3 lists the number
of simulations R, for which all estimated variance parameters were higher than —0.05
(i.e. either positive or ‘almost’ positive). As can be seen, negative estimated variances
occurred in all models to some extent, but they were encountered particularly often in
models with one or more error variances equal to 0.9.

8The maximum number of iterations in LISREL’s optimisation routine was set to 1000 throughout.
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Table 3: Simulation results for correctly specified models with N = 600, apart from R,

and R, all reported values are averages over R, simulations, with standard deviations

in brackets.

model R, R, X2 lyl lyz ly4 13,5 Al Ao A3 Axa
la 100 97 19.0 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95
(6.3) (0.01) (0.01) (0.01) (0.01) (0.02) (0.02) (0.03) (0.03)
1b 100 97 18.0 0.89 0.90 0.89 0.90 0.90 0.90 0.90 0.89
(6.1) (0.02) (0.02) (0.02) (0.02) (0.03) (0.03) (0.05) (0.05)
1c 99 95 17.9 0.71 0.71 0.71 0.70 0.70 0.71 0.71 0.73
(5.3) (0.03) (0.03) (0.04) (0.04) (0.07) (0.07) (0.13) (0.18)
1d 59 24 164 0.33 0.33 0.34 0.34 0.96 0.94 1.11 0.96
(5.7)  (0.07) (0.08) (0.15) (0.20) (2.32) (2.10) (2.36) (2.16)
2a 100 93 19.1 0.95 0.95 0.95 0.95 0.89 0.95 0.95 0.95
(6.4) (0.01) (0.01) (0.01) (0.01) (0.02) (0.02) (0.04) (0.04)
2b 100 82 193 0.95 0.95 0.95 0.95 0.70 0.96 0.95 0.95
(6.1) (0.01) (0.01) (0.01) (0.01) (0.04) (0.04) (0.04) (0.04)
2c 100 64 174 0.95 0.95 0.95 0.95 0.31 0.98 0.95 0.95
(6.1) (0.01) (0.01) (0.01) (0.01) (0.06) (0.15) (0.04) (0.04)
3a 100 90 18.6 0.95 0.95 0.95 0.95 0.90 0.89 0.95 0.95
(6.3) (0.01) (0.01) (0.01) (0.01) (0.03) (0.03) (0.04) (0.05)
3b 100 99 17.4 0.95 0.95 0.95 0.95 0.70 0.71 0.95 0.95
(6.1) (0.01) (0.01) (0.01) (0.01) (0.05) (0.05) (0.03) (0.03)
3c 98 89 17.3 0.95 0.95 0.95 0.95 0.32 0.32 0.95 0.95
(5.7) (0.01) (0.01) (0.01) (0.01) (0.11) (0.10) (0.04) (0.04)
4a 100 94 17.6 0.95 0.95 0.95 0.89 0.95 0.95 0.95 0.95
(6.3) (0.01) (0.01) (0.01) (0.01) (0.02) (0.02) (0.04) (0.04)
4b 100 96 18.5 0.95 0.95 0.95 0.71 0.95 0.95 0.94 0.95
(6.2) (0.01) (0.01) (0.02) (0.03) (0.02) (0.02) (0.03) (0.03)
4c 100 80 17.5 0.95 0.95 0.95 0.32 0.95 0.95 0.95 0.95
(5.8) (0.01) (0.01) (0.08) (0.05) (0.02) (0.02) (0.04) (0.04)
Sa 100 90 18.8 0.95 0.95 0.89 0.90 0.95 0.95 0.95 0.95
(6.1) (0.01) (0.01) (0.02) (0.02) (0.02) (0.02) (0.05) (0.04)
5b 100 92 18.5 0.95 0.95 0.70 0.71 0.95 0.95 0.96 0.94
(6.0) (0.01) (0.01) (0.04) (0.03) (0.02) (0.02) (0.04) (0.04)
5¢ 100 60 17.2 0.95 0.95 0.30 0.30 0.94 0.96 0.95 0.95
(7.5) (0.01) (0.01) (0.08) (0.08) (0.03) (0.03) (0.07) (0.07)
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The remaining results in Table 3 are reported as averages over all simulations for which
a solution was found by LISREL, with the standard deviation across simulations shown
in brackets. The fourth column presents the chi-square test statistic X2 for assessing
overall model fit. Since the posited model was known to hold exactly in these simu-
lations, asymptotically X? should follow a chi-square distribution with 18 degrees of
freedom (cf. Section 2.2). Thus, its theoretical mean and standard deviation were 18
and 6, respectively. Under the normal approximation, a 99% confidence interval for
the mean of X2 over R, simulations is given by

18_2.58><6 18+2'58X6
VR, VR )

In terms of these confidence limits, no significant deviations were found.’

The remaining columns present the estimated validities of the observed variables. The
fixed parameter A3 is left out. The average values are mostly in line with the theoreti-
cal validities in Table 2. Erratic behaviour occurred only for model 1d, in particular for
the x variables. It is interesting to note that the standard deviations across simulations
became larger with increasing error variances, and more so for x variables than for y
variables. Consider for instance model 1c. Although the estimated validities for this
model agree well with their theoretical counterparts on average, a single point esti-
mate for A4 might be off by more than +0.1 even in non-exceptional cases. Such a
large deviation could lead to the wrong conclusion about which data source contains
the most valid measurement of a particular concept.

We also examined the estimates for the structural parameters of the model, i.e. the 3,
Y. ¥, and ¢ parameters. For the sake of brevity, these are not tabulated here. For
most models, the estimated parameters were in line with their theoretical values; recall
that, by construction, the theoretical values of the structural parameters are given in
Table 1. Substantial deviations occurred only for some of the models with an error
variance equal to 0.9, in particular model 1d.

Turning to the results with N = 60000, these were clear-cut and we do not report them
in a separate table. For all models considered here, LISREL converged to a solution
in all simulations and no negative variance estimates occurred. In all cases, the aver-
age estimated factor loadings agreed with the theoretical validities up to two decimal
places. Moreover, the standard deviations across simulations were substantially lower
than for N = 600. Thus, it appears that the problems that occurred with N = 600
for models with high error variances can be attributed to the relatively small sample
size. If the sample is large enough, these problems disappear, at least in this idealised
situation.

3.3 Misspecified Measurement Models

For our second set of simulations, we considered several variations on the data generat-
ing model of Section 3.2 that cause this model to depart from the SEM of Section 2.2.

If a 95% confidence interval were used instead, then the values for models 1d and 2b would be
significant. In fact, the use of a normal confidence interval seems problematic for model 1d because the
R. = 59 simulations for which LISREL converged to a solution may form a selective subset.
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The aim of this part of the simulation study is to see the effect of model misspecifica-
tion on the estimated validities.

We considered three basic forms of model misspecification:'?

e correlated measurement errors in two variables that measure the same concept
(models 6 and 7 below);

e correlated measurement errors in two variables that measure different concepts
(models 8 and 9 below); and

e measurement errors in a variable for which no alternative measure is available
(model 10 below).

These three departures from the data generating model of Section 3.2 could all arise in
practice due to limitations of the data collection process. Correlated errors in variables
that measure the same concept may occur if these variables have similar measurement
procedures. This would happen, for instance, with concepts for which essentially only
one type of measurement procedure is available. Correlated errors of the second type
mentioned above may occur in practice when related variables are measured using the
same instrument — for instance, as related questions in the same survey.

The third type of misspecification may occur in practice when it is impossible to obtain
more than one measure for a certain concept in the SEM. This happened for instance
with ‘occupational level’ (1, measured only by y3) in Bakker (2012). To have an iden-
tified model, the factor loading of the single measure must be fixed to a constant value.
Typically, the factor loading is fixed to 1 and the measure is implicitly assumed to have
perfect validity. As we do not expect this assumption to hold exactly in any practical
application, it is interesting to know to what extent the inclusion of an imperfect single
measure with a fixed factor loading of 1 in the model affects the estimated validities of
the other variables.

Technically, the first two types of misspecification were achieved by introducing non-
zero elements 67, (k # k') in off-diagonal positions of the matrix ®} in (8). That is,
the measurement errors & and & were given a correlation p;,,, by setting

* % [ox Q%
eskk’ = Perk eekkeek’k’

for the appropriate entry in ®;. Measurement errors in y3 were introduced analogously
to errors in the other variables, i.e. by setting 655 to a non-zero value.

Before presenting the results of the simulation study, we report some theoretical find-
ings. Recall that, in the absence of model misspecification, the factor loadings in the
SEM are consistent estimates of the theoretical validities. Now consider the same
model (9) with misspecification due to correlated errors in two variables that measure

10We only considered misspecifications in the measurement model and not in the structural part of
the SEM. As explained in Section 2.1, it is essential to the method that the structural part of the model
has been well-studied in previous research. Therefore, we assume that no problems are encountered in
specifying the structural part.
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the same concept, say y4 and ys with 67,5 # 0. In Appendix A we derive that for large
samples — under certain conditions — the estimated factor loadings for y4 and ys satisfy

9 *
~ * 1 + *I:‘45>,< 7
)“y4 )“)4 \ / ;Ly4 A’yS

o
l . ~ * 1+ >:;‘45* ,
y LA

when the model is estimated under the erroneous assumption that 8¢45 = 0. In this sit-
uation, the factor loadings of the other variables are still approximately equal to their
theoretical validities ly*k and A;. That is, the validity of y4 and ys is overestimated in
the presence of positively correlated errors, and underestimated when the errors are
negatively correlated. In addition, the covariance of 73 (the common factor mea-
sured by ys and ys) with the other latent variables is divided by the same factor
\/ 1+ 6245/ Aj4Ajs, while the other latent covariances are estimated consistently. This
implies in partlcular that the estimates for all structural parameters that do not involve
13 are not affected.

