Automatic editin
soft edits

Sander Scholtus

The views expressed in this paper are those of the author(s)
and do not necessarily reflect the policies of Statistics Netherlands

Discussion paper (201130)

cih|

E Statistics Netherlands The Hague/Heerlen, 2011

o (0.0)
blank
2010-2011
2010/20Mm
2010/'11
2008/'09-
2010/'11

Explanation of symbols

= data not available
= provisional figure
= revised provisional figure (but not definite)

publication prohibited (confidential figure)
= nil or less than half of unit concerned

= (between two figures) inclusive

= less than half of unit concerned

=not applicable

= 2010 to 201 inclusive
= average of 2010 up to and including 20m
= crop year, financial year, school year etc. beginning in 2010 and ending in 201

= crop year, financial year, etc. 2008/°09 to 2010/"11 inclusive

Due to rounding, some totals may not correspond with the sum of the separate figures.

Publisher Where to order
Statistics Netherlands E-mail: verkoop@cbs.nl
Henri Faasdreef 312 Telefax +31 45 570 62 68
2492 JP The Hague

Internet
Prepress www.cbs.nl
Statistics Netherlands
Grafimedia

ISSN: 1572-0314
Cover

Teldesign, Rotterdam

Information

Telephone +31 88 570 70 70 © Statistics Netherlands,

Telefax 4317033759 94 The Hague/Heerlen, 201.

Via contact form: Reproduction is permitted.
www.cbs.nl/information ‘Statistics Netherlands’ must be quoted as source.

60083201130 X-10

Automatic editing with soft edits

Sander Scholtus

Summary: Current algorithms for automatic editing used by National
Statistical Institutes are often based on the Fellegi-Holt paradigm. A con-
siderable limitation of these algorithms is that they treat all edits as hard
constraints. That is to say, an edit failure is always attributed to an error
in the data. In manual editing, however, subject-matter specialists also
make extensive use of soft edits, i.e. constraints that identify (combina-
tions of) values that are suspicious, but not necessarily incorrect. The
inability of automatic editing methods to handle soft edits partly explains
why many differences between manually edited and automatically edited
data are found in practice. The object of this paper is to present a new for-
mulation of the error localisation problem which can distinguish between
hard and soft edits. Moreover, it is shown how this problem may be solved
by an extended version of the error localisation algorithm of De Waal and
Quere (2003).

Keywords: automatic editing, Fellegi-Holt paradigm, branch-and-bound
algorithm, hard and soft edits, numerical data, categorical data

1 Introduction

An important part of every statistical process is data editing, i.e. detecting and cor-
recting errors and missing values in the collected data. National Statistical Institutes
(NSIs) have traditionally relied on manual editing, where the data is checked and, if
necessary, adjusted by subject-matter experts. Unfortunately, this approach can be very
time-consuming and expensive. In order to increase the efficiency of their statistical
processes, NSIs have been developing alternative methods, such as selective editing
and automatic editing. This paper focuses on the latter approach. We refer to De Waal
et al. (2011) and the references therein for a discussion of selective editing and other
forms of statistical data editing.

The goal of automatic editing is to accurately detect and correct errors and missing
values in a data file in a fully automated manner, i.e. without human intervention.
Provided that automatic editing leads to data of sufficient quality, it can be used as a
partial alternative to manual editing. We refer to De Waal and Coutinho (2005) and
De Waal et al. (2011) for an overview of current automatic editing techniques.

In practice, automatic editing implies that the data is made consistent with respect to a
set of constraints: the so-called edits. Examples of edits include:

Profit = Total Turnover — Total Costs (D)

and
Profit < 0.6 x Total Turnover. 2)

At Statistics Netherlands, the software package SLICE was developed for the auto-
matic editing of the structural business statistics; see De Waal (2005). SLICE edits a
record of data by solving two separate problems: first the error localisation problem,
i.e. determining which variables are erroneous or missing, and second the consistent
imputation problem, i.e. determining new values for these variables that satisfy all the
edits. The present paper mainly focuses on the error localisation problem.

Current algorithms for solving the error localisation problem at NSIs (including the
one used by SLICE) are often based on the Fellegi-Holt paradigm; see Fellegi and
Holt (1976). According to this paradigm, one tries to make a record satisfy all the
edits by changing the smallest possible number of original values. It is also possible to
distinguish between a priori suspicious and less suspicious values by associating a con-
fidence weight to each variable. According to the generalised Fellegi-Holt paradigm,
the error localisation problem is then solved by minimising the sum of the confidence
weights of the variables that have to be adjusted to satisfy all the edits.

Looking back at the two examples of edits given above, it is interesting to note a con-
ceptual difference between them. Edit (1) is an example of an edit that has to hold by
definition, so that every combination of values that fails this edit necessarily contains
an error. Edits of this type are commonly known as hard edits, fatal edits, or logical
edits. Edit (2), on the other hand, is an example of an edit that identifies combinations
of values that are implausible, but not necessarily incorrect. In this example, records
for which Profit is larger than 60% of Total Turnover are considered suspicious. How-
ever, it is conceivable that such a combination of values is occasionally correct. Edits

4

of this type, which do not identify errors with certainty, are known as soft edits or

query edits.

An important limitation of existing algorithms for automatic editing is that they neces-
sarily treat all edits as hard edits. That is to say, a failed edit is always attributed to an
error in the data. In manual editing, however, subject-matter specialists also make ex-
tensive use of soft edits. During automatic editing, these soft edits are either not used
at all, or else interpreted as hard edits. Both solutions are unsatisfactory, because in the
first case some errors may be missed during automatic editing, and in the second case
some correct values may be wrongfully identified as erroneous. In fact, the inability of
automatic editing methods to handle soft edits partly explains why many differences
between manually edited and automatically edited data are found in practice.

The object of this paper is to present a new formulation of the automatic error local-
isation problem which can distinguish between hard edits and soft edits. In addition,
the paper shows how the error localisation algorithm of SLICE can be adapted to solve
this new error localisation problem.

The remainder of this paper is organised as follows. Section 2 provides a brief sum-
mary of methods for solving the error localisation problem based on the Fellegi-Holt
paradigm. A distinction between hard and soft edits is introduced in the error locali-
sation problem in Section 3. The next two sections extend the theory behind the error
localisation algorithm of SLICE to the case that not all edits have to be satisfied. Based
on these theoretical results, an algorithm that solves the error localisation problem for
hard and soft edits is introduced in Section 6. In Section 7, the new algorithm is il-
lustrated by means of two small examples. Section 8 briefly discusses the consistent
imputation problem for the case that not all soft edits have to be satisfied. Section 9
mentions the first experiences with a practical implementation of the new algorithm. A
more complex version of the error localisation problem, which can also take the sizes
of soft edit failures into account, is considered in Section 10. Finally, some concluding
remarks follow in Section 11.

2 Background

2.1 Edits

The problem to be discussed in this paper entails, in its most general form, the detec-
tion of erroneous and missing values in a record containing both categorical variables
(v1,...,vy) and numerical variables (xi,...,x,). These variables are supposed to sat-
isfy a set of restrictions (edits), each of which can be written in one of the following

forms:

vk IF (v, vm) €FFx - x EX (3)
THEN (x1,...,xp) € {®|axixi + -+ axpx, +bi > 0}

or

vk IF (vi,...,vm) EFFx - x EX 4)
THEN (xl,...,xp) S {)_c'\aklxl +-~-+akpxp+bk:0}.

In these expressions, F;‘ is a subset of D, the domain of allowed values for the cate-
gorical variable v;, and a;; and by are known constants.

A record (v(l)7 .. .,v(,)n,x(l), . ,x?,) is said to fail an edit if the categorical IF-condition
is true (i.e. v? €F }‘ for all j = 1,...,m), but the numerical THEN-condition is false

(i.e. either aklx(l) + akpxg + b <0or aklx? + akpxg + by # 0, depending on
the form of the edit). Otherwise, we say that the edit is satisfied by that record. It
should be noted that an edit is always satisfied by any record for which the categorical
IF-condition is false, regardless of the status of the numerical THEN-condition. A
record is called consistent if it satisfies every edit.

A categorical variable v; is said to be involved in an edit if and only if F J(‘ # D, since
any edit with F J!‘ = D is failed or satisfied regardless of the value of v;. In the same
way, a numerical variable x; is said to be involved in an edit if and only if a;; # 0.
We may assume that F’ ;‘ # 0; a degenerate edit with F' }‘ = 0 is never failed, and hence
it can be discarded with no loss of information. The same holds for any edit with a
numerical THEN-condition that is always true.

Two important special cases of (3) and (4) are edits that involve only categorical or
only numerical variables. A purely categorical edit has the following form:

v : IF (v1,...,vm) € Ff x .- x FX THEN 0. 5)
Edit (5) is failed by each record for which the categorical condition is true. A purely
numerical edit can be written as

l[/k: (xl,...,xp)e{)_c’|ak1x1—i—-~+akpxp+bk20} (6)

or

l[/ki (xl,...,xp) S {)_c’|ak1x1—I—---—l—akpxp—l—bk:O}. @)

Edits (6) and (7) are failed by each record for which the numerical conditions are false.
Edits (1) and (2) above are examples of purely numerical edits. A simple example of
a purely categorical edit is:

IF (Age, Marital Status) € {< 16} x {Married} THEN 0.

This edit states that persons aged less than 16 years cannot be married. Finally, an
example of a mixed edit is:

IF Age € {< 12} THEN Income = 0.

According to this edit, persons aged less than 12 years do not have a positive income.

Most edits that occur in practice can be expressed in one of the forms (3) and (4),
although this may require some rewriting and possibly the introduction of auxiliary
variables; see De Waal (2005) for more details.

2.2 The Error Localisation Problem

For a given record (v(l), oW x(l), . ,xg) and a collection of edits, it is straightforward

9 Vmo

to verify which values in the record are missing and whether any of the edits are failed.

However, given that some of the edits are failed, solving the error localisation problem
— i.e. determining which values in the record are causing the edit failures — is much
less straightforward. On the one hand, most edits involve more than one variable, and
on the other hand, most variables are involved in more than one edit.

In order to solve the error localisation problem automatically, we have to adopt a for-
mal strategy for finding erroneous values. According to the well-known (generalised)
Fellegi-Holt paradigm, one should search for a subset of the variables which (a) can
be imputed such that the adjusted record satisfies all edits, and (b) minimises the fol-
lowing target function:

m)4
Dpy =Y wi§+ Y wiy]. ®)
=1 =1

Here, WJC- and WIJV denote the confidence weights of the categorical and numerical vari-
ables, respectively. The target variables y]C- and yIJV describe the structure of the solution:

¥ = 1 if v; is to be imputed
/ 0 otherwise

and

W 1 if x; is to be imputed
/ 0 otherwise

Since variables with missing values have to be imputed with certainty, we set yjc. or y’jv

equal to 1 when v?- or x? is missing.

When trying to solve the error localisation problem, we have to be careful that by im-
puting a variable to resolve one edit failure, we do not cause other, previously satisfied
edits to become failed. In fact, one might be tempted to argue as follows: it is clear
that a subset of the variables can only be a solution to the error localisation problem
if every failed edit involves at least one of these variables, i.e. if the failed edits are
“covered” by these variables, so, let us choose the minimal subset with this property.
Unfortunately, this condition is necessary but not sufficient for a subset of the variables
to be a solution to the error localisation problem.

Consider, for instance, the following two numerical edits: x; > x, and x, > x3. The
unedited record (x9,x9,x3) = (4,5,6) fails both edits. Since x is involved in both edits
—that is, the failed edits are “covered” by x, —, one might try to obtain consistency with
respect to the edits by changing only the value of x;. This turns out to be impossible,
because the imputed value would have to satisfy 4 > x; and xp > 6.

The first logically sound approach to solving the error localisation problem was given
by Fellegi and Holt (1976). They showed that, in order to determine whether a set of
variables can be imputed to satisfy all edits simultaneously, it is necessary to derive
so-called essentially new implied edits from the original set of edits. By adding these
implied edits to the original set of edits, one obtains the so-called complete set of edits.
For this larger set of edits, it does hold that any subset of the variables which “covers”
all failed edits is a feasible solution to the error localisation problem.

