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Optimal adjustments for inconsistency in imputed
data

Jeroen Pannekoek and Li-Chun Zhang !

Summary: Conflicting information may arise in statistical micro data due to
partial imputation, where one part of the imputed record consists of the ob-
served values of the original record and the other of the imputed values. Edit
rules that involve variables from both parts of the record will often be violated.
One strategy to remedy this problem is to make adjustments to the imputations
such that all constraints are simultaneously satisfied and the adjustments are,
in some sense, as small as possible. The minimal adjustments are obtained by
minimizing a chosen distance metric subject to the constraints and we show how
different choices of the distance metric result in different adjustments to the im-
puted data. As an extension we also consider an approach that does not aim to
minimize the adjustments but to make the adjustments as uniform as possible
between variables. Under this approach, even the values that are not explicitly
involved in any constraints can be adjusted. The properties and interpretations

of the proposed methods are illustrated using empirical business-economic data.
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1 Introduction

We are concerned with the task of reconciling conflicting information in statis-
tical micro data that may arise due to partial (donor) imputation. The missing
values are imputed either by the corresponding values of a suitable donor or
by statistical estimation. The imputed record then contains two parts of data
from different sources. One part contains the observed values from the origi-
nal record and the other the imputed values. Edit rules that involve variables
from both parts of the record will often be violated. For instance in business
statistics we may have that turnover must be equal to the sum of profit and
costs, where costs is again the sum of costs for material, personnel, housing
etc., and all the variables except profit must be non-negative. If some of the
variables are missing, the imputed values taken from a donor in general will not
automatically satisfy the various restrictions, together with the observed values
of the original record. A numerical illustration based on structural business
survey data will be given in Section 2.

Our strategy to remedy the inconsistency problem is to make adjustments to
the imputed values that are minimal in some sense, such that a record consistent
with the edit rules results. The edit rules are to be specified as linear equality-
/inequality-constraints on the variables. The minimal adjustments are then
obtained by minimizing a chosen distance metric subjected to these constraints.
Using this optimization approach one is able to handle all the constraints at the
same time. In comparison, traditional adjustment methods, such as prorating
(e.g. Banff Support Team, 2008), only deal with one constraint at a time,
which can be cumbersome and arbitrary whenever some variables are involved in
multiple constraints. We will distinguish generally between adjustable (or free)
variables that are allowed to be changed and unadjustable (or fized) variables
that are not to be changed. The distinction between free and fixed variables
may coincide with the distinction between imputed and observed variables but
this need not always be the case. For instance, some imputed values may
be held fixed because they are derived by logical reasoning as in deductive
imputation, or these may be obtained from external sources that are considered
more reliable (or more suitable). On the other hand, there are cases where some
observed values may be considered unreliable and are allowed to be changed.
This optimization approach will be outlined in Section 2. In Section 3 we
develop different ways to implement this optimization approach and in Section
4 we illustrate the properties of the proposed methods by an example. Finally,

a summary and conclusions are provided in Section 5.



2 Outline of the optimization approach

2.1 Imputation of a business record with missing data

To illustrate the problem, we consider a small part of a record from a struc-
tural business survey with missing data that is to be imputed. The data for this
record are shown in Table 1. T'wo response patterns are postulated; one with
only Turnover observed and one where also Employees and Wages are observed.
There are a number of common ways to impute the missing values in such a
record. One possibility is the use of the values from a donor record to impute
the missing values in the recipient record. This donor can, for instance, be the
“nearest neighbour” donor record, from the same category of economic activ-
ity and closest to the recipient record in some metric based on some common
observed variables, for instance Turnover for response pattern (I) and Employ-
ees, Turnover and Wages for response pattern (II). Imputation then entails the
replacement of the missing values by the corresponding values from the donor
record, we call this partial donor imputation because not all the values of the

donor are transferred to the receptor.

Table 1. Data, missing data and donor values for variables in a business record.
Ezxplanation of abbreviated variable names: Employees (Number of employees);
Turnover main (Turnover main activity); Turnover other (Turnover other ac-

tivities); Turnover (Total turnover); Wages (Costs of wages and salaries).

Variable | Name Response (I) | Response (II) | Donor Values
X1 Profit 330
X9 Employees 25 20
X3 Turnover Main 1000
X4 Turnover Other 30
X5 Turnover 950 950 1030
X6 Wages 550 500
X7 Other Costs 200
X8 Total Costs 700

2.2 The micro-level consistency problem
2.2.1 Introduction to the problem and some traditional solutions

Business records generally have to adhere to a number of accounting and logical
constraints. These constraints are widely employed for checking the validity of
a record and are, in this context, referred to as edit-rules. For the example
record above, the following three edit-rules are formulated:

al: x1- x5+ xg= 0 (Profit = Turnover — Total Costs)



a2: x5- x3- x4= 0 (Turnover = Turnover main + Turnover other)

ad: xg- xg- x7= 0 (Total Costs = Wages + Other costs)

Partial donor imputation for either response pattern in Table 1 leads to violation
of these edit-rules, which we refer to as the (micro-level) consistency problem.
In particular, for response pattern (I), the first two edit-rules involving Turnover
are violated and, for response pattern (II), all three edit-rules are violated. To
obtain a consistent record some of the values have to be changed or “adjusted”.
Often, the imputed values are the candidates for adjustment while the actually
observed values are not changed. However, other choices of adjustable and
non-adjustable values can be made.