An obvious necessary condition for this property to hold is that the expression under
the square root must be positive, i.e.

Ocss > —Auys. (10)

This condition is violated for sufficiently large negative correlations, in which case the
above result does not hold. In summary, we can say that — for sufficiently large samples
— this type of model misspecification has only a ‘local effect’ in the sense that the es-
timated validities of the other variables are not affected. We also argue in Appendix A
that the overall model fit as measured by X? should not be affected by correlated errors
of this type. In other words: this type of model misspecification cannot be detected
by means of the chi-square test alone. Finally, it is shown in Appendix A that, with
only two indicators per latent variable, the correct model with ¢4s as a free parameter
is not identified. Thus, it is not obvious how to resolve this type of misspecification
(when detected), given the available data.

Turning to the second type of misspecification considered here (correlated errors in
variables that measure different concepts), a similar analysis shows that the X? statis-
tic is sensitive to the presence of correlated errors of this type; see Appendix A. In
addition, model identification is less likely to be a problem in this case. An analytical
expression for the large-sample values of the factor loadings for this situation could
not be obtained.

Finally, consider the third type of model misspecification (measurement errors in y3
while the factor loading A,3 is fixed to 1). We show in Appendix A that the validities
of all variables except y3 are estimated consistently. The covariance of 1, (the factor
measured by y3) with all the other latent variables is multiplied by l;‘ = m ,
i.e. attenuated towards 0. Hence, the values of the structural parameters that involve 1,
are incorrect, while the other parameters are estimated consistently. As with the first
type, we also argue in Appendix A that the chi-square test is not capable of detecting
this type of misspecification, because the distribution of X2 is not affected by it. As
mentioned before, the correct model with A3 as a free parameter is not identified.

17



Using the same basic set-up as in Section 3.2, we performed simulations for the fol-

lowing data generating models. (In these model descriptions, all non-specified error

variances are set to 0.1 except for 6,35, which is O unless stated otherwise.)

6. Increasing amounts of lightly correlated measurement errors in both observed variables for one
factor:

a.

b.

c.

f.

7. Increa
factor:

a.

b.

€.

f.

error variances of y4 and ys equal to 0.2; p,s = +0.1;
error variances of y4 and ys equal to 0.5; pjys = +0.1;

error variances of y4 and ys equal to 0.9; pz,s = +0.1;

same as model 6a with p;,s = —0.1;
same as model 6b with pj,s = —0.1;
same as model 6¢ with pJ,s = —0.1.

sing amounts of heavily correlated measurement errors in both observed variables for one

error variances of y4 and ys equal to 0.2; pj,s = +0.5;
error variances of y4 and ys equal to 0.5; pz,s = +0.5;

error variances of y4 and ys equal to 0.9; p,s = +0.5;

same as model 7a with p;‘45 = -0.5;
same as model 7b with pj,s = —0.5;
same as model 7c with pJ,s = —0.5.

8. Increasing amounts of lightly correlated measurement errors in two observed variables for differ-

ent factors:

a.

b.

€.

f.

error variances of y; and y4 equal to 0.2; pg;, = +0.1;
error variances of y; and y4 equal to 0.5; p;;, = +0.1;

error variances of y; and y4 equal to 0.9; pj;, = +0.1;

same as model 8a with p},, = —0.1;
same as model 8b with p;, = —0.1;
same as model 8c with p,, = —0.1.

9. Increasing amounts of heavily correlated measurement errors in two observed variables for dif-

ferent factors:

a.

b.

f.

error variances of y; and y4 equal to 0.2; p;;, = +0.5;
error variances of y; and y4 equal to 0.5; pj;, = +0.5;
error variances of y; and y4 equal to 0.9; pj;, = +0.5;
same as model 9a with p},, = —0.5;
same as model 9b with p;, = —0.5;

same as model 9c with p;,, = —0.5.

10. Increasing amounts of measurement error in variable y3:

a.

error variance of y3 equal to 0.1;

b. error variance of y3 equal to 0.2;

c. error variance of y3 equal to 0.5;

d. error variance of y3 equal to 0.9.
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Table 4: True validities and expected validity estimates for models 6 and 7.

model  6a 6b 6¢ 6d 6e 6f

true validity 0.89 0.71 0.32 0.89 0.71 0.32

expected estimate 091 0.74 044 0.88 0.67 0.10
model  7a 7b Tc 7d Te 7f

true validity 0.89 0.71 0.32 0.89 0.71 0.32
expected estimate  0.95 0.87 0.74 0.84 0.50 -

It should be noted that all instances of models 6 and 7 satisfy the above condition (10),
except for model 7f which has 6,5 = —0.45 < —0.1 = — ;‘41;5. Table 4 lists the
theoretical validities and the expected values of the biased validity estimates for y4 and
ys under these models.

As before, we performed simulations with N = 600 and N = 60000. We shall focus
on the results with N = 600 here, as the large-sample results were very similar. Ta-
ble 5 displays the results for models 6a through 7f. As expected, the model fit was
not affected by the misspecification in these models: the average values of X were
all within their 99% confidence intervals under the null hypothesis that the model is
correct (which we know to be false in this case). Apart from model 6f, the average
estimated validities of ys and ys were close to their expected (biased) values given
above.!! For model 6f, severe problems occurred with negative variance estimates.
For all these models, the average estimated validities of the other variables were close
to their true values, which illustrates the ‘local effect’ of this type of misspecification.

This local effect could also be seen in the estimated values for the structural parameters
(second panel in Table 5). We only tabulated the results for the parameters that are di-
rectly related to 13; as expected, the average values for the other structural parameters
did not deviate substantially from their true values (i.e. the values from Section 2.2).
Table 5 shows some large deviations in the values for the parameters related to ns.
Interestingly though, the estimated direct effects started to deviate strongly from their
true values only for large correlations and/or large error variances. For instance, the av-
erage values of the 8 and y parameters for models 7a and 7b (with p;,5 = 0.5 and error
variances of 0.2 and 0.5, respectively) were still quite close to the true values; in par-
ticular, these values might not be considered implausible from a subject-matter point
of view. Together with the fact that the model fit measured by X? remains the same,
this makes this type of model misspecification rather difficult to detect. Moreover, the
estimated validities for y4 and ys were already quite biased for model 7a and especially
model 7b, which shows the importance of detecting this form of misspecification.

Table 6 displays the results for models 8a through 9f, for which the measurement errors
in y; and y4 were correlated. Here, a deterioration was observed in the overall model
fit.!> Using a 99% confidence interval as before, the average values of X were all
significant. Note however that models 8a through 8f had average X? values between
20 and 24. At 18 degrees of freedom, the SEM would normally not be rejected for

"With N = 60000, the results for model 6f did agree with the expected values.
12This deterioration was even larger for N = 60000.
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Table 5: Simulation results for misspecified models 6a—7f with N = 600 (using the

same format as in Table 3).

