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Design-based analysis of factorial designs embedded in probability

samples

Jan van den Brakel

Summary: At national statistical institutes experiments embedded in ongoing sample surveys are
frequently conducted, for example to test the effect of modifications in the survey process on the
main parameter estimates of the survey, to quantify the effect of alternative survey implemen-
tations on these estimates, or to obtain insight in the various sources of non-sampling errors.
A design-based analysis procedure for factorial completely randomized designs and factorial ran-
domized block designs embedded in probability samples is proposed in this paper. Design-based
Wald statistics are developed to test whether estimated population parameters, like means, totals
and ratios of two population totals, that are observed under the different treatment combinations
of the experiment are significantly different. The methods are illustrated with a real life applica-
tion of an experiment embedded in the Dutch Labor Force Survey.

Keywords: completely randomized designs, design-based inference, embedded experiments, mea-
surement error models, model-assisted inference, randomized block designs.

1 Introduction

The purpose of survey sampling is to obtain statistical information about a finite population, by

selecting a probability sample from this population, measuring the required information about

the units in this sample and estimating finite population parameters such as means, totals and

ratios. The statistical inference in the traditional design-based and model-assisted approach is

predominantly based on the stochastic structure induced by the sampling design. Parameter and

variance estimators are derived under the concept of repeatedly drawing samples from a finite

population according to the same sampling design with the population values held fixed. Statistical

models only play a minor role under this type of inference. This is the traditional approach of

survey sampling theory, developed by notable authors like Hansen, et al. (1953), Kish (1965),

Cochran (1977) and Särndal et al., (1992). A well known design-based estimator is the Horvitz-

Thompson estimator, developed by Narain (1951) and Horvitz and Thompson (1952) for unequal

probability sampling from finite populations without replacement. The accuracy of the Horvitz-

Thompson estimator can be improved by making advantage of available auxiliary information about

the complete target population, resulting in the model-assisted approach developed by Särndal et al.

(1992). Many national statistical institutes rely on this design-based and model-assisted approach

to compile official statistics.

Randomized experiments embedded in ongoing sample surveys are frequently conducted to

compare and test the effect of alternative survey implementations on the outcomes of a sample

survey. The purpose of such empirical research is to improve the quality and efficiency of the
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underlying survey processes and to obtain more quantitative insight in the various sources of non-

sampling errors. At national statistical offices such experiments are particularly useful to quantify

discontinuities in the series of repeated surveys due to adjustments into the survey process. A

continuously or repeatedly conducted survey makes up series that describe the development of

target parameters. Comparability over time is a key aspect of the relevance of these figures.

Embedded experiments can be used to avoid that one or more modifications in the survey process

result in unexplained differences in the series of a survey.

In an embedded experiment, the sample is randomly divided into two (or more) subsamples

according to an experimental design. In survey literature, such experiments are also referred to as

split-ballot designs or interpenetrating subsampling, and date back to Mahalanobis (1946). See also

Fellegi (1964), Cochran (1977 section 13.15) and Hartley and Rao (1978) for examples of embedded

experiments which are aimed to estimate the different variance components of non-sampling errors.

Fienberg and Tanur (1987, 1988, 1989 and 1996) reviewed the parallels and differences between the

methodology of random sampling and randomized experiments and discussed how the methodology

of both fields can be applied in the design and analysis of embedded experiments. In their 1988

article they give a comprehensive overview of applications of embedded experiments that can be

found in the literature. A series of applications of embedded experiments conducted at Statistics

Netherlands can be found in Van den Brakel and Renssen (1998) and Van den Brakel (2001, 2008).

The statistical inference that is traditionally employed in the theory of design and analysis

of randomized experiments is predominantly model-based, see for example Searle (1971), Scheffé

(1959) or Cochran and Cox (1957). The observations that are obtained in the experiment are

assumed to be the realization of a linear model. To test hypotheses about treatment effects,

F−tests are derived under the assumption of normally and independently distributed observations.

An exception is Kempthorne (1955), where a randomization approach is proposed in a way that

is similar to the design-based inference approach in sampling theory. The F−test is used as an

approximation of the randomization test. The model-based inference developed for randomized

experiments is not necessarily appropriate for the analysis of embedded experiments, particularly if

a design-based or model-assisted inference is used in the ongoing survey to compile official statistics.

In an embedded experiment the probability sample of the ongoing survey is randomly divided

into different subsamples according to an experimental design. Each subsample can be considered as

a probability sample drawn from the finite target population and can be used to estimate parameters

like means, totals and ratios, that are observed under the different survey implementations or

treatments of the experiment using the estimation procedure that is applied in the regular survey

to compile official statistics. The purpose of such embedded experiments is to compare the effect of

alternative survey implementations on the main parameter estimates of the ongoing survey and to

test whether the observed differences between these parameter estimates are significantly different.

This requires an analysis procedure that accounts for 1) the sample design that is used to select

a probability sample from the finite target population, 2) the experimental design which is used

to randomly assign the sampling units to the different treatments in the experiment, and 3) the

estimation procedure that is used in the regular survey for the estimation of target parameters.

4



Previous research has proposed such a design-based theory for the analysis of single-factor

experiments that are designed as completely randomized designs (CRDs) or randomized block

designs (RBDs) to test the effect of one factor on K ≥ 2 levels, Van den Brakel (2001, 2008),

Van den Brakel and Renssen (1998, 2005) and Van den Brakel and Van Berkel (2002). In their

approach the Horvitz-Thompson estimator and the generalized regression estimator are applied to

derive approximately design-unbiased estimators for the population parameters observed under the

different treatments of the experiment. Furthermore, an approximately design-unbiased estimator

for the covariance matrix of the contrasts between the parameter estimates is derived. This gives

rise to a design-based Wald- or t-statistic to test whether the differences between finite population

parameter estimates observed under the different survey implementations are significantly different.

From standard experimental design theory it is well known that it is efficient to test different

treatment factors simultaneously in one factorial design instead of conducting separate single-factor

experiments, Hinkelmann and Kempthorne (1994), Montgomery (2001) or Cochran and Cox, 1957).

Therefore the design-based theory for the analysis of embedded experiments is extended to factorial

designs in this paper.

