
Statistics Netherlands

Discussion paper (201126)

The views expressed in this paper are those of the author(s)
and do not necessarily reflect the policies of Statistics Netherlands

The Hague/Heerlen, 2011

011
Mark van der Loo and Edwin de Jonge

Deductive imputation with
the deducorrect package

Publisher
Statistics Netherlands
Henri Faasdreef 312
2492 JP The Hague

Prepress
Statistics Netherlands
Grafimedia

Cover
TelDesign, Rotterdam

Information
Telephone +31 88 570 70 70
Telefax +31 70 337 59 94
Via contact form:
www.cbs.nl/information

Where to order
E-mail: verkoop@cbs.nl
Telefax +31 45 570 62 68

Internet
www.cbs.nl

ISSN: 1572-0314

© Statistics Netherlands,
The Hague/Heerlen, 2011.
Reproduction is permitted.
‘Statistics Netherlands’ must be quoted as source.

Explanation of symbols

 . = data not available
 * = provisional figure
 ** = revised provisional figure
 x = publication prohibited (confidential figure)
 – = nil or less than half of unit concerned
 – = (between two figures) inclusive
 0 (0,0) = less than half of unit concerned
 blank = not applicable
 2010–2011 = 2010 to 2011 inclusive
 2010/2011 = average of 2010 up to and including 2011
 2010/’11 = crop year, financial year, school year etc. beginning in 2010 and ending in 2011
 2008/’09–
 2010/’11 = crop year, financial year, etc. 2008/’09 to 2010/’11 inclusive

 Due to rounding, some totals may not correspond with the sum of the separate figures.

600832011 26 X-10

Deductive imputation with the deducorrect package

Mark van der Loo and Edwin de Jonge

Summary: Numerical and categorical data used for statistical analyses is often

plagued with missing values and inconsistencies. In many cases, a number

of missing values may be derived, based on the consistency rules imposed on

the data and the observed values in a record. The methods used for such

derivations are called deductive imputation. In this paper, we describe the newly

developed deductive imputation functionality of R package deducorrect. The

package gained methods to deductively impute numerical as well as categorical

data. Methods for setting up a partial data editing system are discussed as

well.

Keywords: Statistical data editing, deductive correction, missing data

3

Contents

1 Introduction 5

2 Deductive imputation 6

2.1 Overview . 6

2.2 Imputation with deduImpute . 8

3 Deductive imputation of numerical data 12

3.1 Imputation with solSpace and imputess 12

3.1.1 Area of application . 12

3.1.2 How it works . 12

3.1.3 An example . 13

3.2 Imputation with deductiveZeros 15

3.2.1 Area of application . 15

3.2.2 How it works . 15

3.2.3 An example . 16

4 Deductive Imputation of categorical data 16

4.1 Imputation with deductiveLevels 17

4.1.1 Area of application . 17

4.1.2 How it works . 17

4.1.3 An example . 17

5 Conclusions 20

References 21

List of Algorithms

1 deductiveLevels(E,v) . 18

4

1 Introduction

The quality of raw survey data is only rarely sufficient to allow for immedi-

ate statistical analysis. The presence of missing values (item nonresponse) and

inconsistencies impedes straightforward application of standard statistical es-

timation methods, and statisticians often have to spend considerable effort to

counterbalance the effect of such errors.

There are basically two ways to take the effect of data quality issues into ac-

count. The first is to adapt the statistical analysis such that the effects of these

issues are taken into account. One well-documented example is to use weight-

ing methods which take the effect of (selective) item nonresponse into account

(Kalton and Kasprzyk, 1986; Bethlehem et al., 2011). The second way is to

clean up the dataset so that missing values are completed and inconsistencies

have been repaired. The latter method has the advantage that statistical anal-

yses of the data become to a degree independent of the models used in data

cleaning. Whichever way is chosen, in most cases additional assumptions are

necessary to clean data or interpret the results of data analyses.

Recently, a number of near assumption-free data-cleaning methods have been

reported which rely almost purely on record consistency rules imposed a priori

on the data. Examples of such rules include account balances, positivity de-

mands on variables or forbidden value combinations in categorical data. In a

previous paper (Van der Loo et al., 2011) we reported on methods which use

data consistency rules and information in inconsistent records to track down

and repair typing errors, rounding errors and sign errors. The theory behind

these methods was first published by Scholtus (2008, 2009) and the methods

were implemented by us in R package deducorrect. Since these so-called deduc-

tive correction methods are based on adapting values, they are not suited for

completing missing values.