In the example above, the complete set of edits consists of the original edits and the
essentially new implied edit x; > x3. Since the latter edit is also failed and x; is not in-
volved in this edit, it is clear that imputing only x, does not solve the error localisation

problem. On the other hand, the three failed edits are “covered” by {x;,x3}, and it is
easy to see that imputing new values for x; and x3 is indeed a feasible solution to the
error localisation problem. In fact, imputing any combination of values with x; > 5
and x3 < 5 leads to a consistent record in this example.

Fellegi and Holt (1976) also proposed a method to derive the complete set of edits
from the original set of edits. Having obtained the complete set of edits, the error
localisation problem can be solved straightforwardly for any record, by determining
which edits are failed and finding the minimal subset of the variables that “covers”
these edits. Unfortunately, the number of essentially new implied edits can be ex-
tremely large in practice, which means that deriving the complete set of edits is not
always computationally feasible.

The next subsection focuses on a different error localisation algorithm, due to De Waal
and Quere (2003), which makes use of implied edits without deriving the complete set
of edits. This algorithm has been implemented in the software package SLICE and has
been found to be computationally feasible in practice at Statistics Netherlands.

2.3 The Branch-and-Bound Algorithm of SLICE

A detailed description of the error localisation algorithm implemented in SLICE can
be found in De Waal and Quere (2003), De Waal (2003), and De Waal et al. (2011).
Here, we only discuss properties of the algorithm that will be used later in this paper.

SLICE uses a branch-and-bound algorithm to solve the error localisation problem ac-
cording to the Fellegi-Holt paradigm. For each record, the algorithm sets up a binary
tree; see Figure 1 for an example. In the root node of the tree, we start with the original
set of edits and we select one of the variables. From the root node, two branches are
added to the tree. In the first branch, the original value of the selected variable in the
record is assumed to be correct, and in the second branch, this value is assumed to be
erroneous. Both assumptions correspond with a transformation of the set of edits, to
be described below, after which the selected variable is not involved in the edits any-
more. We say that the selected variable has been treated. Next, one of the remaining
variables is selected and the operation is repeated.

Once all variables have been treated, the algorithm reaches an end node of the tree. It
is seen that, together, the end nodes of the binary tree enumerate all possible choices of
erroneous subsets of variables. The transformed set of edits corresponding to an end
node does not involve any variables, so it must either be empty or consist of elementary
relations such as 1 > 0 and —1 > 0. The latter example shows that some of these
elementary relations may be self-contradicting. As we will discuss below, it is possible
to satisfy the original edits by only imputing the variables that have been considered
erroneous in the branch leading to an end node, if and only if the transformed set of
edits for that end node contains no self-contradicting relations. Hence, all feasible
solutions to the error localisation problem may be identified by generating all end
nodes of the binary tree.

Since we are only interested in feasible solutions that minimise target function (8), we
may in fact reduce the amount of work by pruning a branch of the tree as soon as it

eliminate x,

eliminate x, eliminate x,

Figure 1: The branch-and-bound algorithm as a binary tree.

becomes clear that it does not lead to end nodes that correspond with feasible solutions,
or only to end nodes that correspond with solutions for which the value of (8) exceeds
that of the best solution found so far. This is the “bound” part of the branch-and-bound
algorithm. In addition, the depth of the tree can be reduced by observing that if the
record at hand contains missing values, we may immediately assume that all variables
with missing values are erroneous.

We now describe the transformations of the set of edits that occur, depending on
whether a variable is assumed to be correct or erroneous. A variable that is assumed
to be correct is removed from the edits by simply substituting the original value from
the record in the edits. This is called fixing a variable to its original value. A variable
that is assumed to be erroneous is removed from the edits by a more complex opera-
tion, called eliminating a variable from the edits. Numerical variables and categorical
variables are eliminated by two different, but equivalent methods.

To eliminate a numerical variable, say x, from a set of edits having the general forms
(3) and (4), we generate implied edits by considering all pairs of edits y* and y’
that involve x,. We first check whether F;/ N F]f Z%Qforall j=1,...,m;if any of these
intersections yields the empty set, then the pair y* and ¥’ does not generate an implied
edit. If the numerical THEN-condition of one of the edits, say y*, is an equality, then
this equality may be rewritten as:

1
Xg = _; (aslxl + o Asg—1Xg—1 T As g1 X1+ FagpXp + bS) . &)
sg

The numerical THEN-condition of the implied edit is generated by substituting this
expression for x, in the THEN-condition of y'. The categorical IF-condition of the
implied edit is found by taking the non-empty intersections F; = Fi NF j’ for j =
1,...,m.

If the numerical THEN-conditions of y* and y’ are both inequalities, the algorithm
uses a technique called Fourier-Motzkin elimination to generate an implied edit. We

first check whether the coefficients of x, in the two edits have opposite signs, that is
asgarg < 0. Otherwise, this pair of edits does not generate an implied edit. It can

9

be assumed without loss of generality that a;, < 0 and a, > 0. This means that the
numerical condition of y* can be written as an upper bound on x,, given the values of
the other variables:

1
Xg < “ae (agixi+--- T a5 g-1Xg—1 T Qs g41Xg41 + -+ AspXp + by) . (10)
—ag

Similarly, the numerical condition of ' can be written as a lower bound on x,:

1

Xg = (anxi+- +ag1Xg-1+argi1Xgr1+- - Fapxp+b). (1)

Combining the two bounds and removing x,, we obtain the implicit condition

a (atlxl + g 1Xg—1 Fargr1Xgr1 o FArpXp +bt)
g
1
< p (aslxl + A 1Xg—1 t A5 g1 Xg 41 0 F AspXp T+ bs) >
—Usg

which can be written in the general form of a numerical condition as
(X1,...,xp) € {)_c’\a“fxl —i—---—i—a;xp—i—b* > 0}

with a}k- = ayq05j — asga;j and b* = a;4bs — aseb;. This becomes the numerical THEN-
condition of the implied edit. Like before, the categorical IF-condition of the implied
edit consists of the non-empty intersections F;" = F; N F /[. That is to say, in this case
the implied edit generated from y* and v/ is

VA IF (Viy.ooyVm) EF X - X F,, (12)
THEN (xi,...,x,) € {¥|ajxi+ -+ dapx,+b" >0}
This edit does not involve x,, since az =0.
In this manner, implied edits are generated from all pairs of edits that involve x,. These
edits are added to all original edits that do not involve x,, to find the transformed set
of edits obtained by eliminating x,.

If x, happens to be involved in a purely numerical equality, i.e. an edit of the form (7),
then De Waal and Quere (2003) suggest an alternative technique called the equality
elimination rule. According to this rule, the purely numerical equality is rewritten
as (9) and this expression is substituted in all other edits that involve x,. The other
edits are not combined pairwise. Obviously, the equality elimination rule leads to less
implied edits. Unfortunately, we are not able to use it in our new algorithm, as will be
seen later.

For the elimination of categorical variables, De Waal and Quere (2003) make the as-
sumption that these variables are only selected when all numerical variables have been
either eliminated or fixed. This assumption simplifies the algorithm considerably. It
implies that categorical variables are always eliminated from purely categorical edits
of the form (5). To eliminate a categorical variable, say v,, from a set of edits of the
form (5), we use a technique that was first described by Fellegi and Holt (1976).

Consider all minimal sets of edits 7" with the following properties:

FA(T)=|JF; =D, (13)
keT

10

and

FH(T)=(Ff #0, j=1,....—1,g+1,...,m. (14)
keT

Here, by “minimal”” we mean that property (13) does not hold for any set 7’ C T. Each
of these minimal sets 7" generates an implied edit

IF (v1,...,vm) € F;(T) x --- x F(T) THEN 0, (15)

which does not involve v, because of property (13). These implied edits are added to
all original edits that do not involve vg, to find the transformed set of edits obtained by
eliminating vy.

A fundamental property of both elimination techniques, for numerical and categorical
variables, is exhibited by the following result.

Theorem 1 Consider a node in the binary tree with an associated set of edits ¥y and
let Vi be the index set of variables that have not been treated yet. Suppose that a
categorical or numerical variable with index g is eliminated or fixed to reach the next
node, with an associated set of edits V1, and define V| := Vy\ {g}. Then there exist
values uj for the variables with j € V| that satisfy all edits in V1, if and only if there
also exists a value ug such that the values uj for the variables with j € Vy satisfy all
edits in Py.

Proof See Theorem 8.1 in De Waal (2003) or Theorem 4.3 in De Waal et al. (2011). [J

The above-mentioned correspondence between end nodes without self-contradicting
elementary relations and feasible solutions to the error localisation problem follows
from a repeated application of this theorem; cf. De Waal (2003) or De Waal et al.
(2011).

3 An Error Localisation Problem with Hard and Soft Edits

In the formulation of the error localisation problem given in Section 2.2, which is
based on the Fellegi-Holt paradigm, it is tacitly assumed that all edits are hard edits.
Consequently, the only subsets of the variables that are considered as feasible solutions
to this problem, are those which can be imputed to make the record consistent with
respect to all edits. As mentioned in the introduction to this paper, this interpretation
of all edits as hard edits during automatic editing can lead to systematic differences
between automatic editing and manual editing, because it precludes a meaningful use
of soft edits. In this section, we suggest a new formulation of the error localisation
problem which distinguishes between hard and soft edits.

Let ¥ denote the set of edits to be used in the error localisation problem. We assume
that this set can be partitioned into two disjoint subsets: ¥ = Wy UWs. The edits in Wy
are hard edits, the edits in Wy are soft edits. From now on, a subset of the variables is
considered as a feasible solution to the error localisation problem, if it can be imputed
to produce a record that satisfies all edits in Wy. Moreover, we want to use the status
of the imputed record with respect to the edits in Wy as auxiliary information in the

11

choice of an optimal solution to the error localisation problem. This may be done by
adding a second term to (8).

To make this more precise, the objective of the new error localisation problem is to
find a subset of the variables which (a) can be imputed such that the adjusted record
satisfies all edits in Wy, and (b) minimises the following target function:

D:/’LDFH"’(I_)*)DSOﬂa (16)

where Dy, represents the costs associated with failed edits in Wg. The parameter
A € [0, 1] determines the relative contribution of both terms in (16). If the two terms
are to be considered equally important, we choose A = 1/2. The original Fellegi-
Holt paradigm is recovered as a special case by choosing A = 1. Thus, the new error
localisation problem can be seen as a generalisation of the old one.

In order to use (16) in practice, one has to choose an expression for Dy, ;. Probably
the easiest way to assign costs to failed soft edits, is to associate a fixed failure weight
s to each edit in Wy, and to define Dy, s, as the sum of the failure weights of the soft
edits that remain failed:

Ks
Dyosi = Y sizk, a7
k=1

with K the number of edits in Wg and

1 if the k™ soft edit is failed
k= .
0 otherwise

The failure weights might be chosen by subject-matter experts, analogously to the
confidence weights, to express the importance that is attached to different soft edits
from a subject-matter related point of view. Alternatively, the failure weights might be
based on the proportion of records that fail each soft edit in a historical data set which
has been edited manually.

A drawback of using fixed failure weights is that they do not take the size of the edit
failures into account: every record that fails a particular soft edit receives the same
contribution to Dy, f;, namely s;. This differs from the way soft edits are interpreted by
human editors. According to human editors, a failed soft edit points to a combination
of values that is suspicious, and the degree of suspicion depends heavily on the size of
the edit failure: a small failure is ignored more easily than a large failure. Hence, it
seems appropriate to take the size of the edit failures into account in Dy, ;. This point
will be taken up in Section 10 and an appendix to this paper, since it leads to some
additional difficulties. For now, we assume that expression (17) is used in the error
localisation problem.

We should mention that taking soft restrictions into account by adding an appropriate
term to a target function is a commonly used technique in mathematical optimisation.
To give an example, it has been applied to the so-called benchmarking problem for
national accounts, which can be solved by minimising a quadratic target function; see,
for instance, Magnus et al. (2000) and Bikker et al. (2010). To our best knowledge,
this approach has not been applied previously in the context of the error localisation
problem.

12

4 A Short Theory of Edit Failures, Part One: Numerical Data

Having formulated a new error localisation problem, we will now show how this
problem may be solved by an adapted version of the branch-and-bound algorithm of
De Waal and Quere (2003). To do this, we first need to derive a similar result to Theo-
rem 1 in the case that some of the edits may be failed. In particular, we want to answer
the following question: if certain implied edits are failed, what does this say about the
original edits? For convenience, we first examine the case of purely numerical data.