A real life example of an experiment embedded in the Dutch Labor Force Survey (LFS) with

advance letters is used to illustrate the methodology developed in this paper. The purpose of this

experiment is to investigate whether the standard advance letter can be improved. Before a new

advance letter is implemented as a standard in the LFS, its effect on response behavior as well as

the possible effects on the main parameter estimates of the LFS must be quantified. To this end, six

different advance letters are considered in a 2× 3 factorial setup. The paper starts with developing

the theory for factorial designs where the effect of two factors is tested simultaneously in sections 2

through 7. Subsequently the methodology is extended to higher order factorial designs in section 8.

In these sections we confined ourselves to experimental designs where the ultimate sampling units

of the sampling design are randomized over the different treatment combinations to test hypotheses

about parameters that are defined as population means. In section 9, the methodology is extended

to test hypotheses about ratios of population totals and designs where clusters of sampling units

are randomized over the treatment combinations. In section 10, these methods are applied to the

factorial experiment with advance letters in the Dutch LFS. The paper concludes with a discussion

in section 11.

2 Design of embedded experiments

Consider a K × L factorial design to test the effect of two factors at K ≥ 2 and L ≥ 2 levels

simultaneously. The most straightforward approach for an embedded factorial design is to apply

unrestricted randomization of the ultimate sampling units over the KL = K × L different treat-

ment combinations, resulting in a factorial CRD. Unrestricted randomization is, however, not very

efficient from a statistical point of view. The power of an experiment might be improved by us-

ing sampling structures such as strata, clusters or interviewers as block variables in a randomized

block design (RBD) since restricted randomization removes the variance between the blocks from

the analysis of the experiment, Fienberg and Tanur (1987, 1988). Unrestricted randomization by
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means of a CRD might also result in practical complications, like overly long traveling distances

for interviewers. This can be avoided by using small geographical regions as a block variable, see

e.g. Van den Brakel and Van Berkel (2002). Restricted randomization results in factorial RBDs

with strata, clusters or interviewers as the block variable.

The field staff requires special attention in the planning and design stage of an experiment. From

a statistical point of view it is attractive to use interviewers as the block variable in an RBD, since

this removes the interviewer variance component from the analysis of the experiment. A major

drawback is that this implies that each interviewer has to collect data under the KL different

treatment combinations, which might give rise to confusion. If it is decided that interviewers are

assigned to one treatment only, then this must be done randomly to avoid one of the treatments

being systematically favored with experienced interviewers or handicapped with newly recruited

staff. See Van den Brakel and Renssen (1998) and Van den Brakel (2008) for more details about

issues concerning the field staff in embedded experiments.

Although factorial designs are efficient from a statistical point of view, there might be strong

practical arguments against a factorial set-up. The number of treatment combinations increases

rapidly in full factorial designs, which might be difficult to implement in the data collection of

a survey process. A general solution, known from standard experimental design theory, is to

confound higher order interactions with blocks or to apply fractional factorial designs, see for

example Hinkelmann and Kempthorne (2005) or Montgomery (2001). These designs, however, are

highly balanced and therefore generally hard to combine with the fieldwork restrictions encountered

in the daily practice of survey sampling. An example of a factorial RBD with interviewers as the

block variable is given by Van den Brakel et al. (2006).

In the remaining part of this section, the inclusion probabilities for the sampling units are derived

for factorial CRDs and RBDs. These are the probabilities that a unit in the finite population is

selected in the initial sample and subsequently is assigned to one of the subsamples according to

the experimental design. These probabilities play a central role in the design-based inference that

is developed in the next sections, since they are used to incorporate the information about both

the sampling design and the experimental design in the estimation procedure.

Consider a finite population U containing N units. Estimates for unknown parameters are

obtained through probability survey sampling. We allow for generally complex sampling schemes

to draw a sample s from the finite population U . Consider an experiment embedded in a sample

survey, aimed to investigate the effect of two different factors. The first factor, denoted A contains

K ≥ 2 levels. The second factor, denoted B contains L ≥ 2 levels. The purpose of the experiment

is to test the main effects of the two factors as well as the interaction effects between both factors

on the main parameter estimates of the ongoing survey. To this end a probability sample s is drawn

from a finite target population according to the sample design of the regular survey. Let πi denote

the first order inclusion probabilities for unit i and πii′ the second order inclusion probabilities for

units i and i′. Subsequently, this sample is randomly divided in KL subsamples according to a

randomized experiment.

In the case of a CRD, the sample is randomly divided in KL subsamples skl, each with a
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size of nkl sampling units. The sampling units of each subsample are assigned to one of the KL

treatment combinations. Let n+l =
∑K

k=1 nkl be the total number of sampling units assigned

to treatment l, nk+ =
∑L

l=1 nkl the total number of sampling units assigned to treatment k,

and n++ =
∑K

k=1

∑L
l=1 nkl the total number of sampling units in the sample s. The probability

that sampling unit i is assigned to subsample skl, conditionally on the realization of s, equals

nkl/n++. The unconditional probability that sampling unit i is selected in subsample skl equals

π∗i = πi(nkl/n++).

In the case of an RBD, the sampling units are deterministically grouped in B more or less

homogeneous blocks sb. Potential block variables are sampling structures like strata, primary

sampling units, clusters or interviewers. Within each block, the sampling units are randomly

assigned to one of the KL treatment combinations. Let nbkl denote the number of sampling

units in block b assigned to treatment combination kl, nb++ =
∑K

k=1

∑L
l=1 nbkl the number of

sampling units in block b and n+kl =
∑B

b=1 nbkl the number of sampling units that is assigned to

subsample skl. The probability that sampling unit i is assigned to subsample skl, conditionally

on the realization of s and i ∈ sb, equals nbkl/nb++, i ∈ sb. The unconditional probability that

sampling unit i is selected in subsample skl equals π∗i = πi(nbkl/nb++).

Each subsample can be considered as the realization of a two-phase sample. The first phase

sample coincides with the sampling design of the regular survey that is used to draw the initial

sample from the finite target population. The second phase sample is simple random sampling

without replacement from the first phase sample in the case of a CRD or stratified simple random

sampling without replacement in the case of an RBD where the strata are the block variable of the

experimental design. In many practical applications, one of the KL subsamples is assigned to the

regular survey, and serves besides the regular publication purposes of the ongoing sample survey

also as the control group in the experiment. In such situations, the size of this subsample will be

substantially larger compared with the other subsamples.