model R, R, X2 lyl lyz ly4 ),),5 Al Ao A3 Axa
6a 100 91 17.5 0.95 0.95 0.90 0.91 0.95 0.95 0.96 0.94
67) (0.01) (0.01) (0.02) (0.02) (0.02) (0.02) (0.04) (0.04)
6b 100 89 17.9 0.95 0.95 0.74 0.75 0.95 0.95 0.95 0.95
(5.6) (0.01) (0.01) (0.03) (0.03) (0.02) (0.02) (0.05) (0.05)
6c 100 79 17.1 0.95 0.95 0.44 0.43 0.95 0.95 0.95 0.95
(53) (0.01) (0.01) (0.08) (0.08) (0.03) (0.03) (0.07) (0.07)
6d 100 97 18.3 0.95 0.95 0.89 0.88 0.95 0.95 0.95 0.95
6.8) (0.01) (0.01) (0.02) (0.02) (0.02) (0.02) (0.04) (0.04)
6e 100 86 17.4 0.95 0.95 0.67 0.67 0.95 0.95 0.96 0.94
(63) (0.01) (0.01) (0.03) (0.04) (0.02) (0.02) (0.05 (0.05)
of 100 12 18.4 0.95 0.95 0.43 0.44 0.95 0.94 0.95 0.96
(5.6) (0.01) (0.01) (039) (0.44) (0.03) (0.03) (0.08) (0.08)
Ta 100 95 17.9 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95
(5.9) (0.01) (0.01) (0.01) (0.01) (0.02) (0.02) (0.04) (0.04)
7b 100 85 16.8 0.95 0.95 0.87 0.86 0.95 0.95 0.94 0.95
(5.6) (0.01) (0.01) (0.02) (0.02) (0.02) (0.03) (0.05) (0.05)
Tc 100 57 17.2 0.95 0.95 0.75 0.74 0.95 0.95 0.96 0.94
(5.6) (0.01) (0.01) (0.08) (0.07) (0.03) (0.03) (0.09) (0.08)
7d 100 98 18.6 0.95 0.95 0.84 0.84 0.95 0.95 0.95 0.95
(5.6) (0.01) (0.01) (0.02) (0.02) (0.02) (0.02) (0.03) (0.03)
Te 100 79 18.0 0.95 0.95 0.50 0.50 0.95 0.95 0.95 0.95
(5.1)  (0.01) (0.01) (0.04) (0.04) (0.02) (0.02) (0.05) (0.05)
7t 100 0 17.2 0.95 0.95 1.00 1.01 0.95 0.95 0.94 0.96
(5.1)  (0.01) (0.01) (0.00) (035) (0.03) (0.03) (0.07) (0.08)
model Bs1 B3> Y1 52 Y33
6a 0.35 0.31 0.32 —-0.18 0.55
(0.04) (0.04) (0.04) (0.03) (0.03)
6b 0.34 0.30 0.31 -0.17 0.58
(0.06) (0.05) (0.05) (0.04) (0.05)
6¢c 0.26 0.23 025 -0.13 0.73
(0.10)  (0.10) (0.08) (0.08) (0.09)
6d 0.36 0.32 0.33 —-0.18 0.53
(0.05)  (0.05) (0.04) (0.03) (0.03)
6e 0.38 0.33 0.34 -0.19 0.49
(0.05)  (0.05) (0.05) (0.05 (0.06)
6f 0.63 0.57 0.56 -0.31 -2.15
(0.62) (0.59) (0.60) (0.38) (6.24)
Ta 0.34 0.30 0.31 —-0.17 0.58
(0.04)  (0.04) (0.03) (0.03) (0.04)
7b 0.29 0.26 0.25 -0.16 0.70
(0.05) (0.04) (0.04) (0.04) (0.04)
Tc 0.16 0.13 0.14 —-0.08 0.91
(0.07)  (0.06) (0.04) (0.05) (0.03)
7d 0.38 0.34 0.35 -0.19 0.47
(0.05) (0.04) (0.04) (0.03) (0.03)
Te 0.50 0.45 045 —-0.26 0.08
(0.07)  (0.07) (0.07) (0.05) (0.12)
7t 0.11 0.10 0.10 —-0.06 —0.44
(0.03) (0.03) (0.03) (0.03) (0.16)
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Table 6: Simulation results for misspecified models 8a—9f with N = 600 (using the
same format as in Table 3).

model R. R, X2 A1 A2 Aya Ays Axt A A Axg
8a 99 98 20.6 0.90 0.95 0.90 0.95 0.95 0.95 0.95 0.95
(63) (0.01) (0.01) (0.01) (0.01) (0.02) (0.02) (0.03) (0.03)
8b 100 96 22.3 0.71 0.94 0.71 0.95 0.95 0.95 0.95 0.95
(7.9)  (0.02) (0.03) (0.03) (0.03) (0.02) (0.02) (0.04) (0.04)
8c 100 68 23.0 0.33 0.94 0.31 0.96 0.95 0.95 0.95 0.95
(7.0)  (0.04) (0.08) (0.05) (0.08) (0.02) (0.02) (0.04) (0.04)
8d 100 95 20.2 0.89 0.95 0.89 0.95 0.95 0.95 0.95 0.95
(73)  (0.02) (0.02) (0.02) (0.01) (0.02) (0.02) (0.03) (0.03)
8e 100 97 22.2 0.71 0.95 0.71 0.95 0.95 0.95 0.95 0.95
(7.4)  (0.03) (0.03) (0.03) (0.02) (0.02) (0.02) (0.03) (0.04)
8f 100 57 23.9 0.31 0.97 0.32 0.96 0.95 0.95 0.96 0.94
(8.6) (0.05) (0.08) (0.05) (0.08) (0.02) (0.02) (0.04) (0.04)
9a 100 96 102 0.91 0.93 0.91 0.93 0.95 0.95 0.95 0.95
(20)  (0.02) (0.02) (0.02) (0.01) (0.02) (0.02) (0.04) (0.04)
9b 100 94 156 0.73 0.93 0.72 0.92 0.95 0.95 0.95 0.95
(20)  (0.03) (0.03) (0.03) (0.03) (0.02) (0.02) (0.04) (0.04)
9¢ 100 76 183 0.32 0.95 0.32 0.92 0.94 0.95 0.94 0.95
(24)  (0.05) (0.08) (0.05) (0.08) (0.02) (0.02) (0.04) (0.04)
9d 100 94 101 0.88 0.96 0.89 0.96 0.95 0.95 0.95 0.95
(17)  (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.04) (0.04)
9e 100 94 155 0.70 0.96 0.70 0.97 0.95 0.95 0.95 0.95
(24)  (0.03) (0.03) (0.03) (0.03) (0.02) (0.02) (0.04) (0.04)
of 100 43 186 0.31 0.99 0.31 0.97 0.95 0.95 0.95 0.94
(26)  (0.06) (0.13) (0.05) (0.12) (0.02) (0.02) (0.05) (0.04)

these values in a chi-square test. The average X2 values for models 9a through 9f, on
the other hand, would lead to a rejection of the SEM in practice.

Interestingly, the average values of the factor loadings for these models were close
to the theoretical validities for all variables, including y; and y4.'> Thus, this type
of correlated measurement error appears to have almost no effect on the correctness
of the estimated validities. The same was true of the estimated structural parameters
(not shown here). However, these estimated validities and structural parameters are
unusable if the model as a whole is rejected by the chi-square test.

Finally, Table 7 displays the results for model 10. As expected, it is seen that in terms
of X? the SEM fitted the data as well as in the case of correct specification. The
validities of all variables beside y3 were also correctly estimated. The measurement
errors in y3 did have an effect on the structural parameters of the model, as can be seen
in the second and third panel of the table. As predicted, some large effects occurred
for parameters that are directly related to 15, the concept measured by ys3, i.e. a1, B3z,

14
Y21, Vo2, and Y.

13Recall that the true validity of y; and y4 equals: 0.89 for models 8a, 8d, 9a, and 9d; 0.71 for models
8b, 8e, 9b, and 9e; and 0.32 for models 8c, 8f, 9¢c, and 9f.

14Contrary to expectations, some smaller systematic deviations were also seen for B31, ¥31, 32, and
y33. These effects persisted with N = 60000. A closer inspection revealed that, for model 10 as well as
other models, the latent covariance cov(1;, ;) was consistently overestimated in these simulations. This
is probably an artefact due to a rounding problem in the data generating model; recall from (7) that this
particular latent covariance is close to 0.
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Table 7: Simulation results for misspecified models 10a—10d with N = 600 (using the

same format as in Table 3).

model R, R, X2 Ayt A2 Aya Ays Axt A2 A3 A4
10a 100 96 17.6 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.94
(6.0) (0.01) (0.01) (0.01) (0.01) (0.02) (0.02) (0.03) (0.03)
10b 100 93 17.5 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95
(53)  (0.01) (0.01) (0.01) (0.01) (0.02) (0.02) (0.04) (0.04)
10c 100 91 18.5 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95
(57)  (0.01) (0.01) (0.01) (0.01) (0.02) (0.02) (0.04) (0.04)
10d 100 96 17.4 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95
(5.7) (0.01) (0.01) (0.01) (0.01) (0.02) (0.02) (0.04) (0.04)
model B Bs1 B3> Y1 12 Y1 Y22 Y1 Y52
10a 0.56 0.39 0.27 -0.21 —-0.00 0.12 —-0.08 0.33 —-0.18
(0.03)  (0.04) (0.04) (0.04) (0.05) (0.04) (0.04) (0.03) (0.03)
10b 0.54 0.41 026 —-0.22 —-0.00 0.11 —0.08 0.34 —-0.18
(0.03) (0.04) (0.04) (0.05) (0.04) (0.04) (0.04) (0.03) (0.03)
10c 0.42 0.47 0.18 —-0.23 —0.00 0.08 —0.06 0.35 —-0.20
(0.04)  (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04)
10d 0.19 0.53 0.07 -0.22 —0.01 0.04 —-0.03 0.37 -0.21
(0.04) (0.04) (0.04) (0.04) (0.05 (0.04) (0.04) (0.04) (0.03)
model Vi1 /2% Y33 12
10a 0.95 0.69 0.55 -0.07
(0.02) (0.03) (0.03) (0.05)
10b 0.95 0.72 0.55 —-0.07
(0.02) (0.03) (0.03) (0.05)
10c 0.95 0.82 0.57 —-0.08
(0.02) (0.03) (0.03) (0.05)
10d 0.95 0.96 0.60 —0.07
(0.02)  (0.02) (0.03) (0.04)
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4 Simulation Study, Part 2: Realistic Data

4.1 Introduction

For the second part of the simulation study, we worked with the original data that
were analysed by Bakker (2012), as summarised in Section 2.2. We introduced addi-
tional errors into this data set by means of a random hot deck imputation method. Hot
deck imputation is a commonly used solution for missing data; see e.g. De Waal et al.
(2011). It involves the replacement of each missing value by an observed value from a
randomly drawn record in the same data set. In a slight deviation from the normal use,
we used this technique to randomly replace observed values by (potentially) different
observed values, thus introducing artificial errors into the data set.

The resulting artificial data sets are more realistic than the data sets used in Section 3
in two ways. Firstly, they follow a real-world distribution rather than an artificial
multinormal one. Secondly, error mechanisms occurring in practice are usually ‘inter-
mittent’ in the sense that only some of the observed values are incorrect (Di Zio et al.,
2008). The hot deck imputation method produces artificial errors according to an inter-
mittent mechanism, while the data generating models of Section 3 produce observed
values that are incorrect with probability 1.