The next section examines the case of purely categorical and mixed data.

In the case of purely numerical data, all edits take the form (6) or (7). Moreover, the
implied edit (12) reduces to

v (x1,..,xp) € {Rlaixi + - +apx, +b" >0} (18)

It is a fundamental property of Fourier-Motzkin elimination that a given set of values
for x1,...,Xg_1,Xg41,...,%, satisfies the implied edit (18), if and only if there exists a
value for x, which, together with the other values, satisfies both edits (10) and (11).
Actually, this property forms the basis for the proof of Theorem 1. Looking at this
equivalence from another point of view, if the values of xi,...,x, 1,Xg¢1,...,X, dO
not satisfy the implied edit (18), then it holds that

1

(arx1 4+ ag1xg1+argi1Xg41 + -+ apxy +by)

> _;sg (asix;+--- +asg-1Xg—1 A5 gr1Xgy1 + -+ aspXp + by),
and hence it is impossible to satisfy (10) and (11) simultaneously. However, it is still
possible in this case to find a value for x, that satisfies either edit (10) or edit (11). The
same holds when the implied edit is generated by eliminating x, from a combination
of an equality and another edit. While this observation is more or less trivial, it forms
the basis for the proof of Theorem 2 below.

Suppose that, at some point during an execution of the branch-and-bound algorithm
of De Waal and Quere (2003), ¢ numerical variables have been treated (i.e. either
eliminated or fixed), and suppose that the equality elimination rule has not been used.
We denote the current set of edits by ¥, and the edits in this set by lllc]; . By definition,
Yo = W, the original set of edits. It is possible to associate with each current edit
1//5 an index set B’;, which contains the indices of all the original edits that have been
used, directly or indirectly, to derive this edit. In fact, B’; can be defined recursively as

follows:

e For an original edit Y, we define BY := {k}.

e For an edit l//tllC which is derived from one other edit ‘//51—1’ by fixing a variable to
its original value or by simply copying the edit, we define B’; = quil.

e For an edit l//f; which is derived by eliminating a variable from two other edits
k.
l[/;_] and y/;_l, we define B, := BZ—] UB;_I.

13

A set B is called a representing set of a collection of sets B’;l, ,B’;’, if it contains at

least one element from each of B’;l, ,B’;’, see, for instance, Mirsky (1971, p. 25). It
should be noted that, in our case, the elements in a representing set B refer to a subset

of Wy, that is, a subset of the original edits.

We can now formulate the following theorem.

Theorem 2 Suppose that g numerical variables have been treated (without using the
equality elimination rule) and that the current set of numerical edits can be partitioned

as¥V, = ‘P[(II) U ‘P,(Iz), where the edits in ‘P,(Il) are satisfied by the original values of the

p — q remaining variables, and the edits in ‘P,(,z) are failed. Let B be a representing

set of the index sets B’; for all l//g € ‘Péz)

variables which, together with the original values of the other variables, satisfy all

. Then there exist values for the eliminated
original edits except those in B.

Proof The proof of this theorem is given in Appendix A.1. U

The following example demonstrates the use of Theorem 2.

Example
Suppose that there are three variables (x;,x7,x3) that should satisfy the following eight
edits:

l[/(; Doxttxtxy = 20
l[/g : X1 —Xp > 3
l[/g : —X1+x2 > —6
lpg : —X1+x3 > 5
lllg : x1—x3 > -—10
l[/g : Xy > 0
I[/g : X > 0
v x3 > 0

The record (x?,x9,x9) = (10,1, —3) fails the edits w3, g, yg, and y. Upon elimi-
nating x| from the original set of edits, we find the following updated set of edits:

vl 2n-x3 > —17 (Bl ={1,2})
vl 20 +x3 > 14 (B2 ={1,3})
Vi x+2x > 25 (B3 ={1,4})
Vi —x-2x > =30 (B ={1,5})
vy —xp—x3 > =20 (B3 ={1,6})
v 0oz 0 (B={7)

v » o> 0 (B]={8}

v 0 > -3 (B}={23})
v —X2+x3 > 8 (B} ={2,4})
y0: x—x3 > —16 (B}O ={3,5})
it 0 > -5 (BI'={45}
i n > -6 (B2={3,6})
v x3 > 5 (B3 = {4,6})

The index set B’f from Theorem 2 is displayed in brackets next to each edit. Note that
the edits ng, ey 1//113 are generated because we do not use the equality elimination rule.

14

By substituting the original values of x, and x3 in the current set of edits, we see that
vi, vi, v, y), and v} are failed. The set B = {1,4,8} is a representing set for the
index sets B%, B?, BZ, B?, and BP. Hence, according to Theorem 2, there exists a value
for x; which, together with the original values of x, and x3, satisfies the original edits
apart from W, yg, and y.

In fact, substituting xg =1 and xg = —3 into the original edits yields the following
restrictions for x;:

Vi ox o= 22
l[/g S 4
‘VS :ooxp < 7
l[/g . X1 < —8
v x> —13
ve: x> 0
v: 1 > 0
v -3 > 0

It is easy to see that, if we leave out the first, fourth, and eighth restrictions, then it is
possible to find a feasible value for x;; in fact, any value in the interval [4,7] will do.

Another representing set for B2, B3, B], B, and B13 is given by B = {3,4,8}. Hence,
Theorem 2 guarantees that it is also possible to find a value for x; which satisfies
the above restrictions, except for the third, fourth and eighth. In this case, imputing
x1 = 22 is the only feasible solution. ([l

The importance of Theorem 2 is that it enables one to evaluate, at each node of the
branch-and-bound algorithm, which combinations of the original edits could be satis-
fied by imputing the variables that have been eliminated so far, and also which edits
would remain failed. In particular, if we distinguish between hard and soft original
edits, then this result makes it possible to use the branch-and-bound algorithm to find
all feasible solutions to the new error localisation problem from Section 3, and also to
evaluate, for each feasible solution, which of the soft edits remain failed, and hence
evaluate the value of Dy, ;. This idea will be elaborated in Section 6.

Interestingly, the above-defined sets B’; may also be used to identify redundant edits,
i.e. edits that follow directly from a combination of the other edits. According to a
result found independently by Cernikov (1963) and Kohler (1967), when g variables
have been eliminated by Fourier-Motzkin elimination, all edits with more than g + 1
elements in B’; are redundant; see also Williams (1986) and De Jonge and Van der Loo
(2011) for a discussion of this result.

5 A Short Theory of Edit Failures, Part Two: Categorical Data

We now derive a similar result to Theorem 2 for the case of purely categorical data. At
the end of this section, we combine the two results so that they may also be applied to
mixed data.

In the case of purely categorical data, all edits take the form (5). Let us consider the
elimination method for categorical variables described in Section 2.3. A fundamen-
tal property of this method is that a given set of values for vi,...,ve_1,Vgi1,...,Vm

15

satisfies the implied edit (15), if and only if there exists a value for v, which, to-
gether with the other values, satisfies all edits 1[/" with kK € T. In other words, if
the values of vi,...,vg_1,Vg41,...,Vy do not satisfy (15), then it is not possible to
satisfy all edits with kK € T simultaneously. This can be seen by observing that, by
property (14), F;(T) C F}‘ for all j # g and all kK € T. Hence, if (15) is failed by
Vi,---yVg—1,Vgil,---,Vm, then plugging these values into an original edit with k € T
produces a non-degenerate univariate edit for v,. Moreover, every possible value of v,
fails at least one of these univariate edits, because of property (13).

Interestingly, it is still possible in this case to find a value for v, that satisfies all edits in
T but one. This follows from property (13) and the fact that T is a minimal set having
this property: foreach k € T, Féf‘ must contain at least one value from Dy that is not
covered by any other F, with [€ T, since otherwise 7" = T\ {k} would also satisfy
property (13). Thus, for every k € T, there exists a value of v, that would fail this edit,
but none of the other edits in 7'.

Suppose that, at some point during an execution of the branch-and-bound algorithm
of De Waal and Quere (2003), g categorical variables have been treated (i.e. either
eliminated or fixed). As before, we denote the current set of edits by ¥y, and the edits
in this set by 1//;‘. Again, we associate with each current edit l//é‘ the index set Bg of all
original edits that have been used, directly or indirectly, to derive this edit. This time,
B’; is defined recursively as follows:

e For an original edit Y}, we define BS := {k}.

e For an edit wé‘ which is derived from one other edit l//frl, by fixing a variable to

its original value or by simply copying the edit, we define B’; = Béfl.

e For an edit l//[’; which is derived by eliminating a variable from a set of edits
v, (t €T), we define B’; i=Uer B,_,.

We now present the analogue of Theorem 2 for categorical data.

Theorem 3 Suppose that q categorical variables have been treated and that the cur-
rent set of categorical edits can be partitioned as ¥, = ‘P((Il) U ‘P((ZZ), where the edits in
‘Pgl) are satisfied by the original values of the m — q remaining variables, and the edits
in ‘sz) are failed. Let B be a representing set of the index sets B’; for all l//fl‘ € ‘sz).
Then there exist values for the eliminated variables which, together with the original

values of the other variables, satisfy all original edits except those in B.

Proof The proof of this theorem is given in Appendix A.2. g

As in the previous section, we illustrate the theorem by means of an example.

Example
There are three categorical variables (v, v,,v3), with domains D; = {1,2,3,4} and
D, = D3 = {1,2,3}, which should satisfy the following six edits:

16

v} IF (vi,v2,v3) € {1,2} x D, x {2,3} THEN 0
w2 IF (vi,v2,v3) € {1,3} x {1,2} x D; THEN 0
w3 IF (vi,v2,v3) € {2,4} x {1} x {3} THEN 0
vy . IF (vi,v2,v3) € {1,2,3} x {2} x D3 THEN 0
w5 IF (vi,v2,v3) € {4} x D, x {2} THEN 0

wS: IF (vi,v2,v3) € D x {3} x {3} THEN 0

Consider the unedited record (v9,19,v9) = (1,2,2). This record fails y, W3, and y;.
Upon eliminating v; from the original edits, we obtain the following updated set of
edits:

vl : IF (v,v2,v3) € Dy x {1,2} x {2} THEN 0 (B} ={1,2,5})
w?2: IF (vi,v2,v3) € Dy x {1} x {3} THEN 0 (B? ={2,3})
v IF (vi,v2,v3) € Dy x {2} x {2} THEN 0 (B} ={4,5})
v IF (vi,v2,v3) € Dy x {3} x {3} THEN 0 (B} = {6})

The index sets of generating edits B’l‘ are mentioned in brackets. Plugging the original
values vg =2 and vg = 2 into these edits, we see that l[/ll and l//13 are failed. Since
B = {5} is a representing set of the sets B} and B';’, Theorem 3 states that it is possible
to satisfy all original edits, except for 1//3, by imputing only v;.

In fact, plugging vg =2 and vg = 2 into the original edits, we obtain the following
univariate restrictions for vy:

v} : IFv; €{1,2} THEN 0

w2: IFv; €{1,3} THEN 0

v —

vy : IFv; €{1,2,3} THENO

v5: IFv; € {4} THENO

v —
Clearly, we can satisfy all of these restrictions, except for the fifth, by choosing vi =4.
In this example, other representing sets of B{ and B? are given by B = {1,4} and
B ={2,4}. Tt is easy to see that imputing vi = 2 and v; = 3, respectively, yields
records that fail precisely these original edits. ([

Finally, we remark that Theorem 2 and Theorem 3 can be used together when the
data is a mix of categorical and numerical variables. This follows from the structure
of the branch-and-bound algorithm of De Waal and Quere (2003), where categorical
variables are only treated once all numerical variables have been eliminated or fixed.
Hence, the two results may be applied consecutively. There is a slight difference in
the procedure for eliminating numerical variables, namely that implied edits are only
generated from pairs of edits having an overlapping IF-condition; see Section 2.3.
However, this does not affect the correctness of Theorem 2.

6 Solving the Error Localisation Problem with Hard and Soft Edits
We now describe an adapted version of the branch-and-bound algorithm of De Waal

and Quere (2003) which may be used to solve the error localisation problem defined
in Section 3. In the root node of the binary tree, the number of treated variables ¢ is

17

initialised to zero. The initial set of hard edits Wy is the original set of hard edits Wy,
and the initial set of soft edits Wg is the original set of soft edits Ws. Moreover, we
associate an index set Blés := {k} to each soft edit I;I(I)‘S € Wos. We do not associate such
index sets to the hard edits, because we do not need them.

