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Small area estimates of labour status in Dutch municipalities

Harm Jan Boonstra, Bart Buelens, Kasper Leufkens and Marc Smeets

Within the ongoing redesign program of social surveys at Statistics Netherlands a small
area estimation method for labour status has been developed. The model used is the ba-
sic unit-level model, which is a linear mixed model with random area effects, where the
areas are municipalities. We discuss several issues concerning model choice, including
the use of linear (mixed) models for binary variables, the use of posterior means in-
stead of maximum likelihood estimates to prevent zero or too small estimates of between
area variance and the use of covariates at both the unit and area level. Several model
selection measures and graphical diagnostics have been applied to arrive at a set of
covariates used in the model. We focus on the estimation of municipal unemployment
fractions, but also discuss estimation of fractions employed and not belonging to the
labour force. The municipal estimates are benchmarked such that they are consistent
with regularly produced provincial estimates. The small area estimates thus obtained
have smaller estimated mean squared errors than the current estimates based on the
generalized regression estimator, and display a much more plausible development over
time.

Key words: Small Area Estimation, Model selection, Labour Force Survey
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1 Introduction

Within the ongoing redesign program of social surveys at Statistics Netherlands a small

area estimation method for labour status has been developed and implemented. A model-

based small area estimation method is applied to estimate labour status for the approx-

imately 450 Dutch municipalities, at an annual frequency. These estimates are based on

data from the Dutch Labour Force Survey (LFS).

Until now these estimates are produced by means of direct generalized regression

(GREG) estimation for municipalities with at least 30 thousand inhabitants, using three-

year averages for municipalities with 10 to 30 thousand inhabitants. No estimates are

produced for municipalities with fewer than 10 thousand inhabitants. For some munic-

ipalities direct estimation would not even be possible since they are not observed under

the LFS.

The Dutch LFS is described in Section 2. For model-based estimation of munici-

pal labour status we use the basic unit-level model, a normal linear model with random

municipality effects, formulated at the unit level. This model is described in Section 3.

Section 4 discusses some issues with the LFS data concerning missing data, measurement

error and repeated observations. An important issue for statistical offices is consistency

of aggregates of small area estimates with regular (direct) estimates at the higher level.

Provincial unemployment figures, for example, are based on a direct generalized regression

estimator. To make the small area estimates consistent at this level, we use a linear ad-

justment method, that takes into account the estimated mean squared errors of the small

area estimates. This is discussed in Section 5. Model evaluation and diagnostics are the

topics of Section 6. Results based on LFS data from 2001 to 2009 are given in Section 7.

Section 8 concludes this paper.

2 The Dutch Labour Force Survey

The objective of the LFS is to provide reliable information about the labour market.

The population aged 15 through 64 is divided into three groups: the employed labour

force, the unemployed labour force and those that do not belong to the labour force.

The population fractions belonging to these groups are important parameters of the LFS.

Another important parameter is the unemployment rate, which is defined as the ratio of

the unemployed labour force and the labour force.

The Dutch LFS is conducted according to a rotating panel design, in which the respon-

dents are interviewed five times at quarterly intervals. Each month a sample of addresses

is selected through a stratified two-stage cluster design. Strata are formed by geographic

regions. Municipalities are considered as primary sampling units and addresses as sec-

ondary sampling units. All households residing at an address, up to a maximum of three,

are included in the sample. Addresses with only persons aged 65 years and over are un-

dersampled, since most target parameters of the LFS concern people aged 15 through 64
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years. Gross sample sizes used to be about 8, 000 addresses monthly, but have declined to

about 6, 500 addresses in recent years.

In the first wave of the panel, data are collected by means of computer assisted personal

interviewing (CAPI). In the four subsequent waves of the panel, data are collected by

means of computer assisted telephone interviewing (CATI). During these re-interviews

a reduced questionnaire is applied to establish changes in the labour market position of

the household members aged 15 years and over. When a household member cannot be

contacted, proxy interviewing is allowed by members of the same household in each wave.

Several registrations provide a wealth of auxiliary information from which predictors

can be selected to be used for weighting and estimation. Most predictors are available

at the unit level. Among these auxiliary variables is registered unemployment1, a strong

predictor for the unemployment variable of interest. Figure 1 shows the development over

time of registered unemployment (RU) and LFS unemployment (LFSU) as fractions of

the target population of persons aged 15 through 64. The figure shows unweighted sample

means as well as the known RU population mean and the estimated LFSU population

mean. Also shown are unweighted sample fractions of persons both registered and LFS

unemployed. It is clear from the figure that the time-developments of RU and LFSU are

quite similar. From the two lowest lying lines it can be seen that a significant fraction of

LFS unemployed persons are registered as unemployed as well, so that the variables are

relatively strongly correlated. Together with the underrepresentation of RU in the LFS

sample for all years except 2001, this shows the importance of RU as auxiliary informa-

tion. The anomalous pattern for 2001 is due to the fact that registered unemployed were

oversampled until July 2001.

The weighting procedure of the LFS, used to produce quarterly figures about the labour

market, is based on the GREG estimator (Särndal et al., 1992). The weighting scheme

employed is based on a combination of different socio-demographic categorical variables,

including gender, age, household type, and registered unemployment.

3 Model-based small area estimation

For the estimation of municipal employment and unemployment we use the basic unit level

model, alternatively called nested error regression model or Battese-Harter-Fuller model

(Battese et al., 1988). The model and derived expressions for small area estimates and

mean squared errors are given in Appendix A. Additional information can be found in

Datta and Ghosh (1991) and Rao (2003). The basic unit level model is a linear model that

assumes normally distributed errors. However, LFS (un)employment data consist of binary

variables at the unit level. Usually, such data are modeled using (non-normal) generalized

linear (mixed) models, for example a binomial model with a logistic link function. There
1We use the term registered unemployment for the variable indicating whether a person is registered at

the employment agency or not. This deviates from the definition used in published figures on registered

unemployment, which also involves information observed in the LFS.
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Figure 1. Fractions unemployed at the national level between 2001 and 2009. The sample

means are based on first and fifth wave LFS data.

are, however, several reasons why we choose to use normal linear models:

• In a preliminary investigation including a simulation study it was found that logistic

models with or without area effects do not improve upon the estimates based on the

simpler normal linear models (Boonstra et al., 2007).

