
Statistics Netherlands

Discussion paper (201123)

The views expressed  in this paper are those of the author(s) 
and do not necessarily reflect the policies of Statistics Netherlands

The Hague/Heerlen, 2011

011
Léander Kuijvenhoven and Sander Scholtus

Bootstrapping Combined 
Estimator based on Register
and Sample Survey Data



Publisher
Statistics Netherlands
Henri Faasdreef 312
2492 JP  The Hague

Prepress 
Statistics Netherlands
Grafimedia

Cover
TelDesign, Rotterdam

Information
Telephone +31 88 570 70 70
Telefax +31 70 337 59 94
Via contact form:
www.cbs.nl/information

Where to order
E-mail: verkoop@cbs.nl
Telefax +31 45 570 62 68

Internet
www.cbs.nl

ISSN: 1572-0314

© Statistics Netherlands,
The Hague/Heerlen, 2011.
Reproduction is permitted.
‘Statistics Netherlands’ must be quoted as source.

Explanation of symbols

	 .	 = data not available
	 *	 = provisional figure
	 **	 = revised provisional figure
	 x	 = publication prohibited (confidential figure)
	 –	 = nil or less than half of unit concerned
	 –	 = (between two figures) inclusive
	 0 (0,0)	 = less than half of unit concerned
	 blank	 = not applicable
	 2010–2011	 = 2010 to 2011 inclusive
	 2010/2011	 = average of 2010 up to and including 2011
	 2010/’11	 = crop year, financial year, school year etc. beginning in 2010 and ending in 2011
	 2008/’09–
	 2010/’11	 = crop year, financial year, etc. 2008/’09 to 2010/’11 inclusive

		  Due to rounding, some totals may not correspond with the sum of the separate figures.

60083201123 X-10



Bootstrapping Combined Estimators based on
Register and Sample Survey Data

Summary: This paper describes how the bootstrap resampling method
may be used to assess the accuracy of estimates based on a combination
of data from registers and sample surveys. We consider three different
estimators that may be applied in this context. The validity of the proposed
bootstrap method is tested in a simulation study with realistic data from
the Dutch Educational Attainment File.

Keywords: register, sample, combined data, bootstrap
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1 Introduction

In this paper, we consider the situation where estimates are based on data from different
sources. In particular, producers of official statistics are increasingly making use of
existing registers. There are several reasons for doing this, like reducing costs and
reducing the burden on respondents. Also, businesses and individuals are becoming
less tolerant of surveys, as is reflected by lower response rates. National Statistical
Institutes (NSIs) are therefore seeking ways to put different sources of information
together, to increase the ability to produce information with good quality attributes in
an efficient way.

A problem, however, is that registers are often primarily used for non-statistical pur-
poses, and therefore not always ideal from a statistical perspective. In some cases, an
additional sample survey is needed to obtain reliable statistical results. The problem of
assessing the accuracy of estimates based on a combination of administrative sources
and sample surveys has, therefore, become very relevant to NSIs. In this paper we
examine a relatively simple way to evaluate the accuracy of an estimate based on com-
bined data, namely by using a form of bootstrap resampling.

The primary objective of this paper is to develop a methodology for assessing the ac-
curacy of particular estimates from combined data. We do not discuss the problem of
micro integration itself, e.g. how to construct a statistical database or how to handle in-
consistencies between data from different sources. Instead, we assume that a statistical
database has already been constructed.

The outline of this paper is as follows. In Section 2 the setting at hand is further clari-
fied, and three types of estimators that may be used in this context are introduced. One
of these estimators is a classical regression estimator which does not use register data
and serves as a benchmark for comparing the other estimators. Section 3 introduces
the proposed bootstrap method for combined data. Section 4 describes a simulation
study in which the proposed bootstrap method is applied to realistic data from the
Dutch Educational Attainment File. Finally, Section 5 closes the paper with a short
discussion and some ideas for further research.

2 Combining Register and Survey Data

2.1 Description of the Situation

For convenience, we describe the case that a target variable is observed in one register
and one sample. We denote the register by R and the sample by s. Let U denote the
target population. Figure 1 shows the relationship between U , R and s graphically.

Let yk denote the value of a target variable y for an element k ∈ U . The objective of
the survey is to estimate the total value of y for the target population:

θy = ∑
k∈U

yk. (1)

In this paper, we are interested in the case where the register only covers a selective
part of the target population, so that a simple register total would not be a valid estimate
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Figure 1: The target population (rectangle), the register (dashed rectangle), and the
sample (circle).
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for (1). This happens for instance with the Dutch registers on education, which have
come into existence only recently, and hence mainly contain information on younger
persons. In order to obtain valid estimates of educational attainment, the information
from the register has to be combined with information from a sample survey. There are
many ways to form such a combined estimator. We consider three types of estimators
in the next subsection.

In general, the sample s may be drawn originally from the target population U . There-
fore, it can be partitioned into a subsample that overlaps with the register (sR) and
another subsample that does not (sNR). The information from sNR is our only source
for inference about UNR, the part of the population that is not covered by the register.
Of course, it seems more effective to draw the sample only from UNR. However, this
means that the sample cannot be drawn before the register data is obtained, which in
turn might conflict with timeliness constraints for the survey. Another reason why the
sample may partly overlap with the register, is that an NSI may decide to use existing
sample data in the data integration process, instead of introducing a new sample sur-
vey. This is, e.g., the case for the Dutch Educational Attainment File, which re-uses
data from several cycles of the Dutch Labour Force Survey.

