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On second-order inclusion probabilities and variances among
large randomized PPS samples

Paul Knottnerus

Summary: This paper presents and discusses some new results on the second-
order inclusion probabilities of a systematic probability proportional to size
sample drawn from a randomly ordered list, also called randomized PPS
sampling. It is shown that some standard approximations of these second-
order inclusion probabilities meant for relatively small sample sizes, need not
be valid when the sample size n is of the same order as the population size N.
In addition, it is shown that under a number of assumptions the variance
formulas for rejective Poisson sampling can be applied to randomized PPS
sampling designs when both n and N-n are large.

Keywords: HorvitzzThompson estimator; Rejective Poisson sampling;
Sampling autocorrelation coefficient; Second-order inclusion probability.

1. Introduction

When the study variable y is more or less proportional to a size variable x, a widely
used estimator is the Horvitz-Thompson (HT) estimator in combination with a
systematic probability proportional to size sample from arandomly ordered list. This
procedure is often called the randomized PPS sampling design or the Goodman-Kish

design.

In the literature there is some debate on the question of which type of approximation

should be used for the second-order inclusion probabilitiesin this design, say 7z;pps.

Brewer (2002, page 154) discusses two different types of approximations. One
family of approximations is based on the well-known approximation of Hartley and
Rao (1962). Another family of approximations is based on the approximation for
rejective Poisson sampling of H§ek (1964). Brewer argues that the former type of
approximation should be preferred. In contrast, Berger (1998, 2004 and 2005)
advocates the use of the approximation of Haek (1964) for this type of highly
randomized sampling designs such as, for instance, the procedures proposed by
Sampford (1967) or Chao (1982). In addition, Asok and Sukhatme (1976) provide a
convenient approximation formula for the second-order inclusion probabilities in
Sampford’'s procedure when 1<<n<<N. Their approximation is slightly different

from the one of Hartley and Rao for randomized PPS sampling.



The main aim of this paper is to show that under a number of assumptions Hgjek’'s
variance approximation is asymptotically valid for randomized PPS sampling
particularly when the sample size n is of the same order as the population size N.
Moreover, the variance approximation of Hartley and Rao (1962) need not be valid

in such a situation.

The outline of the paper is as follows. Section 2 introduces some notation, and gives
two standard expressions for the variance of the HT estimator and an alternative
expression based on the sampling autocorrel ation coefficient. Furthermore, section 2

discusses various approximations for the 7z,55. In section 3 approximations are

derived for the sampling autocorrelation coefficients and variances in randomized
PPS sampling and regective Poisson sampling. Section 4 starts with a

counterexample that some standard approximations for the 7z, need not be valid
when the underlying condition n<<N is not satisfied. Furthermore, it is shown that
under a number of assumptions two terms of a Taylor series expansion of the 7z;ppg
are necessary and sufficient to obtain asymptotically valid sampling autocorrelation
coefficients and variances in randomized PPS sampling when 0< f,<n/N < f, <1.
In addition, by reasons of symmetry, the indispensable conclusion appears to be that
under mild assumptions Haek’s approximation for the 7z, in rejective Poisson

sampling can also be used for approximating the 7z;pps. In section 5 similar results

are derived when n/ N tendsto unity or zero.

2. Notation and approximationsfor 7z, in randomized PPS sampling

Consider a population U={1,...,N} and let s be a sample of fixed size n drawn from
U without replacement according to a given sampling design with first order
inclusion probabilities z; and second-order inclusion probabilities z; (i,j=1,...,N).
The HT estimator of the population total, Y =Z,,Y;, isdefined by \?HT =Y /7.
Suppose there is a measure of relative size X; (i.e, X; >0 and X =Zj5, X; =1)
such that al X; <1/n. In fact, it is assumed here that units with X; >1/n are put
together in a separate certainty-stratum. When the 7; are proportiona to these size
measures, 77 = nX;. Defining Z; =Y,/ X;, we canwrite'Y as aweighted mean of the

Z, thatis, Y=u,=2,XZ. Likewise, we can write the HT estimator for Y in



randomized PPS sampling as \?HT =\?PPS =z, where z, stands for the sample mean

of the Z;.

The variance of the randomized PPS estimator is

Var(YPPS) e %%( ZZ, 1
222( ni-ﬂj)(zi_zj)z 2
iU g U

with 7z, =7z; recal that Z; =nY,;/7. The former is attributed to Horvitz and
Thompson (1952) and the latter is due to Sen (1953) and Y ates and Grundy (1953).