3 Measurement error models

The purpose of embedded experiments is to test whether alternative survey implementations result

in significantly different estimates for finite population parameters. Such differences are the result

of non-sampling errors, like measurement errors and response bias. Design-based sampling theory

is largely based on the traditional notion that the observations that are obtained from the sam-

pling units are true fixed values observed without error (e.g. Cochran, 1977). This approach is not

tenable if experiments are conducted to test systematic differences between finite population pa-

rameter estimates that are obtained under different survey implementations due to non-sampling

errors. Therefore a measurement error model is required to link systematic differences between

finite population parameters due to different survey implementations or treatments. The measure-

ment error model for single-factor experiments proposed by Van den Brakel and Renssen (2005)

and Van den Brakel (2008) is extended to factorial designs.

Let yiqkl denote the observation obtained from the i−th individual observed under the kl−th

treatment combination and the q−th interviewer. It is assumed that the observations are a realiza-
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tion of the measurement error model yiqkl = ui+βkl+γq+ εikl. Here ui is the true intrinsic value of

the i−th individual, βkl the effect of the kl−th treatment combination and εikl an error component.

The model also allows for interviewer effects, i.e. γq = ψ + ξq, where ψ denotes a systematic inter-

viewer bias and ξq the random effect of the q−th interviewer, respectively. For each sampling unit,

a potential response variable is defined under each of the KL treatment combinations. Therefore

the measurement error model can be expressed in matrix notation as:

yiq = jKLui + β + jKLγq + εi, (1)

where yiq = (yiq11, . . . , yiqkl, . . . , yiqKL)t, β = (β11, . . . , βkl, . . . , βKL)t, εi = (εi11, . . . , εikl, . . . , εiKL)t

and jKL a vector of order KL with each element equal to one. The sampling units are assigned to

one of the treatment combinations only, so only one of the responses of yiq is actually observed. Let

Em and Covm denote the expectation and the covariance with respect to the measurement error

model. The following model assumptions are made:

Em(εi) = 0, (2)

Covm(εi, εti′) =

{
Σi : i = i′

O : i 6= i′
, (3)

Em(ξq) = 0, (4)

Covm(ξq, ξq′) =

{
τ2
q : q = q′

0 : q 6= q′
, (5)

Covm(εikl, ξq) = 0, (6)

where 0 is a vector of order KL with each element zero and O a matrix of order KL ×KL with

each element zero.

Note that the treatment effect can be decomposed in the traditional way of an ANOVA for a

two-way layout:

βkl = u+Ak +Bl +ABkl. (7)

If the treatment effects are defined as fixed deviations from the individuals’ intrinsic value ui, then

the overall mean u equals zero. The following restrictions are required to identify the model:

K∑
k=1

Ak = 0,
L∑
l=1

Bl = 0, (8)

K∑
k=1

ABkl = 0, l = 1, 2, . . . , L,
L∑
l=1

ABkl = 0, k = 1, 2, . . . ,K. (9)

4 Testing hypotheses about finite population parameters

Suppose that there are Q interviewers available for the data collection and that the finite population

U can conceptually be divided in Q subpopulations Uq of size Nq, q = 1, . . . , Q such that all

units within each Uq are interviewed by the same interviewer if these units are included in the

sample. Under measurement error model (1), KL values for the same target parameter in the
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finite population are defined. Let Ȳ = (Ȳ11, . . . , Ȳ1L, . . . , Ȳkl, . . . , ȲK1, . . . , ȲKL)t denote the KL

dimensional vector of population means of yiq. These are the values obtained under a complete

enumeration of the finite population under each of the treatment combinations and are defined as:

Ȳ = jKL

1
N

N∑
i=1

ui + β + jKLψ + jKL

Q∑
q=1

Nq

N
ξq +

1
N

N∑
i=1

εi. (10)

The objective of the experiment is to test hypotheses about the main effects and the interac-

tion between the two treatment factors on the population parameters. Only systematic differences

between the population parameters that are reflected by the treatment effects β should lead to a

rejection of the null hypotheses of no treatment effects. Since random deviations due to measure-

ment errors and interviewer effects should not lead to significant differences between the estimated

population parameters, hypotheses are formulated about Ȳ in expectation over the measurement

error model, i.e.

Em(Ȳ) = jKL

1
N

N∑
i=1

ui + jKLψ + β. (11)

The hypothesis about the main effects of factor A is formulated as

H0 : CAEmȲ = 0,

H1 : CAEmȲ 6= 0, (12)

where

CA =
1
L

(
j
(K−1)

| − I
(K−1)

)
⊗ jt

L
≡ 1
L

C̃A ⊗ jt
L
, (13)

with I
(K−1)

the identity matrix of order K − 1. Matrix CA defines the K − 1 contrasts between

the K levels of factor A, averaged over the L levels of factor B. From (11) and due to restrictions

(8) and (9) it follows that the contrasts between the population parameters exactly correspond to

the main effects of the first factor: CAEmȲ = CAβ = (A1 −A2, . . . , A1 −AK)t. Note that the

contrasts in hypothesis (12) also can be expressed as C̃AEmȲA where ȲA = (Ȳ1., . . . ȲK.)T and

Ȳk. = 1
L

∑L
l=1 Ȳkl the population mean observed under the k − th level of factor A, averaged over

the L levels of factor B.

The hypothesis about the main effects of factor B is defined as

H0 : CBEmȲ = 0,

H1 : CBEmȲ 6= 0, (14)

where

CB =
1
K

jt
K
⊗
(
j
(L−1)
| − I

(L−1)

)
≡ 1
K

jt
K
⊗ C̃B, (15)

which is the matrix that defines the L−1 contrasts between the L levels of factor B, averaged over

the K levels of factor A. From (11) and due to restrictions (8) and (9) it follows that the contrasts

between the population parameters exactly correspond to the main effects of the second factor:

CBEmȲ = CBβ = (B1 −B2, . . . , B1 −BL)t. The contrasts in hypothesis (14) can be expressed as
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C̃BEmȲB, where ȲB = (Ȳ.1, . . . Ȳ.L)T and Ȳ.l = 1
K

∑K
k=1 Ȳkl the population mean observed under

the l − th level of factor B, averaged over the K levels of factor A.

Interactions between the two treatment factors are defined as the L − 1 contrasts of factor B

between the K−1 contrasts of factor A or, equivalently, as the K−1 contrasts of factor A between

the L − 1 contrasts of factor B, see e.g. Hinkelmann and Kempthorne (1994, ch. 11). Therefore

the hypothesis about the interactions between factor A and B can be defined as

H0 : CABEmȲ = 0,

H1 : CABEmȲ 6= 0, (16)

where

CAB =
(
j
(K−1)

| − I
(K−1)

)
⊗
(
j
(L−1)
| − I

(L−1)

)
= C̃A ⊗ C̃B (17)

denotes the (K−1)(L−1)×KL matrix with the (K−1)(L−1) contrasts that define the interactions

between factor A and B. The contrasts between the population parameters exactly correspond to

the interactions between the first and the second factor, since CABEmȲ = CABβ = (AB11−AB12−
AB21 +AB22, . . . , AB11 −AB1L −AB21 +AB2L, . . . , AB11 −AB12 −ABK1 +ABK2, . . . , AB11 −
AB1L −ABK1 +ABKL)t defines a (K − 1)(L− 1) vectors containing the interactions between the

two treatment factors.