In this paper, we report on an extension of the deducorrect package which allows

for deductive imputation of missing values in either numerical or categorical

data. The implemented methods were proposed by Pannekoek (2006) and De

Waal et al. (2011). By deductive imputation we mean methods which use

the observed values in a record together with consistency rules imposed on

the record to uniquely derive values where possible. The values may be missing

because of nonresponse, or they may be deemed missing by an error localization

algorithm such as implemented in the editrules package (De Jonge and Van der

Loo, 2011; Van der Loo and de Jonge, 2011).

In section 2, we further introduce the concept of deductive imputation and show

the easiest way of imputing values with the deducorrect package. In sections

3 and 4 we expand a bit on the theory and demonstrate the use of lower-level

5

functionality of the package. Examples in R code are given throughout to help

new users getting started.

2 Deductive imputation

2.1 Overview

Deductive imputation relies on in-record consistency rules to derive the value

of variables which have not been completed from variables that have. These

methods therefore rely on the assumption that the values used in the derivation

have been completed correctly. For example, suppose we have a numerical

record x = (x1, x2, x3), subject to the rules

x1 + x2 = x3 (1)

x ≥ 0. (2)

Suppose we are given two values of x, for example (NA, x2, x3), where NA stands

for Not Available. In principle, the unknown value is easily derived from rule

(1), but one must take care not to violate any other rules. For example, if

x2 < 0, the derived value for x1 is most likely not the true value, since at least

one of the values used to derive x1 is invalid. Moreover, if x2 > x3, the derived

value for x1 will be negative, and therefore violate rule (2). For categorical

data, analogous situations may arise.

The deductive imputation routines of the deducorrect package offer two mech-

anisms to avoid inconsistencies. The first is to explicitly check if consistent de-

ductive imputation is possible based on the observed values. This is switched on

by default for the functions deduImpute, deductiveZeros, the editmatrix method

of solSpace and deductiveLevels. These functions will be discussed below. The

second mechanism is the ability to point out variables besides the missing ones,

which should be considered as if they were missing. A typical example would be

to use the result of an error localization algorithm which points out erroneous

fields in a record.

In the context of a complete automated data editing system, there are several

places where deductive imputation or correction can be applied. Typically,

one will apply such methods before the data is treated with more complicated

imputation models. Figure 1 shows a workflow for automatic deductive data

cleaning. It contains all (near) assumption-free corrections and imputations of

the deducorrect package. If after these steps, missing values or errors remain, one

has to resort to other methods and accept extra model assumptions. It should

be noted that a common step such as detecting and repairing unit measure

6

read data

read rules

deductive
correction

error
localization

deductive
imputation

other
imputation
methods

editarray, editmatrix

correctTypos
correctSigns

correctRounding

localizeErrors

deduImpute

editrules

deducorrect

editrules

deducorrect

Figure 1. Flow diagram showing how functionality of the deducorrect and ed-

itrules can be combined to perform the deductive corrections, deductive imputa-

tions and error localization. All steps except deductive correction are available

for numerical as well as categorical data. The ellipses indicate some of the R

functions from the packages noted on the right. Error localization is not strictly

necessary to perform deductive imputation, but in this way the maximum num-

ber deductively imputable values will be derived.

errors is not included here. However, such methods are easily implemented in

R, and we refer to De Waal et al. (2011) for an overview.

Deductive imputation appears after the error localization step in the process

flow chart of Figure 1. At that point one is certain that the missing variables

together with the variables pointed out by the error localization algorithm can

be imputed consistent with the edit rules. Error localization is not strictly

necessary to perform deductive imputation with the deducorrect package since

by default, the imputation routines check if consistent imputation is possible.

However, the workflow in Figure 1 guarantees that as many deductive imputa-

7

tions take place as possible. For performance reasons, the user can choose to

skip these checks when the workflow of Figure 1 is followed.