An aternative expression for the varianceis

2

var(Ypps) = Var(z) ={1+(n —1)pz}%, 3)

where g2 =3, X.(Z, — u,)?, and

vy {zi_ﬂzj(zj—ﬂz)_ 4)

i jDU nn-){ o g,

z

For aproof of (3), see Knottnerus (2003, page 103).

The sampling autocorrelation coefficient p, in (4) is a generalization of the more

familiar intraclass correlation coefficient p in systematic sampling with equal
probabilities; see, for instance, Cochran (1977, pages 209 and 240) and Sérndal et al.
(1992, page 79). The phrase sampling autocorrelation is used because p, refersto

the correlation coefficient between two randomly chosen observations, say zy and

Zy, from s. Conseguently, the value of p, depends on the sampling design. In
particular, when sampling with replacement, p, =0, while under smple random

sampling without replacement (SRS), o, =-1/(N -1).

Although exact expressions for the 77,555 (i # j) in randomized PPS sampling are
available, these calculations might be cumbersome when N is large. For an exact
expression, see Connor (1966) and for a modification Hidiroglou and Gray (1980).
A well-known approximation of 7.5 proposed by Hartley and Rao (1962) is

Mg =N(N=1) X; X {1+ X; + X; _:ux+2(xi2+xj2+xixj)

3 )
=3 (X + X = = 2%, X))



where u, =3, X? (recal u,=3.,X,Z). According to Thompson and Wu
(2008), approximation (5) can be used when n/N=0(1) as N - . Note that

e /N(N—=1) does not depend on n. Hence, the corresponding approximation of

p, doesn’'t depend on n (recall we have assumed that every X; <1/n).
Brewer and Donadio (2003) examine approximations of the form
Thign =777,(C +C;)/ 2. (6)

Elaborating on (5), the authors propose ¢,z =(n—1)/n(l+x, —2X;). Choosing a
somewhat different expression ¢, =(n-1)/ny(1-2X;), Knottnerus (2003 and
2011) arrivesfor X;,X; <1/2 a

X. X .
Moy =nn-n i) M2, 12 @)
where
11 X,
y=—-+*t— .
2 251-2X,

These 7y have been shown to satisfy the second-order restriction

2,7 =(n=-1Y7z. Furthermore, (7) is exact for SRS sampling while the 7,
coincide with the 7755, from the specia designs proposed by Brewer (1963) and
Durbin (1967) for PPS samples with n=2. For a proof that, after dropping O(1/nN)
terms, ¢ isidentical with G, under mild conditionsas N — o, see Knottnerus

(2011).

Another interesting approximation for the 77,55 stems from the related rejective

Poisson (RP) sampling design

A-m)A-m)

Thigp = 17T, {Pf ! ®)
provided that d =%, 77(1-75) =n(1-ny,) — . Notethat d — c implies n - o
because d<n and likewise, N-n - o because of the symmetry of
d =%, 75 (1- 7). The formal derivation of (8) given by Hgjek (1964) is somewhat
cumbersome. A more intuitive derivation, to the author’'s best knowledge not

mentioned elsewhere in the literature, is as follows. A simple approximation for 7z;



is 7z, . Define its error €; by ¢ =7z —757;. Noting that €, =0 for 7 =0 and
7t =1, aquite natural and symmetric approximation for the error §; is

& =BAmA-m)mL-m)}. (9)

An approximation for the constants @ and £ can be obtained by examining the

following equality of sums

Bm@-my Y Am@A-m) = 3 (m-mm)

jOU (j#i) jOU (j#i)
=(n-1)77 -7%(n-1)
=-m(1-m) (10)
and, equivalently,
Bl (W-m)Y YA{m-m)} =-m(1-m). (11)
iU (izj)

Assuming that Z,{7z(1-77)} - o (0<a<C<w) as d - o and dividing (11)
by (10), we get a ~1 and consequently, S ~-1/d. Throughout this paper the

notation A~ B isused toindicatethat A/B - 1 as d — . Subgtituting a =1 and
B =-1/d into (9) yields H§ ek’ s result (8).

The above heuristic derivation applies to any PPS sampling design where thereis no
detectable pattern or ordering in the selected sample of fixed size n without
replacement, provided that d — c. Such designs are also called high-entropy
sampling designs; see, among others, Brewer and Donadio (2003) and Tillé and
Haziza (2010).