Traditional adjustment methods, such as the prorating method implemented in
Banff (Banff Support Team, 2008), are designed to handle one constraint at a
time. In response pattern (I), the prorating method could proceed as follows:
(1) adjust the imputed values for Total costs and Profit with a factor 950/1030
to make them add up to the observed Turnover, (2) then adjust the imputed
values for Turnover main and Turnover other with the same factor to satisfy
the second edit and (3) adjust the imputed values of Wages and Other costs,
also with the same factor to make them add up to the previously adjusted value
of Total costs. Indeed, one may be tempted to extend this rescaling to imputed
variables that are not in edit-constraints (only Employees in this case), which is
not necessary for consistency with the specified edit-rules but can be justifiable
if it is assumed that these variables are related to Turnover in approximately
the same way as in the donor record. This last option is further discussed in
Section 3.2.1.

This easy and intuitive solution becomes more complicated for the response
pattern (II). Whereas the first two steps may be carried out as before, the
third step shows some difficulties of this approach. Total costs appears in two
edit-rules: a2 and a3. In both edit-rules one variable is observed (Turnover
and Wages, respectively) but Total costs is only adjusted to satisfy al and the
resulting adjusted value is irrespective of the observed value of Wages, thereby
ignoring relevant information on the Total costs. Indeed, depending on the
values available it can even happen that Total costs is adjusted downwards to
the extend that it becomes smaller than Wages and hence there is no acceptable
non-negative solution for Other costs. In general, adjusting a variable that
appears in multiple edit-rules to just one of them is not only suboptimal in the
sense described above, it also leads to rather arbitrary choices of the order in
which edit-rules should be handled.

Another problem that the second response pattern illustrates is that a simple
proportional adjustment is more plausible when variables have to be adjusted
such that their sum equals a constant than when variables have to be adjusted
in order to render their difference equal to a constant. For instance, for edit
rule a3, formulated as Wages = Total costs — Other costs, with values 550 #



700 — 200 and 550 fixed, a proportional adjustment of Total costs and Other
costs would result in values of 770 and 220. However, much smaller adjustments
can be obtained, e.g. by increasing Total costs to 740 while decreasing Other
costs to 190. Such cases are therefore mostly excluded from prorating schemes.

2.2.2 A formal presentation of the edit constraints

For the further analysis of edit rules and adjustment methods it is convenient
to express the edit restrictions in matrix notation, as Cx = b, where C is the
constraint (or restriction) matrix and b is a constant vector. For the restrictions
al — a3, b = 0 and the matrix C is given by

10 0 0 -1 0 0 1
¢c=100 -1 -1 1 0 0 O
oo o0 o0 0 -1 —-11

Notice that the non-zero elements in a row of the constraint matrix identify
all the variables that are involved in the corresponding edit constraint, and the
non-zero elements in a column of the constraint matrix identify all the edit

constraints that involve the corresponding variable.

Successive moves from one non-zero element to another either in the same row
or in the same column of a constraint matrix generates a path. A set of variables
are connected (to each other) if there is a path between any two of them. A
variable that is not connected with any other variables is an isolated variable.
In the constraint matrix C above, the variable Employees (x2) is an isolated
variable, and the rest of the variables are connected. An example of a path
between Profit (x;) and Turnover main (x3) is (x;1 — x5 | o5 < x3), where
the arrows indicate the direction of the successive movements along the path.
Given a set of connected variables, a joint among them is a variable that has
more than one non-zero element in the corresponding column of the constraint
matrix. Different constraints are connected to each other through the joints.
Indeed, two subsets of variables are separated from each other by a set of joints
if any path between two variables, i.e. one from each subset, must pass through
the set of joints. The joints of the matrix C here are (x5, xg). Moreover, (xs,
x4) are separated from all the other variables by x5, and (xg, x7) are separated

from the others by xg, and x; by (x5, Xg).

From the constraint matrix, the following properties of the adjustment problem

can be deduced:

i. An isolated variable, such as Employees (x3) in Table 1, can be imputed (or
adjusted) freely without causing consistency problems.

1. Provided all the joints are observed or given by external sources, such as (xs,
xg) in Table 1, the consistency problem among the set of connected variables
can be resolved by dealing with one constraint at a time, e.g. by separate
prorating for each constraint.



#1i. Adjustments of a subset of variables do not cause consistency problems for
the remaining connected variables given the joints that separate these variables.
In Table 1, for instance, (x3, x4) can be adjusted freely given x5 without causing
consistency problem for the other variables.

tv. The imputation (or adjustment) of any variable may potentially cause
consistency problems for all the connected variables that are not separated by
the given joints. In both response patterns of Table 1 the joint x5 is given.
However, only (x3, x4) are separated from the other variables by x5. The
consistency problem among the rest of the connected variables (x1, xg, X7,
xg) can be resolved using a traditional method in two steps: first, adjust the
remaining joints (i.e. xg) in a consistent manner given the observed joints
(i.e. x5); next, consider xg to be fixed and adjust the rest of the variables as in
situation (2) and (#2). Thus, for response pattern (I), one might first impute xg,
say, proportionally to x5. The remaining variables can be adjusted with regard
to one-constraint at a time. For the response pattern (II), however, xg is also
observed, such that it no longer seems desirable if one is to impute xg without
taking into account xg, because the two are connected. There arises therefore
a need to deal with all the constraints that are connected to xg simultaneously,
which requires an approach beyond the realm of traditional single-constraint
adjustment methods such as prorating.

v. Constraints for which it is optimal to adjust the variables in the same
direction (either an increase or a decrease) can be identified from the restriction
matrix as rows in which the entries corresponding to adjustable variables have
the same sign.