• The quantities of interest are area means, so we are not interested in predictions for

individual units, but always aggregate such predictions to the area level. This makes

it more reasonable to use normal linear models.

• The normal linear models result in analytical expressions (called Best Linear Unbi-

ased Predictors or BLUPs) that can be interpreted as weighted averages of direct

and synthetic estimates. For non-linear models such analytical expressions are not

available, which makes them harder to interpret.

• Normal linear models are convenient from a computational point of view, because

estimates and variances can be expressed analytically as functions of a single variance

parameter. In a Bayesian approach only one-dimensional numerical integration is

required to average over the posterior density of this variance parameter, which is a

relatively easy task. For more complex models, e.g. logistic hierarchical models with

multiple random effects, one would need Monte Carlo methods to approximate the
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multi-dimensional integrals. For the simple linear models, the advantage of much

shorter computation time is important because it means that many different models

can be tried within a reasonable time. We implemented the basic unit-level model

in R, and optimized the numerical integrations by storing function evaluations for

re-use in subsequent numerical integrations. In our application, small area estimates

for all approximately 450 municipalities are obtained in seconds, whereas a Monte

Carlo approach might take hours.

• Linear models require only area population totals for prediction. For example, using

the basic unit level model with fixed effects Ageclass+MaritalStatus+Ethnicity

requires area population totals for each of these variables separately, whereas a non-

linear model, such as logistic regression, would require area totals for the complete

cross-classification Ageclass ×MaritalStatus × Ethnicity. The reason is that for

such models the predictions are non-linear functions of the auxiliary variables and

therefore the sum of such predictions over unobserved units cannot be expressed in

terms of sums of the auxiliary variables, unlike in the linear case. If continuously

varying covariates are used, non-linear models need complete auxiliary information,

i.e. the individual vectors of covariates for all units. This advantage of linear models

can be important in official statistics, where often covariates from several regis-

trations are used. Assembling a data set of complete auxiliary information would

require linking of all registrations.

• The basic unit level model is a multi-level generalization of linear regression models

underlying GREG estimators. The GREG, resulting from linear survey weighting,

is widely applied at statistical bureaus to estimate population totals of any kind of

variable, including binary variables.

The registered unemployment variable is a strong predictor for the unemployment vari-

able of interest. Using this variable as a covariate improves the model fit to the point that

problems associated with small or zero estimated variance parameters arise, see Buelens et

al. (2009). Zero estimated between-area variance would mean that the estimates reduce to

synthetic estimates, which is certainly undesirable for the large municipalities, which have

quite large sample sizes. Moreover, the model-based error estimates become unrealisti-

cally small by ignoring between-area variance. The extent of these problems is reduced by

adopting a Bayesian approach. This is illustrated in Figure 2. Although there are no zero

estimates of the variance parameter in this case, the REML estimates are always smaller

than the posterior means, and they also seem to fluctuate more. So EBLUP estimates

based on the REML estimates are closer to synthetic estimates. Whereas the REML es-

timate might become zero in some future year, the posterior mean of the between-area

variance will always be positive. A zero REML estimate actually occurs for the fit to 2005

unemployment data when using the extended set of covariates discussed in §7.3.
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The additional computational burden for a Bayesian approach is small because we only

need one-dimensional numerical integration to compute posterior means and variances, as

explained in Appendix A. The approach adopted is also called the hierarchical Bayes

(HB) approach (Rao, 2003, Chapter 9), after the hierarchical or multi-level structure of

the model used.

●

●
●

●

●

●

●

●

●

2002 2004 2006 2008

0e
+

00
2e

−
06

4e
−

06
6e

−
06

8e
−

06
1e

−
05

year

be
tw

ee
n 

ar
ea

 v
ar

ia
nc

e

● posterior mean
REML estimate

Figure 2. Posterior means and REML estimates for the between-area variance of the basic

unit level model fitted to unemployment data of the years 2001 through 2009. The same

predictors are used in each year: registered unemployment in combination with a number

of demographic covariates.

4 Accounting for the LFS design, non-response and measurement error

In contrast to traditional design-based estimation, small area estimation based on the

basic unit level model is a purely model-based approach and therefore does not start

from inverse inclusion probability weighting. Instead, it relies on including covariates

related to the variable of interest, especially if they are also related to the missing data

mechanism. This is similar to the way a weighting model is constructed, except that

more attention is paid to the variable being modeled. If inclusion probabilities differ

by design, the covariates explaining these differences should be taken into account in

the model; the sampling design is then said to be ignorable (Rubin, 1976). A minimal

variant would be to use the inclusion probabilities themselves as a covariate in the mean

and perhaps variance specifications of the model. Often, differences between inclusion

probabilities are appropriately accounted for by the presence of stratum indicators in the

model. Boonstra (2005) reviews how design-based GREG estimates for population totals

are reproduced as model-based prediction estimates based on models that incorporate the
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inclusion probabilities in the mean and variance specification.

Addresses with persons aged between 14 and 26 as well as addresses with non-western

immigrants are oversampled in the LFS, which means that age and ethnicity must be in-

cluded as covariates in the model. Another feature of the LFS design is clustering. Munic-

ipal clustering is not very relevant for annual estimates, since almost all municipalities are

included in the data of a single quarter. However, if household clustering is not taken into

account, this may affect error estimates. In model-based estimation, clustering is normally

taken into account by incorporating cluster random effects. However, this would compli-

cate the unit level model used. Fortunately, for labour status (employed, unemployed, not

in the labour force), household cluster effects turn out quite small: design-based variance

estimates that do not account for household clustering are only a few percent lower than

estimates that do account for it. Ignoring household clustering should therefore not be

problematic in this application.

Measurement errors are another cause of concern in the LFS, especially for the esti-

mation of unemployment. Panel and mode effects occur due to the repeated observation

of households and the switch of observation mode after the first interview from CAPI to

CATI. The total effect between the first and subsequent waves, called rotation group bias,

is quite large (see van den Brakel and Krieg, 2009), but it is not clear how much of it can

be attributed to non-response and panel attrition and how much to measurement errors.