Throughout this paper, we make the following simplifying assumptions:

• The target population can be partitioned into two disjoint strata: UR = U ∩R
and UNR = U \UR, and this stratification is fixed in the sense that it does not
depend on an actual realisation of the register R. Note that there is supposed
to be no overcoverage in the register, i.e. we assume that any register records
pertaining to elements outside U can be identified and removed from R.

• The register contains values of a random variable zk = yk + ξkek, where ξk is a
dichotomous variable with P(ξk = 1) = λk and P(ξk = 0) = 1−λk, indicating
whether an error occurs in the recorded value for element k, and the error ek is
drawn from a distribution with mean µk and variance σ2

k . Moreover, the zk are
drawn independently. Note that λk represents the probability that the register
value for element k contains an error.
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• By contrast, we assume that the target variable is recorded without error in the
sample survey. In practice, of course, some measurement errors are bound to
occur, but we assume that the effect of these errors is negligible compared to
the sampling variance and the effect of errors in the register. This assumption
reflects the fact that a statistical institute has direct control over the quality of the
sample data, whereas the register data is usually collected by an external party
for non-statistical purposes.

A straightforward calculation shows that, under the assumed error model,

E(zk) = Eξk
[E(zk |ξk)] = Eξk

(yk +ξkµk) = yk +λkµk, (2)

and

V(zk) = Eξk
[V(zk |ξk)]+Vξk

[E(zk |ξk)]

= (1−λk)V(zk |ξk = 0)+λkV(zk |ξk = 1)+Vξk
(yk +ξkµk)

= 0+λkσ 2
k + µ2

k λk(1−λk)

= λk[σ 2
k + µ2

k (1−λk)]. (3)

2.2 Three Types of Estimators

2.2.1 The Ordinary Regression Estimator

The first estimator that we consider does not use any information from the register,
but is solely based on the sample survey. In principle, one could use the direct (or
Horvitz-Thompson) estimator ∑k∈s yk/πk, where πk denotes the inclusion probability
of element k in the sample.1 This is in fact an unbiased estimator of θy. It is common
practice, however, to apply a linear regression model to increase the precision of the
estimator, and to correct for nonresponse in the original sample. This leads to the
well-known regression estimator:

θ̂1y = ∑
k∈s

w1kyk, (4)

with

w1k =
1
πk

[
1+x′1k

(
∑
l∈s

x1lx′1l
πl

)−1( ∑
l∈U

x1l −∑
l∈s

x1l

πl

)]

the final weight of element k ∈ s. In this expression, x1k denotes a vector of auxiliary
variables that are observed for all elements of U , corresponding to the chosen linear
model. By construction, the final weights satisfy the so-called calibration equations:

∑
k∈s

w1kx1k = ∑
k∈U

x1k.

The properties of the regression estimator are well-established (Särndal et al., 1992;
Knottnerus, 2003). In particular, it is an asymptotically unbiased estimator. For future
reference, we note the trivial fact that the variance of θ̂1y does not depend on the
register, i.e. V(θ̂1y) = Vs(θ̂1y |R).

1Note that πk denotes the probability of inclusion in the sample, not the register, so it does not auto-
matically follow that πk = 1 for all k ∈UR.
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2.2.2 An Additive Combined Estimator

Next, we consider the following estimator for θy:

θ̂2y = ∑
k∈UR

zk + ∑
k∈sR

(yk− zk)+ ∑
k∈sNR

w2kyk, (5)

with

w2k =
1
πk

[
1+x′2k

(
∑

l∈sNR

x2lx′2l
πl

)−1( ∑
l∈UNR

x2l − ∑
l∈sNR

x2l

πl

)]

the final weight of element k ∈ sNR. In this case the regression estimator is used to
calibrate sNR on known or previously estimated marginal counts of UNR. This leads to
an estimate for the total of y in UNR, which is added to the estimate for UR. The latter
estimate is obtained as the observed total of zk in UR, except for the elements of sR, for
which we use yk because this value is taken to be more accurate.

In appendix A the following expressions for the bias and variance of θ̂2y are derived,
under the assumptions made in Section 2.1:

bias(θ̂2y) = E(θ̂2y)−θy
.= ∑

k∈UR

(1−πk)λkµk (6)

and

V(θ̂2y) = ∑
k∈UR

(1−πk)λk[σ 2
k + µ2

k (1−λk)]+Vs

(
− ∑

k∈sR

λkµk + ∑
k∈sNR

w2kyk

)
. (7)

It is interesting to examine the properties of θ̂2y for some special cases of the error
model from Section 2.1.

1. If it is assumed that µk = 0 for all k ∈ UR, then it follows from (6) that θ̂2y is
an asymptotically unbiased estimator for θy. In this case, it is expected that the
errors in the register cancel out in aggregates. The variance of θ̂2y reduces to

V(θ̂2y) = ∑
k∈UR

(1−πk)λkσ 2
k +Vs

(
∑

k∈sNR

w2kyk

)
.

Note that the first term is the expected error variance in the register (after cor-
rection with information from sR) and the second term is the sampling variance
in sNR. However, the assumption that µk = 0 may be too optimistic in practice.