We used the same SEM for estimating validity as before, i.e. the model from Figure 1.
As in Section 3, we started with a set of simulations for which this SEM is correctly
specified (Section 4.2). Subsequently, we examined the effects of different types of
model misspecification (Section 4.3).

4.2 Correctly Specified Measurement Models

The cases where the model is correctly specified were obtained by applying random hot
deck imputation independently to each observed variable. That is, separately for each
variable, we randomly selected a subset of the records in the data set and replaced the
observed values in these records with values drawn at random from the original data
set.1d By construction, the errors introduced in this manner are uncorrelated between
variables. Note that the data generating method is specified by choosing, for each
variable in the data set, the fraction of records to impute, say 0 < 7 < 1.

Suppose that the above imputation method is applied to one variable, say z;. Let
7 denote the fraction of records in the data set that are imputed. In Appendix B,
it is shown that the following properties hold in expectation, i.e. on average if the
imputation procedure were applied to the same data set an infinite number of times:

e The mean and variance of z; are the same before and after imputation.

e The correlation between z; and any other variable z; is attenuated by a factor
1 — m;. That is, if the original correlation was p(z1,22), then the correlation after
imputation equals (1 —71)p(z1,22).

15Usually, hot deck imputations are drawn from the non-imputed part of the data set. Using the full
data set as a source of imputations is convenient here because it makes the theoretical properties of the
method easier to derive.
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e More generally, if the imputation method is applied independently also to z
(with m, the fraction of imputed records), then the correlation between z; and z
after imputation equals (1 — ;) (1 — m)p(z1,22).

Note that these properties only hold approximately when the imputation method is
applied once.

To put this in perspective, we posit a measurement model of the basic form (1) for both
z1 and zp after imputation, i.e.

71 =Mz + €, (11)
ZH =M+ 6, (12)

where a tilde indicates that a variable has been imputed. Denoting the variances of the
error terms by 0; and 0,, it follows that

p(Z1,22) =hip(z1,22) = V1 —-01p(z1,22),
p(Z1,22) = MAp(z1,22) =/ (1= 61)(1 — 62)p(z1,22)-

Comparing this with the expressions derived in Appendix B and solving for | and 7,
yields:

7'51:1—)[,1:1—\/1—91,
71,'2:1—7(,2:1—\/1—92.

Recall that the SEM is estimated using only the information in the observed correla-
tion matrix. The above result therefore suggests, albeit by a heuristic argument, that
applying the hot deck imputation method to a variable z with 7 = 1 — /1 — 0 as the
fraction of imputed records has approximately the same effect on the validity of z as
introducing normally distributed errors with an error variance of 6 according to the
model of Section 3.2. Thus, for instance, an error variance of 0.1 under the normal
model reduces the validity by approximately the same factor as taking 7 = 0.051.

Since the validity of the observed variables under the normal model is known, we
use the above equivalence to derive approximate theoretical validities for the observed
variables with different choices of 7. For convenience, we take values for 7 that match
the error variances that were used in the previous simulations. Table 8 contains the
resulting theoretical validities.

Table 8: Approximate theoretical validities under the hot deck imputation method.

approximate validity
T 6 Vi y2 Y4 s X1 X2 X3 X4
0 0 082 094 095 0.87 1.00 1.00 1.00 1.00
0.051 0.1 077 089 090 0.82 095 095 095 0.95
0.106 0.2 0.73 0.84 085 0.78 0.89 0.89 0.89 0.90
0.293 0.5 058 0.67 067 0.61 071 071 0.70 0.71
0.684 09 0.26 030 0.30 027 032 032 032 0.32
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Note that the validities of Section 2.2 are reproduced when no hot deck imputation
is applied (r = 0). The other validities are obtained by multiplying these original
validities by the appropriate factor A = 1 — 7 = /1 — 6.

For the computer simulations, we generated data sets with the random hot deck method
according to the following specifications. (In these descriptions, all imputation frac-
tions 7 are O unless stated otherwise.)

11. Increasing amounts of measurement error in all observed variables:

a. all imputation fractions equal to 0.051;
b. all imputation fractions equal to 0.106;
c. all imputation fractions equal to 0.293;

d. all imputation fractions equal to 0.684.
12. Increasing amounts of measurement error in one observed variable for one exogenous factor:

a. imputation fraction of x| equal to 0.051;
b. imputation fraction of x| equal to 0.106;
c. imputation fraction of x; equal to 0.293;

d. imputation fraction of x; equal to 0.684.
13. Increasing amounts of measurement error in both observed variables for one exogenous factor:

a. imputation fractions of x| and x, equal to 0.051;
b. imputation fractions of x; and x; equal to 0.106;
c. imputation fractions of x| and x; equal to 0.293;

d. imputation fractions of x| and x, equal to 0.684.
14. Increasing amounts of measurement error in one observed variable for one endogenous factor:

a. imputation fraction of ys5 equal to 0.051;
b. imputation fraction of y5 equal to 0.106;
c. imputation fraction of y5 equal to 0.293;

d. imputation fraction of y5 equal to 0.684.
15. Increasing amounts of measurement error in both observed variables for one endogenous factor:

a. imputation fractions of y4 and ys5 equal to 0.051;
b. imputation fractions of y4 and ys equal to 0.106;
c. imputation fractions of y4 and ys equal to 0.293;

d. imputation fractions of y4 and ys equal to 0.684.

As before, we performed R = 100 simulations for each model. Recall from Section 2.2
that the sample size was N = 574.

Table 9 displays the results in the same format as before. These were generally in line
with the results found previously using completely artificial data with N = 600. In
particular, with small to moderate amounts of introduced measurement errors, the esti-
mated factor loadings agreed well on average with the theoretical validities in Table 8.
With large amounts of measurement errors, the behaviour of the estimates became er-
ratic. In addition, problems with convergence and large negative variance estimates
started to occur. The results for the structural parameters (not tabulated here) were
similar. Finally, for all models, the chi-square statistic was much higher than 18, its
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Table 9: Simulation results with the hot deck method for correctly specified models

(using the same format as in Table 3).

model R, R, X 2 % 1 A,yz )Ly4 lyS )vx 1 A'x2 le ;Lx4
11a 99 58 58 0.77 0.89 0.89 0.83 0.94 0.95 0.94 0.98
(19)  (0.03) (0.03) (0.04) (0.03) (0.05) (0.05) (0.11) (0.23)

11b 99 65 57 0.72 0.84 0.85 0.77 0.90 0.89 0.92 0.89
(19)  (0.05) (0.06) (0.05) (0.04) (0.08) (0.08) (0.16) (0.13)

l1c 90 58 47 0.56 0.66 0.67 0.61 0.72 0.76 0.92 0.71
(16)  (0.09) (0.09) (0.08) (0.07) (0.21) (0.25) (0.72) (0.29)

11d 31 6 42 0.67 0.97 0.90 0.34 1.35 1.48 0.55 0.87
(13)  (1.67) (3.52) (2.09) (0.34) (2.68) (3.03) (1.24) (2.07)

12a 100 86 53 0.82 0.94 0.95 0.87 0.94 1.00 1.00 1.00
(7)  (0.00) (0.00) (0.00) (0.00) (0.03) (0.03) (0.00) (0.00)

12b 100 82 54 0.82 0.94 0.95 0.87 0.89 1.00 1.00 1.00
(9)  (0.00) (0.00) (0.00) (0.00) (0.06) (0.04) (0.00) (0.00)

12¢ 100 63 55 0.82 0.94 0.95 0.87 0.71 1.00 1.00 1.00
(8)  (0.00) (0.00) (0.00) (0.00) (0.08) (0.09) (0.00) (0.00)

12d 9% 53 55 0.82 0.94 0.95 0.87 0.33 1.09 1.00 1.00
(9)  (0.00) (0.00) (0.00) (0.00) (0.11) (0.35) (0.00) (0.00)

13a 100 94 54 0.82 0.94 0.95 0.87 0.95 0.95 1.00 1.00
(9)  (0.00) (0.01) (0.00) (0.00) (0.05) (0.04) (0.00) (0.00)

13b 100 92 53 0.82 0.94 0.95 0.86 0.90 0.89 1.00 1.00
(11)  (0.01) (0.01) (0.01) (0.01) (0.07) (0.07) (0.00) (0.00)

13c 100 97 49 0.82 0.94 0.96 0.86 0.71 0.72 1.00 1.00
(11)  (0.01) (0.01) (0.01) (0.01) (0.12) (0.12) (0.00) (0.00)

13d 71 59 38 0.83 0.92 0.99 0.83 0.39 0.54 1.00 1.00
(11)  (0.01) (0.01) (0.01) (0.01) (0.34) (1.20) (0.00) (0.00)

14a 100 100 41 0.82 0.94 0.95 0.82 1.00 1.00 1.00 1.00
(8)  (0.00) (0.00) (0.02) (0.03) (0.00) (0.00) (0.00) (0.00)

14b 100 100 36 0.82 0.94 0.95 0.78 1.00 1.00 1.00 1.00
(11)  (0.00) (0.00) (0.02) (0.04) (0.00) (0.00) (0.00) (0.00)

14c 100 90 29 0.82 0.94 0.96 0.61 1.00 1.00 1.00 1.00
(11)  (0.00) (0.00) (0.05) (0.05) (0.00) (0.00) (0.00) (0.00)