First wave observations are believed to be the most accurate, and therefore final estimates

are currently adjusted using ratios of first-wave-only to all-wave estimates averaged over

several years. In the time series models for monthly unemployment as described in van

den Brakel and Krieg (2009) the effects relative to the first wave are modeled explicitly as

measurement error terms and are thereby eliminated. For municipal small area estimation,

we do not as yet borrow strength over time, but instead we borrow strength over space,

i.e. over the municipalities, by means of the basic unit level model. Rotation group biases

relative to the first wave can be eliminated by including dummies for follow-up waves as

additional regressors, as explained below. But first we must address the issue of repeated

measurements for the same persons.

4.1 Dealing with repeated measurements for annual estimates

To make annual estimates using all LFS data observed in a year, one has to deal with

multiple observations for the same person. This is a consequence of the rotating panel

design.

Figure 3 shows the annual data subdivided into the different waves (let t correspond

to the fourth quarter). First and subsequent waves are coloured differently to emphasize

the different observation modes (CAPI vs. CATI). Blocks that have one or more blocks

above them comprise repeated measurements of persons that were already in the panel.

We briefly discuss three different ways of using these data to make annual small area

estimates based on the area or unit level models.
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Qt 1 2 3 4 5

Qt−1 1 2 3 4 5

Qt−2 1 2 3 4 5

Qt−3 1 2 3 4 5

Figure 3. LFS rotating panel design

1. Using first wave (CAPI) data only. Besides that this implies that there are no

repeated measurements, this has the advantage of avoiding the rotation group bias.

As a consequence, calibration of the small area estimates to provincial GREG-based

estimates requires smaller adjustments, since the latter are adjusted for rotation

group bias. However, this approach uses less than half of all available data. This is

hardly acceptable, especially for a small area estimation application.

2. Using one observation for all unique cases. This approach uses more data, but

not all. Only a single observation for each unique person is retained; repeated

observations are discarded. Referring to Figure 3, we see that this is achieved by

choosing one block in each of the 8 columns. By using all first and fifth waves, the

data is approximately balanced over the quarters of the year. The relatively small

number of respondents in waves 2 to 4 of the first quarter that drop out of the panel

before their fifth interview, may also be included.

3. Using all information. This approach uses all the data, including multiple measure-

ments for most persons. The basic unit level model is not directly suitable for this

kind of longitudinal data, and extending the model to include a longitudinal correla-

tion structure in addition to the within area correlations would be complicating. One

way to circumvent this problem is to use average measurements for each person. If a

person is measured twice as being unemployed and once as being employed, the value

of the averaged unemployment variable is 2/3, etc. The averaged variable is then

directly modeled. One issue with this approach is how to account for the number of

observations underlying each average. An effective number of observations based on

the estimated autocorrelation (for quarterly intervals) of the unemployment variable

could be used in the variance structure, thus giving more weight to averages based

on more measurements. This approach must deal also with the rotation group bi-

ases between all different waves. Another disadvantage is that this approach can be

laborious since for time-dependent covariates, including registered unemployment,

one needs averaged versions as well.

An advantage of the second and third methods is that the sample overlap between
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consecutive years leads to better estimates of change. However, the second and third

methods are affected by the rotation group bias. One way to deal with the rotation group

bias is to ignore the differences until the end when the estimates are calibrated to direct

estimates, which themselves have been calibrated to the first-wave level. Another, more

refined way, is to adapt the model to allow for measurement errors. For the unit level

model, a simple way to do this is to include wave number as an additional categorical

covariate. Setting associated area population means to zero for all but the first wave,

effectively removes the bias of the other waves relative to the first wave. Such a model

assumes constant measurement errors for all but the first wave, which is not realistic,

but presumably better than ignoring measurement error altogether. The effect is that,

globally, the estimated level is shifted to approximately the first-wave level, while the

individual area estimates still benefit from the additional data in the subsequent waves

as expressed by smaller error estimates. It would also be possible to allow for differences

in rotation group bias between different subpopulations by including interactions, but we

have not found substantial interactions of this kind.

Based on the above discussion we have chosen to base the small area estimates on first

and fifth wave data, i.e. approach 2, as a compromise between practical considerations

and the wish to use all available information. The rotation group bias is modeled as the

regression coefficient of a dummy variable for the fifth wave. Small area estimates are

computed by prediction using the population means of regressors for each area. Setting

the population means corresponding to the fifth wave dummy variable to zero effectively

removes the relative bias of the fifth wave data to the first wave data. This is explained

further in Appendix A.2.

5 Calibration to direct estimates at the level of provinces

Provincial annual estimates are currently produced using GREG estimation, since annual

sample sizes at the provincial level are considered large enough for this purpose. The small

area estimates at the municipal level can be aggregated to the provincial level, yielding

another set of provincial estimates. However, it is undesirable to have inconsistencies

among the sets of estimates. To remove these inconsistencies the small area estimates can

be minimally adjusted such that they aggregate to the direct provincial estimates. This

calibration or benchmarking procedure may also provide some protection against possible

model defects.

For notational simplicity, we use the notation a for the vector of (uncalibrated) small

area estimates, b for the sought vector of calibrated small area estimates, and V (a) for

the posterior covariance matrix of the small area estimands. The consistency restrictions

are denoted Rb = r, with R a P ×M aggregation matrix, and r is a P -vector of direct

estimates, in our case a vector of 12 provincial estimates. If a and r estimate population

means, the (p, i) element of R equals Ni/N
prov
p if municipality i lies in province p, and 0

otherwise, Ni and Nprov
p being known municipal and provincial population sizes. A simple
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linear adjustment is obtained by minimizing the quadratic form

(b− a)′V (a)−1(b− a) (1)

as a function of b subject to Rb = r. The result, which can be derived using Lagrange

multipliers, is

b = a+ C(r −Ra) , C = V (a)R′(RV (a)R′)−1 . (2)

Pfeffermann and Barnard (1991) proposed this adjustment in the special case of a single

restriction with regard to the overall population mean.