2. An important special case occurs when y and z are binary variables, such that
yk = 1 if element k belongs to a domain of U , and yk = 0 otherwise. The
population total θy then measures the size of the domain. Errors in the register
correspond to misclassifications of elements of UR with respect to the domain.
In this case it is natural to assume the following error model for zk:

zk = (1−ξk)yk +ξk(1− yk),

making P(zk = yk) = 1−λk and P(zk = 1−yk) = λk. In the model of Section 2.1
this leads to µk = 1−2yk and σ 2

k = 0. From this and (6) and (7), it follows that

bias(θ̂2y)
.= ∑

k∈UR

(1−πk)λk(1−2yk)
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and

V(θ̂2y) = ∑
k∈UR

(1−πk)λk(1−λk)(1−2yk)2

+Vs

[
− ∑

k∈sR

λk(1−2yk)+ ∑
k∈sNR

w2kyk

]
.

3. Kuijvenhoven and Scholtus (2010) consider the errors in the register to be deter-
ministic: σ2

k = 0 and either λk = 0 or λk = 1, for all k ∈UR. Under this model,
the observed register value zk = yk + λkµk with probability one, and λk reduces
to a simple indicator of error occurrence in zk. In this case the bias of θ̂2y can be
written as

bias(θ̂2y)
.= ∑

k∈UR

(1−πk)(zk− yk), (8)

and the variance of θ̂2y simplifies to

V(θ̂2y) = Vs

[
∑

k∈sR

(yk− zk)+ ∑
k∈sNR

w2kyk

]

= Vs

[
∑

k∈UR

zk + ∑
k∈sR

(yk− zk)+ ∑
k∈sNR

w2kyk

]

= Vs
(
θ̂2y

∣∣R
)
,

Hence, under this assumption the variance of θ̂2y can be evaluated by focusing
purely on the sampling variance. In the remainder of this paper, we will in fact
assume that the errors in the register satisfy this deterministic model.

2.2.3 A Regression-Based Combined Estimator

The last estimator of θy that we consider is based on two separate regression models
for UR and UNR. Specifically:

θ̂3y = ∑
k∈sR

w3Rkyk + ∑
k∈sNR

w3NRkyk, (9)

with

w3Rk =
1
πk

[
1+

(
∑

l∈UR

zl − ∑
l∈sR

zl

πl

)(
∑

l∈sR

z2
l

πl

)−1zk

]

the final weight of element k ∈ sR and

w3NRk =
1
πk

[
1+x′3NRk

(
∑

l∈sNR

x3NRlx′3NRl
πl

)−1( ∑
l∈UNR

x3NRl − ∑
l∈sNR

x3NRl

πl

)]

the final weight of element k ∈ sNR.

For the non-registered part of the population, this estimator uses a similar approach
to θ̂2y. For UR, the estimator uses a regression model with the register variable z as
predictor variable, since z is likely to be highly correlated with the target variable y.
Since the regression estimator is asymptotically unbiased, it holds asymptotically that
E(θ̂3y) = θy. Hence, the advantage of this approach is that it incorporates the infor-
mation from the register into the estimation process without the risk of introducing a
substantial bias. However, this approach is mainly suited for surveys with only one
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target variable, since otherwise it leads to a different set of regression weights for each
target variable. In particular, this type of estimator is not useful if the objective of the
survey is to create a general purpose data file for researchers.

It is not difficult to see that, in the extreme case that the register contains no measure-
ment errors at all, i.e. zk = yk for all k ∈ UR, the two estimators θ̂2y and θ̂3y become
identical if they use the same weighting model for sNR.

We observe that θ̂3y can in fact be written as an ordinary regression estimator, which
– unlike θ̂1y – uses auxiliary information from the register. To see this, define a new
auxiliary vector x3k for each k ∈U by:

x3k =

{
(zk,0′)′ if k ∈UR

(0,x′3NRk)
′ if k ∈UNR

and define new regression weights

w3k =
1
πk

[
1+x′3k

(
∑
l∈s

x3lx′3l
πl

)−1( ∑
l∈U

x3l −∑
l∈s

x3l

πl

)]
.

Then it is easily derived that w3k = w3Rk for all k ∈ sR and w3k = w3NRk for all k ∈ sNR.
Therefore it holds that θ̂3y = ∑k∈s w3kyk.

Finally, we remark that under the deterministic error model from Section 2.2.2, it
clearly holds that V(θ̂3y) = Vs(θ̂3y |R).

3 A Bootstrap Method for Combined Data

3.1 Introduction to the Bootstrap

Loosely speaking, the bootstrap idea is to mimic the process that generated the origi-
nally observed data, by estimating the underlying distribution from the sample and then
resampling from this estimated distribution. In some special cases the bootstrap can be
performed analytically, but usually one resorts to Monte Carlo approximation, by gen-
erating a large number of bootstrap replicates of the target estimate. These replicates
are obtained by taking the algorithm that produces the original estimate when applied
to the original sample, and applying it to resamples taken from the estimated distri-
bution. We refer to Efron and Tibshirani (1993) for an introduction to the classical
bootstrap.

An important problem with the classical bootstrap arises when it is applied to finite
population sampling, namely how to mimic the effect of sampling without replace-
ment. In order to obtain a valid measure of the variance of an estimate, it is crucial to
capture the effect of the sampling design. In particular, sampling without replacement
leads to a smaller variance than sampling with replacement.

There are various methods suggested in the literature to adapt the classical bootstrap
to finite population sampling, including the with-replacement bootstrap (McCarthy
and Snowden, 1985), the rescaled bootstrap (Rao and Wu, 1988), the mirror-match
bootstrap (Sitter, 1992b) and the without-replacement bootstrap (Gross, 1980; Bickel
and Freedman, 1984; Chao and Lo, 1985; Sitter, 1992a). A summary of these methods
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can be found in Shao and Tu (1995). However, these methods tend to be difficult to
apply in practice. Antal and Tillé (2011) describe yet another bootstrap method for
finite population sampling.