3. Approximationsof P pes, O, Var(Yees) and var(Yep)

Let X denote the population mean of X,,---, X,, and define V? and o by
V=2, (X =X)?/N

and

oy :Zn:u X (X; = 11,)%,



respectively. Suppose that there are positive constants C and ¢ such that V, / X <C,
o,/ u,<C and X, +c<1/2. Furthermore, suppose that (Z, -Y)/o,=0(1) as
N - oo. Then it can be shown that (7) as well as (5) and (6) lead to the following
approximation p,,, for p, in randomized PPS sampling, say pO,pps. That is, when

Nislargeand n << N

Pavs = Pucllt O] +OL5), (12)
where
T XYY
T X @

For aproof of (12), see Knottnerus (2011). Substituting p,,, into (3), we get

0.2

Var(YAPPS) =TZ_nT_12Xi2(Zi -Y)?
! i 2 (13)
= 1Y X-(-DX,1(Z -V,

iy
which is aso given by Hartley and Rao (1962). It is noteworthy that approximation

Py, dso follows directly from substituting the simple approximation
T =N(N=1DX; X, into (4); for the proof of a similar result, see the proof of
Theorem 1 below. In contrast, direct use of 77,5 in (1) or (2) for the SRS case with
X;i=X;=1UN may lead to errors of more than 100% for some specific
populations; see Knottnerus (2003, pages 274-6).
Following Hgjek (1964, page 1520), substitution of (8) into (2) yields
V(i) = 3 X, 0= Y’ (14)

where Y =3 ,a.Z; with a, =72 (1-7z)/d. The main difference between (13) and

(14) isthat Y is replaced by Y'. In addition, H4jek proposes the following variance
estimator

Var(Yip) = (—1)%‘1 nX,)(Z, -¥")?,



where Y’ =% .4,Z, with a, =1-m)/Z-(1-7). In order to get more insight
into o, corresponding to (8), define the correlation coefficient r,, between the
X, andthe Z by r,=%,X;xz /0,0, where x and z stand for (X, —4,) and
(Z, —u,), respectively. The following theorem gives an approximation for O, .

Theorem 1. Suppose that there are positive constants C and ¢ such that V, / X <C,
ou,<C and -C/IN<p,,, pr <—C/N. Furthermore, suppose that

z/0,=0(1) as N - . Thenit holdsfor RP sampling that

n2r2 2

g"X)[1+o(1)] (15)

e = (Ppo —

Proof. Carrying out the multiplications on the right-hand side of (8) and neglecting
symmetric terms, we obtain four mutualy different terms, that is, with mutually

different contributionsto p . The contribution of the main term 7z 77, in 77 t0

Pre isaccording to (4)

nXXz,z n

ZZ =- Z Xz _n 0
n(n 1)|DUJDU 0' n-15; o2 -1 712
j#i

where we used that 2, X;z; =0. Consequently, the contribution of the term
7 ld to pge is O(UN) provided d — . Also, the contribution of the term

77}27Tj /d to O, is O(UN) because under the assumptions of the theorem this

contribution can be written as

XXz|z

N« X372 n 1
ZZ -0 PA —0( )=o),
1T iU dx o, dN N
j#i

where we again used that %, X;z; =0 and X =1/N sothat

=3 XF =NV + X3 =0()
and

S XP=0f+ k= O(

iy



Hence, substituting (8) into (4) and omitting the irrelevant 0(1/ N) contributions of

mm ld and 7777 1 d, we get

nXX zz

—{ZZXX(l ) }

iU juU
j#i

n n?
:FL{lez __inzzi (Z XXz = X?z)o?}

n
:m{pzlz ZX Z|(rxz x —XiZZi)/O'ZZ}

1 n’r2g?
- +O(— 27X 4+ O
Pnz (nN) q (dN2

)

as d - oo. Note that in the last line use is made of z /o, =0(1), nX; =0(1) and

T, X2 =0(u?) =0O(N ). This concludes the proof.

In summary, apart from the main term 7z7z; in (8) the only other term that may give

an asymptotically relevant contribution to p,q is — 7571 /d. This contribution is

-n’rZo2/d which is of order n?/dN?. Noting that d=n(l-ng,) and
=0O(n/N), it is seen tha when n/N =0(1), this contribution is

O(n/N?)=0(l/N) as d - o and hence, it can be ignored provided 0, <—c/N.

