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Imputation of rounded data

Jan van der Laan and Léander Kuijvenhoven

Abstract: In surveys persons have a tendency to round their answers. For
example, in the Labour Force Survey people are asked about the period
they have been unemployed. There is clearly a tendency to give answers
that are rounded to years or half years. Because of this rounding statistics
based on this data tend to be biased. In this paper we introduce a method
with which the rounding mechanism is modelled together with the ‘true’
underlying distribution. These are then used to select samples which are
likely to be rounded and impute new values for these. This method is
applied to the Labour Force Survey data. An investigation of robustness
shows that the method is robust against misspecification of the model of
the underlying distribution and to misspecification of the rounding mech-
anism.

Keywords: rounding, multiple imputation, Labour Force Survey, unem-
ployment spells

1 Introduction

It is very common in surveys to be confronted by measurement errors. One type of
measurement errors is caused by rounding: persons round their answers to certain
‘round’ values. For example, in the Dutch Labour Force Survey where persons are
asked about the duration they have been unemployed, persons tend to round their an-
swers to years or half years. Other examples are income where persons round their
answers to multiples of 100 or 1,000. When one is interested in statistics such as the
average income, rounding is usually not a problem. However, as rounding distorts the
distribution of the variable of interest, estimates can be biased when these are depen-
dent on the shape of the distribution. This can happen for example when performing
regression (Wolff and Augustin, 2000; Augustin and Wolff, 2004), or when the shape
of the distribution itself is the statistic of interest.

At Statistics Netherlands there is an interest in publishing statistics on the distribution
of unemployment durations. It is for example of interest to see whether policies affect
mainly persons with long unemployment spells or mainly persons with short unem-
ployment spells. Figure 1 shows the distribution of reported unemployment spells at
the moment of interviewing. Heaps are clearly visible at multiples of six months with
higher heaps at multiples of twelve months. This can not be a real phenomenon as the
interviewing moments are distributed (practically) randomly throughout the year. The
heaps are therefore caused by memory effects: persons cannot precisely remember the
exact duration and round their answer to the nearest half or full year. This effect is also
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seen in other labour force surveys such as the German Socio-Economic Panel (Kraus
and Steiner, 1995) and the Italian Labour Force Survey (Torelli and Trivellato, 1993).
As these heaps cause a bias in the estimates based on this data, an estimation method
that is able to deal with this type of data is needed.

Rounding, which in literature is often called heaping, is a special form of data coars-
ening, and while the amount of literature on the subject is limited, the problem has
received some attention in the last twenty years. Especially Wang and Heitjan (2008)
list a large amount of literature on this subject. However, most methods in the literature
either assume that it is known which persons have rounded and which persons have not
(Torelli and Trivellato, 1993), or focus on the effect of rounding on the estimated effect
of covariates either by adapting the estimation method to obtain unbiased estimates or
by estimating the bias introduced by rounding (Augustin and Wolff, 2004; Wolff and
Augustin, 2000). In case of continuous data the assumption that it is known when a
person has rounded is not unrealistic, as observing a specific value such as 1,000 is
highly improbable unless this value is observed because a person has rounded. As the
interest lies not in estimating the effect of covariates on the distribution but more in
giving a description of the distribution itself, most methods discussed in literature are
not directly applicable.

As we are mainly interested in the distribution of the durations, we use multiple impu-
tation (Little and Rubin, 2002) to correct the data for the rounding. We first create a
model that describes the data. This model consists of two parts. First, a model for the
rounding process, and second, a model for the true underlying distribution. In order
to have the choice of the model for the true underlying distribution to have as little
effect as possible on the results, we choose a semi-parametric model for this. After the
model has been fitted to the data, it is then used to randomly select persons that are
likely to have rounded and impute new values for these persons. Multiple imputation
is used for two reasons. First, this enables us to obtain variance estimates for estimates
based on the imputed data. Second, as we are using a stochastic imputation method,
more precise estimates can be obtained by averaging the estimates obtained from the
multiple imputed datasets. An advantage of using imputation to correct the data, is
that this is less sensitive for model misspecification. Only for those persons which are
likely to have rounded new durations are imputed. The remainder of the data is left as
observed. Any model misspecification will, therefore, only affect part of the data.