A newer form of the without-replacement bootstrap has been suggested by Booth et al.
(1994), Canty and Davison (1999) and Chauvet (2007). In the next section we describe
a variant of the latter method and apply it to the case of combined register and survey
data. In line with the deterministic error model from Section 2.2.2, we treat the register
data as fixed in this bootstrap method.

3.2 The Proposed Bootstrap Method

The approach taken by Booth et al. (1994) entails generating pseudo-populations. A
pseudo-population is an estimated version of the target population, obtained by taking
dk copies of each element from the original sample, where dk = 1/πk is the inclu-
sion weight. Bootstrap resamples are drawn by applying the original sampling design
to the pseudo-population, and a replicate of the original estimator is calculated from
each bootstrap resample. Finally, estimates of the accuracy of the original estimator,
such as its variance or confidence intervals, are obtained from the distribution of these
replicates, analogous to the classical bootstrap method.

In general dk need not be an integer, which makes it necessary to round the inclusion
weights. Writing dk = bdkc+ ϕk (with ϕk ∈ [0,1)), a stochastic form of rounding is
used that rounds dk down to bdkc with probability 1− ϕk, and up to bdkc+ 1 with
probability ϕk.2 In order to eliminate the effect of the stochastic rounding on the
outcome of the bootstrap method, multiple pseudo-populations can be formed, each
based on a different rounding of the inclusion weights.

The diagram in Figure 2 summarises the bootstrap method. In this description, B de-
notes the number of constructed pseudo-populations and C the number of replicates
computed from each pseudo-population. The total number of bootstrap replicates
equals B×C. Suitable values of B and C are discussed in Section 4.

Following results of Chauvet (2007), a single pseudo-population could also be used as
an approximation of the above-mentioned approach. Using a single pseudo-population
is, as one would expect, less computer-intensive and faster than using multiple pseudo-
populations. The bootstrap method with a single pseudo-population is obtained as a
special case of the algorithm in Figure 2 with B = 1, so that Steps 1 to 3 are only
run once. Note that compared to the multiple pseudo-population approach, a higher
value of C is now needed to achieve convergence of the Monte Carlo approximation.
In the simulation study in Section 4, both the multiple and single pseudo-population
approach are investigated.

In the above algorithm we have not defined which estimator is used specifically. In
fact, a different choice of t(.) is used in Step 2 of the algorithm, depending on the

2This stochastic rounding can be executed in different ways. Kuijvenhoven and Scholtus (2010) apply
Fellegi’s method for consistent rounding directly to the inclusion weights. Booth et al. (1994) and Chau-
vet (2007) round the weights implicitly, by taking bdkc copies of each element from the original sample
and then drawing an additional subsample from the original sample using the drawing probabilities ϕk.
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Figure 2: A bootstrap algorithm for finite population sampling.

Step 1 Writing dk = bdkc+ ϕk, define a random inflation weight δk =
bdkc with probability 1−ϕk and δk = bdkc+ 1 with probability
ϕk. Generate a pseudo-population Û by taking δk copies of each
element k from the original sample s.

Step 2 Draw a sample s∗ from Û with the original sample design. That
is, for j ∈ Û there is an inclusion probability π∗j ∝ πk, if j is a
copy of k ∈ s, where the π∗j are scaled so that ∑ j∈Û π∗j equals the
original sample size. For each bootstrap resample, compute the
replicate θ̂ ∗ = t(s∗,R), where t(.) denotes the algorithm such that
θ̂ = t(s,R).

Step 3 Step 2 is repeated C times to obtain replicates θ̂ ∗1 , . . . , θ̂ ∗C. From
these replicates, compute:

vboot =
1

C−1

C

∑
c=1

(
θ̂ ∗c − θ̂ ∗

)2

θ̂ ∗ =
1
C

C

∑
c=1

θ̂ ∗c

Step 4 Steps 1 to 3 are repeated B times to obtain v1
boot , · · · ,vB

boot . The
estimated variance of the original estimator is

vboot(θ̂) =
1
B

B

∑
b=1

vb
boot .

estimator. For the estimators from Section 2.2, we define the following expressions
for the bootstrap replicate θ̂ ∗ = t(s∗,R):

t1(s∗,R) = ∑
j∈s∗

w∗1 jy
∗
j

t2(s∗,R) = ∑
k∈UR

zk + ∑
j∈s∗R

(y∗j − z∗j)+ ∑
j∈s∗NR

w∗2 jy
∗
j

t3(s∗,R) = ∑
j∈s∗R

w∗3R jy
∗
j + ∑

j∈s∗NR

w∗3NR jy
∗
j

In these expressions the following notation is used: s∗R and s∗NR denote the parts of the
resample that consist of copies of elements from sR and sNR, respectively; y∗j and z∗j
are by definition equal to yk and zk if j is a copy of k; w∗. j denotes a regression weight
obtained from the bootstrap resample by applying the same regression model that led
to w.k in the original sample. Thus for each bootstrap resample a new set of regression
weights is obtained. In this manner the effect on the variance of the estimator due to
weighting is taken into account.