14d 93 64 23 0.82 0.94 0.97 0.28 1.00 1.00 1.00 1.00
(8)  (0.00) (0.00) (0.15) (0.07) (0.00) (0.00) (0.00) (0.00)

15a 98 98 37 0.81 0.94 0.90 0.83 1.00 1.00 1.00 1.00
(9)  (0.00) (0.00) (0.03) (0.03) (0.00) (0.00) (0.00) (0.00)

15b 9 99 30 0.81 0.94 0.85 0.79 1.00 1.00 1.00 1.00
(10)  (0.01) (0.01) (0.05) (0.04) (0.00) (0.00) (0.00) (0.00)

15¢ 91 91 28 0.81 0.95 0.67 0.63 1.00 1.00 1.00 1.00
(11)  (0.01) (0.01) (0.07) (0.07) (0.00) (0.00) (0.00) (0.00)

15d 94 66 26 0.80 0.95 0.66 0.36 1.00 1.00 1.00 1.00
(12)  (0.01) (0.01) (1.61) (0.38) (0.00) (0.00) (0.00) (0.00)
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expected value under the assumption of multinormal data. Note however that this as-
sumption does not hold here and recall that Bakker (2012) found X 2 — 48 with the
original data. For models 11 through 13, the average values of X? were all within
one standard deviation of this value. Somewhat surprisingly, increasing the amount of
errors under models 14 and 15 actually improved the fit of the SEM.

4.3 Misspecified Measurement Models

For the final part of the simulation study, we used realistic data and examined the
effects of the three types of model misspecification from Section 3.3. In order to ob-
tain correlated measurement errors, a modification of the above hot deck imputation
method was needed. A positive correlation can be achieved, in principle, by drawing
the imputed values for two variables simultaneously from the same donor record. Un-
fortunately, the size of this correlation is fixed and cannot be prescribed. To have more
flexibility in the choice of the size of the correlation, we modified the mechanism that
selects the records to impute, as follows.

Suppose that we want to introduce correlated measurement errors in two observed
variables z; and zp. We randomly select a subset of the records in the data set to
impute, in such a way that the fractions of imputed records for z; and z, are 7; and 7,
respectively, and that the fraction of records for which both z; and z, are imputed is
71,. Technically, this can be achieved by drawing a random value « from the uniform
distribution on (0, 1] for each record and

e imputing only z; for all records with 0 < u < 7 — 7y5;

imputing z; and z; for all records with 7} — 1y < u < 7y

imputing only z; for all records with ) < u < 7 + 7 — 7125

imputing neither of z; and z; for all records with ) +m — 7w, <u < 1.

Moreover, for each record only one random donor record is drawn to impute z; and/or
2. In order for this procedure to be well-defined, we require that

0< Ty < min{m,ﬂ?g}, and (13)

T+m—ma < 1. (14)
In Appendix B, it is shown that the following properties hold in expectation:

e The mean and variance of z; and z; are the same before and after imputation.

e If the original correlation between z; and z, was p(z;,z2), then the correlation
after imputation equals (1 — ) — m +2m12)p (21,22)-

o If another variable, say z3, is imputed by the hot deck method independently of
z1 and zp (with 73 the fraction of imputed records), then the correlation between
z1 and z3 after imputation equals (1 — ;) (1 — 73)p(z1,23), and the correlation
between z, and z3 after imputation equals (1 — m)(1 — 73)p(z2,23).
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Again, these properties are only approximately true when the data set is imputed once.

As in Section 4.2, we can assess the theoretical validity of the imputed variables by
comparing the above expressions for the correlations with the expressions that would
follow from a measurement model of the form (1). To simplify matters, we only dis-
cuss the case m; = m, here, because this is the only case that occurred in the simulations
to be discussed below. Let &, then, denote the common imputation fraction of z; and
22, and let A and 6 be their common factor loading and error variance under a model
of the form (11)—(12) (this time with correlated error terms). Analogous to the case
that the variables were imputed independently, we obtain:

p(Z1,73) =/ (1= 0)(1—63)p(z1,23),
p(22,23) =/ (1= 0)(1—63)p(z2,23),

p(Z1,22) = (1—0)p(z1,22) + p120,

where in the last line pj» denotes the correlation between €; and & under the normal
measurement model.
Comparing the expressions for p(Z1,%3) and p(Z,73) yields t =1—+/1— 6 and 13 =
1 —+/1— 65 as before. Equating the two expressions for p(Z;,Z,) then yields:

{1 —2(1—-v1-9) +2mz} p(z1,22) = (1—-0)p(z1,22) + P126.

After some re-arranging of terms, we find the following expression for pi;:

—2+2\/1—6+9+27L’12
P12 = 0

p(z1,22)- 5)

Thus, by varying the choice of 7, in the hot deck procedure, we can obtain different
values for the correlation between the measurement errors. Note however that the
range of correlations that can be obtained with this procedure is more limited than
with the data generating model of Section 3. The range of possible values for pi,
is limited by the (fixed) value of p(z;,z2) in the original data set and the choice of
error variance 6, or equivalently the imputation fraction 7. The latter choice places
restrictions on 7, through assumptions (13) and (14). In particular, for p(z;,z2) > 0
it can be shown from (15) that p;, cannot exceed p(z1,22).

Using the above extended hot deck imputation method, we created R = 100 data sets
corresponding to each of the following models. (As before, all imputation fractions 7
are 0 unless stated otherwise.)

16. Increasing amounts of lightly correlated measurement errors in both observed variables for one
factor:

a. imputation fractions of y,4 and ys5 equal to 0.051 with w45 = 0.007 (ps5 = 0.1);
b. imputation fractions of y4 and y5 equal to 0.106 with 45 = 0.018 (pg5 = 0.1);
c. imputation fractions of y4 and ys equal to 0.293 with w45 = 0.073 (pg5 = 0.1);

d. imputation fractions of y4 and ys equal to 0.684 with w45 = 0.368 (p45 = 0.24).

17. Increasing amounts of heavily correlated measurement errors in both observed variables for one
factor:

a. imputation fractions of y4 and ys5 equal to 0.051 with my5 = 0.032 (ps5 = 0.5);
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b. imputation fractions of y4 and ys equal to 0.106 with 745 = 0.066 (p45 = 0.5);
c. imputation fractions of y4 and ys5 equal to 0.293 with my5 = 0.195 (ps5 = 0.5);

d. imputation fractions of y4 and y5 equal to 0.684 with 145 = 0.507 (p45 = 0.5).

18. Increasing amounts of lightly correlated measurement errors in two observed variables for differ-
ent factors:

a. imputation fractions of y; and y4 equal to 0.051 with w4 = 0.014 (p14 = 0.1);
b. imputation fractions of y; and y4 equal to 0.106 with 14 = 0.030 (p14 =0.1);
c. imputation fractions of y; and y4 equal to 0.293 with w14 = 0.104 (p14 = 0.1);

d. imputation fractions of y; and y4 equal to 0.684 with ;4 = 0.368 (p14 = 0.12).

19. Increasing amounts of heavily correlated measurement errors in two observed variables for dif-
ferent factors:

a. imputation fractions of y; and y4 equal to 0.051 with 4 = 0.051 (p14 = 0.41);
b. imputation fractions of y; and y4 equal to 0.106 with 14 = 0.106 (p14 = 0.41);
c. imputation fractions of y; and y4 equal to 0.293 with 74 = 0.293 (p14 = 0.41);

d. imputation fractions of y; and y4 equal to 0.684 with w4 = 0.684 (p14 = 0.41).
20. Increasing amounts of measurement error in variable y3:

a. imputation fraction of y3 equal to 0.051; all other imputation fractions equal to 0.051;
b. imputation fraction of y3 equal to 0.106; all other imputation fractions equal to 0.051;
c. imputation fraction of y3 equal to 0.293; all other imputation fractions equal to 0.051;

d. imputation fraction of y3 equal to 0.684; all other imputation fractions equal to 0.051.

For the models with correlated measurement errors, the implied correlation coefficient
is mentioned in brackets. Ideally, we wanted to have models with p =0.1 and p = 0.5,
as in Section 3.3. In the cases where this was not possible due to the above-mentioned
limitations of the hot deck method, we chose the feasible correlation nearest to 0.1 or
0.5.

The results of these simulations are shown in Table 10. Broadly speaking, these results
confirm the previous findings with multinormal data. In particular:

e For models 16 and 17 (corresponding to the first type of misspecification from
Section 3.3), the estimated validities of variables other than y, and ys agreed
with their theoretical values in Table 8. The validities of y4 and y5 were overes-
timated.

e For models 18 and 19 (corresponding to the second type of misspecification
from Section 3.3), the estimated validities agreed reasonably well with their
theoretical values for all variables, including y; and y4. For model 19 — but not
for model 18 —, we observed a sharp increase in the average value of X2 as more
misspecified measurement errors were introduced.

e For model 20 (corresponding to the third type of misspecification from Sec-
tion 3.3), the estimated validities again agreed with their theoretical values.