If the current node of the binary tree is not an end node, then an untreated variable is se-
lected, say x, or v,. As in the original algorithm, categorical variables are only selected
once all numerical variables have been treated. Two new branches are generated. In
the first branch, x, or v, is fixed to its original value, and in the second branch, x, or v,
is eliminated from the current sets of edits W,y and W 5. Both procedures are carried
out the same way as in the original algorithm, except that the equality elimination rule
may not be used to eliminate numerical variables, as mentioned in Section 4.

In the branch where x, or v, is fixed to its original value, a new set of hard edits
W, 1,n is obtained from Wy, and a new set of soft edits W, s is obtained from ¥ys.
In addition, we define B’; 1= Bf,s for the soft edit 1//(’; 1,5 derived from ‘V(lfs by fixing
a variable.

In the branch where x, or v, is eliminated from the edits, the new set of hard edits
W, 1,n consists of all edits from ¥,y that do not involve x, or v, plus all implied
edits that are obtained by eliminating x, or v, from a combination of only edits from
W, . The new set of soft edits W, 1 s contains all other edits, i.e.

e all edits from ¥ 5 that do not involve x, or v,; we define B’; 18 = Bés for the
edit 1//(’1c 1,5 derived from W(IIS this way;

e all implied edits that are obtained by eliminating x, or v, from a combination
of only edits from W g; we define B’; +15=Urer B;S for the edit 1//5 41,5 derived
from y; (t € T) this way;

e all implied edits that are obtained by eliminating x, or v, from a combination
of edits from ¥ 5 and ¥, y; we define B’;JFLS i= Urer, Bys for the edit W§+1,S
derived from y (t € T1) and Yy (¢ € T>) this way.

In summary: if an edit is generated only from hard edits, then the new edit is also a
hard edit; if any soft edits are involved in its generation, then the new edit is a soft edit.
Moreover, the index set B’;S contains the indices of all the original soft edits that were
involved in the generation of 1//55 at some point.

Having generated the new sets of edits W, | i and ¥y s, we fill in the original values
of the variables that have not been treated yet, to check which of these edits are failed.
In the old algorithm, there are two possibilities here: either none of the edits are failed
and the current branch corresponds with a feasible solution, or at least one of the edits
is failed and more variables need to be eliminated. In the new algorithm, three different
situations may arise.

First of all, if at least one edit in W, g is failed, then the variables that have been
eliminated so far cannot be imputed to satisfy the original hard edits. Hence, more
variables need to be eliminated. In this case, we define ¢ := g+ 1 and continue the
generation of branches from the current node.

18

A second possibility is that none of the edits in W, g or W, 5 are failed. This
means that the variables that have been eliminated so far can be imputed to satisfy all
the original edits, both hard and soft. Hence, we have found a feasible solution to the
error localisation problem. The value of target function (16) equals D = ADpy, i.e. a
constant factor times the sum of the confidence weights of the eliminated variables.
If this value is smaller than or equal to the value of (16) for the best solution found
so far, say Dpp, then the new solution is stored. Otherwise, it is discarded. FEither
way, it is not useful to continue the algorithm from the current node, because the value
of D can only increase if more variables are eliminated. Hence, we return to the last
previous branch that has not been completely searched yet and continue the algorithm
from there.

The third and final possibility is that the edits in ¥, g are satisfied, but at least one
edit in W, g is failed. In this case, the variables that have been eliminated so far can
be imputed to satisfy the original hard edits, but not all the original soft edits. Hence, a
feasible solution to the error localisation problem has been found, but the contribution
of Dy, f; to D is non-zero.

According to Theorem 2 or Theorem 3, it is possible to satisfy all original soft edits,
except those in a representing set B of the index sets B’; +1,5 for all failed edits in
W, 1,s. Since this property is shared by all representing sets, we are free to choose B
in such a way that Dy, is minimised, given the selection of variables to impute. If
expression (17) is used for Dy, ;, then the optimal choice of B can be found by solving

the following minimisation problem:

minY 15 | sz

such that:

Yies!, 2 > 1, for all failed Vs €Yaits
Zk € {0,1},/(: 1,...,Ks

19)

This is a straightforward binary linear optimisation problem, which can be solved us-
ing standard algorithms. The solution consists of a vector (zj,...,2x,) of zeros and
ones. The associated optimal representing set' is B* = { k|zf = 1} and the associated
contribution of Dy, s, to D is precisely the minimal value of problem (19), say

Ks
foft = Y SKZh = Y, Sk
k=1

keB*

*
soft

D < Dy, then the current solution is stored, otherwise it is discarded. Either way,

As in the previous case, the value D = ADpy + (1 — 1) is compared to Dp;,. If
in this case it is meaningful to continue the algorithm from the current node, because
eliminating more variables may lead to a lower value of the target function. This can
happen, because a solution that imputes more variables typically fails less soft edits,
and hence an increase in Dry might be compensated by a decrease in Dy, ;. Therefore,
we define ¢ := g+ 1 and continue the generation of branches from the current node.

Ut should be noted that problem (19) need not have a unique optimal solution. If there is more than
one optimal solution, and hence more than one minimal representing set B, then we have to select one
according to some additional criterion. A very simple criterion could be to always select the first solution
that was found.

19

The correctness of this algorithm follows from the correctness of the original algorithm
of De Waal and Quere (2003) and the theory of Section 4 and Section 5. The index
sets B’; only have to be computed for the soft edits, because a subset of the variables
is never considered as a feasible solution to the error localisation problem when at
least one of the hard edits remains failed. This means that, in every application of

V. Finally,

Theorem 2 or Theorem 3, all implied edits in ¥, must be contained in ‘P(g
we note that the new algorithm reduces to the original algorithm of De Waal and Quere

(2003) in the case that no soft edits have been specified.

7 Two Examples

To illustrate the algorithm of Section 6, we apply it to two examples. The first example
(Section 7.1) contains only numerical variables. The second example (Section 7.2)
is somewhat larger and contains a mix of categorical and numerical variables. These
examples have appeared previously in De Waal (2003) and Quere and De Waal (2000),
respectively, but we have added a distinction between hard and soft edits.

7.1 An Example with Numerical Data

In a fictitious business survey, there are four numerical variables: fotal turnover (T),
profit (P), total costs (C), and number of employees (N). The following hard edits and
soft edits have been identified:

Wy: T—-C—-P = 0
Wi ° r =20
Wy cC > 0
%‘H: N > 0
Wyt S50N-T > 0
Wit OST-P > 0 (Bly=1{1})

VW P+0.1T > 0 (Bds ={2})

We want to edit the following record automatically:
(1°,P°,c°,N°) = (100,40000, 60000, 5).

This record is inconsistent, because it fails the first hard edit. It also fails the first soft
edit. The confidence weights of the variables are (wr,wp,we,wy) = (2,1,1,3). We
choose the failure weights of the two soft edits to be s; = s, = 2. Finally, we choose
A =1/21in (16).

Suppose that the variable P is selected first. In the branch where P is eliminated from
the original edits, we obtain the following new set of edits:

vl T > 0 (Won)
v, c > 0 (Vow)
vy N > 0 (V’gH)
Yyt SSON-T > 0 (Won)

1 . 1 _

vl —05T+C > 0 (Bis={1}) (%H,%s)
yi: 1LIT-C > 0 (Bis = {2}) (Wou» Wos)
Vi 06T > 0 (Big=1{1,2}) (Wos> Wos)

20

We have indicated in brackets from which of the previous edits each new edit is de-
rived. For instance, Wi is obtained by eliminating P from W, and y3. For the soft
edits, the index sets B’f s are also displayed. The third soft edit l//13S is in fact equivalent
to the first hard edit y{,,, which means that it can be discarded.

Upon substituting the original values (T°,C% N°) = (100,60000,5) into the current
edits, it is seen that all edits are satisfied except for WIZS' Since all hard edits are
satisfied, identifying only the original value of P as erroneous is a feasible solution to
the error localisation problem. Moreover, since B = {2} is a representing set of B,
it is possible to impute a value for P which satisfies all the original edits except for
‘Vgs- This is in fact the minimal representing set according to problem (19). Hence,
the value of target function (16) for this solution equals:

1 1 wp s 3
D=-D —Dsops = —+—===.
) FH +) soft) +))
Possibly, the current solution may be improved by eliminating another variable, say C,
from the current set of edits. This yields:

Vap - r >0 (Wig)
Wy - N >0 (Win)
Wy S50N-T > 0 (vy)
Va5 - Lir > 0 (Bys = {2}) (Wims Wis)
Y - 0.6 > 0 (B3s = {1,2}) (Wis: ¥is)

The two new soft edits are both redundant, because they are equivalent to hard edit
vi,. In fact, the remaining original values (T° N°) = (100,5) satisfy all the current
edits. This means that P and C can be imputed to satisfy all the original edits, both
hard and soft. The value of target function (16) for this solution equals:

1 wp+Wwc
D= -Dpy =L "€ _
pFH 2

Thus, the new solution improves on the previous solution. Moreover, this solution

1.

cannot be improved by eliminating more variables in the current branch of the binary
tree, because there are no failed edits remaining.

So far, we have only explored the branch where P is eliminated from the edits. If the
algorithm is continued by exploring the rest of the binary tree, it turns out that the best
solution found so far (impute P and C) is also the optimal solution. A possible way to
impute the record consistently is:

(T,P,C,N) = (100,40, 60,5).

This solution has the nice interpretation that the original values of profit and fotal costs
were overstated by a factor of 1,000.

It is of interest to note that, if only the hard edits are used in this example, the first
solution found above (impute only P) is the optimal solution to the error localisation
problem. In that case, there is only one way to obtain a consistent record:

(T,P,C,N) = (100, —59900, 60000, 5).

This illustrates that, in this example at least, soft edits are important for finding impu-
tations that are not just consistent with the hard edits, but also plausible.

21

7.2 An Example with Mixed Data

In the second example, records consist of four categorical variables and three numer-

ical variables (vi,v2,v3,va,X],X2,X3).

The domains of the categorical variables are

Dy = D3 ={1,2} and D, = D4 = {1,2,3}. The following hard and soft edits have
been identified:

K
K
WSH :
You -
You -
Yor -
Win -
Yos -
Wos -
Wos -
Wos -

(vi,ma) € {1} x{1,3} = 0

(va,v3) {1} x{1} =0

(vi,va,v4) € {2} x{1,3} x {1,3} = 0

v e{l,3} = x=0

vy € {1,3} = 1250x; —x3 =0

(va,v3) € {2} x {2} = 1250x; + 12x — x3
(va,v3) € {2} x {1} = 1250x; + 12x — x3
1250x; > 15000

€ {2} = 123, > 15000

v {2} = —875x + 121, >0

vy € {2} = 1250x; —8.4x, >0

=0

=—1250
(B(I)s ={1})
(Bgs = 1{2})
(B(S)S ={3})
(Bgs = {4})

For the sake of brevity, we write the edits in a slightly different notation from the

rest of the paper. Edit lllgH, for instance, would look as follows in the notation from
Section 2.1:

l]/gHZ IF (vl,vZ,V3,V4)€D1X{1,3}><D3 X Dy

THEN (xl,XQ,X3) S {)ﬂ 1250x1 —x3 =

Consider the following unedited record:

0}.

W 9,v9v8, 49,9, 49) = (2,2,1,2,10,0,12000).

This record fails hard edit Wy, so it must contain an error. In addition, the record fails

the soft edits l//(}s, l//&s and 11135. In this example, we choose all confidence weights and

all failure weights equal to 1, and we choose A = 1/2. As in the previous example, we

shall only explore one branch of the binary tree.