Due to nonresponse only a part of the original sample is usually observed in practice.
Note that with nonresponse present also nonrespondents are duplicated in the pseudo-
population. Therefore, nonresponse will also occur in the bootstrap resamples, namely
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when copies of original nonrespondents are drawn. Canty and Davison (1999) argue
that the bootstrap is valid, provided that the same weighting model that was used to
correct for nonresponse in the original sample is also applied to each bootstrap re-
sample, under the assumption that the weighting model indeed explains nonresponse
behaviour. Through this approach, each weighted bootstrap resample will correctly
represent the original population. Shao and Sitter (1996) use a similar approach, but
they impute data for nonrespondents instead of weighting.

4 Simulation Study

In this section, we assess the correctness of the bootstrap method from Section 3.2 in
a simulation study. For this simulation we used a small subset of the Dutch Educa-
tional Attainment File (EAF) as our target population. The EAF contains information
on the highest attained education level of persons living in the Netherlands. More-
over, the EAF can be linked to other files containing background variables for these
persons. The information on educational attainment is obtained from the Dutch edu-
cational registrations and from the Labour Force Survey. For persons that are present
in more than one source, the scores for education levels in different sources are com-
pared and one of the values is chosen (usually the highest one). This process is called
harmonisation. We refer to Linder and Van Roon (2011) for more details on the EAF.

As our target population we select a subset of 49,647 persons aged over 14 years3

from the EAF. For the purpose of this simulation study, the file containing the records
of these 49,647 persons is considered to be a complete enumeration of the target
population. In this target population, register information is available for 8,904 per-
sons, so the size of UR is 8,904. The remaining 40,743 persons, for which no register
information is available, constitute the subpopulation UNR. Note that for persons in
UR, the education level from the register may differ from the final, harmonised edu-
cation level. Using the notation from Section 2, the true value yk corresponds to the
harmonised education level and the register value zk corresponds to the unharmonised
education level from the register. For the purpose of the simulation study, differences
between these two values are considered to be caused by errors in the register.

Next, we draw samples from our target population and use these samples, together
with UR, to estimate certain parameters of the target population. Since the true values
of these target parameters are also known in this study, the theoretical accuracy of the
survey estimators can be measured directly. We also compute estimates of accuracy
using the bootstrap method, and compare these with the theoretical accuracy. In order
to comply with the assumption from Section 2.1 that measurement errors only occur
in the register, for the purpose of this simulation study, we always take the harmonised
education levels as observed data in our samples.

A stratified simple random sampling design is used to draw the samples, where the
stratification is by Sex (values: Male and Female) and Age (values: Young, Middle,
and Old). The total sample size equals 3,615. The sampling fractions are: 30% for the

3The education levels are sometimes deductively imputed for persons younger than 15 years, so these
cannot be considered as typical register or sample data.
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two strata with Age = Young, 6% for the two strata with Age = Middle, and 3% for the
two strata with Age = Old. These sampling fractions are chosen such that the corre-
sponding dk have large non-integer parts: the inclusion weights are 3 1/3, 16 2/3, and
33 1/3 for young persons, middle-aged persons, and old persons, respectively. Thus,
we expect to see a relatively large effect of the stochastic rounding on the outcome of
the bootstrap method.

The education levels come from a hierarchic classification. The highest level of the
classification consists of five codes, ranging from primary education (code 1) to edu-
cation leading to a master’s degree or higher (code 5). In this simulation study, we es-
timate the number of persons with educational attainment code 3 (which corresponds
to the second stage of secondary education) in each stratum. These parameters can
be seen as population totals of suitably defined binary variables. Table 1 displays the
actual values in the target population.

We use the three estimators (4), (5), and (9) from Section 2 to estimate the target pa-
rameters. The regression weights w1k, w2k, and w3NRk are obtained using the following
linear model:

Region(5)×Age(3)+Region(5)×Sex(2)×Marital Status(3),

where the number in brackets denotes the number of classes for each auxiliary variable.

The true statistical properties of the three estimators are approximated by drawing
20,000 samples from the target population. Table 1 displays the approximate standard
errors of the three estimators based on these 20,000 realisations. Since estimator 2 is
known to be potentially biased, Table 1 also shows the approximate relative bias of
this estimator based on 20,000 realisations. Since the target population is completely
known, the bias of estimator 2 can also be calculated directly from expression (8),
which leads to similar values.

It is seen that the register count overestimates the number of persons with educational
attainment code 3. This bias is caused by the fact that for some persons with educa-
tional attainment code 4, not all forms of education attained by these persons have been
properly registered, so that the reported educational attainment code 3 in the register
is too low by mistake. Of course, this effect could be neutralised by the presence of
persons with an actual educational attainment code 3 who are registered with a lower
educational attainment code, but apparently the latter type of error occurs less often,
so that the net result is a positive bias. The bias is much larger for the strata of young
persons than for the other strata, because, as mentioned in Section 2.1, older persons
are underrepresented in the register. In fact, hardly any register information is available
from the strata of old persons, so that the three estimators are actually almost identical
for these strata (which explains why the standard errors are more or less equal).

For the above-mentioned results it is assumed that all persons respond when sampled.
It is more realistic to assume that some nonresponse occurs in the sample. To keep
matters simple, we adopt the so-called fixed response model (Bethlehem et al., 2011),
whereby each person in the target population either always responds or never responds
when sampled. The response indicators are randomly assigned to the persons in the
target population, in such a way that the weighting model in Region, Age, Sex, and
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Table 1: Target parameters, standard errors, and relative bias based on 20,000 sim-
ulations. Abreviations: YM = Young Males, MM = Middle-Aged Males, OM = Old
Males, YF = Young Females, MF = Middle-Aged Females, OF = Old Females.