The model and imputation method are described in the next section. In section 3 the
method is applied to the unemployment spell lengths obtained from the Labour Force
Survey. In section 4 we investigate the robustness of the method for any misspecifica-
tion in the model.

2 Model and imputation method

2.1 General heaping model

It is assumed that every person i has a true value of the variable of interest yi that is
not directly observed. Instead we observe the reported value zi, which depends on
the true value. Suppose there are k values h j ( j = 1, . . . ,k) to which persons round
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their reported values. We will call these values the heaps and we will assume that the
number and locations of these heaps are known. Let ri j indicate rounding by person i to
heap j. Note that ri j is not observed. The probability of rounding to heap j depends on
the true value yi: Pr(ri j|yi). For example, unemployment durations are more frequently
rounded as the durations get longer.

The rounding process can be modelled as a single draw from a multinomial distribution
with k + 1 categories. Every yi can be rounded with a probability Pr(ri j|yi) to one of
the k heaps h j and with a probability of 1−∑

k
j=1 Pr(ri j|yi) not be rounded. When zi

is not on one of the heaps, it is known that zi is not rounded and the probability of
observing zi is equal to the probability of the true value yi being equal to zi times the
probability of yi not being rounded. Therefore, the density function g(.) of zi is given
by

f (zi)

(
1−

k

∑
j=1

Pr(ri j|zi)

)
, (1)

where f (.) is the density function of yi. The goal is to retrieve the density function
f (.) of the unobserved variable of interest yi from the observed zi.

When zi is on one of the heaps there are two possibilities. Either zi is not rounded and
therefore equal to yi, or zi is rounded. The probability of observing zi in the first case
is given by the previous equation. The probability of observing zi in the second case is
given by

∑
j:zi=h j

∫
∞

−∞

Pr(ri j|x) f (x)dx, (2)

where we sum over every possible h j equal to zi. Combining equations (1) and (2), the
density function g(.) of zi is given by

g(zi) = f (zi)

(
1−

k

∑
j=1

Pr(ri j|zi)

)
+ ∑

j:zi=h j

∫
∞

−∞

Pr(ri j|y) f (y)dy (3)

2.1.1 Estimation

In order to estimate the model, it is assumed that f (.) and Pr(ri j|zi) follow known
distributions parametrised by parameter vectors θ and φ respectively:

g(zi|θ ,φ) = f (zi|θ)

(
1−

k

∑
j=1

Pr(ri j|zi,φ)

)
+ ∑

j:zi=h j

∫
∞

−∞

Pr(ri j|y,φ) f (y|θ)dy. (4)

If we assume to have independent observations, the log-likelihood of observing the n
values zi (z = (z1,z2, . . . ,zn)′) is given by

l(θ ,φ |z) =
n

∑
i=1

lng(zi|θ ,φ), (5)

and the estimate (θ̂ , φ̂)′ is found by maximising l(θ ,φ |z):

(θ̂ , φ̂)′ = argmax
(θ ,φ)′

l(θ ,φ |z). (6)
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Optimization was done in the statistical program R using the Nelder-Mead (simplex)
algorithm. This algorithm does not need derivatives. The integrals present in equa-
tion 4 can be evaluated after a particular choice of Pr(ri j|y,φ) and f (y|θ) (see sec-
tions 2.2 and 2.3).

For the application to the unemployment durations from the Labour Force Survey it is
necessary to include weights in the model to compensate for under- or overrepresenta-
tion of certain groups. This was done using a weighted likelihood:

lw(θ ,φ |z) =
n

∑
i=1

wi lng(zi|θ ,φ), (7)

where wi is the weight of to the ith observation.

2.2 Uniform heaping

In the previous section a general model was described with which data with rounding
errors can be modelled. In order to estimate this model it is necessary to assume a
model for the rounding mechanism given by Pr(ri j|zi,φ). One possibility is to assume a
constant rounding probability p j of rounding to heap h j inside the interval I j = [s j, t j).
This type of rounding covers many of the commonly found types of rounding, such as
true rounding (e.g. rounding to the nearest integer) and rounding down as is commonly
done with age.