In addition, for most models at least some of the estimated parameters became erratic
when large amounts of measurement errors were introduced.
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Table 10: Simulation results with the hot deck method for misspecified models (using

the same format as in Table 3).

model R, R, X 2 ﬁq 1 A,yz )Ly4 lyS )vx 1 A'x2 le ;Lx4
16a 100 100 38 0.81 0.94 0.90 0.83 1.00 1.00 1.00 1.00
(9)  (0.00) (0.01) (0.03) (0.03) (0.00) (0.00) (0.00) (0.00)

16b 98 98 33 0.81 0.95 0.86 0.79 1.00 1.00 1.00 1.00
(10)  (0.01) (0.01) (0.04) (0.04) (0.00) (0.00) (0.00) (0.00)

16¢ 85 85 28 0.81 0.95 0.71 0.65 1.00 1.00 1.00 1.00
(11)  (0.01) (0.01) (0.07) (0.07) (0.00) (0.00) (0.00) (0.00)

16d 93 89 25 0.81 0.95 0.59 0.53 1.00 1.00 1.00 1.00
(9)  (0.01) (0.01) (0.21) (0.19) (0.00) (0.00) (0.00) (0.00)

17a 99 99 41 0.81 0.94 0.93 0.86 1.00 1.00 1.00 1.00
(9)  (0.00) (0.01) (0.02) (0.02) (0.00) (0.00) (0.00) (0.00)

17b 99 99 37 0.81 0.95 0.91 0.84 1.00 1.00 1.00 1.00
(10)  (0.01) (0.01) (0.03) (0.03) (0.00) (0.00) (0.00) (0.00)

17c 95 95 31 0.81 0.95 0.85 0.78 1.00 1.00 1.00 1.00
(10)  (0.01) (0.01) (0.06) (0.06) (0.00) (0.00) (0.00) (0.00)

17d 87 74 30 0.81 0.94 1.17 0.67 1.00 1.00 1.00 1.00
(25)  (0.02) (0.10) (2.57) (0.21) (0.00) (0.00) (0.00) (0.00)

18a 100 100 43 0.77 0.94 0.89 0.87 1.00 1.00 1.00 1.00
(11)  (0.03) (0.02) (0.03) (0.01) (0.00) (0.00) (0.00) (0.00)

18b 100 98 43 0.72 0.94 0.84 0.88 1.00 1.00 1.00 1.00
(11)  (0.05) (0.03) (0.04) (0.02) (0.00) (0.00) (0.00) (0.00)

18¢c 100 88 35 0.56 0.95 0.65 0.88 1.00 1.00 1.00 1.00
(13)  (0.08) (0.07) (0.06) (0.04) (0.00) (0.00) (0.00) (0.00)

18d 97 60 29 0.25 1.05 0.29 0.89 1.00 1.00 1.00 1.00
(12)  (0.10) (0.40) (0.09) (0.13) (0.00) (0.00) (0.00) (0.00)

19a 100 100 53 0.78 0.93 0.90 0.87 1.00 1.00 1.00 1.00
(9)  (0.02) (0.01) (0.03) (0.01) (0.00) (0.00) (0.00) (0.00)

19b 100 100 67 0.74 0.92 0.85 0.87 1.00 1.00 1.00 1.00
(16)  (0.04) (0.03) (0.04) (0.02) (0.00) (0.00) (0.00) (0.00)

19¢ 9 92 96 0.57 0.92 0.67 0.87 1.00 1.00 1.00 1.00
(30)  (0.08) (0.07) (0.06) (0.05) (0.00) (0.00) (0.00) (0.00)

19d 94 53 116 0.24 1.00 0.30 0.86 1.00 1.00 1.00 1.00
(32) (0.08) (0.28) (0.08) (0.13) (0.00) (0.00) (0.00) (0.00)

20a 100 64 60 0.77 0.88 0.90 0.83 0.95 0.95 0.95 0.96
(19)  (0.05) (0.04) (0.03) (0.03) (0.06) (0.06) (0.09) (0.09)

20b 100 66 59 0.77 0.89 0.89 0.83 0.94 0.96 0.96 0.95
(19)  (0.04) (0.04) (0.04) (0.04) (0.05) (0.05) (0.11) (0.09)

20c 100 57 61 0.77 0.89 0.90 0.82 0.94 0.96 0.95 0.96
(20)  (0.03) (0.05) (0.04) (0.03) (0.06) (0.06) (0.09) (0.09)

20d 99 68 63 0.78 0.88 0.89 0.84 0.95 0.95 0.95 0.96
(19)  (0.05) (0.05) (0.04) (0.03) (0.04) (0.05) (0.08) (0.08)
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5 Discussion and Conclusion

As outlined in Section 2 and illustrated by Bakker (2012), estimates of the validity of
administrative and survey variables can be obtained through an SEM. An important
prerequisite for applying this method is that data measuring the same set of concepts
are available from two different sources (surveys, registers), and that these sources can
be linked at the record level. In addition, prior knowledge should be available about
the expected direct effects between the concepts. Assuming that these prerequisites are
met, the method can be applied in principle. In the present paper, we have investigated
the suitability of the resulting validity estimates in various situations, by means of
simulations and theoretical arguments. It should be noted that, while we used a specific
example of an SEM in our simulation study, the theoretical arguments apply to all
SEMs that satisfy the six numbered assumptions in Appendix A.2.

Firstly, we have seen that if the SEM is correctly specified (in the sense that no parame-
ters in the model are fixed to values that are inconsistent with the underlying structure
of the data), then the method provides consistent estimates of validity. The simulation
results indicated that the minimal sample size that is required to obtain well-behaved
(i.e. stable and approximately unbiased) validity estimates actually depends on the
validities of the variables themselves. A moderate sample size of N = 600 should be
sufficient if all variables contain small to moderate amounts of measurement error (say
A > 0.7). On the other hand, if the data contain variables with (very) low validities,
then for N = 600 the behaviour of the estimated factor loadings and structural parame-
ters is likely to be erratic and problems with convergence may be encountered during
estimation. Thus, if one suspects that a variable in the model may have low valid-
ity, it is advisable to try to obtain a large sample. If this is impractical, one could try
estimating the SEM both with and without that variable, and compare the results.

Secondly, we looked at cases where the measurement model was incorrectly specified.
In particular, we considered cases where the SEM assumed uncorrelated measurement
errors while in fact there were non-zero correlations, either between errors in variables
that measure the same concept, or between errors in variables that measure different
concepts. In principle, such a violation of a model assumption could invalidate all
outcomes of the method. Nevertheless, in our study we found the effects of correlated
measurement errors to be rather limited and ‘local’, in the sense that estimates of pa-
rameters not directly related to the offending variables remained consistent. A similar
result was found for another type of misspecification, where a variable was assumed to
be a perfect measure when in fact it contained measurement error. Again, the validities
of the other variables were still estimated consistently. It should be noted that this ‘lo-
cal’ property does not hold for all possible misspecifications. In particular, it is known
that the bias due to an omitted path in a factor model or due to a misspecification in
the structural part of an SEM can spread to parameter estimates throughout the model
(Bollen et al., 2007). The latter types of misspecification are less likely to occur in the
context considered here (cf. footnote 10).

Detecting and correcting the above forms of model misspecification can be problem-
atic. We found that the usual chi-square test of overall model fit is not well-suited to
finding the above types of misspecification. In fact, two of the three types investigated
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here were shown to be intrinsically impossible to detect using the X? statistic. The re-
maining type (correlated errors across concepts) can be detected by the chi-square test
in principle, but the simulation results indicate that the power of this test is rather low,
unless the errors are heavily correlated. For the two types of misspecification that are
not detected by the X? statistic, an alternative means of detection could be provided by
examining the plausibility of the estimated direct effects between the latent variables
in the model. In fact, it was shown that these misspecifications do lead to biased values
for some of these effects. But again, unless the errors are heavily correlated, the bias
would often be too small in practice to make the direct effects implausible according
to prior knowledge.

Thus, when the model fit is assessed only by the X2 statistic and the plausibility of
the structural effects, then model misspecifications of the above types are difficult or
even impossible to recognise. Other overall fit measures are available, such as the (ad-
justed) goodness-of-fit index and the standardized root mean squared residual, as well
as measures of fit for individual parameters, such as the modification index (Bollen,
1989). We did not test the effects of model misspecification on these other measures
here. Previous empirical studies such as Saris et al. (2009) suggest that the standard fit
measures are often equally (un)successful in detecting model misspecification.

A second problem can occur when trying to correct the model after detecting that
it is misspecified. This requires that we turn a fixed parameter of the model into a
free parameter. For the first and third type of misspecification considered here, the
resulting correct model is not identified. In particular, correlated measurement errors in
two indicators for the same concept cannot be distinguished from uncorrelated errors,
unless a third indicator is added to the model. Alternatively, if a reasonable estimate
of the offending parameter (i.e. either an error correlation or the validity of a single
measure) is available from previous research, the parameter could be fixed to this value
instead of O, resp. 1.

From a theoretical point of view, extending the model to have three indicators per con-
ceptis a good idea, since this is also expected to alleviate the above-mentioned problem
in the detection of misspecification. [On the other hand, Saris et al. (1987) found em-
pirically that with three indicators measuring the same concept, the chi-square test still
has low power for the detection of the first type of misspecification considered here.]
From a practical point of view, adding a third indicator may be a feasible option if one
has access to a survey with repeated measurements of the same concept. Otherwise,
adding a third indicator is difficult, because it requires a third data source that can be
linked to the two available data sets while retaining a sufficiently large sample.