YM MM OM YF MF OF

target parameters
1,178 4,459 4,423 1,164 5,386 3,880

standard errors (with full response)
estimator 1 49 203 298 48 208 293
estimator 2 36 186 297 36 190 291
estimator 3 40 190 297 38 193 291

relative bias (with full response)
estimator 2 +12% +3% +0% +7% +2% +0%

standard errors (with nonresponse)
estimator 1 58 241 349 57 248 341
estimator 2 42 223 347 43 229 339
estimator 3 47 227 347 45 231 339

relative bias (with nonresponse)
estimator 2 +13% +3% −0% +8% +1% −1%

Marital Status explains most of the nonresponse behaviour. The last two sections of
Table 1 show the approximate standard errors of the three estimators and the relative
bias of estimator 2 with nonresponse, again based on 20,000 realisations.

The approximate standard errors in Table 1 serve as a benchmark for the bootstrap
results to be discussed below.

In order to apply the bootstrap method proposed in Section 3.2, suitable values for
B and C have to be chosen. Chauvet (2007) reports results based on B = 100 and
C = 30 for the multiple pseudo-population approach, and C = 1,000 for the single
pseudo-population approach. In contrast to Chauvet (2007), we consider only variance
estimates and not the estimation of bootstrap confidence intervals in this study. It is
acknowledged in the bootstrap literature that, compared to the estimation of confidence
intervals, a smaller number of replicates suffices for variance estimation. Therefore, to
limit the amount of computational work, we choose B = 50 and C = 30 for the multiple
pseudo-population approach in this simulation study. For the single pseudo-population
approach, we choose C = 1,000.

Table 2 reports the estimated standard errors for the three estimators obtained from
the bootstrap method with multiple pseudo-populations, both without and with non-
response. To trace the sampling variability of the bootstrap estimates, these results are
based on 20 realisations of the bootstrap method, and Table 2 shows both the mean
and the relative standard deviation of 20 bootstrap estimates. Similar results for the
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Table 2: Standard errors from the bootstrap method with multiple pseudo-populations
(average of 20 realisations). In brackets the relative standard deviation of the 20
realised values.

YM MM OM YF MF OF

standard errors (with full response)
estimator 1 50 203 299 49 212 289

(4%) (2%) (2%) (3%) (2%) (3%)
estimator 2 37 188 297 38 195 289

(7%) (2%) (2%) (6%) (2%) (3%)
estimator 3 40 192 297 40 198 289

(6%) (2%) (2%) (5%) (2%) (3%)

standard errors (with nonresponse)
estimator 1 60 244 350 59 250 339

(9%) (2%) (3%) (4%) (2%) (4%)
estimator 2 45 230 347 47 233 337

(9%) (3%) (3%) (9%) (3%) (3%)
estimator 3 49 233 347 49 237 337

(8%) (2%) (3%) (9%) (3%) (3%)

bootstrap method with a single pseudo-population are reported in Table 3.

These results do not exhibit large differences between the multiple and single pseudo-
population approaches. The estimated standard errors are in both cases close to the
approximate true values from Table 1, with a tendency to slightly overestimate the
standard errors in most strata. The relative standard deviations of the bootstrap esti-
mates are small and the two approaches perform about equally well in this respect also.
The similar performance of the multiple and single pseudo-population approaches seen
here is in line with results reported by Chauvet (2007) in a simulation study involving
an artificial population of normally distributed data.

For the stratified simple random sampling design used in this simulation study, a prac-
tical alternative method for estimating the variance of a regression estimator is to apply
Taylor linearisation (Särndal et al., 1992; Knottnerus, 2003). For estimator 1, the fol-
lowing variance estimator is readily found in the literature:

V̂(θ̂1y) =
H

∑
h=1

N2
h

(
1− nh

Nh

) s2
ε̂1h

nh
,

where H denotes the number of strata (in this case: H = 6), Nh and nh denote the
population and sample size in stratum h, and s2

ε̂1h
is the sample variance of the residuals

of the fitted regression model. A similar expression is found for estimator 3, since we
already noted that this estimator can be written in the same form as estimator 1. For
estimator 2, we use the following variance estimator:

V̂(θ̂2y) =
H

∑
h=1

N2
h

(
1− nh

Nh

)
s2

u1h
+ s2

u2h
−2su1hu2h

nh
,
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Table 3: Standard errors from the bootstrap method with a single pseudo-population
(average of 20 realisations). In brackets the relative standard deviation of the 20
realised values.

YM MM OM YF MF OF

standard errors (with full response)
estimator 1 50 205 297 50 209 290

(5%) (2%) (3%) (4%) (2%) (3%)
estimator 2 37 189 295 38 192 289

(6%) (3%) (3%) (6%) (2%) (3%)
estimator 3 41 193 295 41 195 290

(6%) (3%) (3%) (5%) (2%) (3%)

standard errors (with nonresponse)
estimator 1 59 246 349 59 248 337

(7%) (3%) (3%) (4%) (3%) (4%)
estimator 2 45 230 346 47 232 335

(8%) (3%) (3%) (8%) (3%) (4%)
estimator 3 49 235 346 49 235 335

(7%) (3%) (3%) (7%) (3%) (4%)

with

u1hk =

{
(yhk− zhk)nh/Nh if k ∈ sR

0 if k ∈ sNR

and

u2hk =

{
0 if k ∈ sR

ε̂2hk if k ∈ sNR

Here, su1hu2h denotes the sample covariance of u1 and u2 in stratum h. This formula
is obtained from the derivation given in appendix A below expression (12), for the
particular case of stratified simple random sampling and the deterministic error model.
In addition, the population (co)variances are estimated by their sample equivalents.