2.3 The optimization approach

One possible strategy to resolve the micro-level consistency problem introduced
in section 2.2.1 is to adjust the imputed values, simultaneously and as little as
possible, such that all edit-rules are satisfied. Denote by xg the adjustable part
of the record before adjustment and denote by X the corresponding sub-record
after the adjustment, the optimization approach to the adjustment problem

with equality constraints can be formulated as:

x = arg min D(x, Xq) (1)
X

sit. Ax=Db,

with D(x,x¢) a function measuring the distance (or deviance) between x and
xXg. In Section 3 we will consider different functions D for this adjustment
problem. It is assumed here that there are no contradicting constraints, so
that (1) can be solved (is feasible). Furthermore, for the algorithms we apply
to solve (1) we will need to assume that A is of full row-rank, which means
that, if necessary, redundant constraints have been removed from A. Checks



for feasibility and redundancy of systems of edit rules can be performed with
the R-package editrules (De Jonge and Van der Loo, 2011).

Some explanations on the notation in (1) are needed. To allow for the distinc-
tion between adjustable and non-adjustable variables we introduce the account-
ing matrix A. If all the variables are adjustable, then A = C. Otherwise, the
accounting matrix differs from the constraint matrix. Often, we will consider
to adjust the imputed values only and leave the observed values unchanged,
which means that the minimization in (1) is over the imputed values only. The
complete data record may be partitioned into x5 for the observed (and fixed)
values and X,,;s for the missing (and free) ones. A corresponding partition of
the columns of the constraint matrix yields, say, Cops and Cy;5. We have the
following notational correspondence:

Cmisimis =Ax=b= _Cmisiobs = _Cmisxobs

More generally, we can distinguish between the adjustable and non-adjustable
sub-records, which may not coincide with the distinction between the missing
and observed sub-records, and write similarly, say,

Cfreeifree =Ax=b= _waifzx = _Cfiasxfi:(;

Clearly, the notation employed in (1) is much simpler, under the convention that
the accounting matrix A always applies to the relevant adjustable variables, and
so is any data vector (such as x, X or xg) that it operates on. Notice that, while
the constraint matrix C is derived a priori from the edit-rules alone, without
reference to the actual data, and is the same for all the records, the accounting
matrix A is generally different from one record to another, such as when the
adjustable values are simply the imputed values.

Now, in addition to the equality constraints, we often have linear inequality
constraints. The simplest case is the non-negativity of most economic vari-
ables. Other inequality constraints may arise, for instance, when it is known
(or required) that Wages should not be less than a certain factor, say, fmin
(i.e. the minimum wage) times Employees. The optimization problem can be

extended to handle inequality constraints by formulating the constraints as

Agx =Dbg @)
AinegX < bineg

where A, contains the rows of A corresponding to equality constraints and

Aineq the ones corresponding to inequality constraints. In either case, both

the contributions of the non-adjustable variables and all the possible constants

involved are combined into the b-vectors. For ease of exposition we shall, unless

noting otherwise, write these equality /inequality constraints more compactly as
Ax <bh.



3 Development of the optimization approach

In this section we will develop different ways to implement an optimization ap-
proach to the consistency problem and show the different properties, purposes
and assumptions of the resulting adjustment methods. In section 3.1 methods
are discussed that aim at adjusting imputed values to attain consistency with
the edit rules and keeping these adjustments as small as possible. In section
3.2.1 a method is discussed that also adjusts imputed values to attain consis-
tency but assumes that these adjustments should be as uniform as possible
rather than as small as possible.

3.1 Minimum adjustments: three distance functions and correspond-
ing adjustment models

The conditions for a solution to the minimization problem formulated in (1)
with constraints (2) can be found by inspection of the Lagrangian for this
problem, which can be written as

L(x, ) = D(x,%) + a’ (Ax — b) (3)
= D(x,x0) + O‘Z;(Aeqx —beg) + az?;zeq(AineqX — Dineg)
= D(x,%x0) + Z ar(alx —by) + Z ar(alx —by),

k‘Equ kelineq

with a a vector of Lagrange multipliers, or dual variables, with components
ay, one for each of the K constraints, and aj the k-th row (corresponding to
constraint k) of the K x J accounting matrix A, with J the number adjustable
variables which equals the number of elements of x. In accordance with the par-
titioning of A and b corresponding to the type (equality/inequality) of the con-
straints, the dual vector can also be partitioned into a subvector a4 pertaining
to the equality constraints and a subvector e, pertaining to the inequality
constraints. The distinction between equality and inequality constraints can
also be made explicit by defining the index sets I., and I, containing the
indices of the equality and inequality constraints respectively. This is used in
the last line of (3).

From optimization theory it is well known that for a convex function D(x, xq)
and linear (in)equality constraints, the solution to this constrained optimization
problem is given by vectors X, & that satisfy the so-called Karush-Kuhn-Tucker
(KKT) conditions (see, e.g. Luenberger, 1984, Boyd and Vandenberghe, 2004).
One of these conditions is that the gradient of the Lagrangian w.r.t. x is zero
when evaluated at the optimal point x, &, i.e.

L;j (x,&) = D;j (x,%0) + deam’ =0, for all z;, (4)
k

with L’Ij (X, &) being the gradient of L w.r.t. z; evaluated at x = x and o = &,

and D;;], that of D. From this condition alone, we can already see how different

10



choices for D lead to different solutions to the adjustment problem. In the next
three subsections we shall consider three familiar choices for D: Least Squares,
Weighted Least Squares and Kullback-Leibler divergence, and show how these
different choices result in different structures of the adjustments, which we will
refer to as the adjustment models.

In addition to (4), and apart from X satisfying the constraints, the other KKT
conditions prescribe that for inequality constraints we must also have

dineq > 0; (5)

Qineg k(ALK — i) =0 k € Lineq (6)

with tineq r an element of ajneq. Condition (5) is component-wise non-negativity,
which is only required for &neq and not for éq. Condition (6) is termed “com-
plementary slackness” and states that if an inequality constraint is satisfied
with “slack”, that is the residual of the constraint: a{fc — by, is strictly less than
zero, then the corresponding dual variable is zero and, conversely, if the dual
variable is positive then the residual is zero and the constraint is satisfied with
equality. These conditions will provide additional insight in the properties of
the adjusted vector x and in the algorithm, described in the appendix, to arrive
at the solution to this optimization problem.