We begin by treating the numerical variables and decide to first eliminate x; from the

edits. This yields the following implied edits:

ll/11H :

2 .
Vipg:
lI/iq’H :
WH :
lI/1ls :
lI/125 :

3.
Vig:
‘st :
lI’155 :
ll’l65 :

(vi,va) € {1} x{1,3} = 0

(vo,v3) €{1} x {1} =0

(vi,v2,v4) € {2} x{1,3} x{1,3} = 0

V) € {1,3} = x=0

v2 € {1,3} = x3 > 15000

(v2,v3) € {2} x {2} = —12x,+2x3 > 15000
(v2,v3) € {2} x {1} = —12x3+x3 > 16250
vy € {2} = 12x, > 10500

(va,v3) € {2} x {2} = 20.4x, —0.7x3 >0

(Vz,V3) S {2} X {1} = 20.4x, —0.7x3 > —875

22

(B;
(
(B}
(B
(
(

B
B

B

(W&H)
(Vo)
(‘VSH)
(Wow)
is=1{1}) (Wor» Wos)
%S ={1}) (WG Yos)
15 =1{1}) (Wom Yos)
s =113} (Wos ¥5s)
1s=1{3}) (WG Vos)
s =1{3}) (W Vos)

WosleA)
1I/oHa‘I’4)
lI’OHa‘I’4)

1[11751 ne{2=xn>0 (B 15—{34}) (
vioo (v2,m3) € {2} x {2} = —204x,+x3 >0 (B?S_ {4}) (
Vs (v2,m3) € {2} x {1} = —204x,+x3 > 1250 (B)g={4}) (
Vi0: ve (2} = 121 > 15000 BY=12)) (v
If we fill in the original values of the other variables in these edits, it turns out that
only 111133, w‘l‘s, \[1165, and l,l/ll_g are failed. Hence, all hard edits can be satisfied by only
imputing x;, and we have found a feasible solution to the error localisation problem.
The minimal representing set of BlS, BlS’ 15, and B%g is B={1,2,3}. This shows
that if we impute x;, three of the original soft edits must be failed. Thus, the value of
target function (16) is

PP P
—2 FH 2 soft—2

+2=2

N W

for this solution.

Since there are still failed soft edits, we continue to explore the current branch of the
binary tree. Suppose that we decide to fix both x; and x3 to their respective original
values, x = 0 and xJ = 12000. We obtain the following set of edits:

1[131[_13 (V],V4)€{1}><{1,3}:>®

1[132[_11 (Vz,V3)€{1}><{l} =0

iy (viyve,va) € {2} x {1,3} x {1,3} = 0
vie: mef{l3} =10

yis: (vm,v3) € {2} x {2} = 0 %S ={1}
yis: (v,v3) € {2} x {1} = 0 35 =1{1})

(Bis = {1}
(B
(B3
vis: nef2} =0 (Bis = {1,3})
%
(

)
)

vis: (,v3) €{2} x {2} =0 35 =13})
vi: () e{2tx{1} =0 % =1{3}
Vig: wme{2} =0 Bis=1{2})

Since all numerical variables have now been treated, we are left with a set of purely
categorical edits. Upon inspecting these edits, it can be seen that the variables v; and
v4 are only involved in hard edits. Since it is already possible to satisfy all hard edits
by only imputing x1, it is not useful to consider any solutions where these variables are
imputed along with x;. Therefore we decide immediately to fix these variables to their
original values v1 2 and v4 = 2. This leads to the following set of edits:

l[/SIH: (va,v3) €{1} x{1} =0
vig: »me{l,3} =0 (B!

vis: (o) e{2}x{2} =0 (B

yig: (m,v3)e{2tx{1} =0 (B ss—{l})
vi: wmef{2} =0 (B¢, ={1,3})
Wi () ef{2}x{2} =0 (Bl =1{3})
vl (mova) e{2}x{1} =0 (B =1{3})
vig: wmef{2t =10 (Blg={2})

Suppose that we decide to eliminate v,. We find:

23

6s =11})
65—{1})

‘»”557 W)
‘l’55= 2D
WSS’ ¥s)
‘I’SSa ‘I’ss)
WSS? D)
Vis: Vis)

Vie: vef{2} =0 (B

vi: vef{l} =0 (B

Vos: O (B

Ves: ve{2} =0 (B 6S_{1 3}

vi: wme{l} =0 (B;={1,3}
(

(
(
(
(
(
yes: 0 Bs={1,2}) (

)
)
)
)

It is seen that the original value vg = 1 fails the edits l//gs, ‘/’635’ 1//65S, and l/lgs. Hence,
the current solution (imputing only x; and v;) does not lead to a record that satisfies
all soft edits. Since B = {1} is the minimal representing set of Bés, B6S, B6S, and B6S,
we conclude that it is possible to find values for x; and v, that satisfy all original edits
except for y(s. The value of target function (16) for this solution is:

1 1 2 1 3

D=-D D =
) FH"'2 soft = 2"'2 7’

which is an improvement on the previous solution (imputing only x;). Moreover, it
is clear that the current solution cannot be improved by also imputing v3, because the
edits lllgs and l/IgS are failed by definition.

8 (Quasi-)Consistent Imputation

A solution to the error localisation problem for a record simply consists of a list of
variables to impute. As we mentioned in the introduction, finding this list of variables
to impute is only half of the task of automatic editing. The other half is to find actual
values to impute that satisfy all (hard) edits, i.e. solving the consistent imputation prob-
lem. Provided that the error localisation problem has been solved correctly, suitable
values are guaranteed to exist, but they still need to be found.

In some cases, it is possible to find an appropriate imputation model that produces
values that satisfy all edits directly (Tempelman, 2007; De Waal et al., 2011). How-
ever, this direct approach can easily become too complex in practical applications.
NSIs therefore often apply a two-step approach to obtain consistent imputations. First,
the erroneous variables are imputed by a basic imputation method, such as regres-
sion or hot deck imputation, which takes certain statistical properties of the data set
into account, but not the edits. This yields an imputed record (vi,...,Vp,X1,...,Xp)
which may be inconsistent. Next, the initial imputations are minimally adjusted to
satisfy the edits, according to some distance function. This yields an adjusted record
(V15 Vm,X1,...,%,) which is consistent. It should be noted that the adjusted record
only deviates from the original, unedited record for variables that have been identified
as erroneous, because the values of the other variables are considered fixed during both
the imputation and the adjustment step.

For the adjustment step, De Waal (2003) suggested minimising the following distance
function with mixed categorical and numerical data:

WJC5J(V17VJ + Z wi]x] %jl, (20)
1 j=

s

J

24

where 8;(v;,7;) is a metric for the j" categorical variable, and w]C. and W}/v denote
the confidence weights, as before. For many categorical variables, especially nominal
variables, one would typically choose the simple metric given by 6;(v;,7;) =0if v; =
vj, and 8;(v;,v;) = 1 otherwise.

De Waal (2003) observed that, for mixed data, solving the above-mentioned minimi-
sation problem to optimality in practice may be a formidable task. He suggested to
use a heuristic procedure instead, by applying a simplified version of the branch-and-
bound algorithm of De Waal and Quere (2003) for error localisation. This heuristic
algorithm reconstructs only one branch of the binary tree, namely the branch that cor-
responds with the optimal solution to the error localisation problem found previously.
In this branch, the variables to be imputed are eliminated from the edits, and the other
variables are fixed to their original values.

We denote the set of implied edits after eliminating the ¢ variable by ¥,. Suppose
that Q variables have to be imputed. The edits in W _ are univariate edits that must
be satisfied by the last variable to have been eliminated. If this variable is categorical,
then we adjust the originally imputed value v; to a new value V; that satisfies the
univariate edits and minimises 6;(v;,V;). This adjusted value is plugged into the edits
from W¢_», thus producing a set of univariate edits for the penultimate variable to have
been eliminated. We continue in this manner until all categorical variables have been
imputed consistently. Assuming that the error localisation problem has been solved
correctly, Theorem 1 guarantees that we can find a suitable value to impute at each
stage of the algorithm.

Once all categorical variables have been given adjusted values, we are left with the
problem of finding adjusted values for the numerical variables that minimise

P
Y whlx; -5
j=1

such that the numerical edits are all satisfied. This problem can be formulated as
a linear programming problem and solved by the well-known simplex method; see
De Waal (2003). Again, a repeated application of Theorem 1 guarantees that the linear
programming problem is feasible.

We remark that, for mixed data at least, the algorithm is indeed a heuristic algorithm:
the size of the adjustment is minimised for each categorical variable separately, but this
does not necessarily lead to a set of adjusted values that minimises (20). Nevertheless,
according to De Waal (2003), the heuristic method is likely to give acceptable results
in practice.

Under the new error localisation problem with hard and soft edits, it is possible that
the optimal solution cannot be imputed consistently with respect to all soft edits. The
algorithm of De Waal (2003) can still be used to solve the consistent imputation prob-
lem in this case, provided that we remove the soft edits that are failed by the optimal
solution. This is more or less trivial, since a list of failed soft edits is automatically
provided by the new error localisation algorithm in the form of the minimal represent-
ing set B associated with the optimal solution. We illustrate the procedure by revisiting
the example from Section 7.2.

25

Example

In Section 7.2, it was found that imputing x; and v; is a solution to the error localisation
problem, and that these variables can be imputed such that only soft edit l[/(%s remains
failed. We shall now use the algorithm of De Waal (2003) to find suitable imputations.
In general, we would start by imputing initial values and adjust these to satisfy the
edits. However, the first step can be skipped in this example, because it turns out that
the imputable values are uniquely determined by the edits.

We start by plugging the original values of the variables that will not be imputed
(e V) =2,V =1,v] =2, x) =0, and x} = 12000) into the edits W}, and v,
leaving out edit W&S. This gives a reduced set of edits for x; and v,, which we write in
the notation of Section 2.1:

IF v, € {1} THEN 0; 1)

IF v, € {1,3} THEN 1250x; = 12000; (22)
IF v, € {2} THEN 1250x; = 10750; (23)
IF v, € {2} THEN 0; (24)

IF v, € {2} THEN —875x, > 0; (25)
IF v, € {2} THEN 1250x; > 0. (26)

Eliminating the only remaining numerical variable x; yields a set of univariate cate-
gorical edits for vy:
IF v, € {1} THEN 0; 27)

IF v, € {2} THEN 0. (28)

It is seen that the only value from the domain of v, to satisfy both (27) and (28) is
7, = 3, and hence we impute this value. Plugging v, = 3 into edits (21)-(26) yields
one univariate numerical edit for x;:

1250x; = 12000. (29)

In order to satisfy (29), we have to impute the value ¥; = 45—8 = 9.6. Hence, the algo-
rithm for (quasi-)consistent imputation produces the following adjusted record:

48
(‘717‘727‘737‘747-)?17-%27)?3) = (2737 1727 ?707 12000)

The reader may verify that this record indeed satisfies all original edits from Sec-
tion 7.2, except for ‘l’&s- U

9 Application®

In order to test the new error localisation algorithm in practice, a prototype implemen-
tation was written using the R programming language. This prototype draws heavily

2The empirical results in this section were collected by Seving Goksen as part of her Master’s thesis
research. A more comprehensive description of this research will be given in a separate report.

26

on the existing error localisation functionality in R that was made available in the ed-
itrules package (De Jonge and Van der Loo, 2011; Van der Loo and De Jonge, 2011).
In particular, the editrules package contains an implementation of the original branch-
and-bound algorithm of De Waal and Quere (2003).

To test the prototype, an artificial data set was constructed by selecting twelve nu-
merical variables (xj,...,x2) from the structural business statistics questionnaire of
2007 for the wholesale sector. We selected all records pertaining to medium-sized
businesses (with 10-100 employees) that had been edited manually during regular pro-
duction, and divided these into two data sets of 728 records each. Both of the original
data sets were considered error-free. We introduced a substantial number of random
errors into one of the data sets by applying the following procedure:

e in 4% of the original non-zero values, two digits were interchanged;

e in 4% of the original non-zero values, a random digit was added;

e in 4% of the original non-zero values, a random digit was omitted;

e in 4% of the original non-zero values, a random digit was replaced by another
digit;

e 4% of the original non-zero values were multiplied by 25;

e 4% of the original non-zero values were divided by 25 and rounded to the nearest
integer;

e 6% of the original non-zero values were replaced by zero;
e 5% of the original zero values were replaced by random integers from [1, 1000];

e 10% of the original values of x;; and x;, were multiplied by —1.

This procedure was carried out in such a way that at most one change could occur in
each value. The second data set was left error-free and used as reference data (see
below).

Table 1 shows the hard and soft edits that were applied to the test data. The hard
edits were copied from the regular production system. The soft edits were identified
by examining a number of univariate and bivariate distributions in the error-free ref-
erence data. We did not use a particularly rigourous approach to choose these soft
edits, because this application was only intended as a first exploratory test of the new
algorithm.