2.2 Imputation with deduImpute

The simplest way to do deductive imputations with the deducorrect package

is to use the deduImpute function. It can be used for both numerical and

categorical data. The function accepts an editmatrix or editarray containing the

editrules and a data.frame containing the records. The return value is an object

of class deducorrect, similar to the values returned by the correct- functions of

deducorrect [see Van der Loo et al. (2011)].

For numerical data deduImpute uses two methods (described in sections 3.1 and

3.2) to impute as many empty values as possible. It uses the functions solSpace

and deductiveZeros iteratively for each record until no deductive improvements

can be made. Here, we will use the example from De Waal et al. (2011),

Chapter 9.2. This example uses the following edits, based on a part of the

Dutch Structural Business Survey balance account.

x1 + x2 = x3

x2 = x4

x5 + x6 + x7 = x8

x3 + x8 = x9

x9 − x10 = x11

x6 ≥ 0

x7 ≥ 0

(3)

The rule x2 = x4 may seem odd for readers not familiar with survey statistics.

However, these rules correspond to cases where respondents have to copy a

figure from one page on a paper form to another1. In Figure 2 we give an

example where the following record subject to the edits in Eq. (3) is treated.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

1 145 NA 155 NA NA NA NA 86 NA 217 NA

The record contains missing values. However, by assuming that all non-missing

values are correct, values can be derived for x2, x4, x9 and x11 just by consid-

ering the equality- and nonnegativity rules in the edit set.

The assumption that all missing values can be imputed consistently may not

alway be valid: the nonmissing values may have been filled in erroneously,

yielding faulty derived values to impute. The reason is that deduImpute does

1In spite of the availability of web-based forms, many respondents still prefer paper forms.

8

> E <- editmatrix(c(

+ "x1 + x2 == x3",

+ "x2 == x4",

+ "x5 + x6 + x7 == x8",

+ "x3 + x8 == x9",

+ "x9 - x10 == x11",

+ "x6 >= 0",

+ "x7 >= 0"

+))

> dat <- data.frame(

+ x1=c(145,145),

+ x2=c(NA,NA),

+ x3=c(155,155),

+ x4=c(NA,NA),

+ x5=c(NA, 86),

+ x6=c(NA,NA),

+ x7=c(NA,NA),

+ x8=c(86,86),

+ x9=c(NA,NA),

+ x10=c(217,217),

+ x11=c(NA,NA)

+)

> dat

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

1 145 NA 155 NA NA NA NA 86 NA 217 NA

2 145 NA 155 NA 86 NA NA 86 NA 217 NA

> d <- deduImpute(E,dat)

> d$corrected

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

1 145 10 155 10 NA NA NA 86 241 217 24

2 145 10 155 10 86 0 0 86 241 217 24

Figure 2: A simple example with deduImpute. The return value is an object of

class deducorrect.

not take into account all edit rules: only nonnegativity rules and equality rules

are used to derive imputed values.

The deduImpute function has two mechanisms to get around this. The first

is to set the option checkFeasibility=TRUE. This causes solutions causing new

inconsistencies to be rejected. The second mechanism is to provide a user-

specified adapt array to increase the number of variables which may be imputed,

missing or not. The adapt array is a boolean array, stating which variable may

9

be changed in which record. A convenient example is to use the adapt array as

generated by the localizeErrors function from the editrules package. By specifying

an adapt array, deduImpute will try to fix records by imputing values which are

either missing or may be adapted according to adapt.

For categorical data, deduImpute uses the deductiveLevels function, discussed in

section 4. The function accepts an editarray holding the categorical edits and a

data.frame holding records to be imputed.

Before introducing our example, we note that a categorical record is a member

of a discrete set, written as the cartesian product.

D = D1 ×D2 × . . .×Dn, (4)

where each Dk is the set of categories for a single variable. An edit e can be

written as a subset of D:

e = A1 ×A2 × · · · ×An, (5)

where each Ak ⊂ Dk. The interpretation is that if a record v ∈ e, then that

record is invalid.