If r is known exactly, (2) is optimal in the sense that it has minimum error variance

among all linear estimates of the form a + C(r − Ra) for any matrix C compatible with

the constraints, i.e. satisfying RC = I. However, in a typical small area application,

r is a vector of (direct) estimates, coming with its own uncertainty. In that case, there

is no solution that simultaneously minimizes the error variances of all components of

b simultaneously, see Pfeffermann and Barnard (1991), Knottnerus (2002) Chapter 12,

Boonstra (2004) and Wang et al. (2008). Such an optimal result would only be possible by

relaxing the constraints Rb = r thereby implicitly adjusting the direct provincial estimates

as well.

6 Model selection and evaluation

In order to evaluate the models, and in particular the set of predictors used in the models,

we looked at several model selection measures and diagnostics. In previous work, we

compared the unit level model with the Fay-Herriot model, a model formulated at the

area level. The area level model was seen to be more limited in its use of auxiliary

information. Also, a comparison based on a cross-validation measure favoured the unit

level model.

6.1 Model selection measures

Along with the small area estimates we compute a number of model selection measures:

Bayesian Information Criterion (BIC), Akaike Information Criterion (AIC), conditional

AIC (cAIC) and a Cross Validation (CV) measure. These measures weigh goodness-of-fit

against model complexity, and are defined as follows:

1. BIC = −2llh+ log(n)d

2. AIC = −2llh+ 2d

3. cAIC = −2llhc + 2dc

4. CV = L(ys, ŷ
−
s )
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where llh is the log-likelihood, llhc the conditional log-likelihood, d and dc the number

of model parameters (see below for details), n the sample size, ys the vector of observed

sample values, ŷ−s the vector of leave-one-out predicted values (ŷ−(1)
1 , ..., ŷ

−(n)
n ), and L a

loss function.

The likelihood used in llh is p(ys|β) =
∫
p(ys|β, v)dv, where the integration is over

the vector v of random effects. The conditioning on variance parameters is omitted for

notational convenience. When used in BIC and AIC, the likelihood is evaluated at the

Maximum Likelihood (ML) estimates of the coefficients of the fixed effects β and of the

variance parameters. In the cAIC, the conditional likelihood is used instead, p(ys|β̂, v̂),

evaluated at the estimated fixed effects β̂ and random effects v̂.

In the AIC and BIC d is the number of parameters in the model. In the cAIC, dc

is the number of model parameters taking into account the random effects as well. The

value of dc is taken to be the trace of the hat matrix H, the matrix that takes the data

to the fitted values, ŷs = Hys (Spiegelhalter et al., 2002; Ch. 7 of Hastie et al., 2003).

Vaida and Blanchard (2005) argue that cAIC is more appropriate than AIC for use in

small area settings. In particular, advantages include the ability to compare models with

and without random effects, and to compare models fitted using ML, REML or any other

method.

In the expression for CV, the loss function L is commonly taken to be quadratic, in

which case CV = 1
n

∑
i (yi − ŷ−(i)

i )2 can be viewed as an empirical prediction MSE. The

leave-one-out predicted value ŷ−(i)
i is the prediction for the ith unit from the model fitted

using the sample excluding the ith observation.

For a more detailed description of BIC, AIC, cAIC and CV, we refer to Boonstra et

al. (2009) and references therein.

These model selection measures do not take into account differences between the re-

sponse and the population. Auxiliary variables that contribute relatively little to the

model fit may still be important to include in the model if the response and population

means of these variables are very different.

6.2 Model diagnostics

Since the models we use do not borrow strength over time, assessment of the plausibility

of time series of both small area estimates and of estimated model coefficients is a useful

model diagnostic. Such an assessment is typically conducted graphically, by studying time

series plots. Temporal instabilities in these plots may flag issues with the chosen approach.

Diagnostics based on analyses of residuals are often used in regression problems. Since

we are interested in estimation at the area level we are primarily concerned with residuals

at the area level, that is the random area effects. One such diagnostic is the graphical

representation of the area random effects versus (the logarithm of) the area population

size. There should be no obvious patterns visible in such a plot.

Finally, the deviation of the model-based estimates from design-based estimates at high
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aggregation levels can be seen as a diagnostic. If this deviation is large, and calibration

(see Section 5) results in considerable adjustments to the estimates, the model is likely to

be misspecified.

7 Results

7.1 The selected model

A detailed analysis of model selection measures associated with a range of potential models

has resulted in the following model for unemployment:

unemployed ∼ gender × age3 × ru1 + ru1 × ethnicity3 + ethnicity2D + ru

+ age + typehh + prov + ru-area + wave.

The variables used in this model are described in detail in Appendix B.

Figure 4. Direct (survey regression) and unit level model estimates of unemployment

fractions for the years 2001 to 2009. The top row contains the five largest municipalities,

the middle row the largest municipalities with less than 30, 000 persons, and the bottom

row the largest municipalities with less than 10, 000 persons in the target population.

We present some model diagnostics for this particular model. Figure 4 shows an ex-

ample displaying unemployment estimates for selected municipalities for nine consecutive

years, from 2001 to 2009. For the largest municipalities (top row) the model-based esti-

mates follow the direct GREG estimates closely. For smaller municipalities (middle and

especially bottom row) the model-based estimates are clearly much more plausible than

the direct estimates.

Figure 5 shows a plot of some estimated model coefficients (fixed effects) over time.

Error bounds of plus or minus two standard errors are also shown. Some of the coefficient
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Figure 5. Selection of estimated coefficients in the unit level model fit to unemployment

data for 2001-2009, with error bounds of plus or minus two standard errors. Note the

different scales on the y-axis.

estimates vary smoothly over time. Among them, the coefficient of registered unemploy-

ment has a large value and very narrow error bounds. Other coefficients vary much more

over time, especially the province indicators. They are mostly not significantly different

from 0, but have been included because the estimates are calibrated to provincial direct

estimates, see Section 5.