3.1.1 Least Squares

First, we consider the least squares (LS) criterion to find an adjusted x-vector

that is closest to the original unadjusted data, that is: D(x,x¢) = %(x —

x0)7 (x — Xq), and so D;j (x,%0) = Zj — xo,;. We then obtain from (4)

Tj=uz05— Z aj; Q.- (7)
k

This shows that the LS-criterion results in additive adjustments: the total
adjustment to variable zq ; is the sum of adjustments to each of the constraints
k. These adjustments consist of adjustment parameters (the dual variables)
aj that describe the amount of adjustment due to constraint & and variables
aj; (the elements of the accounting matrix) describing the specific adjustments
to the variables zg ;. Often (but not always) the ay; are 1, -1 or 0 and the
corresponding z ; is adjusted by, respectively, ax, —as or not at all. A smaller
value for an ¢y, (in absolute value if k € I,) corresponds to smaller adjustments
and hence a more optimal value of the objective D(x,x) to be minimized, all
other ¢&; held fixed. A zero value for an &p means that no adjustment to
that specific constraint has taken place. For inequality constraints this means
that the residual of the constraint is zero or negative. On the other hand if,
for inequality constraints, &; is positive, adjustment has taken place and the
residual of the constraint is zero according to (6). Similar interpretations hold,

11



but will not be repeated, for the adjustment models presented in sections 3.1.2
and 3.1.3.

3.1.2 Weighted Least Squares

For the weighed least squares (WLS) criterion, D(x,x0) = 3(x—x0)’ Diag(w)(x—
Xp), with Diag(w) a diagonal matrix with a vector of weights along the diag-
onal. The derivative of this loss function is w;(Z; — ¢ ;) and we obtain from

(4)
- 1
Tj = Toj— - Z A O (8)
'’

Contrary to the least squares case where the amount of adjustment to a con-
straint is equal in absolute value (if it is not zero) for all variables in that
constraint, the amount of adjustment now varies between variables according
to the weights: variables with large weights are adjusted less than variables
with small weights. The weighted least squares approach to the adjustment
problem has been applied by Thomson et al. (2005). They used weights of
10,000 for observed values and weights of 1 for imputed values. Effectively, this
means that if a consistent solution can be obtained by changing only imputed
variables, this solution will be found. Otherwise some observed variables will
also be adjusted. This is an example of the distinction between “missing wvs.
observed” and “adjustable vs. fixed”.

One specific form of weights that is worth mentioning is obtained by setting
the weight w; equal to 1/x¢ ; resulting, after dividing by ¢ ; in the adjustment
model

fi'.
L =1 agu, (9)
K

20,5

which is an additive model for the ratio between the adjusted and unadjusted
values. It may be noticed that this is the first-order Taylor expansion (i.e.
around 0 for all the ay’s) to the multiplicative adjustment given by

— = H(l — ag;ouy) (10)

From (9) we see that the aj’s determine the difference from 1 of the ratio
between the adjusted and pre-adjusted values, which is usually much smaller
than unity in absolute value (e.g. an effect of 0.2 implies a 20% increase due to
adjustment which is large in practice). The products of the ay’s are therefore
often much smaller than the ay’s themselves, in which cases (9) becomes a good
approximation to (10), and one may regard the WLS adjustment to be roughly
given as the product of all the constraint-specific multiplicative adjustments.

12



3.1.8 Kullback-Leibler divergence

The Kullback-Leibler (KL) divergence measures the difference between x and
xg by the function Dy, = Zj zj(Inz;—Inzg;—1). Its derivative w.r.t. z; and
evaluated at X is InZ; —Inzg ; and we obtain from (4) the following adjustment

model

Tj =0, H exp(—ak;jou). (11)
k
In this case the adjustments have a multiplicative form and the adjustment for
each variable is the product of adjustments due to each of the constraints. The
adjustment due to constraint k is equal to 1 if ay; is 0 (i.e. no adjustment), it
is 1/ exp(a) if ag;j is 1 and it is exp(ay) if a;p, is —1.

3.1.4 FExplicit solution for weighted least squares without inequality constraints

If the loss function is weighted least squares and the constraints are only equal-
ity constraints, there is an explicit solution for the optimization problem that
will be given below. For problems with inequality constraints and for the KL-
divergence, iterative methods will be needed in general. An iterative method
that is especially suited for the problems considered here is treated in the ap-
pendix.

For weighted least squares the Lagrangian is L(x, &) = 3(x—x0)” Diag(w)(x—

x0) + a’ (Ax —b), and the solution to the optimization problem with equality
constraints only is the vector X that solves the equations

L (x,a) = Diag(w)(x — x¢) + ATa =0 (12)
L (x,a) = Ax — b =0. (13)

Solving (12) for x we obtain x = x¢ — Diag(w) 'ATa and substituting this
result in (13) yields

& = (ADiag(w) AT)"1(Axg — b)
and hence, we have from (12)

% =x9 — AT(ADiag(w)*AT) 1 (Axy — b). (14)

3.2 Generalized ratio adjustments
8.2.1 The generalized ratio model

In section 2.2.1 we considered, for the response pattern I in which only Turnover
was observed, a simple ratio adjustment which entailed the multiplication of

all imputed values by the ratio between the observed Turnover value and the

13



corresponding donor value. This ratio adjustments results in a record that
satisfies all constraints because the donor record did. It is, however, different
from a minimal adjustment approach because more variables are adjusted than
is necessary to satisfy the constraints. In particular, the value of Employees
is modified even if it does appear in any of the constraints. The motivation
for such a ratio-adjustment is to serve two purposes: adjustment to satisfy the
constraints and improving on the imputed values by taking assumed relations
between the variables into account. In this case it is assumed that all imputed
variables are related to Turnover and that since the donor Turnover value is
larger than the recipient value the imputed (donor) values can made to better
"fit” the recipient record by scaling them all down with the factor (Turnover
observed)/ (Turnover donor). As discussed in section 2.2.1 this simple approach
cannot, in general, be applied without consistency problems if there is more
than one variable observed and there are several ratio’s between observed and
donor variables to be considered simultaneously. In this section we develop
a generalization of this ratio adjustment that can take multiple ratio’s into
account and will lead to a consistent record even if the donor values or otherwise
imputed values are already violating edit-rules.