In other words, under the assumptions of Theorem 1, Hgjek’ s variance estimator can

be applied to randomized PPS sampling when n/N =o0(1). To the author’s best

knowledge this result and its proof are not mentioned elsewhere in the literature. In
addition, Brewer and Donadio (2003, page 191) also give a model-assisted check of

the usefulness of their variance formulas derived from 77,5, in (6) without the
limiting assumption n/N =0(1). For the models considered by the authors there

holds r,, =0(1) so that approximation (15) amountSto O,gp ~ O5-

4. Var(Yeps) and a Taylor seriesexpansion of Thipps When fopN <n <f;N

In this section we consider a p™-order Taylor series expansion of Thipps | TE7T;. IS

shown that under the assumptions of Theorem 1 and some additional assumptions

only two terms of this Taylor series expansion are asymptotically relevant with

respect to var(\?PPS) and p,ppg @ d - 0 and ffN<n<f;N (0<fo<f;<1).

10



Firgt, in order to give some more insight into the difference between (13) and (14),
consider the following counterexample that the variance in (13) need not be valid
when n/N #0(1). Let U be a population consisting of two groups U; and U, with
means Y, and Y,, respectively. Both group sizes are N/2. Let s be a randomized
PPS sample of size n=3N/4 from the whole population U. Let the X; be such that

1 f i0u,

T =nX, = o
{0.5 if i0U,.

Obviously, group 1 doesn’'t contribute to the variance of \?PPS. The selected
elementsin s from U, constitute an ordinary SRS sample of size N/4. Hence, in this

case the correct variance formulafor Ypeg is

var (YAPPS) = (%} 1-

1) 532 :N_SS2

2°N/4 2

where

2 _
S}%Z:m iDUZ(Yi _YZ)Z'

Apart from an asymptotically negligible factor (N-2)/N, (14) gives the correct
outcome. However, approximation (13) gives now an entirely different outcome
unless Y, =2Y /3 (recall that Y" =3NY,/2=Y when Y, =2Y/3). Consequently,
aso approximations (5)-(7) for the 77,555 need not be valid when both n and N are

very large; see Knottnerus (2011).
From (14) and (15) it follows that for the above example 0,055 Can be approximated

quite well by

XtzZ: n’riof
oL, = ploy = -3 DA - = (16)
iu I,

irrespective of the values of Y,; in group k (k=212). Now the following natural
guestions arise (i) to what extent are (14) and (16) applicable to other randomized

PPS samples and (ii) to what extent can (8) be seen as an appropriate approximation

for 7Tipps asd — o and foN<n<f;N.

In order to shed some more light on these issues, consider an arbitrary randomized
PPS sample of sizen (fo N < n < f; N). Suppose without loss of generality that n
depends on N [n=n(N)] and define Ry by Ry = Np,ps . Furthermore, suppose that

11



R, - R (R<0), N"g,X"_-m" (O0<c<m”<C<w) a d-w
(h=2,...,H), and that there exists ap such that for d — co the quantity 7z;pps / 7777,
can be approximated appropriately by a p"-order Taylor series expansion of

Thieps / 777, as function of 7z and 77; around the origin. Then 7z itself can be
approximated by

Theps = D allill77;k77|j 17)

I k,I=Lk+l<p+1
In fact, (17) can be seen as a further generaization of approximations 77,z and
e from (5) and (8), respectively. Note that a,'ﬂ Is independent of the (arbitrary)
rank numbers i and j. Furthermore, we make the additional assumptions that
foN <n< f;N and that for an arbitrary data set X,,---, X, a'ﬁ,"arb is of the same

order as a¥

Nemp [TOM the above example as n,d - «; for a justification of the

latter assumption, see Appendix A. The assumptions so far are in line with the

various approximations for 7z; mentioned in section 2.

For n>fyN useful inequalities for afurther analysis are

1< N3, X"<C<ow, (18)

(2<h<H) irrespective of the data set X,,---,Xy. The first inequality in (18)
follows from minimizing Z,X" (h>2) subject to X,X; =1 This yields
X, =1/N and hence, Z,X"=N™""; for a similar constrained minimization
problem, see Knottnerus (2003, page 166). The second inequality in (18) follows

from the assumption n> f,N and hence, X; <1/n<1/ f,N sothat X" <C/N"

with C>1/ f,'. Also supposethat z /o, = O(1). The reason for assumingn < f; N

is that the above counterexample in its present form is not appropriate when

n/N - 1 asd - o; for further details, see section 5.