The error localisation algorithm was applied to the data set with artificial errors using
several different set-ups. Throughtout, all confidence weights w; were chosen equal to
one, and the parameter A in (16) was chosen equal to 1/2. We considered the following
approaches:

A. The first test used only the hard edits from Table 1.

B. The second test used all edits from Table 1, with the interpretation of all edits as
hard edits.

27

Table 1: The edits that were used in the test application.

hard edits: x; +x2 =x3
Xp = X4
X5 +X6 +x7 = X3
X3 +Xx3 = X9
X9 —X10 = X11
x>0@(=1,...,10and i = 12)
soft edits: xp > 0.5x3
x3 > 0.9x9
X5 +x6 > x7
X9 > 50x13
X9 < 5000x1;
x11 < 0.4x9
x11 2> —0.1x9
xpp > 1
xX12>5
x12 < 100

C. The third test used all edits from Table 1, with a distinction between hard and
soft edits. Each soft edit received the same fixed failure weight s; = 1.

D. The fourth test was similar to the third test, but with fixed failure weights that
differed between soft edits. We calculated the fraction of records in the reference
data set that satisfied each soft edit, and used these fractions for s;. Thus, a soft
edit received a lower failure weight if it was failed more often in the reference
data set, and vice versa. The rationale behind this is that all soft edits failures
occurring in the reference data were caused by unusual, but correct combinations
of values, since the reference data were considered error-free. By associating
low weights to soft edits that are often failed in the reference data, we ensure
that these edits may also be failed more easily in the edited version of the test
data.

Since the distribution of errors in our test data set was completely known, we could
directly evaluate the performance of each automatic error localisation approach. We
used several quality indicators for this. Consider the following 2 x 2 contingency table:

detected:
error no error
true: error TP FN
no error | F'P TN

In this table, TP, FN, FP, and TN denote, respectively:

e the number of values that were correctly identified as errors (true positives);

e the number of values that were incorrectly identified as non-errors (false nega-
tives);

28

Table 2: Results of automatic error localisation for the artificial data.

quality indicators
approach o B Y 0
A 0364 0.047 0.115 40%
B 0.232 0.131 0.153 37%
C 0.227 0.060 0.096 47%
D 0253 0.037 0.083 52%

e the number of values that were incorrectly identified as errors (false positives);

o the number of values that were correctly identified as non-errors (true negatives).

Such a contingency table was constructed for the outcome of each of the editing ap-
proaches A, B, C, and D.

The first quality indicator measures the proportion of true errors that were missed by

the algorithm:
FN

- TP+FN’
The second quality indicator measures the proportion of correct values that were mis-

o

taken for errors by the algorithm:
FP
P=Fprn
The third quality indicator measures the overall proportion of wrong decisions made

by the algorithm:
FN+FP

"= TPYFN+FP+IN’
These three indicators evaluate the performance of the algorithm with respect to iden-

tifying individual values as correct or erroneous. They have been used in previous
evaluation studies; see, for instance, Pannekoek and De Waal (2005). To evaluate
the performance of the algorithm from a slightly different angle, we also calculated
the percentage of records for which the algorithm detected exactly the right combina-
tion of erroneous values, and this indicator is denoted by 8. A good editing approach
should have low scores on the o, 3, and ¥ measures, but a high score on the d measure.

Table 2 shows the values of the quality indicators for the above-mentioned editing
approaches A, B, C, and D. It can be seen that approach B is outperformed by the
other approaches on all measures, except for the proportion of missed errors. Thus,
using the soft edits as if they were hard edits does not work well for this data set; in
fact, better results are achieved by approach A, which does not use the soft edits at all.
It can also be seen that approaches C and D, which use the new algorithm to take the
soft edits into account, yield better results than approaches A and B, which use the old
algorithm. Overall, approach D appears to achieve the best results in this experiment.
Compared with approach A, approach D in fact correctly identifies more errors and
more correct values.

It should be noted that, under the old definition of the error localisation problem, ap-
proaches A and B represent the two extreme options for using soft edits that are avail-
able: either not using them, or using them as hard edits. As a compromise between

29

these options, one could also decide to use only a subset of the soft edits as hard ed-
its and discard the others. We did not test this approach during the experiment. One
might expect that it leads to scores on the a, 3, ¥, and 6 measures in between those of
approaches A and B.

10 Sizes of Soft Edit Failures

We mentioned in Section 3 that it is intuitively appealing to take the sizes of soft edit
failures into account in the error localisation problem. An obvious way to achieve this
is to choose an expression for Dy, that depends on the amount by which each soft
edit is failed, where larger soft edit failures yield higher values of Dy, ;. Unfortunately,
the error localisation problem then becomes more difficult to solve, because the sizes
of the soft edit failures depend on the choice of variables to impute. This is easily
seen in the example from Section 7.1. In this example, the first soft edit was failed
by the original record with a left-hand-side of —39950, while the second soft edit was
satisfied. Imputing the value —59900 for P led to a record that satisfied the first soft
edit, but failed the second soft edit with a left-hand-side of —59890.

As this example illustrates, if Dy, s, depends on the sizes of the soft edit failures, then
it actually depends on the imputed values for the variables that are selected for im-
putation. However, the imputed values are unknown during an execution of the error
localisation algorithm from Section 6. We could, of course, first determine all feasible
solutions to the error localisation problem, then find the corresponding imputed values
and use these to compute Dy, s, for all solutions, and finally select the best solution.
This would require much more work than the original algorithm (for one thing, we
would lose the ‘bound’ part of the branch-and-bound algorithm), and it seems doubt-
ful whether this approach would be computationally feasible in practice.

We have worked out an alternative approach, which does not explicitly impute all
feasible solutions, but rather infers lower bounds on the sizes of the soft edit failures
from the implicit edits. The interested reader is referred to Appendix B for details.
Appendix B also mentions possible ways to transform the edit failure sizes into an
expression for Dy, ;.

Sevin¢ Goksen pointed out that, in theory, it is also possible to associate higher failure
weights with larger soft edit failures — at least to some extent — in our original formu-
lation of the error localisation problem. To illustrate this, we consider the following
soft edits from Table 1:

xi2 > 15

x12 > 5.

We suppose that expression (17) is used for Dy,r; and we choose all fixed failure
weights equal to 1 for convenience. It is easy to see that any record that fails the
first edit (i.e. any record with x5 < 1) also fails the second edit. Hence, a record with
x12 < 1 receives a contribution of 2 to Dy, s;, whereas a record with 1 <xj2 < 5, which
only fails the second edit, receives a contribution of 1. This is in line with the intu-
itive interpretation of this pair of edits, namely that a value 1 < x5 < 5 is considered

suspicious, while a value x12 < 1 is considered highly suspicious.

30

More generally, if we consider a numerical soft edit of the form
a1 X1 + - +apxp, +br >0,
then we may replace this edit by a system of analogous soft edits:

a,((ll)x1+--~+a,(<;)xp+b,((1) > 0,

a,((lf)x1+-~-+a,(£)xp+b,((m > 0,

with a,g.) =ayjforall j=1,...,pand r =1,...,R, and where the constant terms are

chosen such that by = bil) < b,((z) << biR). Similarly to the above example, any
record that fails the 7 edit from this system automatically also fails the first » — 1 edits,
for r =2,...,R. Thus, a larger edit failure implicitly receives a higher failure weight,
simply because it fails more soft edits. In practice, however, this approach should be
used sparingly, because it can easily make the number of implied edits prohibitively

large.

11 Conclusion

In this paper, we proposed a new formulation of the error localisation problem which
can take the distinction between hard and soft edits into account. In addition, we
showed that a modified version of the branch-and-bound algorithm of De Waal and
Quere (2003) can be used to solve this new error localisation problem. Since subject-
matter experts also use the conceptual difference between hard and soft edits during
manual editing, it seems probable that the new error localisation algorithm can be
used to increase the quality of automatic editing. This is also indicated by the first
empirical results reported in Section 9, although it should be stressed that these results
were obtained with data containing synthetic errors. Applications are currently being
investigated of the new error localisation algorithm to realistic data.

It remains an open problem how the costs of soft edit failures may best be modelled,
i.e. how the term Dy, ¢, in (16) should be defined. The different results with approaches
C and D in Section 9 demonstrate that the quality of automatic error localisation may
be improved by a suitable choice of failure weights. It will be interesting to see to what
extent the quality of automatic editing may be improved further by experimenting with:

different choices of failure weights sy;

different choices of confidence weights w;;

different choices of the balancing parameter A in (16);

other forms of Dy, s, than expression (17), including forms that depend on the
sizes of the soft edit failures.

With respect to the final point, it should be noted that the algorithm from Section 6
may be used to solve the error localisation problem for all choices of Dy, s, that can be

31

expressed as functions of only zj,...,zx,. One simply uses the appropriate expression
for Dy,s; as the target function in problem (19). In practice, problem (19) is easier
to solve if Dy, is a linear function of zj,...,zg,, but non-linear functions are also
allowed. On the other hand, if Dy, is a function of the sizes of the soft edit failures,
then we have to resort to a more complex approach, as outlined in Appendix B. It
remains to be seen whether this more complex approach also leads to better results in
practice.

Acknowledgements

The author would like to thank Jeroen Pannekoek and Ton de Waal for many helpful
suggestions, Edwin de Jonge and Mark van der Loo for programming the branch-and-
bound algorithm in R, and Seving Goksen for collecting experimental results.

References

Bikker, R., Daalmans, J. and Mushkudiani, N. (2010), ‘A Multivariate Denton Method
for Benchmarking Large Data Sets’. Discussion Paper 10002, Statistics Nether-
lands, The Hague.

Cernikov, S. N. (1963), “The Solution of Linear Programming Problem by Elimination
of Unknowns’. In Soviet Mathematics DOKLADY 2.

De Jonge, E. and Van der Loo, M. (2011), ‘Manipulation of Linear Edits and Er-
ror Localization with the Editrules Package’. Discussion Paper 201120, Statistics
Netherlands, The Hague.

De Waal, T. (2003), ‘Processing of Erroneous and Unsafe Data’. PhD Thesis, Erasmus
University, Rotterdam.

De Waal, T. (2005), ‘SLICE 1.5: a Software Framework for Automatic Edit and Impu-
tation’. Working Paper, UN/ECE Work Session on Statistical Data Editing, Ottawa.

De Waal, T. and Coutinho, W. (2005), ‘Automatic Editing for Business Surveys: an

Assessment for Selected Algorithms’, International Statistical Review 73, pp. 73—
102.

De Waal, T., Pannekoek, J. and Scholtus, S. (2011), Handbook of Statistical Data
Editing and Imputation, John Wiley & Sons, Hoboken, New Jersey.

De Waal, T. and Quere, R. (2003), ‘A Fast and Simple Algorithm for Automatic Edit-
ing of Mixed Data’, Journal of Official Statistics 19, pp. 383—402.

Fellegi, I. P. and Holt, D. (1976), ‘A Systematic Approach to Automatic Edit and
Imputation’, Journal of the American Statistical Association 71, pp. 17-35.

Hedlin, D. (2003), ‘Score Functions to Reduce Business Survey Editing at the U.K.
Office for National Statistics’, Journal of Official Statistics 19, pp. 177-199.

32

Kohler, D. A. (1967), ‘Projections of Convex Polyhedral Sets’. Operational Research
Center Report ORC 67-29, University of California, Berkeley.

Little, R. J. A. and Smith, P. J. (1987), ‘Editing and Imputation of Quantitative Survey
Data’, Journal of the American Statistical Association 82, pp. 58—68.

Magnus, J. R., Van Tongeren, J. W. and De Vos, A. F. (2000), ‘National Accounts
Estimation Using Indicator Ratios’, Review of Income and Wealth 46, pp. 329-350.

Mirsky, L. (1971), Transversal Theory, Academic Press, Inc., New York.

Pannekoek, J. and De Waal, T. (2005), ‘Automatic Edit and Imputation for Busi-
ness Surveys: the Dutch Contribution to the EUREDIT Project’, Journal of Official
Statistics 21, pp. 257-286.

Quere, R. and De Waal, T. (2000), ‘Error Localization in Mixed Data Sets’. Internal
Report (BPA-nr. 2285-00-RSM), Statistics Netherlands, Voorburg.