For what we call the generalized ratio (GR) adjustments, we consider the fol-
lowing adjustment model

T = 0,05

i.e. component-wise multiplicative adjustment. The J; will be set to 1 for
fixed variables which will usually include at least the observed ones and will be
unequal to 1 for all other variables including imputed variables that stand in
constraints as well as imputed variables that are not part of any constraint. In
concordance with the simple ratio adjustment we will try to find J; that are
as uniform as possible and also result in a consistent adjusted X-vector. This
clearly entails the simple ratio adjustment (with constant d;) as a special case.
To find optimal values for the J; we consider the following objective function

g
A(S) = %Z(aj _5)?, where §— % S0, (15)
Jj=1 J
where § is the vector collecting all §;’s, § = % >_;6; and J denotes all the
variables under consideration, fixed or free, rather than just the J adjustable
ones. The adjustment factors d; are obtained by minimizing (15) subject to the
edit constraints. Since 0; = Z;/x¢; and the x(; are fixed, this is a minimization
problem of the form (1) with constraints (2), i.e.

x = argmin A(x,x9) s.t. Ax <b.
X

We consider the loss function A to aim at a kind of most-uniform adjustment
solution that is a generalization of the simple ratio adjustments. For instance,
for response pattern (II), where there are three observed values that do not

14



share a common ratio towards the corresponding donor values, the generalized
ratio adjustments are given by the component-wise ratio’s that deviate least
from each other, while taking into account the three observed ones (with ¢’s
equal to 1) as well as the edit-constraints.

Uniform adjustment of all adjustable variables is a statistical assumption or a
‘soft’ constraint that the adjusted record does not necessarily have to satisfy, in
contrast to the ‘hard’ constraints expressed in the edit rules. A case in favour of
the generalized ratio method can be made if the differences between the values
in the donor and receptor records are assumed to be in the same direction and
of approximately the same size. This could be the case for donor imputation in
business statistics where all donor values are from the same donor record and
the donor and receptor are businesses with similar structure but different size.
The generalized ratio method seems to be less appropriate when the imputed
values are from different donors or when the the imputed values are model based
predictions because in such cases there is no reason that adjustments should be

in the same direction or similar in size.

The distance metrics considered for the minimum adjustment approaches in the
previous subsection can be characterized as decomposable, in the sense that the
overall distance between two vectors is given as a (weighted) sum of ‘distances’
between the corresponding components. The loss-function for the generalized
ratio adjustments is the empirical variance of the component-wise adjustments
which is a non-decomposable loss function, where each adjustment is dependent
on the other adjustments. A consequence is that a variable that is not part
of any constraint will retain the initial (donor) value under the minimum ad-
justment approach, but using generalized ratio adjustments these variables will
be adjusted because of the changes made to the variables that are constraint-
bound.

In the special case where a unit has no observed value at all, the minimum ad-
justment approach would lead to imputation of all the donor values without any
adjustment if they are consistent, whereas the most-uniform adjustments are
not well defined because some constraints towards observed values are necessary
in order to identify a unique solution.

3.2.2 Explicit solution for problems without inequality constraints

If the constraints are only equalities, an explicit solution for the ¢; will be given
below. For the more general problem with inequalities we have no tailor made
algorithm yet, but general optimization routines can be applied.

Let § be partitioned in a part containing the fixed values and a part containing

the free values so that we have § = (5?Tee,5]:fmed)T. Then we can write the

Lagrangian for A in (15) as

L=A(5)+a’(Ax—b) = A(§)+a’\ where A = Ax—b = A(x0 X frec) —b,
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« is the vector of Lagrange multipliers, and xg X ¢ denotes element-by-element
vector multiplication, i.e. Xg X 0free = (20,10 free,1, ...,xngdfme,J)T. Note that
as before the accounting matrix A, and the corresponding vectors x, xo and
d ree all pertain to the adjustable variables whereas the ¢ in A(J) includes all
d0;’s, either fixed or free.

Now, define P = 1.5 — 1JX11§X1/J/, where [ is the identity matrix and 1 a
vector with ones and let W be the J x (J’ — J)-matrix whose elements are all

given by —1/J'. Then, we can express the derivative of L w.r.t. dsyce as

OL)36 tree = ONJDS pree + (AT N) /06 tree = Pl ree + Witizea + ZT ar, (16)

where
ai1To,1 -+ AK1%0,1
7T _ a12To2 -+ QK2T0,2
aijro,Jg - GKJTO.J

The derivative of L w.r.t. the Lagrange multipliers a can be written as
OL/0a = 0(a’'\) /0 = Zbfree — b (17)
By setting (16) to zero we obtain
Sree = —P T (Wipipea + Z7 ). (18)

Substituting the expression (18) for e into (17) and setting the resulting
equation to zero yields first o and then d,¢. as follows

a=—(ZP'ZT)"Y(b — ZP7'W4 izeq)
(5free = —P71W5fized + PleT(ZpilzT)il(b - ZPilW(Sfized)

4 Example revisited

All the adjustments methods (LS, WLS, KL and GR) have been applied to
the example record in Table 1. For the WLS method we used as weights the
inverse of xy so that the relative differences between x and xy are minimized
and the adjustments are proportional to the components of xy. For this choice
of weights, the KL.- and WLS-methods lead to results that are equal up to the
first decimal. The results for both response patterns are given in Table 2. The
observed values are treated as fixed and shown in bold, the imputed values are
adjustable.