According to (4) and (17), we get the following approximation for Ry

-_N 4 ) AL
A n(n_l)%%(k,exglg p?N ) gz’
j#i

which can aternatively be written as

12



Rv= 2 R

k,I3Lk+I£p+1

where

R = NaX
n(n Nl)zz pl 2

|IU]IU z
it

Denote Nagn**'"*/(n-1) by BX and define r{l) as the correlation coefficient

betweenthe X" andthe Z, (h31). Thatis,

D=y x (X""- mMx")z, -y X"z

h h '
T s(x )S us(x')s,

where m{x)=m and s(x)=s,. In addition, define r{’ =0. In order to trace the

impact of R{ on R, = N7 s for d® ¥, rewrite R for k,13 1 as

B' ZX . 2 Zxk Z {r(l g (xY)- Xili}
||U|1 S, U S, S,

2
Bkl{r(k l)s(xk 1)r(' 1)s(x"1)- inkﬂ 2._2} :leilll"-RfIiIIZ’

imu S,
where
W _BNES s (el Ps (X if k13 2
Ry = (19)
0 otherwise
and
K _ Rk K+l Ziz _ K -
RNZ_'BNZXi ?—O(aN). (20)
iTu 7

In (20) we used (18) and the assumptionthat z /s, = O(1).

Now suppose that the Z; in the above example are such that ‘rx(zh)‘ >c>0 (h=1, ...,

p). Let Rﬁl,exmm denote the corresponding parameter in that example. Then it

follows from the above example that, according to (16), only r® (= r,) is
asymptotically relevant. In other words, from the above example it emerges that the

afl should be such that in spite of the nonzero correlations r" we can set

Rf'jl,exmm =0 for each k and | unless k=1=2. Consider now an arbitrary data set, say

13



Xi ap (i =1,...,N) for arandomized PPS sample with f;N <n< f;N. Noting that
there are postive constants C, and ¢, such that o(x),)<C,/N" when
Xi ap<1/n<1/ f;N and c/N" <a(xexmp|) for the above example, it is seen that
T(Xyp) ! T(Xorp) <Col Co. Since, by assumption, ay ., =O(ay eep ), We get

according to (19) for an arbitrary randomized PPS sample

Nz.arb = O(BN b0 (X )T (Xerp))
= O(BN ,exmpl J(Xexnpl )U(Xa:pl ))
= O(RNl,exmp|) =0(1),
unless k=1=2. Hence, we can set Rlﬁfl,arb =0 as d - « for any randomized PPS

sample (f;N < n < f;N) irrespective of the correlations r") unlessk=1=2.

Next, we look at the role of the R, when f;N < n < f;N. Choosing the Y, in the

above example such that z?/o?=1, it is seen from (16) that al RY, are
asymptoticaly irrelevant in that example unless k=1=1. Moreover, for arbitrary data

X; we havefor k,1 =2

kI k+l
u Xi / ol
N 2,arb :O( — 1 bZI ) O(_)
RNl, exmpl ax,exmpl x exrml N

where we used z =0O(o,) and (18). So in analogy with R¥, we may set RS, =0
for any other data set without affecting the results when according to (20)
z /o, =0(1) unlessk=I=1.

It emerges that we can approximate Ry by
2
Ry ~ R, + R2 = -Nally" X2 4+ NaZn’r2a?, (21)
iou z

where use is made of (20) and (19) for kI=11 and ki=22, respectively. In order to

trace aj; and aZ’, note that according to (16) we have for the above example

NX?z Nn’rio}
RN exmpl — RN 2 exrrpl Nlexmpl - _Z - (22)

i az d

Comparing the coefficients of the utmost right-hand sides of (21) and (22), it is seen

that under the above assumptions a; =1+0(1) and a¥? =-d™*(1+0(1)) as d — oo.

14



In summary, within the class of approximations for 7z, that can be described by

(17) with the order of the ¢, being independent of the specific data X;, the

approximation

s

" (23)

Thjoz = 757T; —

leads under the assumptions of Theorem 1 to the appropriate p,p5 for any data set,
that is, O,pps = Prp(1+0(1) asd — o and ffN< N< fiN; o, iSgiven by (15).
Comment. It may seem somewhat counterintuitive that for an arbitrary, randomized

PPS sample fairly general conclusions can be drawn from such a specific

counterexample as above. However, it should be noted that although in the above
example the X, can only assume the values 1/n or 1/2n, the quantities o(x") and

¥, X" in the example are under mild conditions of the same order and magnitude as

for other randomized PPS samples. From that point of view the above

counterexample is sufficiently general to draw rather genera conclusions with

respect to ay, a2, theother a§ and ,pps .