Tempelman, D. C. G. (2007), ‘Imputation of Restricted Data’. PhD Thesis, University

of Groningen.

Van der Loo, M. and De Jonge, E. (2011), ‘Manipulation of Categorical Edits and
Error Localization with the Editrules Package’. Discussion Paper (forthcoming),
Statistics Netherlands, The Hague.

Williams, H. P. (1986), ‘Fourier’s Method of Linear Programming and Its Dual’, The
American Mathematical Monthly 93, pp. 681-695.

33

Appendix A Proofs

A.1 Proof of Theorem 2

In order to prove Theorem 2, it is convenient to prove first an auxiliary lemma. Suppose
that ¥, is obtained from ¥, | by eliminating x,. We define, for each edit l//(’; , the index
set A’; of the edit(s) in ¥, from which it has been derived. That is to say, we define
A’; ={l}if 1//;‘ is obtained by copying the edit 1;/111_1, and we define Ag = {s,t}if 1//!1‘
is obtained by eliminating a variable from the pair of edits y,_,, ly;fl.

Lemma 1 Consider the situation of Theorem 2 for q > 1, and suppose that x, has
been eliminated to obtain ¥, from ¥,_1. Let A be a representing set of the index sets
A'g belonging to all l//[’; € ‘P,(Iz). Then there exists a value for xg which, together with
the original values of the variables that are involved in \Y,, satisfies all edits in ¥,

except those in A.

Proof (of Lemma 1) By construction, A contains all indices of failed edits from ¥, _;
which do not involve x,. Hence, the only way for the lemma to be false would be, if
there existed two edits that involve x,, say y,_; and ‘l’;qa with s € A and ¢ & A, such
that it is not possible to find a value for x, that satisfies both edits simultaneously. In
this case, an implied edit in ¥y is generated by eliminating x, from y;,_, and q/f]_ 1- (At
this point, we need the assumption that the equality elimination rule has not been used.)
Moreover, by the fundamental property of Fourier-Motzkin elimination, this implied
edit must be failed by the original values of the other variables. In other words, the

implied edit must be an element of LP((Iz). But this would contradict the assumption that

A is a representing set of A’; for all 1;/6]1c € ‘P((]z). Hence, it is impossible to find such a

pair of edits, and the lemma follows. g

The proof of Theorem 2 now proceeds by induction on the number of treated variables
q. For ¢ =0, the statement is trivial. For ¢ = 1, the theorem follows as a special case of
Lemma 1; note that Bf = AX. We suppose therefore that the statement has been proved
forall ¢ € {0,1,...,Q0— 1}, and we consider the case g = Q, with Q > 2.

If Wy is obtained from Wy by fixing a variable to its original value, and B is a
representing set of the sets B’é for the failed edits from W, then by construction B is
also a representing set of the sets Bg_l for the failed edits from Wp_;. Thus, in this
case, the statement for ¢ = Q follows immediately from the induction hypothesis.

Thus, we are left with the case that W is obtained from Wy_; by eliminating a vari-
able, say x,. We define, for each l//é S LP(Qz), the index set A’é of the edit(s) from Wo_;
from which l//é is derived, just as above. Next, we use B to construct a set A, by

applying the following procedure to each lllé‘2 € ‘I’(QZ):

o If 1//5 is obtained by copying Wé—l (so that A’é = {I} and Bt = B’Qf 1), then we
add / to A.

o If l//é is obtained by eliminating x, from l;réf , and l;l‘Qf | (so that Ak = {s,t}
and B’é =By, | UB{,), then we add s to A if B contains an element of By, |,
and we add ¢ to A otherwise.

34

It is easy to see that this procedure produces a representing set A of the index sets A’é

2
0 -

According to Lemma 1, there exists a value for x, which, together with the original

for all yj, € ¥

values of the p — g variables that have not been treated, satisfies the edits in Wp_;
except those in A. That is to say, Wp_ can be partitioned similarly to Wy as Wp_1 =
‘P(Qlll U ‘P(Qzll, where ‘P(QZZ , contains the edits with indices in A. Moreover, it is not
difficult to see that the above procedure implies that B is a representing set of the index
sets Bléq for all l//éfl € ‘P(szl Hence, the induction hypothesis establishes that, given
the original values of the variables that have not been eliminated and given the chosen
value for x,, there exist values for the other eliminated variables that satisfy all the
original edits except those in B. This shows that the statement holds for ¢ = Q and

completes the proof of Theorem 2.

A.2 Proof of Theorem 3

To prove Theorem 3, we start again with an auxiliary lemma. Analogously to the
numerical case, when ‘¥, is obtained from ¥, by eliminating v,, we define the index
set A’; of edits in ¥,_1 from which the edit 1//6]1c € W, is derived. To be precise, we define
A'g ={l}if 1,1/!1c is obtained by copying the edit 1//61171, and we define A’; =T if l//[’; is
obtained by eliminating a variable from the set of edits ‘Vzt;—l (t € T). In contrast with
the numerical case, here A’; may contain more than two elements.

Lemma 2 Consider the situation of Theorem 3 for q > 1, and suppose that v, has
been eliminated to obtain ¥, from ¥, . Let A be a representing set of the index sets
Ag belonging to all l[/f; € ‘P,(Jz). Then there exists a value for v, which, together with
the original values of the variables that are involved in Y, satisfies all edits in ¥,

except those in A.

Proof (of Lemma 2) By construction, A contains all indices of failed edits from ¥,
which do not involve v,. Hence, the only way for the lemma to be false would be, if
there existed edits that involve v,, say 1//;1_1, e, l{/;’_l, with AN{z,...,t,} =0, such
that it is not possible to find a value for v, that satisfies these edits simultaneously,
given the values of the other variables. Clearly, this could only happen if th1 U---u
Fgr = Dy, since otherwise any value for v, outside Fy' U--- U F" would work. We may
assume without loss of generality that 7" = {r,...,t,} is a minimal set having this
property. Furthermore, it must hold in this case that for all variables involved in ¥,
the original value of v; is contained in all sets F ;l oo F ;’. In other words, 77 must
have properties (13) and (14). This means that 7’ would generate an implied edit in
W, which, as discussed at the beginning of Section 5, must be failed by the original
values of the remaining variables. But this would contradict the assumption that A is a
representing set of A’; for all 1//!1‘ € ‘P,(Iz). U

The proof of Theorem 3 is now completely analogous to that of Theorem 2, with
Lemma 2 taking the role of Lemma 1. The only slight difference occurs in the proce-
dure to transform B to A, where the second bullet is replaced by:

35

o If I[/é is obtained by eliminating v, from yy, | (t € T) (so that A’é =T and
B"Q = Uer Bthl)’ then we add one t € T to A such that B contains an element
of Btgfl.

36

Appendix B Using Edit Failure Sizes in Dy,

In this appendix, we discuss an extension of the theory in the main text to the case that
Dy, f; is a function of the sizes of the soft edit failures. As mentioned in Section 3, tak-
ing the edit failure sizes into account is intuitively appealing. However, this approach
leads to two technical difficulties. First, one has to choose a measure for edit failure
sizes; some suggestions are given in Appendix B.1. Second, the algorithm from Sec-
tion 6 has to be adapted to solve a more complicated error localisation problem; this
adaptation is treated in Appendix B.2.

B.1 Measuring the Size of an Edit Failure

For purely numerical edits, there exists a natural measure of edit failure size. A record

(x9,... ,x?,) can be said to fail an edit of the form (6) by the amount

" = max {0, — (a1 x) + - +apx) +be) } (30)
and an edit of the form (7) by the amount
e =|apx) + - +axpx) + by 31

In both cases, e* represents the absolute amount by which the left-hand-side of the edit
would have to be shifted in order for the edit to become satisfied. That is to say, e¥ =0
if a record satisfies an edit, and e* > 0 otherwise.

Thus, for purely numerical edits, it is natural to express Dy, s; as a function of the soft
edit failures ef (k= 1,...,Ks). It seems advantageous to standardise the edit failure
sizes first, since the magnitude of ¢ may be very different for different edits. In a
slightly different context, Hedlin (2003) suggested to use the Mahalanobis distance for
this. The Mahalanobis distance of two vectors @ and b, which (supposedly) originate
from a distribution with covariance matrix S, is defined as

Du(@B) =/ (@—bys—'(a—b).

As a special case, the Mahalanobis distance between @ and the mean vector [i of the
distribution is often used as a measure of outlyingness for a:

(@) = Dy (@,) = /(@ — fi)'S~1 @~).
See also Little and Smith (1987) for a different application of dy/(d@) in the context of
error localisation.

Let & = (e!,...,eX)’ denote the vector of soft edit failures for a particular record. (To
keep the notation as simple as possible, we omit a separate index for records.) An
interesting expression for Dy, ¢, as a function of soft edit failures for purely numerical

Dyofi = Du(2,0) = /@S), 2, (32)

where 0 denotes the Kg-dimensional vector of zeros and S; . is the covariance matrix

edits may be:

of & in a previously edited reference data set. Since the point & = 0 corresponds with

37

the absence of soft edit failures, expression (32) represents the overall magnitude of
all soft edit failures in a record. A useful feature of the Mahalanobis distance is that it

also takes possible correlations between ef and ¢! (k # [) into account.

For categorical and mixed edits of the forms (3) and (4), ¢* only measures the numer-

ical part of the edit failure. For a mixed record (v{,...,v9,x,...,x)), the numerical
failure size e* equals expression (30) or (31) if v‘} cF J(‘ forall j=1,...,m,and e =0

otherwise. In order to measure the overall edit failure size of a categorical or mixed
edit, including the categorical part, we suggest a different expression, which can be
seen as a rough estimate of the expected change that is needed in a record to satisfy
the edit.

First, we may compute, for each variable that is involved in an edit of the form (3) or
(4), a prior probability that the variable is erroneous, based on the reciprocal values of
the confidence weights:

o (1/WE(F £ D))
I (WIS £ D) + e, (1w (acy #0)
for categorical variables v; (j = 1,...,m), and
N (1/wi)I(ay; #0)
N —
DX (UWO)IFS # D)+ X (1/wi) (axy #0)
for numerical variables x; (j = 1,...,p). Here, I(A) =1 if condition A is true and

I(A) = 0 otherwise.

oy Vmo

Next, for a given record (v(l), Rt x(l), .. ,xg) and for each variable that is involved
in an edit, we compute the minimal amount by which that variable would have to
be changed in order to satisfy the edit, assuming that none of the other variables are
changed. For a numerical variable x; with a;; # 0, it is not difficult to see that the
absolute value of the required minimal amount equals

|akj\

N s if the k™ soft edit is failed and a;; # 0 33
kji = . (33)
0 otherwise

where ¢* is defined above.

For each categorical variable v; with F ,k # Dj, it is possible to satisfy the edit by
changing the value v? (if necessary) to any value from D;\F]k. Assuming that — as in
Section 8 —a metric §; : D; x Dj — R~ has been chosen for each categorical variable,
the required minimal amount may thus be defined as

4 = minaeD,«\Fj" 9 (V?,a) itF Jk #D;j
kj —)
0 otherwise

Using these ingredients, an alternative measure of edit failure size may now be defined
as follows:

m P
e =Y midl+ Y midy. (34)
j=1 j=1

This measure estimates the expected value of the absolute amount by which the values
in the record have to be changed in order to satisfy the edit. It should be noted that

38

the estimate is rather rough, since it does not take the possibility into account that
more than one variable might be changed simultaneously, nor that the minimal change
required to satisfy one edit might cause another edit to become failed.

Analogously to e, it holds that € = 0 if the k" soft edit is satisfied, and € > 0 other-
wise, where larger values of €X are to be interpreted as larger soft edit failures. Hence,
we can define an analogous expression to (32) for Dy, s, in the case of categorical and
mixed edits. Letting € = (&',...,€%5)’ denote the vector of soft edit failures for a
particular record, we define

Dyosi = Du(,0) = | 'S,) €, (35)

where, similarly to before, Sz, is the covariance matrix of € in a previously edited
reference data set.

Example
In the example from Section 7.1, the original record
(1°,P°, % N°) = (100,40000,60000, 5)
does not satisfy the soft edit
0.5T — P > 0.

Using expression (30), it is seen that e = 39950, as was already mentioned in Sec-
tion 10.