For both response patterns, the LS adjustment procedure leads to one negative
value (for Turnover other) which is not acceptable (Table 2). Therefore the
LS-procedure was run again with a non-negativity constraint added for the
variable Turnover other. This results simply in a zero for that variable and a
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value of 950 for Turnover main to ensure that Turnover = Turnover main +
Turnover other. Without the non-negativity constraint, the LS-results clearly
show that for variables that are part of the same constraints (in this case the
pairs of variables x3, x4 and xg, x7 that are both appearing in one constraint
only), the adjustments are equal: -40 for x3, x4 and -16 for xg, x7. Total
costs (xg) is part of two constraints and therefore the total adjustment to this
variable consists of two additive components. One component to adjust to
the constraint al:xi- x5+ xg= 0 (Profit = Turnover — Total Costs) and one
component to adjust to a8: xs- x¢- x7= 0 (Total Costs = Wages + Other
costs). For response pattern (I), the first component is minus 48 - which is also
the single adjustment component for Profit - and the second component is 16
— which is also the single adjustment component for Wages and Other costs
(with opposite sign). These two components add up to the adjustment of -32.

The results for the WLS/KL solution show that for this weighting scheme the
adjustments are larger, in absolute value, for large values of the imputed vari-
ables than for smaller ones. In particular, the adjustment to Turnover other
is only -2.3 - so that no negative adjusted value results in this case - whereas
the adjustment to Turnover main is 77.7. The multiplicative nature of these
adjustments (as KL-type adjustments) also clearly shows since the adjustment
factor for both these variables is 0.92 (for both response patterns). The adjust-
ment factor for Wages and Other costs in response pattern (I) is also equal (to
0.94) because these variables are in the same single constraint and so the ratio
between these variables is unaffected by this adjustment. However the ratio of
each of these variables to Total Costs is not unaffected because Total Costs has
a different sign in the constraint a8 and, moreover, Total Costs is also part of
constraint al so that it is subject to two adjustment factors.

Table 2. Imputation and adjustment of business record in Table 1. DI: Direct
partial donor imputation without adjustment; LS: Minimum Least-squares ad-
Justments; WLS: Minimum weighted least-squares adjustments; KL: Minimum

Kullback-Leibler divergence adjustments; GR: Generalized ratio adjustments.

Response (1) Response (1)
Variable DI| LS| WLS/KL | GR| DI| LS| WLS/KL | GR
X1 330 | 282 291 | 304 | 330 | 260 249 | 239
X2 20 20 20 18 25 25 25 25
X3 1000 | 960 922 | 922 | 1000 | 960 922 | 921
X4 30| -10 28 28 30| -10 28 29
X5 950 | 950 950 | 950 | 950 | 950 950 | 950
X6 500 | 484 470 | 461 | 550 | 550 550 | 550
X7 200 | 184 188 | 184 | 200 | 140 151 | 161
X8 700 | 668 658 | 646 | 700 | 690 701 | 711

As expected, the generalized ratio adjustments reduce to a global proportional
adjustment of all the imputed values by a ratio of 0.922 (=950/1030) for re-
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sponse pattern (I), including the variable Employee. This is a main difference
from the minimum-adjustment methods that are based on decomposable loss
functions. For response pattern (II), the GR adjustments are closer to the
WLS/KL solution than to the LS solution.

Table 3. Criterion values for the three adjustment methods.

Loss function value
Method LS WLS GR
LS 20925 78.0 0.1434
WLS/KL 23976 50.6 0.0276
GR 25090 51.6 0.0270

In table 3 we listed the values of the loss functions for the solutions of the dif-
ferent adjustment methods. For the (weighted) least squares loss function we
actually took 2 times the loss function value such that it equals the (weighted)
sum of squares. For each column in table 3, the smallest values are in the diag-
onal cells, meaning that each method minimizes its corresponding loss function,
as it should be. For all three loss functions, it appears that the differences be-
tween the generalized ratio adjustments and the WLS/KL solution are smaller
than the differences between those two solutions and the LS solution. For in-
stance, the empirical variance of the multiplicative factors (i.e. the loss function
A) is 0.0270 by the GR adjustments and 0.0276 for the WLS/KL solution, but
is increased to 0.1434 for the LS solution. A similar large increase in the loss
function value of the LS solution occurs for the WLS loss function. For the LS
loss function, the differences between the three methods are not so pronounced.

5 Discussion

Imputation is generally used as a method to compensate for partially missing
values. Often, especially in structural business data, the data have to satisfy
many carefully specified edit-rules, derived from logical relations or accounting
equations. Traditional approaches to imputation can not handle such edit-rules
at the same time and, as a consequence, inconsistencies will arise in the imputed
micro-data. Ad-hoc post-imputation adjustments, often applied in a somewhat
arbitrary sequence, are not only undesirable in theory, but can also be tedious
to implement. Using the edit-rules to adjust the imputed records such that
they simultaneously conform to all edit-rules is a more satisfactory approach.