Table 4 reports the results of 20 realisations of the linearisation method. In contrast
to the bootstrap method, it is seen that the linearisation method tends to underestimate
the standard errors, and this effect becomes more pronounced in the situation with
nonresponse. On the other hand, the linearisation method appears to be less sensitive
to sampling variability, since the relative standard deviations of the 20 realisations are
mostly smaller than for the bootstrap method.

To conclude, we give some information on the practical execution of the above simula-
tion study. Most of the computational work for the bootstrap method was done in
Blaise, a survey processing system developed at Statistics Netherlands. The bootstrap
method was implemented as a series of so-called Manipula setups in Blaise, and the
Blaise weighting tool Bascula was used to compute the regression weights. Finally,
the statistical software R was used to compile and analyse the results of the simulation
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Table 4: Standard errors from the linearisation method (average of 20 realisations).
In brackets the relative standard deviation of the 20 realised values.

YM MM OM YF MF OF

standard errors (with full response)
estimator 1 48 200 294 47 206 284

(2%) (1%) (1%) (2%) (< 1%) (2%)
estimator 2 33 184 292 34 187 282

(2%) (1%) (1%) (2%) (1%) (2%)
estimator 3 37 187 292 37 190 282

(2%) (1%) (1%) (2%) (1%) (2%)

standard errors (with nonresponse)
estimator 1 56 229 343 56 235 325

(2%) (1%) (2%) (2%) (1%) (2%)
estimator 2 39 211 340 40 213 323

(2%) (1%) (2%) (2%) (1%) (3%)
estimator 3 43 214 339 43 216 322

(2%) (1%) (2%) (2%) (1%) (2%)

study. The estimated standard errors for the linearisation method were also calculated
in R.

5 Discussion

In this paper, we have described different estimators based on a combination of register
data and sample data, and we have introduced a bootstrap method for assessing the
variance of these estimators. Moreover, the performance of the bootstrap method was
examined in a simulation study, using realistic data from the Dutch Educational At-
tainment File. The results of this simulation study show that the bootstrap provides
valid variance estimates for estimators based on combined data, and that the quality
of the bootstrap estimates compares favourably to an alternative method based on
linearisation. It also appears from the study that the bootstrap method with a single
pseudo-population is not outperformed by the multiple pseudo-population approach,
although the latter has a more sound theoretical basis (Chauvet, 2007). The single
pseudo-population approach is less complex than the multiple pseudo-population ap-
proach and, in principle, requires less computational work. However, in practice both
approaches require the computation of a similar number of replicates; in our simula-
tion study, the total number of replicates BC equals 1,500 for the multiple pseudo-
population approach and 1,000 for the single pseudo-population approach.

Given a combination of register data and sample survey data, there are of course many
different estimators that one could consider. In this paper we have only treated three
such estimators. Another interesting estimator, suggested by De Heij (2011), is the
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following:

θ̂4y = ∑
k∈UR

zk + ∑
k∈sR

yk− zk

πk
+ ∑

k∈sNR

w4kyk,

with w4k a regression weight, defined analogously to w2k. Like our additive estimator
θ̂2y, this estimator uses a regression estimator for UNR and an adjusted register total
for UR, where the adjustment is based on information from sR. In θ̂2y the adjustment
term only corrected the observed individual errors in the overlap. Consequently, as
was confirmed in the simulation study, this estimator is stable but it may have a large
bias. In θ̂4y, the adjustment term is based on a Horvitz-Thompson estimate of the total
error in the register. This approach has the advantage that it leads to an asymptotically
unbiased estimator, unlike θ̂2y. On the other hand, the variance of the adjustment term
– and hence of the estimator as a whole – might be large. It would be interesting for
a future study to compare the performance of θ̂4y and the other estimators in practical
situations.

The bootstrap method described here only considers the variance due to sampling and
treats the observed register data as fixed. In Section 2.1 we considered a general mea-
surement error model for register values, which includes the possibility of stochastic
errors in the register. From a theoretical point of view, it might be an interesting topic
for future research to extend the bootstrap method so that it can also be used when the
errors in the register are of a stochastic nature. However, a practical application of this
theory would require accurate estimates of the model parameters λk, µk, and σ2

k , and
these might be difficult to obtain if sR is our only source of information.

Another assumption made in this paper is that the target variable is observed without
error in the sample survey, or, if errors do occur, that the effect of these errors on
the estimates is negligible compared to the sampling variance. It may be of interest to
relax this assumption and to also assume a model for measurement errors in the sample
survey. Note that this implies that more complex estimators are needed, because we
can no longer simply use the sample data to correct errors in the register data.
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Appendix A Derivation of Expressions for the Bias and Variance of θ̂2y

We begin by evaluating the bias of θ̂2y. From E(θ̂2y) = Es[E(θ̂2y | s)] and expression
(2), we obtain:

E(θ̂2y) = Es

[
E
(

∑
k∈UR

zk + ∑
k∈sR

(yk− zk)+ ∑
k∈sNR

w2kyk
∣∣ s

)]

= Es

[
∑

k∈UR

E(zk)+ ∑
k∈sR

(
yk−E(zk)

)
+ ∑

k∈sNR

w2kyk

]

= Es

[
∑

k∈UR

(yk +λkµk)− ∑
k∈sR

λkµk + ∑
k∈sNR

w2kyk

]

= ∑
k∈UR

(yk +λkµk)+Es

(
− ∑

k∈sR

πkλkµk

πk
+ ∑

k∈sNR

w2kyk

)

.= ∑
k∈UR

(yk +λkµk)− ∑
k∈UR

πkλkµk + ∑
k∈UNR

yk

= θy + ∑
k∈UR

(1−πk)λkµk,

In the second last line, it is used that ∑k∈sR xk/πk is an unbiased estimator for ∑k∈UR xk,
for any variable x. It is also used that ∑k∈sNR w2kyk is an asymptotically unbiased
estimator for ∑k∈UNR yk. Expression (6) now follows.