The observations obtained from the sampling units in the subsamples skl, are used to obtain

design-based estimates for the elements of Ȳ as well as the covariance matrix of the contrasts

between these subsample estimates. This gives rise to a Wald statistic to test hypotheses (12),

(14) and (16), which accounts for the sampling design, the experimental design, and the weighting

procedure applied in the regular sample survey.

5 Parameter estimation under different treatments

Based on the observations obtained in the subsamples skl, design-unbiased estimates of the pop-

ulation treatment means in Ȳ can be derived. In section 2, the inclusion probabilities π∗i for the

sampling units in the subsamples are derived under the sampling design that is used to draw the

initial sample from the finite population and the experimental design that is used to divide this

sample randomly into KL subsamples. These probabilities are used in the Horvitz-Thompson es-

timator, developed by Narain (1951) and Horvitz and Thompson (1952) for unequal probability

sampling without replacement from finite populations, to obtain design-unbiased estimators for the

unknown population parameters.

For notational convenience, the subsript q will be omitted in yiqkl if possible, since there is no

need to sum explicitly over the interviewer subscript in most of the formulas developed in the rest

of this paper. The Horvitz-Thompson estimator for Ȳkl is given by

ˆ̄Y kl =
1
N

∑
i∈skl

yikl
π∗i

(18)

Since each subsample can be considered as a two-phase sample, it follows directly that (18) is design

unbiased, since EsEε( ˆ̄Y kl | s) = Ȳkl where Es and Eε denote the expectation with respect to the
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sampling design and the experimental design, respectively. This estimator is also design unbiased

for EmȲkl by definition.

In survey sampling the model-assisted approach developed by Särndal et al. (1992) is widely

applied to improve the accuracy of the Horvitz-Thompson estimator by making advantage of avail-

able auxiliary information about the target population. This estimator is derived from a linear

regression model that specifies the relationship between the values of a certain target parameter

and a set of auxiliary variables for which the totals in the finite target population are known. If the

underlying linear model explains the variation of the target parameter in the finite population rea-

sonably well, then this might result in a reduction of the design variance of the Horvitz-Thompson

estimator as well as the bias due to selective nonresponse. If the model is misspecified, then this

might result in an increase of the design variance but the property that the generalized regression

estimator is approximately design unbiased remains. The use of auxiliary information in the anal-

ysis of an embedded experiment by means of the generalized regression estimator might improve

the accuracy of the analysis and has a direct design-based analogy with covariance analysis that is

used in experimental design theory.

For each unit in the population a H − vector xi with auxiliary information is available and it is

assumed that the x variables are observed without measurement errors and thus not affected by the

treatments of the experiment. The finite population means of these variables are known and are

denoted by X̄. To apply the model-assisted mode of inference to the analysis of embedded experi-

ments, it is assumed for each unit in the population that the intrinsic values ui the measurement

error model (1) of section 3 are an independent realization of the following linear regression model:

ui = Btxi + ei,

where Bt is a H−vector with the regression coefficients and ei the residuals which are independent

random variables with variance ω2
i . It is required that all ω2

i are known up to a common scale

factor, that is ω2
i = ω2νi, with νi known. The regression coefficients for the intrinsic variable in the

finite population are defined as

b =

(
N∑
i=1

xixti
ω2
i

)−1 N∑
i=1

xiui
ω2
i

. (19)

As follows from the measurement error model (1), the variables ui cannot be observed without

measurement bias. Therefore (19) is not observable, even in the case of a complete enumeration

of the finite population. In the context of embedded experiments a separate set of regression

coefficients can be defined for each treatment combination. In the case of a complete enumeration

under the kl − th treatment combination,

b̃kl =

(
N∑
i=1

xixti
ω2
i

)−1 N∑
i=1

xiyikl
ω2
i

, (20)

denotes the finite population regression coefficients of the regression of yikl on xi. A Horvitz-

Thompson type estimator for the finite population regression coefficients (20) based on the obser-
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vations obtained under the nkl sampling units in subsample skl is given by

b̂kl =

(
nkl∑
i=1

xixti
ω2
i π
∗
i

)−1 nkl∑
i=1

xiyikl
ω2
i π
∗
i

. (21)

The generalized regression estimator for Ȳkl, based on the nkl observations of subsample skl, is

defined as (Särndal et al., 1992)

ˆ̄Y kl;greg = ˆ̄Y kl + b̂tkl(X̄− ˆ̄X), k = 1, 2, . . . ,K, and l = 1, 2, . . . , L, (22)

where ˆ̄X denotes the Horvitz-Thompson estimator for the population means of the auxiliary vari-

ables X̄ based on the nkl sample units of subsample skl. Now

ˆ̄YGREG = ( ˆ̄Y 11;greg, . . . ,
ˆ̄Y kl;greg, . . . ,

ˆ̄Y KL;greg)t

is an approximately design-unbiased estimator for Ȳ and also for EmȲ by definition.

Under the null hypotheses that there are no treatment effects and no interactions, it follows

that b̂kl = b̂k′l′ . In that case, it might be efficient to substitute for b̂kl in the generalized regression

estimator (22) the pooled estimator

b̂ =

(
n∑
i=1

xixti
ω2
i πi

)−1( K∑
k=1

L∑
l=1

nkl∑
i=1

xiyikl
ω2
i πi

)
. (23)

Since H instead of KL×H regression coefficients have to be estimated, the pooled estimates of the

regression coefficients b̂ will be more precise, particularly in the case of small subsamples. Note,

however, that many commonly used weighting schemes meet the condition that a constant vector λ

exists such that ω2
i = λxi for all i ∈ U . In this situation the generalized regression estimator reduces

to the simplified form ˆ̄Y kl;greg = b̂tklX̄, Särndal et al. (1992), section 6.5. Under this simplified

form, the treatment effects are completed included in the regression coefficients. In case of the

pooled estimator (23), the KL generalized regression estimators are exactly equal by definition,

since ˆ̄Y kl;greg = b̂tX̄ for all k and l.