A clear pattern that emerged is that among registered unemployed, natives are more

often LFS unemployed than non-western immigrants, whereas among persons not regis-

tered as unemployed, non-western immigrants are more often LFS unemployed. This is

the reason why the interaction term ru1 × ethnicity3 is included in the model. Indeed,

Figure 5 shows that the coefficient of non-western immigrants is significantly positive for

all years, which was not the case without the interaction term.

Figure 6 shows a plot of estimated random municipality effects versus the logarithm

of area population size for 2009. Plots for other years look similar. The spread of random

effects seems to grow slowly with the municipal population size. It turns out that this pat-

tern largely disappears when the variances of the random effects are taken to be inversely

proportional to the square root of the population sizes. Fortunately though, this change

in variance specification hardly affects the small area estimates, which means that we can

still use the simpler model with constant variances. Note that there are a few exactly zero

random effects, corresponding to areas without observations.

Next, the effect of calibration is considered. We have used (2) to obtain small area
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Figure 6. Estimated municipality effects versus the logarithm of the size of the target

population in each municipality.

estimates consistent with direct provincial estimates. Although it is possible to adjust

also the MSEs of the small area estimates, we did not do so. In any case, it would not

be justified to adjust the MSEs acting as if r, the vector of direct provincial estimates,

were known without error, when in fact it is a vector of uncertain estimates. In our

application we expect that V (a) is still an appropriate measure of the uncertainty in the

adjusted estimates. In using (2), we initially ignored off-diagonal elements of V (a) as an

approximation. However, this led to too much of the required adjustments being allocated

to the largest municipalities. Therefore we use the full covariance matrix V (a) in the

adjustment procedure.

Ideally, calibration adjustments are small ”cosmetic” adjustments. This is normally

the case when most auxiliary information used in the regular LFS weighting is also incor-

porated in the model used to make small area estimates. In order to reduce the size of the

calibration adjustments, we also include province indicators as covariates in the model.

Figure 7 shows the difference between including and not including province indicators

as covariates. The estimates and standard errors are obtained by aggregation of the

municipal estimates and covariances. As expected, estimates based on the model including

province are on average closer to the direct provincial estimates. More notable is that the

provincial standard errors are, on average, almost doubled as a result of including province.

This is not the case for the underlying municipal estimates; the estimated standard errors

at that level are not much affected by the province indicators. The larger standard errors at

the provincial level are due to more positive correlations between the municipal estimates
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within the same province as a result of the uncertainty in the province coefficients. Another

way to think of this is that by including province indicators, the provincial standard errors

get closer to the standard errors of the direct provincial estimates. This confirms the

importance of including indicators for subpopulations of interest, not only to improve the

subpopulation estimates, but also to prevent over-optimistic standard errors.
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Figure 7. Municipal unemployment estimates aggregated to the provincial level based on

a model with or without province indicators and 2009 data. The lines are approximate

95% intervals. The vertical bars denote the direct provincial estimates.

Finally, we discuss the benefit of including the term ru−area, the area level registered

unemployment fraction. As explained in Bafumi and Gelman (2006) this removes the cor-

relation between the unit-level predictors and the area random effects, thus improving the

validity of the model assumptions. This is illustrated in Figure 8, in which the correlation

between estimated municipality effects and municipal population means is displayed for a

selection of covariates. The two models considered are the selected model discussed previ-

ously, and the same model without ru− area. The figure is based on 2009 data, but the

same pattern shows in all years. Not only does the area-level covariate ru− area remove

the correlation of the random effects with ru population means, but it also reduces most

other such correlations. Note that because municipality is nested within province, the

province indicators are area-level covariates, and so are uncorrelated with the area level

errors by construction.
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Figure 8. Correlation between estimated area (municipality) effects and population area

means with or without including registered unemployment as an additional area level

covariate.

7.2 Municipal small area estimates for unemployment

Using the model discussed in the previous section, municipal estimates of unemployment

are obtained for all municipalities. Each of these estimates has standard errors associated

with it. We will now consider these results and compare them to the GREG estimates.

Table 1 lists the mean coefficients of variation (cv) for the GREG estimates for 2009.

At present, GREG estimates of annual unemployment fractions are published for munici-

palities with more than 30,000 inhabitants. The cv can be used as a quality criterion. As

an example we have chosen a threshold of 20%, which means that we accept a standard

error which is less than 1/5th of the point estimate, and consider estimates with larger

standard errors as poor. This choice is somewhat arbitrary (see below). From Table 1 we

see that only 57% of the 79 municipalities with more than 30,000 inhabitants have a cv of

less than 20%. By this criterion, the quality of 43% of the published municipal estimates

is not good.

Table 2 is the equivalent of Table 1 for the SAE estimates of municipal unemployment

for 2009. It is immediately obvious that the mean cv values of the SAE estimates are

much smaller than those of the GREG estimates. Using the same 20% criterion, all large

municipalities pass, almost all of the medium sized municipalities do, and with 85% even

most of the smallest municipalities have a cv of less than 20%. This is a large improvement

in precision compared to the GREG estimates. Important to note is that SAE methods

are able to provide reliable estimates for two of the four municipalities that were out of
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Table 1. Mean coefficients of variation of municipal GREG estimates of unemployment

based on 2009 LFS data

Municipalities N mean cv cv<0.2 cv<0.2 (%)

>30K inhabitants 79 0.2097 45 57%

10-30K inhabitants 233 0.8277 5 2%

<10K inhabitants 125 2.6941 1 1%

all (in sample) 437 1.2498 51 12%

out of sample 4 - - -

sample. There are estimates for the other two as well, but with large standard errors.