Next, we evaluate the variance of θ̂2y by means of the decomposition

V(θ̂2y) = Es[V(θ̂2y | s)]+Vs[E(θ̂2y | s)].

Using the assumption that the zk are independent, it follows from expression (3) that

Es[V(θ̂2y | s)] = Es

[
V

(
∑

k∈UR\sR

zk
∣∣ s

)]

= Es

[
∑

k∈UR\sR

V(zk)
]

= Es

[
∑

k∈UR\sR

λk(σ2
k + µ2

k (1−λk))
]

= ∑
k∈UR

(1−πk)λk[σ 2
k + µ2

k (1−λk)]. (10)

The proof of the last line is analogous to the last four lines in the evaluation of E(θ̂2y).

For the second component, we find

Vs[E(θ̂2y | s)] = Vs

[
∑

k∈UR

(yk +λkµk)− ∑
k∈sR

λkµk + ∑
k∈sNR

w2kyk

]

= Vs

(
− ∑

k∈sR

λkµk + ∑
k∈sNR

w2kyk

)
. (11)

Combining (10) and (11) yields expression (7).

It is interesting to examine expression (11) in more detail. The weights w2k have been
found by fitting a regression model to the observations from UNR, say, yk = β ′2x2k +ε2k.
Denote the vector of fitted regression coefficients by β̂ 2. By a standard argument, it
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holds that

∑
k∈sNR

w2kyk = ∑
k∈sNR

yk

πk
+ β̂

′
2

(
∑

k∈UNR

x2k− ∑
k∈sNR

x2k

πk

)

.= ∑
k∈sNR

yk

πk
+β ′2

(
∑

k∈UNR

x2k− ∑
k∈sNR

x2k

πk

)

= β ′2 ∑
k∈UNR

x2k + ∑
k∈sNR

ε2k

πk
,

since the discarded term (β̂ 2−β 2)
′
(

∑k∈UNR x2k−∑k∈sNR
x2k
πk

)
is asymptotically irrel-

evant. Hence, for sufficiently large samples, we have

Vs

(
− ∑

k∈sR

λkµk + ∑
k∈sNR

w2kyk

)
.= Vs

(
− ∑

k∈sR

λkµk + ∑
k∈sNR

ε2k

πk

)

= Vs

(
∑

k∈sR

λkµk

)
+Vs

(
∑

k∈sNR

ε2k

πk

)
(12)

−2Covs

(
∑

k∈sR

λkµk, ∑
k∈sNR

ε2k

πk

)
.

Note that λkµk is only defined for k ∈UR, while ε2k is only defined for k ∈UNR. For
convenience, define λkµk = 0 for k ∈ UNR, and define ε2k = 0 for k ∈ UR. The first
variance term may now be evaluated as follows:

Vs

(
∑

k∈sR

λkµk

)
= Vs

(
∑
k∈s

πkλkµk

πk

)

= ∑
k∈U

∑
l∈U

(πkl −πkπl)
πkλkµk

πk

πlλlµl

πl

= ∑
k∈UR

∑
l∈UR

(πkl −πkπl)λkµkλlµl,

where we have used a standard formula for the variance of a Horvitz-Thompson esti-
mator; see e.g. Särndal et al. (1992, p. 43). Similarly, the second variance term yields

Vs

(
∑

k∈sNR

ε2k

πk

)
= ∑

k∈UNR

∑
l∈UNR

(πkl −πkπl)
ε2k

πk

ε2l

πl
.

Finally, the covariance term may be evaluated as follows:

Covs

(
∑

k∈sR

λkµk, ∑
k∈sNR

ε2k

πk

)
= Covs

(
∑
k∈s

πkλkµk

πk
,∑

k∈s

ε2k

πk

)

= ∑
k∈U

∑
l∈U

(πkl −πkπl)
πkλkµk

πk

ε2l

πl

= ∑
k∈UR

∑
l∈UNR

(πkl −πkπl)λkµk
ε2l

πl
. (13)

In the second last line, use is made of a standard formula for the covariance of two
Horvitz-Thompson estimators; see e.g. Särndal et al. (1992, p. 170).

In general, expression (13) may be non-zero. There exist, however, a few special cases
where the covariance term always vanishes. For simple random sampling, we have
πk = πl = n

N , πkl = n(n−1)
N(N−1) (for k 6= l), and hence

∑
k∈UR

∑
l∈UNR

(πkl −πkπl)λkµk
ε2l

πl
=

[ n(n−1)
N(N−1)

− n2

N2

]
∑

k∈UR

λkµk
N
n ∑

l∈UNR

ε2l = 0,
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since the sum of the residuals over UNR equals zero by construction. Similarly, the
covariance term also vanishes for stratified simple random sampling, provided that a
separate regression model is fitted for each stratum.
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