6 Variance estimation

Since, the generalized regression estimator defined by (22) is not linear, an approximation of

the variance of this estimator is usually obtained from a linearized approximation of (22), see

for example Särndal et al., (1992), ch. 6. Expressing (22) as a function of ( ˆ̄Y kl, b̂kl, ˆ̄X), the

generalized regression estimator can be approximated by means of a Taylor linearization about

(Em(Ȳkl),Em(b̃kl), X̄) that is truncated at the first order term, i.e.

ˆ̄Y kl;greg
.= ˆ̄Y kl + btkl(X̄− ˆ̄X), (24)

with bkl the expectation of the finite population regression coefficients with respect to the mea-

surement error model observed under the kl − th treatment combination:

bkl = Emb̃kl =

(
N∑
i=1

xixti
ω2
i

)−1 N∑
i=1

xi(ui + βkl + ψ)
ω2
i

. (25)
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Since the KL subsamples are drawn without replacement from a finite population, there is a

nonzero design covariance between elements of ˆ̄YGREG. Design-based estimators for these covari-

ance terms require that for each unit in the sample observations under each of the KL treatments

are obtained. These paired observations are, however, not available since each sampling unit is

assigned to one the KL treatments only. Van den Brakel and Binder (2000) and Hidiroglou and

Lavellée (2005) approximated this covariance matrix using an imputation technique for the missing

paired observations. Van den Brakel (2001, 2008) and Van den Brakel and Renssen (2005) devel-

opped a design-based estimator for the covariance matrix of the contrasts between the elements

of ˆ̄YGREG for single-factor experiments that only requires one observation for each sampling unit

instead of the repeated measurements of all treatment combinations within each sampling unit.

This estimator is extended to factorial designs in this section.

Let C denote the contrast matrix CA, CB or CAB. Under the condition that a constant

H−vector a exists such that atxi = 1 for all i ∈ U , an expression for the covariance matrix of

the contrasts between the elements of ˆ̄YGREG is derived in the appendix. It is also proved that a

design-based estimator for this covariance matrix is given by

Ĉov(C ˆ̄YGREG) = CD̂Ct, (26)

with D̂ a KL×KL diagonal matrix with elements

d̂kl =
1
nkl

1
nkl − 1

nkl∑
i=1

(
n++(yikl − b̂tklxi)

Nπi
− 1
nkl

nkl∑
i′=1

n++(yi′kl − b̂tklxi′)
Nπi′

)2

, (27)

in the case of a CRD and

d̂kl=
B∑
b=1

1
nbkl

1
nbkl − 1

nbkl∑
i=1

(
nb++(yikl − b̂tklxi)

Nπi
− 1
nbkl

nbkl∑
i′=1

nb++(yi′kl − b̂tklxi′)
Nπi′

)2

, (28)

in the case of an RBD.

The condition that a constant H−vector a exists such that atxi = 1 for all i ∈ U , implies that

a weighting model is used that at least uses the size of the finite population as a priori information.

This condition holds for weighting models that contain an intercept or at least one categorical

variable that poststratifies the finite population in two or more subpopulations. This is a rather

weak condition that is met by many weighting model used in practice. An exception, however,

is the ratio model that generates the ratio estimator, since this model only uses one continuous

variable as auxiliary information, Särndal et al. (1992), section 7.3.

Although (26) is an approximately design-unbiased estimator for the covariance matrix of

(C ˆ̄YGREG), it has a structure as if the subsamples are drawn independently through sampling

with replacement using unequal selection probabilities. This is a remarkable result and gives rise to

an attractive variance estimation procedure for embedded experiments, since no design covariances

between the subsample estimates appear in (26) and no second order inclusion probabilities are

required in the variance estimators (27) and (28). This result is obtained by making advantage of

several factors. The covariance matrix is derived for contrasts between the subsample estimates.

This covariance matrix is decomposed in a covariance component with respect to the measurement

13



error model, the sampling design and the experimental design, see (47) in the appendix. For the

(co)variance of the contrasts between GREG estimators that uses a weighting model that meets

the condition that a constant vector a exists such that atxi = 1 for all i ∈ U , it follows that

the residuals of the GREG estimator only contain measurement errors, see formula (48) in the

appendix. Under the assumption that the measurement errors between the units are independent,

second order inclusion probabilities cancel out in the covariance components with respect to the

measurement error model (49) and the sampling design (50). The covariance components with

respect to the experimental design (51) have the structure of simple random sampling without

replacement in the case of CRD, or stratified simple random sampling without replacement in the

case of an RBD. In the variance of the contrasts under (stratified) simple random sampling without

replacement, the covariance terms between the subsample estimates cancel out against the finite

population corrections in the variance terms.

The minimum use of auxiliary information used in the generalized regression estimator is ob-

tained with a weighting scheme that only uses the size of the finite population as a priory knowledge,

i.e. (xi) = 1 and ω2
i = ω2 (Särndal et al., 1992, section 7.4). Under this weighting scheme it follows

that

ˆ̄Y kl;greg =

∑
i∈skl

1
π∗i

−1∑
i∈skl

yikl
π∗i

 ≡ ỹkl, (29)

and (b̂kl) = ỹkl. Expression (29) can be recognized as Hájek’s ratio estimator for a population

mean, Hájek (1971). This weighting scheme satisfies the condition that a constant H−vector a

exists such that atxi = 1 for all i ∈ U . Therefore an approximately design-unbiased estimator for

the covariance matrix of the contrasts between subsample estimates is given by (27) and (28) for a

CRD and an RBD respectively, where b̂tklxi = ỹkl. Estimator (29) is preferable above the Horvitz-

Thompson estimator (18), since (29) is more stable and the covariance matrix of the contrasts

between (29) always has the relatively simple form of (26). The covariance matrix of contrasts

between the Horvitz-Thompson estimators (18) is more complex for designs where
∑

i∈skl

1
π∗i
6= N ,

see Van den Brakel (2001).