Table 2. Mean coefficients of variation of municipal SAE estimates of unemployment based

on 2009 LFS data

Municipalities N mean cv cv<0.2 cv<0.2 (%)

>30K inhabitants 79 0.0908 79 100%

10-30K inhabitants 233 0.1316 229 98%

<10K inhabitants 125 0.1583 106 85%

all (in sample) 437 0.1319 414 95%

out of sample 4 0.2223 2 50%

all 441 0.1327 416 94%

Depending on the particular sample obtained each year, and the model fit in that year,

the number of municipalities with a cv of less than 20% varies over time. In addition,

varying the threshold level alters the number of municipalities having a cv not exceeding

that level. This is shown in Table 3. From 2003 onwards, SAE estimates are reliable for

the vast majority of municipalities according to the 20% criterion. As mentioned earlier,

the threshold of 20% is chosen in the tables presented above, but other choices are equally

valid. Table 3 gives an indication of how the percentage of municipalities not exceeding

the threshold varies with the level of the threshold. Clearly, the smaller the threshold,

the fewer municipalities do not exceed it. A criterion for the cv value could be used in

deciding whether or not to publish a particular municipal estimate.

7.3 Municipal estimates for the employed labour force

Besides the unemployed labour force, we also need to estimate the employed labour force.

Only then is it possible to calculate the unemployment rate per municipality, defined as

the fraction of unemployed within the total labour force consisting of both employed and

unemployed persons. The search for auxiliary variables to estimate the employed labour

force turns out to be quite involved.
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Table 3. Percentage of municipalities not exceeding various cv thresholds

Year cv<0.10 cv<0.15 cv<0.20 cv<0.25 (%)

2001 4% 28% 61% 86%

2002 14% 54% 84% 97%

2003 36% 81% 96% 99%

2004 43% 89% 99% 100%

2005 65% 96% 99% 100%

2006 48% 95% 99% 100%

2007 15% 61% 93% 99%

2008 17% 67% 95% 99%

2009 21% 70% 94% 99%

All auxiliary variables that are used in estimating the unemployed labour force, can be

used to estimate the employed labour force. Demographic characteristics are relevant and

registered unemployment should correlate negatively with being employed. The employed

labour force also has to be calibrated on a provincial level, hence province needs to be

included in the model. However, we also need auxiliary variables that specifically correlate

with the employed, just like registered unemployment does for the unemployed.

The Polis register contains income data for all persons working as an employee in the

Netherlands. This is monthly data which becomes available with a couple of months delay.

Polis data of sufficient quality is available from 2008 onwards. We link this data to the

persons living in a municipality. Consequently it is possible to use this data for SAE

estimation.

The timeliness of data becomes a problem for two other auxiliary variables that are

needed. Since the Polis register only contains data on people that are an employee in the

Netherlands, we would underestimate the employed labour force in municipalities close to

the border. Especially for municipalities in the north (Groningen) and south (Limburg)

this turns out to be the case. Therefore we need an auxiliary variable that indicates

whether a person receives income from labour in a foreign country. This auxiliary variable

becomes available with a delay of approximately nine months. Therefore we have to use

the information of one year earlier when estimating a certain year.

The last group of employed for which data is needed are the self-employed. This group

is not spread evenly across the country and therefore the estimation results would be

skewed without including an auxiliary variable for them. Data for self-employed becomes

available with a delay of two to three years. Therefore we have to do with the most recent

data available.

We estimate the employed labour force for each municipality in 2008. The model of

Section 7.1 is augmented with auxiliary variables on income from labour. Polis data of
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2008 is used in combination with income from abroad data of 2007 and data on self-

employment from 2005. For each municipality the estimated coefficient of variation for

the employed labour force lies below 0.05.

For earlier years auxiliary variables can be obtained from the social statistical file

(SSB). However, it is not possible to make a series of estimates with the same model, as

is done for the unemployed labour force from 2001 to 2009. Furthermore, the exact model

specification has to be decided on a yearly basis since the quality of the auxiliary variables

changes.

The auxiliary variables relating to income from labour can also be used in estimating

the unemployed labour force. The correlation between these auxiliary variables and unem-

ployment should be negative. For 2008, including the auxiliary variables into the model of

Section 7.1 results in lower standard errors for almost all municipalities. The percentage

of municipalities where the estimate for the unemployed labour force does not exceed the

coefficients of variation threshold of 0.20 increases from 95% to 98%.

7.4 Municipal estimates for the inactive population

The auxiliary variables that are used to estimate the employed and unemployed labour

force, can also be used to estimate the inactive population. Furthermore, the Polis register

contains data on the social benefits that people receive. This data can be used as aux-

iliary variables when estimating the inactive population. For each municipality the SAE

estimate of the inactive population has a coefficient of variation below 0.10. The sum of

the employed, unemployed and inactive must equal the population in each municipality.

This leads to an extra set of calibration requirements.

A much more simple method to determine the inactive population per municipality, is

by subtracting the total labour force from the population. The difference in outcome be-

tween this approach and SAE estimation is small. Therefore we decided that the municipal

inactive population is determined by subtracting the total labour force from the popula-

tion. This also means that calibration is only required for the employed and unemployed

labour force on a provincial level.

8 Conclusions and further work

This paper discusses small area estimation of labour status in municipalities in the Nether-

lands. The estimates are based on data from the Labour Force Survey and make use of a

number of covariates obtained from administrative registers. The basic unit-level model

is used, which is a linear mixed model with random area effects. This allows for more

efficient use of the auxiliary data than the direct estimation methods that are currently

used in regular official production. The municipal small area estimates for unemployment

are more plausible than the direct estimates, in particular with respect to stability over

time. Small and medium sized municipalities benefit more from the model-based approach
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than large municipalities, for which direct estimates are often good because of the larger

sample sizes. The estimated MSE of the small area estimates is much smaller than that

of the direct estimates. When using this as a measure of quality, small area methods

are capable of providing good estimates for 94% of all municipalities, while good direct

estimates are available for only 12% of all municipalities.

Further studies of the application of the small area estimation model will be conducted

along a number of lines. First, we intend to study how the calibration to direct estimates

at the provincial level affects MSEs for the small area estimates. For unemployment, some

of the relative calibration adjustments to the municipal estimates are larger than 10%, so

one cannot expect the influence on MSEs to be negligible. To clarify this issue involves

obtaining a better understanding of the differences between the direct and model-based

estimates at the provincial level.

Eventually, municipal unemployment estimates should be produced for 6 age-gender

combinations. The basic unit-level model with municipalities as area effects can also

be used to estimate the unemployment means for the age-gender combinations for all

municipalities, since it allows prediction at the unit level. This requires that all population

information be specified at the municipality × gender × age level. For this purpose, it may

be beneficial to include additional interaction terms with age and gender in the model.