In this case Pr(ri j|zi,φ) equals zero for zi outside the interval I j. Therefore, in equa-
tion (3) there only needs to be summed over the intervals into which zi falls and the
limits of the integral can be replaced by s j and t j. This leads to the following density
function for the observed values

g(zi|θ ,φ) = f (zi|θ)

(
1− ∑

j:zi∈I j

p j(φ)

)
+ ∑

j:zi=h j

p j(φ)
∫ t j

−s j

f (y|θ)dy =

f (zi|θ)

(
1− ∑

j:zi∈I j

p j(φ)

)
+ ∑

j:zi=h j

p j(φ)(F(t j|θ)−F(s j|θ)) . (8)

The heaping or rounding model is completely described by the rounding probabilities,
the heaps (which we already assumed to be known) and the rounding intervals. We
will also assume that the rounding intervals are given. Therefore, only the rounding
probabilities need to be estimated. In principle, therefore, the parameter vector φ

could just consist of the k rounding probabilities. However, in order to ensure that the
estimated probabilities are between zero and one, we use the following transform

p j = exp(−exp(φ j)) , (9)

with φ = (φ1,φ2, . . . ,φk)′.
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2.3 Model for the underlying distribution

For the underlying distribution we need a distribution that is capable of describing the
highly skewed distribution of our data (see figure 1). From the area of survival anal-
ysis (which deals with durations such as unemployment durations) there are plenty of
distributions to choose from (Marshall and Olkin, 2007; Lawless, 1982). However, in
order to keep the distribution as general as possible, we choose the piecewise constant
hazard model.

In our case we are dealing with discrete data as the durations are measured in months.
In the discrete case the hazard is the possibility that the duration is ended given that
until now the duration was not ended.

λ (t) = Pr(y = t|y≥ t) (10)

The distribution function follows directly from this hazard

f (y) = λ (y)
y−1

∏
t=0

(1−λ (t)) (11)

In case of a piecewise constant hazard model we assume that the duration axis is di-
vided into l intervals defined by the l times 0 = u1 < u2 < .. . < ul < ∞. In each of
these intervals we assume that the hazard is constant: λ (t) = λm if um ≤ t < um+1. The
geometric distribution is a special case of this distribution for when there is only one
interval.

As it is reasonable to expect that the distribution will differ for different subgroups in
our population, we also want to incorporate the background properties xi of individuals
into the distribution. We have decided to use the following parametrisation

λim = exp
(
−exp

(
αm +β

′xi
))

, (12)

where αm is the base hazard that is scaled using the covariates vector xi and parameter
vector β . Therefore, the distribution is described by l plus the number of covariates
parameters, and θ = ((α1, . . . ,αl)′,β )′.

2.4 Imputation

In the previous sections a model has been described that is capable of describing data
that is distorted by rounding. The goal is to use this model to impute new values for
some of the values that are on the location of a heap. The reason for this is that as only
a part of the data exhibits rounding, only a part of the data is imputed. Therefore, a
large part of the data is left untouched, causing problems with misspecification of the
model to only influence part of the data. Therefore, statistics based on imputed data
will be more robust against misspecification of the model than statistisc based directly
on the model.

The imputation algorithm consists of a number of steps:

1. Determine for each observation and each heap the probability that the observation
has been rounded to that heap. This probability is only non-zero when the observation
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is on the heap. When observation i is located on heap j this probability is given by

f̂i j =
p j(φ̂)

(
F(t j|θ̂ ,xi)−F(s j|θ̂ ,xi)

)
g(h j|θ̂ , φ̂)

. (13)

2. For each heap the probability of belonging to that heap is known and also the proba-
bility of not belonging on a heap is known which is simply 1−∑

k
i=1 f̂i j. Using a single

draw from a multinomial distribution, it is randomly determined if the observation
belongs to a heap and if so to which heap it belongs to.

3. If the observation does not belong to one of the heaps it is not imputed. Otherwise,
a new value ỹi is drawn from

ỹi ∼ f (xi|θ̂ ,ri j). (14)

It should be noted that this distribution is conditional on the fact that the observation
is on heap j. In case of uniform rounding this means that the new value can only be
between t j and s j as only observations from this interval can be on heap j.

The imputation algorithm discussed above is repeated multiple times generating mul-
tiple imputed datasets. Any statistics of interest can be calculated for each of the
imputed datasets. Averaging these estimates creates a more accurate estimate as part
of the uncertainty introduced by the stochastic imputation is averaged out. Further-
more, these multiple estimates can be used to estimate the uncertainty introduced by
the imputation (Little and Rubin, 2002).