To have more stable variance estimators, pooled variance estimators for the diagonal elements

of D̂ can be used as an alternative for (27) or (28). Under the assumption that the variances of

the measurement errors under the different treatments are equal, i.e. Σi = σ2I in (3), a pooled

variance estimator for a CRD is given by

d̂pkl=
1
nkl

1
n++ −KL

K∑
k′=1

L∑
l′=1

nk′l′∑
i=1

(
n++(yik′l′ − b̂tk′l′xi)

Nπi
− 1
nk′l′

nk′l′∑
i′=1

n++(yi′k′l′ − b̂tk′l′xi′)
Nπi′

)2

, (30)

and for an RBD by

d̂pkl=
B∑
b=1

1
nbkl

1
nb++−KL

K∑
k′=1

L∑
l′=1

nbk′l′∑
i=1

(
nb++(yik′l′ − b̂tk′l′xi)

Nπi
− 1
nbk′l′

nbk′l′∑
i′=1

nb++(yi′k′l′−b̂tk′l′xi′)
Nπi′

)2

.(31)
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7 The Wald test

The Wald test (Wald, 1943) is frequently applied in design-based testing procedures, see e.g. Skinner

et al. (1989) or Chambers and Skinner (2003). The design-based estimators that are derived for the

population parameter that is observed under the different treatment combinations (section 5) and

the covariance matrix of the contrasts between these estimates (section 6) can be used to construct

a design-based Wald statistic to test the hypotheses described in section 4:

W = ˆ̄Y
t

GREGCt
(
CD̂C

t
)−1

C ˆ̄YGREG. (32)

Design-based inferences are generally based on normal large-sample approximations to construct

confidence intervals for point estimates or p-values and critical regions for test statistics. The limit

distribution for ˆ̄YGREG is unknown for generally complex sampling schemes, but it is conjectured

that ˆ̄YGREG is asymptotically multivariate normally distributed. Then it follows under the null

hypothesis that the Wald statistic is asymptotically distributed as a central chi-squared random

variable, where the number of degrees of freedom equals the number of contrasts specified in the

hypothesis (Searle 1971, theorem 2, ch. 2). The validity of the conjecture mentioned, has been

confirmed by simulation studies for single-factor experiments, see Van den Brakel and Renssen

(2005) and Van den Brakel (2008).

The Wald statistic for the hypotheses about the main effects (12) and (14) are given by (32)

using the contrast matrix CA or CB, which are specified by (13) and (15) respectively. Under

the null hypothesis, it follows that W → χ2
[K−1] for the test about the main effects of factor A or

W → χ2
[L−1] for the test about the main effects of factor B. The Wald statistic for the hypothesis

about the interaction effects between factor A and B (16) is given by (32) using the contrast matrix

CAB that is specified by (17). Under the null hypothesis, it follows that W → χ2
[(K−1)(L−1)].

The Wald test for the main effects can be further simplified. Expressions are developed for the

Wald test for the main effects for factor A. Similar expressions can be derived for the main effects

of factor B. Denote

ˆ̄YA;GREG = ( ˆ̄Y 1.;greg, . . . ,
ˆ̄Y K.;greg)t, with ˆ̄Y k.;greg =

1
L

L∑
l=1

ˆ̄Y kl;greg,

D̂A = Diag(d̂1., . . . , d̂K.), with d̂k. =
1
L2

L∑
l=1

d̂kl.

It follows that

CA
ˆ̄YGREG =

1
L

(C̃A ⊗ jt
L
) ˆ̄YGREG = C̃A

ˆ̄YA;GREG, (33)

CAD̂Ct
A =

1
L2

(C̃A ⊗ jt
L
)D̂(C̃A ⊗ jt

L
)t = C̃AD̂AC̃t

A. (34)

With result (33), (34) and the matrix inversion lemma, also known as Bartlett’s identity (Morisson,

1990, ch.2), the Wald statistic for the main effects of factor A can be simplified to:

W = ˆ̄Y
t

A;GREGC̃t
A(C̃AD̂AC̃t

A)−1C̃A
ˆ̄YA;GREG

= ˆ̄Y
t

A;GREG

(
D̂−1

A −
1

Trace(D̂−1
A )

D̂−1
A jK−1j

t
K−1

D̂−1
A

)
ˆ̄YA;GREG
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=
K∑
k=1

ˆ̄Y
2

k.;greg

d̂k.
−

(
K∑
k=1

1

d̂k.

)−1( K∑
k=1

ˆ̄Y k.;greg

d̂k.

)2

(35)

See the proof of formula (32) in Van den Brakel and Renssen (2005) for more details of this

derivation. It follows that the main advantages of factorial designs still hold under this design-

based approach. Since the main effects of a factor are averaged over the levels of the other factor,

it is more efficient to conduct one factorial design instead of two separate single-factor experiments.

As illustrated with variance expression (34) less experimental units are required to estimate the

main effects with the same precision in a factorial setup compared to two separated single-factor

designs. Moreover, a factorial design offers the possibility to analyze interactions between the two

treatment factors.

In the remainder of this section, it will be shown for two special cases that the design-based

Wald statistic is equal to the F -test of a standard ANOVA. Consider a CRD that is embedded

in a self-weighted sample, i.e. πi = n++/N , with equally sized subsamples, i.e. nkl = nk′l′ = ns.

The inclusion probabilities for all units in the KL subsamples are given by π∗i = ns/N . Let

ȳkl = 1
ns

∑ns
i=1 yikl. Under Hájek’s ratio estimator (29) and the pooled variance estimator (30) it

follows that ˆ̄Y kl;greg = ȳkl, b̂kl = ȳkl, and

d̂pkl =
1
ns

1
n++ −KL

K∑
k′=1

L∑
l′=1

ns∑
i=1

(yik′l′ − ȳk′l′)2 ≡
Ŝ2
p;CRD

ns
.

The parameter estimates of the K levels of factor A averaged over the L levels of factor B are

denoted as

ȳk. =
1
L

L∑
l=1

ȳkl =
1
nk+

L∑
l=1

nkl∑
i=1

yikl, k = 1, . . . ,K. (36)

The diagonal elements of D̂A are now given by

d̂pk. =
1
L2

L∑
l=1

d̂pkl =
1
L2

L∑
l=1

Ŝ2
p;CRD

ns
=
Ŝ2
p;CRD

Lns
=
Ŝ2
p;CRD

nk+
, k = 1, . . . ,K. (37)

Let ȳ.. = 1
n++

∑K
k=1

∑L
l=1

∑ns
i=1 yikl. Inserting (36) and (37) into (35), gives rise to the following

expression for the Wald statistic of the main effects of factor A

W =
1

Ŝ2
p;CRD

[
K∑
k=1

nk+ȳ
2
k. − n++ȳ

2
..