Small area methods will also be applied to the estimation of municipal educational levels.

Although the model proposed produces estimates that are superior to direct estimates,

further improvements to the model are imaginable. Such improvements may be sought in

the use of geographical positions of municipalities, borrowing of strength over time and a

study of the best variance structures to be used in the model. Further diagnostic checks

may lead the way.

Finally, changes in the LFS design carried out in this and coming years may require

changes to the model. In particular, labour status and educational level will be observed in

a basic questionnaire that precedes all social surveys. This data should be used in addition

to that observed in the LFS. In order to combine data observed under different (mixed-

mode) designs it is important to further study ways to deal with possible differences in

measurement errors.
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Appendix A The basic unit level model

Let us denote by θi the quantity of interest for area i, for example the fraction of employed

persons in the target population. If y is the underlying variable at the unit, i.e. person

level, e.g. the binary 0/1 variable employed, then

θi =
1
Ni

Ni∑
j=1

yij ,

where yij is the variable of interest for unit j in area i, and Ni is the population size of

area i. The number of areas in the population will be denoted by M and are sample sizes

by ni. Not all areas are necessarily represented in the available sample data, and m is

used to denote the number of areas for which data are available. Within a year, the Dutch

LFS collects data in all municipalities, except for about three to five small municipalities

(mainly islands). Estimates for the missing municipalities can still be made using the

model, since auxiliary information is available for all M municipalities.

The basic linear unit level model is given by

yij
ind∼ N (β′xij + vi, σ

2
e) , i = 1 . . .M , j = 1 . . . Ni , (A.1)

vi
iid∼ N (0, σ2

v) , i = 1 . . .M . (A.2)

Here yij is the variable of interest for unit j within area i, xij is a corresponding p-vector

of auxiliary characteristics, β are associated fixed effects, and σ2
e is a residual variance

parameter. The area effects vi are modelled as normal with zero mean and variance σ2
v .

BLUP predictors based on this linear mixed model are (see e.g. Rao, 2003)

θ̃i =
ni

Ni
ȳi + β̃′

(
X̄i −

ni

Ni
x̄i

)
+ (Ni − ni)ṽi (A.3)

= γi

(
ȳi + β̃′

(
X̄i − x̄i

))
+ (1− γi)

(
ni

Ni
ȳi + β̃′

(
X̄i −

ni

Ni
x̄i

))
,

β̃ =
(
X ′Σ̃−1X

)−1
X ′Σ̃−1ys , ṽi = γi(ȳi − β̃′x̄i) , (A.4)

γi =
σ2

v

σ2
v + σ2

e/ni
. (A.5)

Here x̄i is a p-vector of sample means for area i, X̄i is the corresponding vector of popu-

lation means, X is the n× p sample matrix of covariates, ȳi are area sample means of y,

ys is the n-vector of response values, and Σ̃ = cov(ys) = σ2
eIn + σ2

v ⊕m
i=1 Jni , where In is

the n-dimensional identity matrix, Jni the ni×ni matrix with all elements 1, and ⊕m
i=1Jni

the block diagonal matrix with blocks Jni . The BLUP θ̃i is a weighted average of a sur-

vey regression estimate with weight γi and a regression synthetic estimate β̃′X̄i modified

by a finite population correction term. In the LFS the finite population corrections are

negligible since in all municipalities only a small fraction of the population is observed.

In frequentist approaches, σ2
e and σ2

v are estimated, typically as the maximizers of the

restricted likelihood, and plugged into the BLUP θ̃i to yield EBLUP small area estimates.

In the Bayesian approach, as detailed in Datta and Ghosh (1991), one averages over the
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joint posterior density for σ2
e and σ2

v . After a transformation (σ2
e , σ

2
v)→ (σ2

e , λ ≡ σ2
v/σ

2
e),

the integration over σ2
e can be carried out analytically for suitable choices of prior densities,

and only the one-dimensional integration over λ remains to be carried out numerically.

Note that the BLUP predictors θ̃i given above are functions of λ only; they are the posterior

means of θi given λ.

The remaining integration over the variance ratio λ must be carried out numerically.

The prior we use is simply

p(β, σ2
e , λ) ∝ 1 , (A.6)

which differs from the priors used in Datta and Ghosh (1991). In that paper, independent

inverse gamma priors for the variance parameters σ2
e and σ2

v were used. In our application

such priors give results that can be quite sensitive to the specific choice of parameters of

the σ2
v prior.2 Note that the prior (A.6) corresponds to p(β, σ2

e , σ
2
v) ∝ 1/σ2

e in the original

parametrization.

The hierarchical Bayes (HB) small area estimates are now obtained as

θ̂i = E(θi|ys) = E(E(θi|ys, λ)|ys) =
∫ ∞
0

θ̃i p(λ|ys)dλ , (A.7)

where all expectations are posterior expectations that condition on the observed data

vector denoted by ys, and p(λ|ys) is the posterior density for λ. Up to a constant of

proportionality, this density is

p(λ|ys) ∝ |Σ|−1/2|X ′Σ−1X|−1/2
(
(ys −Xβ̃)′Σ−1(ys −Xβ̃)

)−(n−p)/2
, (A.8)

where Σ = Σ̃/σ2
e = In + λ⊕m

i=1 Jni .