We can also evaluate expression (34). The confidence weights of 7" and P are 2 and 1,
respectively, and we find the following prior probabilities:

1/2
_ ~1/3
=T /3,

and {
_ —2/3.
= ngy 23

Plugging e = 39950 into expression (33), we can compute the minimal amounts by
which T or P would have to be changed in order to satisfy the edit:

39950
dr = =52 =990,

and

dp = @ =39950.

It is easily verified that the edit indeed becomes satisfied if we either increase the value
of T to 100+ 79900 = 80000 or decrease the value of P to 40000 — 39950 = 50.

Expression (34) now yields

1 2 2
€= 3 x 79900 + 3 % 39950 = 532665.

By comparison, if the same procedure is applied to the record

(1°,P°,Cc° N°) = (100,60,40,5),

which also fails the above edit, we find e = 10 and € = 13%. These different values
quantify the intuitive notion that the first record fails the edit “more” than does the
second record.]

As the above example shows, for purely numerical edits, the values of ef and &X are
generally different. The main theoretical advantage of & is that this measure is suitable
for numerical, categorical, and mixed edits. It remains to be seen whether this measure
also leads to good results in practice.

B.2 Dynamic Edit Failures

In this section, we describe an extension to the algorithm from Section 6 which can
be used to solve the error localisation problem when Dy, ; is a function of the sizes
of the soft edit failures. In fact, the extended algorithm is mostly the same as before.
The only difference occurs in nodes where it is possible to satisfy all hard edits, but
not all soft edits. Previously, we used the binary linear programming problem (19) to
find the best representing set of failed soft edits. Instead, we now have to determine

all minimal representing sets B of B’; 115 for the failed soft edits. Here, by “minimal”,

k
q+1,8°

For each of these representing sets B, we determine the amounts by which the original

we mean that there is no strict subset B; C B that is also a representing set of B

failed soft edits are minimally failed, and use these amounts to compute the associated
minimal value of Dy, . Finally, we choose the representing set B* with the lowest
minimal value of Dy, ;.

The difficult part in this approach lies in the evaluation of the minimal amounts by
which the soft edits are failed. For this, we first need to extend the theory from Sec-
tions 4 and 5. The material in this section is rather technical and makes use of some
of the notation from Appendix A. Throughout this section, we assume that all edits
have the general form (3). It should be noted that an edit of the form (4) may always
be replaced by two equivalent edits of the form (3).

We write the numerical condition of the original edit l[/(’)‘ as fé‘ >0, with

)4
fé‘(xl, . ,xp) = Zaijj—l-bk, k=1,...,Kp.
j=1
Here, Kj denotes the number of original edits. Next, we consider the implied edits 1//{‘
that are created by eliminating a numerical variable, say x,. The numerical condition
of such an implied edit may be written as flk > 0, with flk a linear combination of f)
t=1,...,Ko):

Ky
. xp) = Z?Lf,f{)(x],...,xp) = Z /lllitfé(xl,...,xp),
=1 teAk

with A} as defined in Appendix A.1. It should be noted that Af, > 0 if t € A} and
7L{‘J = 0 otherwise. If A’]c refers to a pair of original edits that involve x,, then the
coefficients A{‘J are chosen such that

Z l{i,a,g =0;

reAk

40

see (12) in Section 2.3. The same expression also holds in the case that ff‘ is obtained
by copying an original edit that does not involve x,; in that case, we have lft =1 for
the unique ¢ € A’f.

More generally, when g numerical variables have been eliminated, the numerical con-
dition of an implied edit l[/(]; is X >0, where f;‘ may be written as a linear combination

of fot=1,...,Ko):

fylxn,.x ZA o xp) =Y AL folxnsxp), (36)

k
teBg

with B'; as defined in Section 4. The coefficients A’;J are defined recursively by

A];t = Z A’qkas 2717” (37)

k
seAq

with A’; as defined in Appendix A.1 and l;s analogous to /11k¢- It should be noted that
A’;’, =0ifr¢g B’;. Moreover, it holds that

Z AZ,atg = 0

k
IEBq

for all variables x, that have been eliminated so far. For convenience, we define Agt =
1 and A’(;J =0 for all ¢ # k, to ensure that A’l‘ = 7le .

Lemma 3 Consider again the situation of Theorem 2. Suppose that l//é,< is failed by
the original values of the remaining variables and let e]; denote the size of the failure
of the numerical condition as measured by expression (30). If B’; N B = {b}, then the
variables that have been eliminated can imputed such that all edits W witht € B5\ {b}
are satisfied, while the size of the failure of the numerical condition of edit I//(’)’ as
measured by (30) equals at least e’; / A’;vb.

Proof Theorem 2 implies that all edits W) with z € BS\ {b} can be satisfied. Let
(%1,...,Xp) be the numerical part of an adapted record in which only the eliminated
variables have been imputed and which satisfies all edits in B’;\ {b}. Using expression
(36), the failure size e’; of edit l//fi‘ can be written as

Z Al th) = _e](;-

teB"

Since, by assumption, f{(%i,...,%,) > 0forallz € B’;\ {b}, it must hold that

A fo @, gy =—di— Y AL fo(E,. . Ky) < €,

1eBi\{b}
where we have used that A’;J >0 forallt € B’;. The lemma now follows. |

Now suppose that, more generally, there are several failed implied edits l//(’]‘, with edit
failure sizes e’; > 0, and that B is a representing set for the associated index sets B’;.
We write B’;* = B’; N B. Moreover, let M(e},. .. ,e(l){o) be a real-valued function of the
individual edit failure sizes of the original edits 1//('; , and let My(a;; t € B) be a related

41

function obtained by substituting in M the values e}, = a, for r € B and ¢}, = 0 for ¢ B.
We consider the following optimisation problem:

minimise Mo(—f{; t € B)
such that: (38)
Yicp AL fi < —ék. for all k with ¢ >0,

where the target variables are f(’) (t € B).

Theorem 4 Consider again the situation of Theorem 2. Let fé (t € B) be the optimal
solution of problem (38) for a given representing set B of the index sets Bz associated
with all failed edits l//g. If the eliminated variables are imputed such that all edits
v, with t ¢ B are satisfied, then the total edit failure of the edits W with t € B, as
measured by the function M, is at least equal to Mo(—f3; t € B).

Proof The case that B’;* = {b} is treated in Lemma 3. More generally, it can be shown
analogously to the proof of Lemma 3 that the numerical failures of the original edits
in Bg* have to satisfy

Y AL fo(E %) < —eh

11978
Problem (38) considers these inequality conditions simultaneously for all failed edits
1//(’1‘ . By construction, the optimal solution of (38) consists of the smallest possible
combination of values for f{ (t € B) — i.e. the smallest possible as measured by the
function M — that satisfies all inequality conditions. U

In the context of the error localisation problem from Section 3, the function M in
problem (38) should be replaced by Dy, ;. Depending on the form of Dy, s, it may be
easy or difficult to solve this problem. In Appendix A.1, we suggested a definition for
Dy, ; based on the Mahalanobis distance. This would lead to a quadratic programming
problem in (38).

Example
To illustrate the use of Theorem 4, we revisit the example from Section 4. The equality
edit l[/é is tacitly replaced here by two equivalent inequality edits:

v xi4xmtx > 20

l[/(;b DX —Xxp—Xx3 > —-20
It was seen in Section 4 that, after elimination of x; from the original edits, five im-
plied edits are failed: w7, w3, y/, y7, and y]3. It was also seen that B = {1,4,8}
is a representing set for the associated index sets B3, B}, B], B}, and B}>. A more
careful analysis reveals that, when yj is replaced by wl“ and y(?, this representing
set becomes B = {1a,4,8}.

For the failed implied edits, we list the edit failure sizes e} and the coefficients A’f,,:
vi: ef=15 Al ,=1A7;=1
v e]=30, Al ,=1LAJ,=1
vi: =3 A=
v =12, Al,=1A),=1
yl: eP=s AL =LAR =

42

For instance, 11112 is obtained by taking a linear combination of l//&“ and l//S, with coef-
ficients A%,l .= /\%73 = 1. Moreover, plugging the original values xg =1and xg =-3
into 11112 yields the expression —15 > 0, which shows that e% =15.

We are now ready to formulate problem (38) for this example:

minimise Mo(—f3%, — f3}, —)
such that:

fle<-1s,

fot + fo = =30,

f3 <3,

fo < —12,

fo<-8.

The optimal solution of this problem is given by: f(}” =—15—u, f(‘)‘ = —15+4u, and
fg = —3, with 0 < u < 3. Here, the optimal choice of u depends on the form of M.
According to Theorem 4, the interpretation of this solution is as follows: when x; has
to be imputed such that the edits W2, w3, w3, w3, w§, and y are all satisfied, then the
lowest possible value of M(e}?,ell,e3,ed,ed,eq, €5, el,ed) is obtained by choosing a
value for x; such that edit y}“ is failed by e)* = 15 +u, edit yj is failed by e} = 15 —u,

and edit y§ is failed by e = 3.

In fact, we already noted in Section 4 that the edits W(?, w2, ¥3, v3, 8, and y{ could
be satisfied in this example by imputing any value x; =7 —u with 0 < u < 3. It is easy

to see that this choice of x; yields precisely the above-mentioned edit failures e(l)“, eg,
and e(S). ([l

Now, as indicated at the beginning of this section, the theoretical result that we just
derived can be incorporated in the error localisation algorithm from Section 6, for
the case that D;,s; depends on the sizes of the soft edit failures. In a node where
it is possible to satisfy all hard edits, but not all soft edits, we first find all minimal
representing sets B of B’; +1,¢ for the failed soft edits. For each of these sets, we set
up and solve problem (38) to find the associated minimal value of Dy, s,. Finally, we
choose the representing set B* with the lowest minimal value of Dy, ;.

So far in this section, we have only considered the error localisation problem for nu-
merical data and edits. For mixed data, we assume, as before, that the algorithm does
not treat any categorical variable until all numerical variables have been treated. In
the first p iterations of the algorithm, the above-mentioned procedure for numerical
. k k e
variables is used. For the implied (purely categorical) edits y,, we define C}, := {k}.

Next, the algorithm derives implied edits l//[’§ +q by treating the categorical variables.

k

For these implied edits, we define the index sets C¥ P

»+q analogously to B

e For an edit l/lllj +q Which is derived from one other edit l//[l, +q—1> DY fixing a
variable to its original value or by simply copying the edit, we define Cf, +q =

!
Coigr

e For an edit lllllﬁ +4 Which is derived by eliminating a variable from a set of edits

Vg1 (t €T), we define Chiyi= Urer Cpig1-

43

Analogously to Theorem 3, if C is a representing set of Cf) +q for all edits l//’l§ +q that are
failed by the remaining categorical variables, then it is possible to impute the elimi-
nated categorical variables such that all edits y;, with ¢ ¢ C are satisfied.

For every such representing set C, we can find another representing set B of the index
sets B), for ¢ € C. According to Theorem 2, it is possible to impute the eliminated
numerical variables such that all original edits l//(l)’ with b & B are satisfied. It should be
noted that, by construction, B is also a representing set of the index sets Bf, +q for all
failed edits l;/[’j +q- Now, in order to find the minimal value of Dy, s, for the edit failures
of l,l/(})’ with b € B, it is sufficient to solve problem (38), where the inequality restrictions
are given by the failed edits y;, with ¢ € C. In this manner, we may proceed as before.

44

	Automatic editing with soft edits
	1 Introduction
	2 Background
	2.1 Edits
	2.2 The Error Localisation Problem
	2.3 The Branch-and-Bound Algorithm of SLICE

	3 An Error Localisation Problem with Hard and Soft Edits
	4 A Short Theory of Edit Failures, Part One: Numerical Data
	5 A Short Theory of Edit Failures, Part Two: Categorical Data
	6 Solving the Error Localisation Problem with Hard and Soft Edits
	7 Two Examples
	7.1 An Example with Numerical Data
	7.2 An Example with Mixed Data

	8 (Quasi-)Consistent Imputation
	9 Application
	10 Sizes of Soft Edit Failures
	11 Conclusion
	Acknowledgements
	References
	Appendix A Proofs
	A.1 Proof of Theorem 2
	A.2 Proof of Theorem 3

	Appendix B Using Edit Failure Sizes in Dso f t
	B.1 Measuring the Size of an Edit Failure
	B.2 Dynamic Edit Failures