3 Application

Our method has been applied to unemployment durations obtained in the Dutch Labour
Force Survey. In this survey unemployed persons are asked among other things how
long they have been unemployed1. When answering this question they tend to round
their answers to multiples of six months. Figure 1 shows the distribution of unem-
ployment durations for 2009. Peaks are clearly visible at multiples of six months. The
peaks at full years are more pronounced than those at half years.

The previously introduced model has been fitted to this data. As the peaks at full year
locations are more pronounced, it looks like persons do not only round their duration to
the nearest half year, but also round their duration to the nearest year, Thus, a person
with for example a duration of 2.7 years, can both round his duration to 2.5 years
and 3 years. We have therefore decided to introduce two types of rounding intervals:
intervals of 6 months with heaps at six month intervals and interval of 12 months with
heaps at 12 month intervals. It is also assumed that probability of rounding is constant
after 72 months. The heap locations and intervals are shown in table 1.

For the underlying distribution the stepwise hazard model is used as was discussed
in section 2.3. The duration axis was divided into nine intervals with borders ul at
0, 2, 4, 10, 15, 20, 35, 50, 100 and 200 months. The intervals were chosen smaller
for short durations as more data was available for these intervals because of the skew

1Actually they are not asked directly. Unemployment status and unemployment duration are derived
from a set of answers to other questions.
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FIGURE 1 Weighted histogram of the observed unemployment durations. Original
data before imputation.

TABLE 1 Heap locations and intervals used for the LFS-data. After 72 months the
rounding probabilities are assumed to be constant.

Heap location Heaping interval p̂ j Confidence Interval

6 month rounding
6 4–9 0.18 (0.13–0.23)

12 10–15 0.29 (0.00–0.52)
18 16–21 0.38 (0.24–0.52)
24 22–27 0.37 (0.10–0.65)
30 28–33 0.18 (0.00–0.35)
36 34–39 0.00 (0.00–0.32)
42 40–45 0.14 (0.00–0.30)
48 46–49 0.41 (0.00–0.85)

12 month rounding
12 7–18 0.18 (0.05–0.31)
24 19–30 0.29 (0.09–0.45)
36 31–42 0.67 (0.47–0.79)
48 43–54 0.34 (0.00–0.67)
60 55–66 0.59 (0.37–0.79)
72 67–78 0.54 (0.38–0.69)

...
...

...
...
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TABLE 2 The estimated parameters for the underlying distribution. The parameters
for the baseline hazard have been transformed back to probabilities for easier inter-
pretation. Covariates marked with ‘*’ are significant at the 95% level.

Parameter Estimate Confidence
Interval

Baseline hazard exp(−exp(α̂m))
0–2 0.16 ( 0.14– 0.18)*
2–4 0.16 ( 0.14– 0.18)*
4–10 0.13 ( 0.11– 0.15)*
10–15 0.08 ( 0.06– 0.10)*
15–20 0.08 ( 0.05– 0.09)*
20–35 0.06 ( 0.05– 0.07)*
35–50 0.05 ( 0.04– 0.07)*
50–100 0.06 ( 0.04– 0.07)*
100–200 0.04 ( 0.02– 0.05)*
200–∞ 0.04 ( 0.03– 0.06)*

Covariates β̂

Ethnicity = Dutch –
Ethnicity = Western 0.01 (-0.05– 0.05)
Ethnicity = Non-western 0.03 (-0.03– 0.07)
Gender = Male –
Gender = Female 0.02 (-0.02– 0.06)
Age = 14–24 –
Age = 25–34 0.12 ( 0.05– 0.17)*
Age = 35–44 0.19 ( 0.12– 0.25)*
Age = 45–54 0.30 ( 0.23– 0.35)*
Age = 55–64 0.36 ( 0.29– 0.42)*
Education level = low –
Education level = middle −0.06 (-0.10–-0.01)*
Education level = higher −0.04 (-0.09– 0.01)

distribution and also because the hazard shows more variation in these intervals. For
the covariates we choose the following background properties: ethnicity, gender, age
and education level. These were chosen because these are also used in the published
tables. All variables are categorical variables. The categories are shown in table 2.