For the mean squared errors, we have

Vi = V (θi|ys) = E(V (θi|ys, λ)|ys) + V (E(θi|ys, λ)|ys)

=
∫
p(λ|ys)

(
Ṽi +

(
θ̃i − θ̂i

)2
)

dλ , (A.9)

where Ṽi is the posterior variance of θi given λ. These are the diagonal elements of the

M ×M posterior covariance matrix given λ, whose general (i1, i2) element is,

V (θi1 , θi2 |ys, λ) = σ̃2
e

{(
1− fi1

Ni1

+ (1− fi1)2
γi1

ni1

)
δi1i2

+
(
X̄i1 − fi1 x̄i1 − (1− fi1)γi1 x̄i1

)′ (
X ′Σ−1X

)−1 (
X̄i2 − fi2 x̄i2 − (1− fi2)γi2 x̄i2

)}
,

where fi = ni/Ni is the sampling fraction in area i, δi1i2 is Kronecker’s delta equaling one

if i1 = i2 and zero otherwise, and

σ̃2
e =

1
n− p− 2

(ys −Xβ̃)′Σ−1(ys −Xβ̃) , (A.10)

2These parameters must be small for the prior to be relatively uninformative, but cannot both be zero,

since that would yield an improper posterior density. See Gelman (2006) for a discussion of these and

other issues concerning priors for variance parameters in hierarchical models.
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is the posterior mean for σ2
e given λ. The estimates and the posterior variances can

thus be computed using one-dimensional numerical integration. Note that in addition to

the 2M integrals to compute the posterior means and variances, one needs an additional

one-dimensional numerical integration to compute the normalization constant in (A.8).

For aggregation of small area estimates, and in particular for benchmarking of the

estimates to known or fixed aggregates, the complete posterior covariance matrix for θ

is used. The posterior covariance matrix can be obtained by integrating over the pos-

terior density for λ as in (A.9). Although this could be done, it would require an ad-

ditional 1
2M(M − 1) one-dimensional numerical integrations, and so we prefer to ap-

proximate the posterior covariance matrix by a plug-in estimate DṼ (λ̂)D where D =

diag(V1/Ṽ1(λ̂), . . . , VM/ṼM (λ̂)), where λ̂ is the posterior mean for λ. Thus we only carry

out the integrations for the diagonal elements, and use plug-in estimates for the correla-

tions.

All formulas given also hold in the presence of areas without observations after taking

the limit ni → 0 in such areas. In this limit γi → 0, so that, as can be seen from (A.3)-

(A.5), θ̂i reduces to the regression prediction β̂′X̄i with β̂ the posterior mean of β, i.e. the

average of β̃ over the posterior density for λ.

A.1 A hybrid approach

In Bell (1999) and Buelens et al. (2009), a hybrid Bayesian/EBLUP approach is discussed,

in which the posterior mean for the between area variance parameter is used as a plug-in

estimate in the BLUPs based on an area level model. The same hybrid approach can be

applied to the unit level model by using the posterior mean for λ as a plug-in estimate. This

approach only requires two one-dimensional numerical integrations to obtain the posterior

mean of the variance parameter. The 2M numerical integrations to obtain the estimates

and MSEs are no longer needed. Like the full HB approach, the hybrid approach does

not suffer from zero estimated variance parameter; its posterior mean is guaranteed to be

positive. In the LFS application the hybrid approach leads to very good approximations

of the full HB estimates. There is hardly any difference in point estimates, a consequence

of the large overall LFS sample size. The only notable difference is that for a few areas

with large area effects, full HB posterior variances can be somewhat (up to about 25%)

larger than the hybrid plug-in variances, even though on average over all areas they are

almost equal. The differences are due to uncertainty about the variance parameter, which

is not taken into account in the hybrid approach (Bell, 1999).

A.2 Inclusion of measurement errors

For the purpose of extending the model with a measurement error term we now distinguish

between the true variable of interest with components Yij and measured values yij . The

model including a measurement error term can then be written

yij
ind∼ N (Yij + α′zij , σ

2
m) , i = 1 . . .m , j = 1 . . . ni , (A.11)
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Yij
ind∼ N (β̃′x̃ij + vi, σ

2
e) , i = 1 . . .M , j = 1 . . . Ni , (A.12)

vi
iid∼ N (0, σ2

v) , i = 1 . . .M ,

where the first line represents the measurement part of the model. In our application

we simplify this model by assuming σ2
m = 0, so that the measurement error is a fixed

bias of size α′zij . In our case z is a single dummy variable taking the value 1 for 5th

wave observations, and 0 for 1st wave observations, and α is the corresponding coefficient,

which can be interpreted as the rotation group bias, controlling for the covariates x̃.

Strictly speaking, this model is inappropriate for binary variables with classification errors,

but nevertheless we believe it works well for prediction at aggregate levels, in which we

are interested. We also note that the above model specification assumes that z is not

predictive of Y , but only of measurement bias in the observed values y. The validity of

this assumption is improved by incorporating into x variables associated with Y and with

response probabilities for wave 1 and 5 respondents.

From (A.11) and (A.12) we have

yij
ind∼ N (Yij + αzij + β̃′x̃ij + vi, σ

2
e) , i = 1 . . .m , j = 1 . . . ni .

This shows that the likelihood function of the model parameters is exactly the same

as for the model without measurement error but with covariate vector x = (z, x̃′)′ and

coefficients β = (α, β̃′)′. Provided α is assigned a uniform prior as well, inference about

model parameters goes through in the same way as before. Prediction is based on x only,

not on z, so the coefficient α is not involved directly in prediction, only through its indirect

effects on the partial regression coefficients β̃. Inferences about small area means can still

be based on the model without measurement error and covariate vector x = (z, x̃′)′ by

associating zero area population means with z. This removes the bias effect of the fifth

relative to the first wave from the predictions.

Appendix B Description of variables

The following variables are used in the model:

- unemployed: binary indicator variable for unemployment (survey variable)

- gender: male or female

- age3: age in three categories (15-25, 25-45, 45-65)

- ru1: binary indicator for registered unemployment

- ethnicity3: ethnicity in three categories (native, native from other Western coun-

try, non-Western)

- ethnicity2D: ethnicity in seven categories (native, native from other Western coun-

try, Turkish, Moroccan, Surinamer, Antilles, native from other non-Western county)
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- ru: registered unemployment in five categories (not-registered, registered but work-

ing, not working and registered since 0, 1-4, or 4+ years)

- age: age in five categories (15-25, 25-35, 35-45, 45-55, 55-65)

- typehh: household type in three categories (Single person, household with children,

other)

- prov: province (there are 12 in the Netherlands)

- ru-area: area means of registered unemployment

- wave: wave of the LFS when this person was observed (1st or 5th).
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