In summary, we can say that the method discussed here provides approximately unbi-
ased and stable estimates of the validity of administrative and survey data for a sample
size as small as N = 600, provided that the SEM is correctly specified and contains
variables with moderate to high validities. A partial misspecification of the model
produces biased validity estimates for the involved variables, but (for the types of
misspecification considered here) this bias is not propagated to the rest of the model.
Technically, the method provides consistent estimates of indicator validity rather than
true score validity (cf. Section 2.3). Extending the method to also estimate the true
score validity and the reliability of administrative data is a topic for further research.
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Finally, it should be noted that by standardising the observed variables as we have done
here, information is lost about differences in the observed means of administrative
and survey variables. This is in fact important information in the context of official
statistics, where population totals are often the main parameters of interest. Observed
means can be taken into account in an extended form of the SEM (Bollen, 1989). More
research is needed on how to use this information for inference about validity.
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Appendix A Derivation of Results on Measurement Error Models

In this appendix, we derive some theoretical results on the measurement error models
from Section 3. The first subsection summarises, without proof, some basic properties
of the SEM that are needed later. The reader is referred to Bollen (1989) for more
details and proofs. The second subsection discusses the four basic data generating
models used in Section 3.

A.1 Some Properties of the SEM

A definition of the SEM was given in Section 2.1. Using matrix algebra, a more
concise formulation of the same model can be given as follows. Let 7j, 5 , Zj ., X, €, and
& be column vectors containing the variables n;, & > Gi» Yr» X1, &, and &, respectively.
Expressions (2), (3), and (4) are equivalent to:

i = BA+TE+C,
y = AT+E,
)_5 = AX§+57

where B, I', A, and A, are matrices containing the parameters iz, ¥;j, Ay, and Ay,
respectively.! In addition, the model contains four matrices of covariance parameters:
¥ = (i), = (9j7), Oc = (Ogr), and O5 = (B5,). Together, the choice of these
eight matrices completely describes an SEM.

Let I denote the m x m identity matrix. The joint covariance matrix of the observed

vectors y and X can be expressed in terms of the eight parameter matrices of the SEM,

as follows:
A,CA/ +© A,GA/
Y — Y y/"', € )/ X , (16)
AGA,  ADA,+ O

with
C=cov(7,i) = (1-B) ' (I'eI’ +¥)[(1-B) '], 17)

and
G =cov(7},€) = (1-B)"'T®. (18)

The free parameters of an SEM are estimated in practice by minimising the distance
between the sample covariance matrix of ¥ and X (say S) and expression (16). A
standard choice of distance function to minimise is the maximum likelihood function:

Fu(S,Z) = log|Z| +t(SE™!) —log[S| — (p+4).
Minimising this function provides consistent estimates of the model parameters under

light regularity conditions. Note that Fj;;, = 0 for ¥ = S.

A SEM is called identified if it is not possible to find two different sets of values for
the free parameters in the model that produce the same X. An interesting fact that
emerges from (16) is that the parameter matrices B, I', and W only appear in X in an

16Recall that it is assumed here that each observed variable loads on one latent variable. Under this
assumption, each row of A, and A, contains exactly one non-zero entry. We (ab)use this fact to identify
the parameters in A, and A, by a single rather than a double index.
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indirect way, in the form of the latent covariance matrices C and G. This means that
a necessary condition for the model to be identified is that the system of equations
(17) and (18) does not admit multiple solutions for the free parameters in B, I', and
P, given the other matrices in this system. Namely, if this system of equations had
more than one solution, then each of these solutions would produce the same ¥ and
the model would not be identified.

For identified models, the quantity X> = (N — 1)F is often used to test the fit of the
model, with N the sample size. Implicitly, it is assumed that the observed variables
follow a multivariate normal distribution. Then, under the null hypothesis that the
model fits the data (more formally: that ¥ equals the population covariance matrix of
the model from which the sample that produced S was drawn), X is asymptotically
distributed as a chi-square variate with (p+¢q)(p+ ¢+ 1)/2 —t degrees of freedom, ¢
being the number of free parameters in the model. In particular, model identification
requires that r < (p+¢q)(p+q+1)/2.

A.2 Some Results on Measurement Error Models

In the remainder of this appendix, we consider the set-up of the simulation study in
Section 3: a multivariate normal data set is generated from one model and subsequently
analysed using a second model that may or may not match the first model. Both models
have the form of an SEM. In what follows, the notation from Section A.1l is reserved
for the second model. The parameter matrices of the data generating model are denoted
by B*, I'*, A;, AL, @, OF, and @3. Analogous to (16), the population covariance
matrix of y and X under this model is given by

o[ MC@W)' e AGTAY 19
A(G)'(A)) ADT(AY) + O

with C* and G* defined analogous to (17) and (18).

Below, we examine each data generating model while assuming that the population co-
variance matrix (19) is known. In this simplified situation, we can fit the second SEM
by minimising Fy, (X*,X) directly. Of course, in practice one only has a sample-based
estimate of X* to work with. Typically, the resulting parameter values are consistent
estimates of the parameters that would be obtained if the population covariance matrix
were analysed. Thus, the theoretical results given below indicate the behaviour of the
estimated parameters that is to be expected for large samples.

We will now discuss each of the four basic data generating models used in Section 3.
The SEM used for data analysis is correctly specified in the first case and misspecified
in the three remaining cases. Throughout this discussion, we shall make the following
simplifying assumptions:

1. The model used for analysis is identified.

2. All variables are centered to have mean O and the observed variables in y and ¥
are also standardised to have variance 1. (Thus X and X* are correlation matrices

rather than covariance matrices.)

For the cases with misspecification, some additional assumptions will be made below.
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A.2.1 Correctly Specified Models

We start with the situation from Section 3.2, where the SEM used in the analysis is
correctly specified with respect to the data generating model. That is, all fixed para-
meters have the same values in both models and all free parameters appear in exactly
the same positions of the parameter matrices that describe these models. In this case,
it seems reasonable to expect that the validity of each variable is correctly estimated.

Actually, it is easy to see from (16) and (19) that the system X = X* has an exact
solution in this case: we simply set B = B*, I' =1, etc. Moreover, this solution
is unique because the model is identified. Thus, if we would fit the second SEM
to the population correlation matrix X*, we would obtain a solution with Fj;; = 0
and parameter values identical to those of the first SEM. In particular, the estimated
validities Ay and A,; would be identical to their theoretical counterparts A, and 4.

A.2.2  Model Misspecification, Type 1

Next, we consider the three different situations from Section 3.3, where the SEM used
in the analysis is misspecified with respect to the data generating model. In the re-
mainder of this section, we make the following additional assumptions:

3. Each observed variable loads on one latent variable. (‘The factor complexity of
the observed variables is 1.”)

4. A scale is provided for the latent variables in 7} and 5 by fixing var(n;) =c¢; =

124
ci;=1and var(§;) = ¢ =9;;=1
5. In the model used for analysis, the matrices @, and ®g are diagonal.

6. Each latent variable has at most two indicators.!”

These assumptions are satisfied for all models that were used in the simulation study.

The first type of misspecification in Section 3.3 concerns correlated measurement er-
rors in two observed variables that measure the same latent variable. By assumption
6, this latent variable is not measured by any other variable. Without essential loss of
generality, we use the SEM from Section 2.2 as a working example. We take y4 and
ys5 as the variables with correlated errors and 13 as the associated latent variable. In
other words, the parameter matrices of the two SEMs are exactly matched with one
exception: 6,5 7 0 whereas 645 is fixed to 0.

17 Actually, a less restrictive assumption suffices. The results given below remain valid if some latent
variables have three or more indicators, provided that these latent variables are not directly related to any
indicators involved in the misspecification.
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The system X = X* consists of (p + ¢)(p + g+ 1)/2 non-redundant equations. Using
(16), (19), and assumptions 1-5, these equations can be written as follows:

12 +0,,, = (for all k),
12 + 65, = 1 (for all 1),
A’y4a’y5 Aads + Beas,
A lk/—c.(k iy M (Forall k# K with {k,K'} # {1,2}),

(k) (k") Yk Ty
A A ALY (for all k,1),

8i(k),j(1) vkt = () J() Mk
@iy iy rata = @iy jan M, (forall £ 1),

(20)

Y

In the third equation, we used that ¢; ;) ;) = ¢33 = Cjy) ;5) = €33 = 1. An alternative

)

way to write this equation is:

6*
=A5A5s | 1+ 55 .
y Aﬁ) < ly47t)5

Note that the left-hand-sides of the equations in (20) contain the parameters that need
to be estimated. The values of the expressions on the right-hand-sides are known at
the estimation stage, even when the individual parameter values that occur in these
expressions are not.

Suppose that condition (10) from Section 3.3 is satisfied. By inspection, it can be seen
that the following choice of parameter values is an exact solution to (20):

Mg = Ayg\ 1+ 0845 /M54 AT,
Ays = A5y /14 6245/ A5 As,

s = 3/ \/ 1+ 60845/ A4A%s,  (forall i #3),
83; = ggj/ 1+ 545/1;41;& (for all j),

and, for the remaining parameters,

Ay = Ay, (for all other k),

Ay =2y, (foralll),

¢y =cjy,  (for all other combinations i,i’),
gij =&, (forall other combinations i, j),
¢y =@y, (foralli,j).

Moreover, this solution is unique because of assumption 1.