Tables 1 and 2 show the estimated parameters for the rounding process and the un-
derlying distribution respectively. The confidence intervals of the parameters were
estimated using the percentile method (Efron and Tibshirani, 1998) from a weighted
bootstrap (Särndal et al., 1992) using 1000 replicates. The parameters for the rounding
probabilities φ̂ j and the parameters for the baseline hazard αm were transformed back
to probabilities to ease understanding. As for the parameters for the covariates β , a
positive value leads to a lower hazard and therefore longer durations and a negative
value leads to a higher value of the hazard and therefore to shorter durations.

For most durations persons can round both to the nearest full year heap or to the nearest
half year heap. Figure 2 shows the total rounding probability: for every duration
all rounding probabilities have been added. From the figure can bee seen that the
probability of rounding increases the first two years until it is about constant at 60%.

From the figure and also from table 1 it can be seen that the uncertainty in the rounding
probabilities is quite large. In fact many of the confidence intervals include zero.
However, from this fact we can not conclude that there is no evidence for rounding,
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as the rounding probabilities for rounding to full year heaps and the probabilities for
rounding to half year heaps are strongly correlated. This can be seen in figure 3 where
the bootstrap estimates of rounding to the full year peak at 48 months are plotted
against the bootstrap estimates for rounding to the half year heap at 48 months. It is
clearly visible that these estimates are strongly correlated. The fact that the rounding
is significant could also be seen in figure 2, where in general zero is not included in
the confidence interval for the total rounding probability. The fact that many of the
estimates in table 1 include zero, indicates that the algorithm has difficulty separating
full and half year rounding.

From the parameter estimates for the underlying distribution for the unemployment
durations it can bee seen that the hazard decreases as the duration increases. This
is to be expected as leaving an unemployment situation becomes more difficult as the
unemployment duration increases. As for the covariates in the model, only age and ed-
ucation level are significant. Especially age has a strong effect: the durations increase
as age increases. For older persons it is more difficult to leave an unemployment sit-
uation. The unemployment durations are shorter for persons with middle education
level.

Although some of the parameters are not significant, we kept all of the parameters in
the model. There are a couple of reasons for this. First, we want to use the same
imputation model and method for all years and do not know if there will be changes in
the effect of covariates in the future. Second, we do not use this model for inference
but for imputation. Non-significant parameters in the model therefore only add to the
imputation variance, which is not a problem as long as the imputation variance is small
compared to the overall variance.

The method described in section 2.4 was used to impute the data. The resulting distri-
bution of durations is shown in figure 4. This distribution was obtained by averaging
the 25 distributions obtained from the multiple imputation. The heaps present in fig-
ure 1 have disappeared. The only heap that can be discerned namely at 54 months was
not present in our model.

4 Investigation of robustness

In order to investigate the robustness of our method to misspecification of the underly-
ing duration model or to misspecification of the heaping mechanism, simulations have
been performed. In these simulations data is generated from a known distribution to
which rounding is then applied. Our method is then applied to this heaped data. This
is repeated to obtain confidence intervals for the estimates. This work is a continuation
of the work done by El Messlaki (2010).

One of the main reasons imputation was used to obtain the estimates, is that we sus-
pect that imputation is less sensitive to misspecification. Only a fraction of the data
is rounded and only for this fraction of the data new values are imputed. Therefore,
depending on the fraction of rounding any misspecification of the model has only a
limited influence on the estimate, while estimates based solely on the estimated model
will be strongly affected by the misspecification. In order to investigate if this is in-
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FIGURE 4 Weighted histogram of the observed unemployment durations after imputa-
tion

deed the case, estimates based on the model will be compared to those of the imputed
dataset.

The statistics that were used to compare the estimated and imputed distributions to the
true distribution, were the fractions of persons with durations between 0 and 6, 6 and
12, 12 and 24, and longer than 24.

For the true underlying distribution we used a discrete Weibull distribution with a
shape parameter of 0.8 and a scale parameter of 12. This distribution was chosen
because it has a similar shape as that of the unemployment durations. From this distri-
bution 1,000 samples were drawn. For the half year rounding a rounding probability of
0.2 was used, for the full year rounding a rounding probability of 0.3 was used except
for the first year where a probability of 0.1 was used. The simulation was repeated
1,000 times. The lower and upper bounds of the confidence intervals were determined
by taking the 2.5 and 97.5 percentiles respectively.