Here, we reproduce example 9.3 of De Waal et al. (2011) [first published by (Kar-

tika, 2001)]. Consider four categorical variables with domains D1 = {a, b, c, d},
D2 = D3 = {a, b, c} and D4 = {a, b}. We define the edit rules

e1 = D1 × {c} × {a, b} × {a} (6)

e2 = D1 × {b, c} ×D3 × {b} (7)

e3 = {a, b, d} × {a, c} × {b, c} ×D4 (8)

e4 = {c} ×D2 × {b, c} × {a}. (9)

Out of 72 possible records, only the following 20 are valid:

(a, a, a, a) (b, a, a, a) (c, a, a, a) (d, a, a, a)

(a, a, a, b) (b, a, a, b) (c, a, a, b) (d, a, a, b)

(a, b, a, a) (b, b, a, a) (c, a, b, b) (d, b, a, a)

(a, b, b, a) (b, b, b, a) (c, a, c, b) (d, b, b, a)

(a, b, c, a) (b, b, c, a) (c, b, a, a) (d, b, c, a).

Figure 3 shows how these rules can be defined in R using the editarray function of

the editrules package. Consider the record (c,b,NA,NA). By simply considering

the list of valid records above it is clear that if v1 and v2 are assumed correct,

the only possible valid imputation is v3 = v4 = a. Indeed this is returned

by deduImpute in Figure 3. The record (NA, NA, NA, b) cannot be imputed

completely, since there are six possible records with v4 = b. However, all of

them have v2 = a, so this may be imputed with certainly. Finally, the record

(b, c, a, NA) cannot be imputed since there is no valid record with these values

for v1, v2 and v3.

10

> M <- editarray(c(

+ "v1 %in% letters[1:4]",

+ "v2 %in% letters[1:3]",

+ "v3 %in% letters[1:3]",

+ "v4 %in% letters[1:2]",

+ "if (v2 == 'c' & v3 != 'c' & v4 == 'a') FALSE",

+ "if (v2 != 'a' & v4 == 'b') FALSE",

+ "if (v1 != 'c' & v2 != 'b' & v3 != 'a') FALSE",

+ "if (v1 == 'c' & v3 != 'a' & v4 == 'a') FALSE"

+))

> Mdat <- data.frame(

+ v1 = c('c', NA,'b'),

+ v2 = c('b', NA,'c'),

+ v3 = c(NA, NA,'a'),

+ v4 = c(NA,'b', NA),

+ stringsAsFactors=FALSE

+)

> s <- deduImpute(M, Mdat)

> s$corrected

v1 v2 v3 v4

1 c b a a

2 <NA> a <NA> b

3 b c a <NA>

> s$status

status imputations

1 corrected 2

2 partial 1

3 invalid 0

> s$corrections

row variable old new

v3 1 v3 NA a

v4 1 v4 NA a

v2 2 v2 NA a

Figure 3: Deductive imputations for categorical data using deduImpute.

11

3 Deductive imputation of numerical data

The valid value combinations of numerical data records with n variables are

usually limited to some subset of Rn. Common cases include balance accounts

(linear restrictions) combined with linear inequality rules (positivity rules for

example). In such cases the set of valid records is a convex polytope. In certain

cases, when the values for a number of variables have been fixed, the set of

possible values for a number of the remaining variables reduces to a point. In

such cases deductive imputation is possible.

3.1 Imputation with solSpace and imputess

3.1.1 Area of application

The combination of functions solSpace and imputess can be used to impute

numerical data under linear equality restrictions:

Ax = b, with A ∈ Rm×n, x ∈ Rn and b ∈ Rm. (10)

If x has missing values, then solSpace returns a representation of the linear

space of imputations valid under Eqn. (10). The function imputess performs

the actual imputation. It is important to note that these functions do not take

into account the presence of any inequality restrictions.

3.1.2 How it works

Consider a numerical record x with nmiss values missing. The values may be

missing because of nonresponse, or they may be deemed missing by an error

localization procedure (see the next subsection). We will write x = (xobs,xmiss),

with xobs the observed values and xmiss the missing ones. Supposing further

that x must obey a set of equality restrictions as in Eqn. (10), we may write

A = [Aobs,Amiss]. Consequently we have (De Waal et al., 2011)

Amissxmiss = b−Aobsxobs. (11)

This gives

xmiss = x0 + Cz, (12)

with z an arbitrary real vector of dimension nmiss and x0 and C constant.