]
. (38)

Note that W/(K − 1) in (38) corresponds with the F − statistic for the main effects of an ANOVA

for the two-way layout with interactions, Scheffé (1959), ch. 4. Under the null hypothesis and

the assumption of normally and independently distributed observations, the F − statistic in the

two-way layout follows an F −distribution with (K−1) and (n++−KL) degrees of freedom, which

is denoted as F (K−1)
(n++−KL). If n++ → ∞, then F

(K−1)
(n++−KL) → χ2

(K−1)/(K − 1). Consequently the

F − statistic and the Wald statistic have the same limit distribution.

Now consider an RBD that is embedded in a self-weighted sampling design with equal subsample

sizes, thus π = n+++/N and nkl = nk′l′ = ns. Let ȳbkl = (1/nbkl)
∑nbkl

i=1 yikl. Furthermore, it is
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assumed that the fraction of sampling units assigned to each treatment combination within each

block is equal, i.e. nbkl/nb++ = ns/n+++, and that the block sizes are sufficiently large to assume

that nb++/(nb++−KL) ≈ 1. Under Hájek’s ratio estimator (29) and the pooled variance estimator

(31) it follows that ˆ̄Y kl;greg = ȳkl, b̂kl = ȳkl, and

d̂pkl =
B∑
b=1

1
nbkl

1
nb++ −KL

(
nb++

n+++

)2 K∑
k′=1

L∑
l′=1

nbk′l′∑
i=1

(yik′l′ − ȳbk′l′)2

≈ 1
ns

1
n+++

B∑
b=1

K∑
k′=1

L∑
l′=1

nbk′l′∑
i=1

(yik′l′ − ȳbk′l′)2 ≡
Ŝ2
p;RBD

ns
.

The parameter estimates of the K levels of factor A averaged over the L levels of factor B and the

blocks are denoted as

ȳ.k. =
1
L

L∑
l=1

ykl =
1

n+k+

B∑
b=1

L∑
l=1

nbkl∑
i=1

yikl, k = 1, . . . ,K, (39)

where n+k+ =
∑B

b=1

∑L
l=1 nbkl. The diagonal elements of D̂A are given by

d̂pk. =
1
L2

L∑
l=1

d̂pkl =
Ŝ2
p;RBD

n+k+
, k = 1, . . . ,K. (40)

Let ȳ... = 1
n+++

∑B
b=1

∑K
k=1

∑L
l=1

∑nbkl
i=1 yikl. If these results are inserted into (35), then the expres-

sion for the Wald statistic of the main effects of factor A can be simplified to

W =
1

Ŝ2
p;RBD

[
K∑
k=1

n+k+ȳ
2
.k. − n+++ȳ

2
...

]
. (41)

It can be recognized that W/(K − 1) in (41) corresponds with the F − statistic for the main effects

of an ANOVA for the three-way layout with interactions, Scheffé (1959), ch. 4. As in the case of a

CRD, this Wald and F -statistic have the same limit distribution.

8 Factorial designs with more than two factors

The results developed for K × L factorial designs are extended to designs with more than two

factors. A more appropriate notation for the treatment factors is introduced first. Let Ag de-

note the g − th treatment factor in the experiment with levels ag = 1, . . . ,Mg. In the gen-

eral case there are g = 1, . . . , G factors included in the experiment. The population parame-

ters observed under the M1M2 . . .MG treatment combinations are collected in the vector Ȳ =

(Ȳ11...1, . . . , Ȳa1a2...aG , . . . , ȲM1M2...MG
)t. The index for the levels of a factor runs within each level

of its preceding factor. Thus index ag runs from ag = 1, . . . ,Mg within each level of a(g−1). Hy-

potheses about the main effects and interactions are, as motivated in section (4) formulated about

Ȳ in expectation over the measurement error model, i.e.

H0 : CEmȲ = 0,

H1 : CEmȲ 6= 0, (42)
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The contrast matrices for the main effects and interactions in (42) are developed for the general

case of a M1 ×M2 × . . .×MG factorial design. Let A = {1, . . . , G} denote the set of labels for the

factors and C̃Ag = (j
(Mg−1)

| − I
(Mg−1)

). The following three functions are defined first;

J1g =

 jt
M1
⊗ . . .⊗ jt

M(g−1)
: g > 1

1 : g = 1
,

J2g =

 jt
M(g+1)

⊗ . . .⊗ jt
MG

: g < G

1 : g = G
,

J3g,g′ =

 jt
M(g+1)

⊗ . . .⊗ jt
M(g′−1)

: g′ − g > 1

1 : g′ = g + 1
,

The main effect of factor Ag is defined as the Mg − 1 contrasts between the Mg levels, averaged

over the levels of the other G− 1 factors and is given by:

CAg1
=
(∏

g∈A\{g1}
Mg

)−1
J1g1

⊗ C̃Ag1
⊗ J2g1

, g1 = 1, . . . , G.

Postmultiplication of C̃Ag1
by J2g1

sums over the levels of the factors A(g1+1) . . . AG that are nested

within each level of Ag1 . Subsequently, C̃Ag1
defines the Mg1 − 1 contrasts between the levels of

Ag1 that are nested within each combination of the levels of A1 . . . A(g1−1). Premultiplication of

C̃Ag1
by J1g1

adds the contrast matrices C̃Ag1
that are nested within all combinations of the levels

of A1 . . . A(g1−1).

The interaction between Ag1 and Ag2 is defined as the Mg2 − 1 contrasts of factor Ag2 between

the Mg1 − 1 contrasts of Ag1 averaged over the levels of the other G− 2 factors and is given by:

CAg1Ag2
=
(∏

g∈A\{g1,g2}
Mg

)−1
J1g1

⊗ C̃Ag1
⊗ J3g1,g2

⊗ C̃Ag2
⊗ J2g2

,

g1 = 1, . . . , G− 1, g2 = 2, . . . , G, g1 < g2.

Postmultiplication of C̃Ag2
by J2g1

adds the levels of the factors A(g2+1) . . . AG that are nested

within each level of Ag2 . C̃Ag2
defines the contrasts of the main effect of factor Ag2 which are

nested within each combination of the levels of A1 . . . A(g2−1). Postmultiplication of C̃Ag1
by

J3g1,g2
sums the contrast matrices C̃Ag2

over the levels of A(g1+1) . . . A(g2−1) that are nested within

each combination of the levels of A1 . . . A(g1). Premultiplication of J3g1,g2
⊗ C̃Ag2

⊗J2g2
with C̃Ag1

defines the contrasts of the interactions between Ag1 and Ag2 , within each combination of the levels

of A1 . . . A(g1−1). Finally, premultiplication of C̃Ag1
by J1g1

sums the contrasts of the interactions

between Ag1 and Ag2 over the levels of A1 . . . A(g1−1).