The above result shows that, if the population correlation matrix X* were analysed
in this case, it would be possible to obtain a solution that fits exactly, as in the case
without misspecification. In this solution, most parameters are correctly estimated.
The only exceptions are the factor loadings of y4 and ys on 13, which are multiplied
by (/14 6745/AjA s, and the non-zero correlations between 73 and the other latent
variables, which are divided by the same amount. In particular, the validities of all
variables except y4 and ys would be estimated correctly.

Note that the incorrectly estimated validities of y4 and ys satisfy

Ay —Ays = Ay = As)y 1+ 645 /A A5 = K x (Al — As),
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for some k > 0. Hence, the difference A4 — 4,5 has the same sign as A, —Aj5. In
other words, although the actual values of the estimated validities of y4 and ys are
incorrect, these values do indicate correctly which of the measures has the highest
validity. Moreover, the difference between the highest and lowest validity is inflated
by the factor x. For positively correlated errors, k > 1 and the difference is too large.
For negatively correlated errors, k < 1 and the difference is too small.

Note also that, since we have again ¥ = X* in this case, the null hypothesis of the
chi-square test is satisfied. Thus, somewhat counterintuitively, although the model is
misspecified, X has the same distribution as if it were correctly specified. It follows
that this type of misspecification cannot be detected using the chi-square test alone.

Finally, note that the above result implies that the data generating model (i.e. the orig-
inal SEM with 645 as an additional free parameter), is not identified: there exist two
distinct sets of parameter values that produce the same covariance matrix. In other
words, for a latent variable with two indicators, it is not possible to distinguish uncor-
related measurement errors from correlated ones. This requires at least three indica-
tors.

A.2.3  Model Misspecification, Type 2

The second type of misspecification in Section 3.3 concerns correlated measurement
errors in two observed variables that measure different latent variables. Using assump-
tion 6, we restrict the discussion to the case that both of the involved latent variables
are also measured by one other variable. To clarify the issue, we take y; and y4 as the
variables with correlated errors and 7171 and 73 as the associated latent variables. These
latent variables are also measured by y, and ys, respectively. This time, the parameter
matrices of the two SEMs are exactly matched with the exception that 6;;, # 0 while
9814 =0.

Upon examining the system ¥ = X* in this case, we find that it contains in particular
the following equations:

ci3tyiAyg = ci3An A + 04, (21)
ci3todys = 01‘3%;2/1;5, (22)
c13hyAys = ci3A Ay, (23)
ci3todg = cizAnAn. (24)

Let us assume that cj; # 0 (i.e. that the two involved latent variables are correlated).
Multiplying (21) and (22) on both sides yields

0%3%1%2%4%5 = (c’{3)27Ly*12;‘27L;47L;‘5 +CT37L;2 502145 (25)
while multiplying (23) and (24) yields
Hhidadalys = (€13) A1 A As. (26)

Since the second term on the right-hand-side of (25) is non-zero, it is clearly impossi-
ble to find values for (c13,Ay1, 42,4, 4y5) that satisfy (25) and (26) simultaneously.
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Consequently, it is also impossible to satisfy (21)—(24) simultaneously, and by exten-
sion the system X = X* does not have an exact solution.

Thus, if the population correlation matrix were analysed with this type of model mis-
specification, a solution with Fy;; (£*,X) > 0 would be obtained. (We did not attempt
to find an analytical expression for this solution.) The above result implies that the null
hypothesis of the chi-square test is violated in this case (X # £*). Hence, in principle,
the chi-square test statistic can be used to detect this type of misspecification. In addi-
tion, the above result suggests — but does not prove — that the correct model with ¢4
as a free parameter is identified.'®

A.2.4 Model Misspecification, Type 3

The third and final type of misspecification in Section 3.3 concerns errors in a single
measure for a latent variable. Working in the context of the model from Section 2.2 as
before, ys3 is the only observed variable that measures 1,. To ensure identification of
the SEM that is used to analyse the data, the parameters 4,3 = 1 and 6,33 = 0 are fixed.
Misspecification occurs when the data generating model has Aj; # 1 and 6733 # 0.

Analogous to the above discussion of the first type of misspecification, it can be shown
that the following choice of parameter values yields an exact solution to the system
r=x"

Mg =1,

Ay = Ay (for all other k),

Ay =AY, (for all /),

o = Cphjs, (forall i’ #2),

Ciit = Cins (for all other combinations i,i'),
g2j:g§j ;37 (for all j),

8ij = 8&ijs (for all other combinations i, j),
?ir =0, (for all 4, j).

As before, assumption 1 guarantees that this solution is unique. Note that all validities
are correctly estimated in this case. (Obviously, 7Ly3 #* ,3- Recall however that we do
not use the method to make inference about the validity of y3.) In fact, incorrect values
occur only for the latent covariances that involve 1,: these are attenuated towards O.

Similarly to the first case with correlated errors, the null hypothesis £ = X* remains
satisfied in spite of the presence of model misspecification. Again, we conclude that
the chi-square test is not capable of detecting that a model is misspecified in this way.

18Technically, the model could still be underidentified due to the existence of two distinct sets of
parameter values that produce the same covariance matrix, with 614 taking non-zero values in both sets.
We did not attempt to prove or disprove this.
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Appendix B Derivation of Results on Hot Deck Imputation

B.1 Appendix to Section 4.2

Suppose that the hot deck imputation method is only applied to a variable z;, with 7|
the fraction of imputed records in the data set. We denote the original distribution of z;
(before imputation) by F(z;). Let Z; denote the imputed version of z;. Then, formally,
we have:

1= (1 — T])Z] + 1121,

with 7, a dichotomous random variable taking the value 1 with probability 7; and O
with probability 1 — 7y, and with Z; a variable drawn at random from F(z;). Note that
71 and Z; are drawn independently of each other.

Technically, Z; is a mixture of two random variables, z; and 7;, having the same dis-
tribution F(z;). It follows that Z; is also distributed according to F(z;), so that in

particular E(Z;) = E(z;) and var(Z;) = var(z;). Thus, in expectation, the mean and

variance of z; are the same before and after imputation.'”

We now consider the covariance between Z; and an unimputed variable z. An appli-
cation of the conditional covariance formula yields:

cov(Z1,22) = Eq, {cov(Zi,z2|T1) } +cove, {E(Z1|T1), E(z2]|T1)}
= (1 —m)cov(zy,22) + micov(Zr,z2) +0
= (1 —m)cov(zy,z2).
In the last line, we used that cov(Z;,z2) = 0 because Z; is drawn from the univariate

distribution of z;, independently of z;. Combining this with the above result on the
variance of Z; yields p(Z1,22) = (1 — m1)p(z21,22)-

Finally, suppose that, independently of the construction of Z;, we construct an imputed
version of z, using the same technique:

= (1—m)zn+ ni,

where 7, = 1 with probability 7, and %, is drawn from F(z2). Obviously, E(Z2) = E(z22)
and var(Z,) = var(z,) as before. For the covariance between Z; and 2, we find:

cov(Z1,22) = Er, 5, {cov(Z1,22[T1, 2) } +covey, o, {E(Z1]T1, T2), E (22| T1, T2) }
=P(11 =0,7 = 0)cov(z1,22) +0
=(1—m)(l —m)cov(z1,22)-

In the second line, all other terms vanish due to independence. In particular, it holds
that cov(Z1,Z2) = 0. We conclude that p(Z1,%22) = (1 —m ) (1 — m)p(z1,22).

19These properties can also be proved directly by conditioning on 7; and applying the standard formu-
las for conditional expectation and variance.
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B.2 Appendix to Section 4.3

The alternative version of the hot deck imputation method described in Section 4.3 can
be put into more mathematical terms as follows. As in the main text, we take z; and 2,
as the variables to impute. Let (71, 7;) be two dichotomous random variables having a
joint distribution such that

P(’L’l = 1) =T,
P(TQ = 1) =T,

P(’L’] = I,TQ = 1) = T12.

Note that the joint distribution of (7, 7;) is completely determined by the choice of
Ty, My, and myp. In addition, let (Z1,Z,) be a random draw from the joint distribution
F(z1,22), independently of (71,7;). Now we define the imputed versions of z; and z,
by

Zi={—m)a+mi,

L=(1-n)n+mnd.

Note that, as in Section B.1, 7 is a mixture of two random variables having the same
univariate distribution F(z;). Therefore it still holds that E(Z;) = E(z;) and var(Z;) =
var(z;). Similarly, E(Z,) = E(z2) and var(Z,) = var(z).

For the covariance between the imputed versions of z; and zp, we find:
cov(Z1,22) = Eq i, {cov(21, 22|71, @) } 4 cove o, {E(Z1[T1, ), E (22|71, ) }

= mpcov(Z1,Z) + (1 — m — m + my2)cov(zy,z2) +0

=(1—m —m+2m37)cov(z1,22)-
In the second line, we used that
P11=0,=0)=1-P(ty=1)—P(nr=1)+P(ti =1, =1);

note that this probability is well-defined because of assumption (14). Furthermore, we
used in the third line that cov(%1,%) = cov(z1,22).

Thus, we find that in this case p(Z1,22) = (1 — @ — m + 2m12)p(21,22). If a third
variable, say z3, is imputed by the hot deck method independently of z; and z,, then it
can be shown as before that

p(z1,23) = (1—m)(1 —m)p(z1,23),

p(22,%3) = (1 —m)(1 — m3)p(22,23),

with 73 the fraction of imputed records for z3.
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