The purpose of solSpace is to compute x0 and C. Together they determine the

vector space of values available for xmiss. Deductive imputation can be realized

by observing that if any rows of C are filled with zeros, then the sole value for

12

the corresponding values of xmiss are given the corresponding values in x0. The

values of x0 and C are given by

x0 = A+
miss(b−Aobsxobs) (13)

C = A+
missAmiss − 1. (14)

Here, 1 is the identity matrix and A+
miss is the pseudoinverse of A, obeying

AmissA+
missAmiss = Amiss. (15)

See De Waal et al. (2011) for details on the imputation method or Greville

(1959) for an excellent discussion on the pseudoinverse.

3.1.3 An example

The solSpace function returns the x0 and C as a list. For example consider the

first record from Figure 2:

> (x <- dat[1,])

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

1 145 NA 155 NA NA NA NA 86 NA 217 NA

Using the editmatrix defined in the same figure, we get:

> (s <- solSpace(E,x))

$x0

[,1]

x2 10.00000

x4 10.00000

x5 28.66667

x6 28.66667

x7 28.66667

x9 241.00000

x11 24.00000

$C

x2 x4 x5 x6 x7 x9 x11

x2 0 0 0.0000000 0.0000000 0.0000000 0 0

x4 0 0 0.0000000 0.0000000 0.0000000 0 0

x5 0 0 -0.6666667 0.3333333 0.3333333 0 0

x6 0 0 0.3333333 -0.6666667 0.3333333 0 0

x7 0 0 0.3333333 0.3333333 -0.6666667 0 0

x9 0 0 0.0000000 0.0000000 0.0000000 0 0

x11 0 0 0.0000000 0.0000000 0.0000000 0 0

13

solSpace has an extra argument adapt which allows extra fields of x to be con-

sidered missing. An example of its use would be to determine erroneous fields

with errorLocalizer (of the editrules package) and to determine the imputation

space with solSpace.

The top two and bottom two rows of C in the example have zero coefficients,

yielding a unique solution for x2, x4, x9 and x11. The unique values may be

imputed with imputess:

> imputess(x, s$x0, s$C)

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

1 145 10 155 10 NA NA NA 86 241 217 24

If a z-vector is provided as well [See Eq. (12)], all values may be imputed. Here,

we choose z = 0 (arbitrarily).

> (y <- imputess(x, s$x0, s$C, z=rep(0,ncol(s$C))))

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

1 145 10 155 10 28.66667 28.66667 28.66667 86 241 217 24

Using violatedEdits from the editrules package, we may verify that this record

satisfies every inequality rule as well (E as in figure 2).

> any(violatedEdits(E,y,tol=1e-8))

[1] FALSE

To demonstrate the use of the adapt argument, consider the following case.

> Ey <- editmatrix(c(

+ "yt == y1 + y2 + y3",

+ "y4 == 0"))

> y <- c(yt=10, y1=NA, y2=3, y3=7,y4=12)

> (s <- solSpace(Ey,y))

NULL

However, using the adapt argument, which is a logical indicator stating which

entries may be adapted, we get the following.

> (s <- solSpace(Ey, y, adapt=c(FALSE,FALSE,FALSE,FALSE,TRUE)))

14

$x0

[,1]

y1 0

y4 0

$C

y1 y4

y1 0 0

y4 0 0

> imputess(y,x0=s$x0,C=s$C)

yt y1 y2 y3 y4

10 0 3 7 0

3.2 Imputation with deductiveZeros

3.2.1 Area of application

This method can be used to impute missing values in numerical records subject

to

Ax = b, with A ∈ Rm×n, x ∈ Rn and b ∈ Rm (16)

xj ≥ 0 for at least one j ∈ {1, 2, . . . , n}. (17)

Economic survey data are often subject to account balances of the form xt =

x1 + x2 + · · ·xk. For example, xt might be the total personnel cost and the xi

are costs related to permanent staff, temporary staff, externals, etc. It is not

uncommon for respondents to leave fields open which are not relevant to them.

For example, if a company has not hired any temporary staff, the corresponding

field might be left empty while a 0 would have been appropriate.

In such cases, missing values are bounded from above by the sum rules while

they are bounded from below by the nonnegativity constraint. If the missing

values are ignored, and the completed values add up to the required totals, then

missing values may be uniquely imputed with 0. The function deductiveZeros

detects such cases.

3.2.2 How it works

Consider again the notation of Section 3.1.2. We write (following notation of

De Waal et al. (2011)).

b∗ = b−Aobsxobs. (18)

15

If any b∗l = 0, this means that the sum rule al ·x = bl is obeyed if missing values

are ignored. For those cases, the following properties are checked.