In this paper we have formulated an optimization approach to solve the simul-
taneous adjustment problem. Two variations of the optimization criterion have
been considered. The first one seeks to minimize the adjustments needed to
ensure consistency. In this approach only variables that appear in edit-rules
will be adjusted because other variables will not cause inconsistency problems.
The second is called the “generalized ratio” approach. In this approach all im-
puted values are adjusted and the adjustments are as uniform across variables
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as possible. The inconsistency is seen as an indication that there are system-
atic differences between the donor values and the observed values and it may
therefore be plausible to adjust all imputed variables.

The optimization approach to the inconsistency problem provides a general
methodology that extends beyond the traditional single-constraint adjustment
methods such as prorating. All constraints are handled simultaneously and, if
variables appear in more than one constraint then they are adjusted according
to all of them. Besides being an optimal method according to the chosen dis-
tance metric or loss function, this simultaneous approach also has the practical
advantage that there is no need to specify the order in which the constraints

are to be applied.

For the minimum adjustment approach several distance metrics have been anal-
ysed. It is shown that (weighted) least-squares loss function leads to additive
adjustments and that minimizing the Kullback-Leibler information criterion
leads to multiplicative adjustments. It is also shown that for a specific choice
of weights the WLS solution is an approximation to the KL solution.

When the statistical assumptions underlying the generalized ratio method are
met, we expect similar results of multiplicative adjustments by the minimum
adjustment approach and by the generalized ratio method as far as the variables
that appear in the constrained are considered. However, the GR method also
adjusts other imputed variables that are not in the constraints, whereas the
minimimal adjustment methods leave these variables unchanged. Adjusting all
imputed values can be motivated, in the case of donor imputation, by assuming
that the differences between the values in the donor and receptor records are
in the same direction and of approximately the same size. This could be the
case for donor imputation in business statistics where all donor values are from
the same donor record and the donor and receptor are businesses with similar
structure but different size. The generalized ratio method seems to be less
appropriate when the imputed values are from different donors or when the
imputed values are model based predictions because in such cases there is no
reason that adjustments should be in the same direction or similar in size.
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Appendix A. The successive projection algorithm

In this appendix we briefly review an algorithm that can be used to solve the
optimization problem that was formulated in section 2.3 as:

x = arg min D(x, Xq) (19)

st. Ax <b,

with D(x,xp) a convex function measuring the distance (or deviance) between
x and xg and Ax < b representing linear equality and inequality constraints.
This convex optimization problem was solved explicitly in section 3.1.4 if the
objective function is the (weighted) least squares function and there are only
equality constraints. For more general problems when D is any convex function
and there are also inequality constraints several optimization methods can be
used. In the remainder of this appendix we will give some details of applying a
general iterative approach, referred to as the Successive Projection Algorithm
(SPA), to the distance functions considered in this paper. This algorithm is
easy to implement and contains as a special case the — among survey methodol-
ogists well known — Iterative Proportional Fitting (IPF) algorithm (also known
as Raking) for adjusting contingency tables to new margins. Algorithms of this
type are extensively discussed in Censor and Zenios (1997) and some applica-
tions to adjustment problems are described in De Waal et al. (2011).

For the convex optimization problems considered here, we need not solve the
primal problem (19) directly, we can also solve the primal problem by solving
the dual problem first, which in our applications turns out to lead to a par-
ticularly simple algorithm. The dual function associated with the Lagrangian
L(x, ) for the problem (19) is obtained by minimizing the Lagrangian w.r.t.
x and substituting the resulting value for x, which is a function of a, back into
the Lagrangian. Thus we have for the dual function

g(@) = L(x(a), @) (20)

with x(a) = argminyk L(x, ). The dual function g(e) is concave. For the
convex optimization problems with linear constraints considered here, the op-
timal value & for av can be found by maximizing the dual function subject to
Qineg > 0 (see, e.g. Boyd and Vandenberghe, 2004, ch. 5). If there are no
inequality constraints this will be an unconstrained maximization which can be
performed by solving ¢'(a) = L' (x(ax), @) = 0. For more general cases we will
need to solve the constrained dual problem
ma%imize g(a) (21)
subject to  Qtipeq > 0
In either case, when an optimal value & has been found, the optimum value for
x can be obtained from X = x(&).
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The SPA uses a coordinate ascent method to maximize the dual function. This
means that an iterative method is used that increases the dual function by
successively changing one of the components of the dual vector at a time. If all
components are updated one iteration is completed and a new one is started.
After each change to the dual vector, the x-vector will be updated. Let o,
denote the value of the k-th dual variable at iteration t, after it has been
updated. Furthermore, let the entire dual vector at iteration t after this k-th
updating be denoted by

th _ (.t t -1 t—1\T
Q" = (A, ey Oy Qs )

Then the k-th component and the whole x-vector are updated according to the
following general scheme

t—1 t—1
oy — update: ol = arg max,, glad, ..ok, oy, i1y Q)
if k€l then ap>0 (22)
t,k

x —update:  x** = argminy L(x, a'*) = x(a'*)

The algorithm is initialized by setting x equal to xg which corresponds, for the
adjustment models considered here, to initializing a as a®? = 0 (compare (7),
(8), (11)).

The iterations (22) can be described as follows. First the k-th coordinate of
the current dual vector is updated by maximizing the dual function over this
coordinate to arrive at a new dual vector a’* wherein the k-th component has
been changed so as to increase the dual function (hence, coordinate ascent).
Then, if the k-th constraint is an inequality constraint, we truncate a}; to zero
if a negative value would otherwise result. Finally, we update the whole x-vector
using the function x(a) and the updated dual vector.