Finaly, we look more closely at the 77..5. Because ay and ay are the only
asymptoticaly relevant coefficients in the Taylor series of 77505 for calculating

Ppps and the variance, an appropriate approximation of 7z, should at least
consist of the two components on the right-hand side of (23). As we have seen, use
of (23) leads to asymptotically correct results for Ry, 0,5 and var(\?PPS) . That

is, al three results have relative o(1) errors. However, the error approximation
€23 = Tlj3 — 7L 7T :_”izﬂjzld

need not be very accurate. In order to further improve g;,; = —ﬂ,znf /d, define g
by a =1 if uniti isselected in sand a =0 otherwise. Define b by b =1-4a. In
fact, b indicates whether unit i is selected in U \'s or not. Define 7; = E(hy) and
Tipps = E(bib;); recal that 7, =1-77 and Typps =177 — 77; + Typps . Applying
(23) to 1pps and making use of g; =cov(a,a;) =cov(h,b;), we get

ir?

€j2a = ijos — 77T =Tjjpq —LiT) =~ Id . (24)

15



Obviously, the approximation of &;,p5 should have a double symmetry: (i) in 77
and 77; and (i) in 77 and 7;. Noting that the double symmetric form 777777, /d

includes the indispensable terms 777777 /d and 7777 /d, we get for foN < n< fiN
under the assumptions of Theorem 1 and the additiona assumption (17) the
following approximation for €;ppg

TG T

€jas =~ q ' (25)

which is identical with expression (8) derived by Haek for RP sampling. That is,
within the class of 77,5 that can be described by (17) the results found so far can

be written in the following general form

Thipps — 757T; = —TL 7T d
ST AL (B-D)(77 +m)r, |
d d ) d

where A and B should be negligible o(d) coefficients (cf. the proof of Theorem 1).
By reasons of symmetry, we get A=B=1 which yields Hajek’ s result. Moreover, for
the specific case of RP sampling Haek (1964, page 1511) showed that

Bjre = €j25(1+0(1) as d - oo . For g;sps this property still remainsto be proved or

disproved.

5. Taylor seriesexpansion of 7z, when n/N tendsto unity or zero

In this section we briefly examine the form of the 77,5 When the sampling fraction
nv (=n/N) of arandomized PPS sample tends to unity as d — . Suppose that,

for instance, n=N —\/W or, equivalently, f =1—1/\/W. Furthermore, let the

above counterexample be modified as follows. For group 1 we still assume

n, =N; =N/2 but for group 2 we take n, = (f,, —0.5)N. This means that

1 1

Xy _—mz N @+ \/_)[1+O(—)]

1
Xai —m = —(1—W)[1+ O(ﬁ)]'
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Obviously, only (8) again gives the asymptotically correct variance for \?PPS. For the
X; thus defined we have

_y iz N1+@-2/YN)? 1
Hy %x 2 (N-YNY? N

1 1 1
73 = 2K O =)~ =) = s @ olD),

1
[1+ O(ﬁ)] : (26)
N

and

d =n(1-ng,)

o _ N 2-4/JN+4/N
=(N Jﬁ)(l > N-IN ]

=N-+/N-N+2J/N-2=+/N -2

as d - c. For simplicity’s sake but without loss of generdity, it is assumed that in

the present counterexample the Y, are such that z°/o-=1 and ‘rx(zh)‘>c>0
(h=1... p).

Under the assumption z?/o? =1, it follows from the definition of p,,, and (26)

that for the present example

1 1
leZ,exmpI =l = _N[1+ O(W)] .

An essentia difference with the previous counterexample is that for d - o and

n=N —m we now have

1 1
1+ (=D Pazemp = 7=+ 0O(5) <<1. (27)

JN
Consequently, an O(1/ JIN ) contribution of some R,'j' to R, need not be irrelevant
as was the case in section 4. Result (27) also holds for 1+ (N =1) O,zp oy bECaUSE
in analogy with the proof of Theorem 1 p,o, can be written as the sum of p,,, and
three additional terms of order 1/ N+/N.. That is,

2 22
_pélz + ZE{I +R|<\ll ' (28)

Pre = Paz
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where RS = RS, + RS, (kK =12,22). RY, isgiven by (19) and RY, by (20) where,
according to (8), B> now stands for Nn?/d(n-1) and BZ for —Nn*/d(n-1). In
order to show that the last three terms in (28) are O(1/ NN ), substitute (19) and