� Each amiss,lj has the same sign.

� Each amiss,lj 6= 0 corresponds to a variable xj that is constrained to be

nonnegative.

If these demands are obeyed, the corresponding value xmiss,j may be imputed

with 0.

3.2.3 An example

The function deductiveZeros does not perform imputation itself but computes

an indicator stating which values may be imputed. As a first example consider

the following.

> Ey <- editmatrix(c(

+ "yt == y1 + y2 + y3",

+ "y1 >= 0", "y2 >= 0 ","y3 >= 0"))

> y <- c(yt=10, y1=NA, y2=3, y3=7)

> (I<-deductiveZeros(Ey,y))

yt y1 y2 y3

FALSE TRUE FALSE FALSE

The record y can be imputed in one statement.

> y[I] <- 0

> y

yt y1 y2 y3

10 0 3 7

4 Deductive Imputation of categorical data

As shown in Eq. (4), a categorical data record is a member of a discrete set of

value combinations D (the domain). In practice, not every record in D may be

acceptable. For example if

D = {child, adult} × {married, unmarried}, (19)

then the record (child, married) may be excluded from the set of valid records.

Therefore, if we have a record with (NA, married), and assume that the marital

status is correct, there is only one possible value for the age class, namely

“adult”. So just like for numerical data, if the known values limit the number of

options for the unknowns to a unique value, deductive imputation is possible.

16

4.1 Imputation with deductiveLevels

4.1.1 Area of application

The function deductiveLevels works on purely categorical data where the number

of categories for each variable is known and fixed, as in Eq. (4). It determines

which missing values in a record are determined uniquely by the known values,

and these unique values are returned.

4.1.2 How it works

The algorithm behind deductiveLevels has been described by De Waal et al.

(2011) and is reproduced here in Algorithm 1. The Algorithm is described in

terms of the functions eliminate and substValue, both of which are implemented

in the editrules package and have been described extensively by Van der Loo

and de Jonge (2011). In short, deductiveLevels derives deductive imputations by

first substituting all observed values in the edit rules. Subsequently, all variables

but one are eliminated from the remaining edits. If only one possible value

remains for the remaining variable, it may be used as a deductive imputation

and substituted in the set of edits. This process is repeated until all missing

values are treated.

4.1.3 An example

Consider the variables v1 =gender, v2 =pregnant and v3 =chromosome. The

value domain and edit rules are given by

D1 = {male, female} (20)

D2 = {true, false} (21)

D3 = {xx, xy} (22)

e1 = {male} × {true} ×D3 (23)

e2 = {male} ×D2 × {xx}. (24)

The corresponding editarray can be defined as follows.

> E <- editarray(c(

+ "gender %in% c('male','female')",

+ "pregnant %in% c(TRUE,FALSE)",

+ "chromosome %in% c('XX','XY')",

+ "if (gender == 'male') !pregnant",

+ "if (gender == 'male') chromosome == 'XY'"))

17

Algorithm 1 deductiveLevels(E,v)

Input: An editarray E, a partially complete record v

Determine the index I ⊂ {1, 2, . . . n} in v of observed values.

E ← substValue(E, I,vI)

if ¬isFeasible(E) then

return ∅
end if

M ← {1, 2, . . . , n}\I . Index of missing values in v

T ← ∅
S ← ∅
while M\T 6= ∅ do

m←M1

F ← E

for k ∈M\m do . Eliminate all but k from F

F ← eliminate(F, k)

end for

if There is one possible value ṽ for variable m in F then

E ← substValue(E,m, ṽ)

M ←M\m
S ← S ∪ (m, ṽ)

else

T ← T ∪m

end if

end while

Output: Unique imputations S.

Now, consider the record (male, false, NA). Using deductiveLevels we find:

> v <- c(gender='male',pregnant=FALSE,chromosome=NA)

> (s <- deductiveLevels(E,v))

chromosome

"XY"

And imputation can be performed as follows:

> v[names(s)] <- s

> v

gender pregnant chromosome

"male" "FALSE" "XY"

18

The deductiveLevels function has an optional argument, allowing to switch off

the feasibility check. To illustrate this, consider the record (male,true, NA).