4.1 Misspecification of underlying model

In order to introduce misspecification in the underlying model, the shape parameter of
the estimated model is fixed to different values. Therefore, only the scale parameter
was estimated. The shape parameter is changed in steps of 0.1 from 0.1 to 1.7.

Figure 5 shows each of the statistics as a function of the fixed shape parameter for the
estimated model (dashed line with solid points) and for the imputed dataset (dotted
line with open points). The confidence intervals are indicated using the grey areas.
The statistics based on the imputed dataset are practically constant and almost equal to
the true value, while the estimates based directly on the estimated model vary strongly
as a function of shape and are also in most cases significantly different from the true
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FIGURE 5 Fraction of persons in each of the categories estimated directly from the
model (dashed line with solid points) and estimated from the imputed dataset (dotted
line with open points) as a function of the fixed shape. The true values are shown by
the horizontal solid lines.

14



value. The estimates based directly on the estimated model are therefore sensitive to
misspecification while the estimates based on the imputed dataset are insensitive to
misspecification of the underlying distribution.

4.2 Misspecification of rounding model

Previously it was assumed that the rounding intervals were centered around the heaps:
persons round to the nearest half year or to the nearest full year. In order to investigate
the sensitivity of the results to this assumption, the rounding intervals are shifted to the
left and right. The intervals used when generating the data are kept centered around
the heaps. When the intervals are shifted to the left, persons have a tendency to round
their durations up; when the intervals are shifted to the right, persons have a tendency
to round their durations down. Since we want to have the heaps inside the intervals,
the maximum shift to the left is three (-3) and the maximum shift to the right is two
(2).

Figure 6 shows the fraction of persons in each of the four categories as a function of the
shift estimated from the model (dashed line with solid points) and estimated from the
imputed dataset (dotted line with open points). The difference between the estimates
based on the model and those based on the imputed dataset are negligible. Only when
the rounding intervals are shifted three months to the left (persons round mainly up) is
there a significant difference between the estimates and the true value.

The sign of the bias introduced by the misspecification is as would be expected. A
negative shift causes the fraction of persons in the first category to increase since per-
sons in the heap at six months will have rounded mainly up. Therefore, the imputed
values will be mainly smaller than six months.

In case of misspecification in the underlying true distribution there was a clear dif-
ference between estimates based directly on the model and estimates based on the
imputed dataset. In both cases the bias is small and only significant when assuming
the answers are rounded mainly up (which is not a realistic assumption).

5 Conclusion

In the previous sections a method has been introduced with which rounding errors can
be corrected. This method assumes that there is a true underlying distribution of the
variable of interest. However, this underlying distribution is not observed. Instead a
distribution distorted by a rounding mechanism is observed. By assuming a model of
both the underlying distribution and the heaping mechanism, it is possible to estimate
both the parameters of the underlying distribution and the parameters of the heaping
mechanism. These parameters can then be used to (randomly) select values that are
probably rounded and impute now values for these from the underlying distribution.
The distortion introduced by the rounding is thereby removed from the dataset and
estimates based on this imputed dataset are unbiased.

One of the main reasons to use multiple imputation and not base the estimates directly
on the estimated model, is that it was expected that using imputation is more robust to
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model (dashed line with solid points) and estimated from the imputed dataset (dotted
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model misspecification. In section 4 the robustness of the method to model misspec-
ification was investigated. The method is seems to be robust to both misspecification
of the underlying true distribution and to misspecification of the heaping mechanism.
Especially, for misspecification of the underlying distribution the differences between
the estimates based on the model and those based on the imputed dataset are large.
The estimates based on imputation are hardly affected by the misspecification, while
those based directly on the model are strongly affected. It is therefore preferable to use
multiple imputation and not base the estimates directly on the model.

The method has been applied to unemployment durations obtained from the Dutch
Labour Force Survey (LFS). In the LFS persons have a tendency to round their dura-
tions to the nearest half year or full year causing a bias in estimates based on these
values. After applying the method to this data the heaps were removed from the data.
Although this method has been applied only to unemployment durations, there is no
reason why this method would not be equally applicable to other data with round-
ing present. The only assumptions are that the data is discrete and that the observed
distribution can be modelled as an true underlying distribution to which a heaping
mechanism is applied.
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