(20) into (28). Assuming that n = n-—1, thisyields

Pre = Paz - P _n_(zz X7 +nrgoy —ny X). (29)

d d itu iy
Unlike in section 4 in (29) the last four terms are each separately of the same order
1/ N\/N. However, just as in section 4 it can be shown that the combination of
terms 2, 3 and 5 on the right-hand side of (29) gives a negligible o(1/ JIN )

contribution to 1+ (N —1) o, for the above example. That is,

N2r20.2

Pre = Pr2emp ~ dxz “[1+0o(D)]. (30)

To prove (30), note that it follows from (18) and X; <1/n that

L yyre N

1 1
N SNy e O ey

Using (31) for h=3 and h=4, and the fact that No,;, o,y ~ —1, it is seen that terms
2, 3 and 5 in (29) are together O(1/Nd) so that their joint contribution to
1+(n-1) P, isonly o(l/\/ﬁ). Hence, these three terms can be ignored and it
follows from (27) and (30) that similar to section 4 only ay; and a3 arerelevant in
a Taylor series expansion of 775 for obtaining the appropriate p,ps and variance
for an arbitrary randomized PPS sample when n=N -/N. For proofs that for
arbitrary data (X;,Z;) Npogpap~-1 and o(x,) = O(T (X)) = O/ N"0%),
see the end of this section. Moreover, it follows from (27) that RS, [max(k,l) > 2]
is negligible only when R =o@/+N) provided r®#0. Noting that
T(Xyp) = O(T (X)) = O(L/ N"°°) as stated before, it is seen from (19) that we
now should have a¥ :o(llx/ﬁ) [max(k,1)>2]. In addition, because
a =o(1/+/N), we have by (20) and (31), RY,=0@/+/N) and hence, RY,is
negligible as well when max(k,l) > 2. More generaly, similar results can be derived

for PPSsamplingwhen n=N-N“ (0<a <1).

18



Although it emerges that only ay; and a¥® are relevant, we can draw some more

general conclusions from (29) with respect to the Taylor series expansion of 7zpps.

Using (4), (17) and thefact that a2 ~ —1/d, we get similar to (29) for p,ep

2

nr2c? n®
Ppps = Pz + (@5 ~1) 0, = 23%\12”2 X - ——x +_Z X (32
iou d d {7

It follows from the counterexample that in analogy with (29) the combination of
terms 2, 3 and 5 on the right-hand side of (32) should be negligible, that is,

o(1/ JN )- Again using (31) and the fact that 0,1, oy ~—1/ N, itis seen from (32)

that terms 2, 3 and 5 together are only negligibleif ay and ai’ satisfy the following

approximation
- (ay -1 - 2ay ~-1/d. (33)

As we have seen in RP sampling, a particular solution of (33) is ay, =(d -1)/d

and a2 =1/d. The general approximate solution satisfying (33) is of the form

all ~1—%[1+ o()]:
(34)

aﬁ‘2=aﬁ1~1+5/2,

where D is an arbitrary ‘ constant’. Substituting (34) into (17) with a%* ~-1/d gives

Thipps — 7L 7T) = —TL 7T q
TMIT T D7Tiﬂj(7Ti+7Tj)+DZTi27Tj2
d

=-4+D) 2d

(39

As we saw previoudy, the right-hand side of (35) should be asymptoticaly
symmetric in 77 and 7;. Hence, D = o(1). In summary, the a,'j thus obtained for

d - o are

1+¢
ay =1+¢ - " Z;

1+&
arlszzarzulz . 3.

(36)

1+¢
af =-—"*%,
d
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where &, =0(1) (k=1,...,4). Thisisin line with Hgek’s formulafor 77z, in(8) and
(25). From the latter version it is not difficult to see that by reasons of symmetry,
(36) is till valid for approximating 7;; — 7,7, = 75, — 7777, when n :\/ﬁ and more
generally, when n=N? (0<a <1).

We conclude this section with proofs that for an arbitrary data set (X;,Z))

NP ap ~ —1 and o (x5,) = O(0 (X)) =O@ N™%%) when n=N-+/N. Write

Xi ab 8

Xi ar ——(1+

\/_

Since X,,=N7, it holds that X,5 =0. In addition, we assume that

3,87 =O(N); ajustification of this assumption is given below. Then u(x,,) can

be written as

H(Xypp) = %U:X =ﬁ W:—*'O(—- (37)

Furthermore, by (18),

<M X = (1+
1 0OE 5?)_ 1 1
- Nh—l + NLP:+1I - Nh—l (1+O(W))'

where we used the binomial theorem for the utmost right-hand side of the first line.

