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Simple derivations of variance formulas in two-stage simple
random sampling

Paul Knottnerus

Summary: This paper gives alternative derivations for the standard variance
formulas in two-stage sampling. The derivations are based on a direct use of
the dtatistical properties of the sampling errors in the second stage. For the
ease of exposition we examine the specific case that simple random sampling
is used in both stages. These derivations might be useful for readers looking
for more elementary approaches to two-stage sampling.

Keywords:. clusters, finite populations, sampling errors, subsamples.

1. Introduction

Proofs of variance formulas in two-stage sampling often require some algebraic
skills. Also for the situation where a simple random sample without replacement
(SRS) isdrawn in the first stage, proofs might be rather intricate. This might be the
case especially when proofs for the SRS situation are based on the more genera
situation with unequal probabilities. For an overview of variance estimation methods
in multistage sampling, see Chaudhuri and Stenger (2005), and the references given

therein.

For the specific case of two-stage sampling with SRS samples in both stages (TSS)
this paper presents aternative derivations for the variance formulas without using
heavy algebra. The derivations in this paper are a further elaboration of those given
by Knottnerus (2003, pages 151-152) for two-stage sampling with unequal
probabilities. However, the sampling autocorrelation coefficient used there is not

really necessary for the TSS case.

2. Alternative derivations of TSS variance formulas

Consider a population U ={1,...,N} consisting of N clusters. Let M, denote the
size of cluster i, say U; (i=1,...,N). Furthermore, let Y, denote the value of study
variable y for the jth unitin U, (j =1..,M;) and let Y, =Z,,,Y; denote the
corresponding cluster total of U,. The cluster mean Y, /M, is denoted by Y, and

Y =2,,Y is the population total. In the first stage of the TSS design an SRS



sample s of size nisdrawn from the N clustersin U. Recall that an SRS sample of n
clusters can smply be obtained by taking the first n clusters of U after the N clusters
are put in arandom order. In the second stage an SRS subsample is drawn from each

of the n clusters selected in s; it is assumed that these n subsamples are drawn

independently. When U, is selected in s, denote the corresponding SRS subsample

fromU, by s anditssizeby m. TheSRSestimanr\?i of Y, isgiven by

:<>

M
K

The well-known formula for the variance of \?, say siz, is

s2o var(¥) = M- 1)
m

where f, =m /M, , and

ST A

Let ij,...,i,, denote the rank numbers of the n clusters selected in s. Henceforth, the
quantities \?ik and Y, of the n observed clusters are briefly denoted by the lower
caseletters y, and vy,, respectively (k =1,...,n). Define the corresponding sampling
errors d, by d, =V, - v,. Denote the sample means of the y,,y, and d, by f/s,ys
and d_s, respectively. In addition, denote the sample variance of the y, bys)?,. That

is,

Similarly, denote the sample variances of the y, and d, by sﬁ and s7, and their

sample covariance by s4. For the n subsamples lower case |etters are used as well.

So the subsample means Y, and the subsample variances s; are written as

Y, ——Zyk,

m«,l
2 o 2
S (Y - V&)
S m - ]Z:‘i K~ Vs«

respectively (k =1,...,n).



The classical unbiased TSS estimator \?TSS for Y can now be written as

~ = N .
Yrss = Ny =_z Yi -
Ni=1

Itsvarianceis
Var(YATss) = Nz{(l‘ i)ss'*'s—g , (1)
n N n
where
o_ 1 Y2
= Y, - —)°,
S N-1ﬁZU:(' N)
1
si==>'s?
d NZ i

Proof of (1). Recall that i, (k =1,...,n) can be regarded as a random variable with
PG, =i)=1/N (i =1..,N). Thenusing E(d,) =0, itisseenthat fork=1,...,n

var(d,) = E(dy) = E{E(d]i,)}

= S E =)= st =S

ity NiTU

cov(d, yy) = E(E i)} = S VE@fi =) =0,

iTu
In the same way it can be shown that d, is uncorrelated with y, and d, (I * k).

Now using ¥, =y, +d,, itisseen that

var(y,) = var(y, + d) = var(y,) + var(d;)
1 1., 13
=(=-—=)S;+= ) va(
(n N)Sy nsz:‘i (dy)
1 1,.,. 53
=(—- — + —
(n N)Sy n’
from which (1) follows. This concludes the proof.

An unbiased estimator of the variancein (1) is
A 1 1 1 &,
var =N (=- 2)st+— > §71, 2
(rss) = NH(C- ) NnkZ:; K )

where $7=MZ(1- f,)st/m.

Proof that (2) is unbiased. The key feature in a TSS design is that d,,...,d, are

mutually uncorrelated random variables with zero expectation and variance sj.



Therefore, similar to two-stage sampling with replacement in the first stage,
E(s;) =oF; recal E(s))=S]. As we have seen, d, is uncorrelated with

Yy Y, HeNce,

E(s) =E(S),q) = E(S; + ) +25,4) =S, + 0. 3)

Furthermore, in analogy with E()T/S) =Y/N,

E%éﬁﬁ%2ﬁ=ﬁ- ()

iy
Using (3) and (4), it is seen that Vér(\?TSS) in (2) is unbiased for (1). This concludes
the proof.
Finally, observe that var(d,) = o} aso holdsif sin the first stage were drawn with
replacement (TSSR). Moreover, in a TSSR design d,,...,d, are independent. In
contrast, in a TSS design d,,...,d, are uncorrelated but need not be independent.
For instance, assume that N=3, n=2, o7 =07 =0 and g7 >0. Then d, #0 implies

P(d, =0)=1. Hence, d, and d, are not independent. For further details, see
Knottnerus (2003, pages 157-158). In addition, recall that in the above notation the

TSSR formulas are \?TS.R = Nf/s, and

o +0;

var(Yyeg) = N2L—2 ©)
n
where o, =(N-1)S;/N. The standard unbiased variance estimator is
Var(Y,eq) = N?s?/n; see, among others, Cochran (1977, pages 306-307). It
emerges from (1) and (5) that the second stage in both TSS and TSSR leads to the
same increase of the variance by the amount N?g75 /n.
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