Clearly, there is no way to impute this record consistently by just imputing

the chromosome variable. If we choose v3 = XX, this conflicts with the gender

(male) if we choose XY this conflicts with the gender implied by v2 (pregnant).

In this case deductiveLevels returns NULL.

> v <- c(gender='male',pregnant=TRUE,chromosome=NA)

> deductiveLevels(E,v)

NULL

The reason is that deductiveLevels checks if feasible imputations are possible

after substituting all observed values into the edits. This check can be time-

consuming since it potentially involves many variable elimination steps. It may

be turned off by passing checkFeasibility=FALSE:

> deductiveLevels(E,v,checkFeasibility=FALSE)

chromosome

"XY"

However, one must be careful since, as shown above, the result may be an

inconsistent imputation. The reason to include this option is that users may

provide an additional parameter, called adapt, allowing deductiveLevels to im-

pute more variables. If the adapt parameter is chosen such that missing values

plus adaptable values can lead to consistent imputation, the consistency check

may be turned off. For example, we may choose to adapt the pregnancy status.

> adapt <- c(gender=FALSE,pregnant=TRUE,chromosome=TRUE)

> (s <- deductiveLevels(E,v,adapt=adapt,checkFeasibility=FALSE))

pregnant chromosome

"FALSE" "XY"

So that the imputed value becomes

> v[names(s)] <- s

> v

gender pregnant chromosome

"male" "FALSE" "XY"

which is indeed a valid record. In general, the adapt parameter should be

derived via a consistent error localization mechanism, such as implemented in

the editrules package. Only those cases it is safe to gain some performance by

switching the feasibility check off.

19

5 Conclusions

Missing values and inconsistencies in raw data often hinder statistical analyses.

However, in many cases, correct values can be derived using available values and

consistency rules imposed on the data (deductive imputation). As of version

1.1, the deducorrect package includes functionality for deductive imputation of

numerical and catogorical data. The functionality of the deducorrect package

can be used as-is, or may be integrated with the error localization functionality

of the editrules package.

Future work on the package will include several performance enhancements and

visualisation options.

20

References

Bethlehem, J., F. Cobben, and B. Schouten (2011). Handbook of Nonresponse

in Household Surveys, Volume 562 of Wiley handbooks in survey methodology.

John Wiley & Sons.

De Jonge, E. and M. Van der Loo (2011). Manipulation of linear edits and error

localization with the editrules package. Technical Report 2011020, Statistics

Netherlands, The Hague/Heerlen.

De Waal, T., J. Pannekoek, and S. Scholtus (2011). Handbook of statistical data

editing and imputation. Wiley handbooks in survey methodology. Hoboken,

New Jersey: John Wiley & Sons.

Greville, T. N. E. (1959). The pseudoinverse of a rectangular or singular matrix

and its application to the solution of systems of linear equations. SIAM

Review 1, 38–43.

Kalton, G. and D. Kasprzyk (1986). The treatment of missing survey data.

Survey methodology 12, 1–16.

Kartika, W. (2001). Consistent imputation of categorical and numerical data.

Technical report, Statistics Netherlands, Den Haag.

Pannekoek, J. (2006). Regression imputation with linear equality constraints

on the variables. In UNECE Work session on statistical data editing in Bonn.

http://www.unece.org/stats/documents/2006.09.sde.html.

Scholtus, S. (2008). Algorithms for correcting some obvious inconsistencies and

rounding errors in business survey data. Technical Report 08015, Statistics

Netherlands, Den Haag. The papers are available in the inst/doc directory

of the R package or via the website of Statistics Netherlands.

Scholtus, S. (2009). Automatic correction of simple typing error in numerical

data with balance edits. Technical Report 09046, Statistics Netherlands, Den

Haag. The papers are available in the inst/doc directory of the R package or

via the website of Statistics Netherlands.

Van der Loo, M. and E. de Jonge (2011). Manipulation of categorical edits

and error localization with the editrules package. Technical Report 2011XX,

Statistics Netherlands, The Hague/Heerlen. In press.

Van der Loo, M., E. de Jonge, and S. Scholtus (2011). Correction of rounding,

typing and sign errors with the deducorrect package. Technical Report

201119, Statistics Netherlands, Den Haag. This paper is included with the

package.

21