Hence,

2
0 (Xar) = 2 X ~ [Z X.h;lb] =O( 2wt 2h+1) (38)

iou iy

Furthermore, noting that (£(X5.y) —N™") =0/ N™), it is not difficult to see
from the definition of the above X gy that 0% (Xhy ) = h°[1+0(1)]/ N°"™** so that

T(Xyp) = O(T (X)) = O/ N"0°) for h=1, ..., H.
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In order to show that Np,,, ~-1 for any data set (X;,Z;) provided z =0O(g,),
define the variable V, for each unit i by V, =z°/07 so that y,=%,X\V, =1 and
o2 =%, XV, where v =V, —-1. Assuming z =0O(o,), it holds that o =0O(J). In

addition, define the correlation coefficient r,, by r,, =%, X;xVv,/0,0,. Then for an

arbitrary data set (X;,Z;) p,, can berewrittenas

2
Pao = _Z Xi22|_2 =—Hy— Z Xi (Xi = 1)V,

iU g, iou
1

—N\/ﬁ)'

where in the last line we used (37) and (38) with h=1. Hence, Np,,, ~ -1 and result

1 1
=-l,—0,0,,=——+0(—)+0
,UX XZVixv N (NZ (

(30) with  p,;, instead of 0,1, ey CaN be proved along the same lines as before.

A last remark deds with the judtification of the above assumption that
5,82 =0O(N). Suppose that =,32=N** (0<£<0.5). Then the order of o?

would be 1/ N®7¢; see the derivation of (38). Hence, the (negative) contribution of

the 2™ term on the right-hand side of (30) to {1+(n-1 o} would become
O(N%202/d)=0@1/N°%) while {1+(n-1)p,,} is of the relatively smaller
order 1/4/N; see (27) and (30). This may lead to a negative vaue for

{1+(n-1) o} which contradicts the nonnegativity of variances. In addition, cases

with £ >0.5 would lead to £, >1/n and, consequently, to d <O.

Appendix A. Justification of ay =O(ay e )

In this appendix we give a justification of the assumption that for an arbitrary data
et ay .p = 0@y o). Suppose that N"'E, X" - m, (0<c<m, <C<w) as
n,d - oo (h=2,..,H); dueto theinequalitiesin (18) thisis a mild assumption. In

analogy with the characteristic function for a probability distribution, we assume

that the configuration of the X; can be represented reasonably well by the moments

of the finite population of the X; or, equivalently, by the (rescaled) population totals

of the powers of the X, . So under the assumption that the a,'ﬂ in (17) may depend

21



on the configuration of the X;, we can write a,'ﬂ quite generaly as a function of

these moments

ay = gN (NZy X7, NP TE X ) (39)
~g'§l'(m2,---,mH)
={Cﬁ1+cﬁz(mz _1)+"'+CHH (my —D}(1+0(Q),

where H is a sufficiently large integer. In the last line we used a first-order Taylor
approximation of g3(.) around the values My s =1 (h=2,..,H) from SRS
sampling. By construction, the order of ¢, solely depends on the behaviour of
gl() at (1,...,2) irrespective of the X, (h=1,...,H). Furthermore, it is assumed that
certain regularity conditions are satisfied so that g/ (.)/ck, =0(1); this excludes
exponential forms as a ~N™ ™2 but forms as, for instance, aX ~mm2/N or
af ~1/(1-nm,/N) are permitted. Under these assumptions, ay ., =O(Cy,).
Noting that the sample in the example given in section 4 consists of two SRS
, with i, jOU, tha

samples from groups of size N/2, it is seen from 7z,

ij . exmpl

Y ompl = AN /2.8 1S Of the same order and magnitude as ay gs = Cy,. Therefore,

K - ki
aN,arb - O(aN,exn’pl)-

A more formal argument that it suffices to only take the moments of the finite

population of the X, into account in (39) follows from the method of Hartley and
Rao (1962, pages 357-360) for deriving an expression for 7zp5. To find the
coefficients in their approximation of 775, they apply Edgeworth expansions to
thelr standardized variates T,. Apart from 7z,77,,N and n, these Edgeworth

expansions solely depend on the corresponding cumulants k; (I =1,2,...). Aspointed
out by the authors, these k; can be expressed in terms of the standardized cumulants
of the X, which in turn can be expressed in terms of the moments of the X;. This

explains the form of (39).
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