To implement the maximization step, we consider the gradient of g(a). For
general D this gradient can be expressed as (using the chain rule)

Jd(a) = D;(a)(x(a),xo)(‘)x(a)/aa + (Ax(a) — b) + ATadx(a) /0
= [D;(a) (x(a),x0) + ATa]ox(a)/0a + Ax(a) — b
= Ax(a) — b, (23)

where the last line follows from the previous one because the term within square
brackets is the gradient L. (x, ) evaluated at x(a) and hence zero by the
definition of x(e). Thus, an unconstrained maximum in the k-th coordinate of
the dual function occurs when oy, is such that the residual of the corresponding
constraint is zero, obtained by solving g, = 0 for aj, which yields the value
for af in (22). For inequality constraints the dual function is maximized over
non-negative oy and the residuals need not to be zero.

Using these results, we will now specialize the general algorithmic scheme (22)
to algorithms for the (weighted) least squares and Kullback-Leibler discrepancy

functions.
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SPA for least squares. For the least squares criterion we have, from ad-

tk—1

justment model (7), that the function x(«) evaluated in « is given by

x(abF 1) = xo — Z;:ll ajaf — Z{ik alaf_l. So, if we change 042_1 to af to

tk

obtain a*", we have

x(a) = x(a* ) — ay(af — af ), (24)

which becomes the x-update for the least squares case of the general algorithm
(22). With this expression for x(a!*), solving g}, = 0 amounts to

o =al !+ (alx(a'*~1) —by)/al ay, (25)

which becomes the ai-update for the least squares case.

For equality constraints this algorithm can be simplified because the constraint
oy, > 0 of (22) does not apply and we can substitute af, — az_l obtained from
(25) into the x-updating equation (24), resulting in the single-line algorithm

bk — X(Ott’k) — bkl _ ak(agxt,kfl _ bk)/agak; (26)

showing that for equality constraints the dual variables need not be calculated
to find the optimal adjusted x-vector. They could still be calculated however,
since, as parameters of the adjustment model, they may be of interest them-
selves. For inequality constraints the x-update is also given by (26) for positive
ot and is given by (24) with af = 0 otherwise.

Notice that a positive dual variable for an inequality constraint can only arise
if at some time during the iterations this constraint is violated, leading to
a positive residual, say, afxt’k_1 — b > 0. The updated value of the dual
variable, a}; will then set the residual to zero so that the constraint is satisfied

tk — agxt”’“_1 — a%ak(a;‘gxt’k_l — bk)/a;‘gak = b,. Now,

with equality, since agx
suppose that a positive oy value occurs at iteration ¢, then the contribution
to the adjustment by the corresponding constraint is given by —aka};. Next,
suppose that at iteration ¢ + 1 the constraint has become satisfied with slack,
so that the residual is strictly smaller than zero, due to changes to x that have

occurred in between. The dual variable will still be updated, by (25), and the

corresponding updated contribution to the adjustment is given by xt1F —x =
—akafjl, where 0 < 04’,;“ < al by (25). In other words, on account of the k-th

t+1k is moved back closer towards to xo compared to x*. This

constraint, x
shows that a simpler intuitive approach that only adjusts x when an inequality
constraint is violated will not always lead to an optimal solution, because the
possibility of improving the objective function of the minimization problem by
‘removing’ some of the adjustment made in previous iterations (with a slack in

the current iteration) is not exploited.

Using the adjustment model (8) for x(a), it is straightforward to show that the
SPA for weighted least squares amounts to replacing a;jfak by a{Diag(w)*lak
in (25) and premultiplying ay(af — at™!) by Diag(w)~! in (24).
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SPA for the KL criterion. For the KL-divergence we have, from adjustment

model (11), that the function x(c) evaluated at a>*~! is given by x(abF~1) =
xp X Hé:ll exp(—ajal) x [, exp(—ayai~1). So, if we change k! to af to
obtain a*, we have

x(ab*) = x(a!*71) x exp{ak(a',;_l —ah)}, (27)

with x and [] denoting element-wise products and ‘exp’ denoting element-wize
exponentiation. Expression (27) becomes the x-update equation for the KL-
case of the general algorithm (22). Contrary to the least squares case, there
is now no explicit solution of g; = 0 for ay in general (but see below for an
important exception). However, we can increase the dual function by taking a

uni-dimensional Newton step instead, i.e. by updating oy according to

af = aj" = gi(@* ) /gl (et (28)

= ;! + (agx(a"*) — by)/aj Diag(x"*)ay,

bLh=1) the first and second derivatives of the dual

with g (o bLh=1)

and g (o
function with respect to the k-th component of a®*~!. For equality constraints
we can, just as in the least squares case, simplify this algorithm by substituting

ot — al~! obtained from (28) into the x-updating equation (27).

An explicit solution of g = 0 can be obtained if the elements of aj, are all either
one or zero. This corresponds to the case where the constraint k prescribes that
the sum of a number of adjustable variables is equal to a constant by, which
may be an unadjustable variable or a function of unadjustable variables. We
will denote the sum of the x-variables corresponding to constraint k& by X,
that is X,x = alx. Then, using (23) and (27) we can write

t,k

k) = agx(at) = by = agx(a"* 1) x explag(af ! — af)} — by =0,

g

and hence, we obtain for the aj-update for this specific kind of constraints

_ by
exp(ai) = exp(a',; l)Xt’kfl . (29)
+k
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As before, for equality constraints we can obtain a single-line algorithm by
combining (29) and (27) resulting in the updating equation

Sk k=1 by,
| Xt,kfl’

+k

for ag; =1
=z, for ap; = 0.

This is the same proportional adjustment as used by the IPF-algorithm that,
when applied to a rectangular contingency table, adjust the counts in the table
to new row- and column-totals by multiplying, successively, the counts in each
row by a factor such that they add up to the new row-total and similarly for the
columns. Of course, the SPA for the Kullback-Leibler criterion is much more

general than this special case because the SPA

e handles more general data structures rather than only square tables

e it is not limited to constraint matrices with elements all equal to either

Zero or one

e is designed to handle inequality constraints as well as equations.
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