The interaction between Ag1 , Ag2 and Ag3 is defined as the Mg3 − 1 contrasts of factor Ag3
between the interactions of Ag1 and Ag2 , averaged over the levels of the other G − 3 factors.

This process expands in a similar way to higher order interactions, which results in the following

definitions of the higher order interactions:

CAg1Ag2Ag3
=
(∏

g∈A\{g1,g2,g3}
Mg

)−1
J1g1

⊗ C̃Ag1
⊗ J3g1,g2

⊗ C̃Ag2
⊗ J3g2,g3

⊗ C̃Ag3
⊗ J2g3

,

g1 = 1, . . . , G− 2, g2 = 2, . . . , G− 1, g3 = 3, . . . G, g1 < g2 < g3,
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CAg1Ag2Ag3Ag4
=
(∏

g∈A\{g1,g2,g3,g4}
Mg

)−1
J1g1

⊗ C̃Ag1
⊗ J3g1,g2

⊗ C̃Ag2
⊗ J3g2,g3

⊗ C̃Ag3

⊗J3g3,g4
⊗ C̃Ag4

⊗ J2g4
,

g1 = 1, . . . , G− 3, g2 = 2, . . . , G− 2, g3 = 3, . . . G− 1 g4 = 4, . . . G, g1 < g2 < g3 < g4,
...

CA1A2A3...AG
= C̃A1 ⊗ C̃A2 ⊗ C̃A3 ⊗ . . .⊗ C̃AG

.

The number of rows of each contrast matrix coincides with the number of contrasts that define

the various main effects and interactions and are specified in Table 1. The number of columns of

these matrices equals M1M2 . . .MG.

Table 1: Number of constrasts for the various contrast matrices
Contrast matrix Number of contrasts (rows of the contrast matrix)

CAg1
Mg1 − 1

CAg1Ag2
(Mg1 − 1)(Mg1 − 1)

CAg1Ag2Ag3
(Mg1 − 1)(Mg2 − 1)(Mg3 − 1)

...
...

CA1A2A3...AG
(M1 − 1)(M2 − 1) . . . (MG − 1)

These contrast matrices are inserted in (42) to define the various hypotheses about the main

effects and interactions between the G treatment factors. The sampling units in the initial sample

are randomly divided over all possible treatment combinations according to a CRD or an RBD,

resulting in M1M2 . . .MG different subsamples. Let na1...aG denote the number of sampling units

assigned to treatment combination a1 . . . aG in subsample sa1...aG and n+...+ the size of the initial

sample. In the case of a CRD, the first order inclusion probabilities for the units in subsample

sa1...aG are now given by π∗i = πi(na1...aG/n+...+). In the case of an RBD, the first order inclusion

probabilities for the units in subsample sa1...aG are given by π∗i = πi(nba1...aG
/nb+...+) where nba1...aG

denotes the number of sampling units assigned to treatment combination a1 . . . aG in block b and

nb+...+ the total number of sampling units in block b.

Now ˆ̄Y a1...aG;greg denotes the generalised regression estimator for Ȳa1...aG based on the ob-

servations obtained in subsample sa1...aG and is defined analogously to expression (22). These

M1M2 . . .MG generalised regression estimators are collected in the vector
ˆ̄YGREG = ( ˆ̄Y 1...1;greg, . . . ,

ˆ̄Y a1...aG;greg, . . . ,
ˆ̄YM1...MG;greg)t and is an approximately design-unbiased

estimator for Ȳ and EmȲ. Design-based estimators for the covariance matrices of the contrasts

between the elements of ˆ̄YGREG are defined by (26), where the diagonal elements of D̂ are defined

analogously to expression (27) in the case of a CRD or (28) in the case of an RBD. Finally hypotheses

about main effects and interactions are tested with the Wald statistic (32), which is asymptotically

distributed as a chi-squared random variable where the number of degrees of freedom equals the

number of contrasts specified in the various hypotheses defined above, see Table 1. As an example,

the contrast matrices of the main effects and interactions in a factorial design with four factors are

given in Table 2.
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Table 2: Constrasts in an M1 ×M2 ×M3 ×M4 factorial design
Contrast matrix Number of contrasts (degrees of freedom)

CA1 = 1
M2M3M4

C̃A1 ⊗ jt
M2
⊗ jt

M3
⊗ jt

M4
M1 − 1

CA2 = 1
M1M3M4

jt
M1
⊗ C̃A2 ⊗ jt

M3
⊗ jt

M4
M2 − 1

CA3 = 1
M1M2M4

jt
M1
⊗ jt

M2
⊗ C̃A3 ⊗ jt

M4
M3 − 1

CA4 = 1
M1M2M3

jt
M1
⊗ jt

M2
⊗ jt

M3
⊗ C̃A4 M4 − 1

CA1A2 = 1
M3M4

C̃A1 ⊗ C̃A2 ⊗ jt
M3
⊗ jt

M4
(M1 − 1)(M2 − 1)

CA1A3 = 1
M2M4

C̃A1 ⊗ jt
M2
⊗ C̃A3 ⊗ jt

M4
(M1 − 1)(M3 − 1)

CA1A4 = 1
M2M3

C̃A1 ⊗ jt
M2
⊗ jt

M3
⊗ C̃A4 (M1 − 1)(M4 − 1)

CA2A3 = 1
M1M4

jt
M1
⊗ C̃A2 ⊗ C̃A3 ⊗ jt

M4
(M2 − 1)(M3 − 1)

CA2A4 = 1
M1M3

jt
M1
⊗ C̃A2 ⊗ jt

M3
⊗ C̃A4 (M2 − 1)(M4 − 1)

CA3A4 = 1
M1M2

jt
M1
⊗ jt

M2
⊗ C̃A3 ⊗ C̃A4 (M3 − 1)(M4 − 1)

CA1A2A3 = 1
M4

C̃A1 ⊗ C̃A2 ⊗ C̃A3 ⊗ jt
M4

(M1 − 1)(M2 − 1)(M3 − 1)

CA1A2A4 = 1
M3

C̃A1 ⊗ C̃A2 ⊗ jt
M3
⊗ C̃A4 (M1 − 1)(M2 − 1)(M4 − 1)

CA1A3A4 = 1
M2

C̃A1 ⊗ jt
M2
⊗ C̃A3 ⊗ C̃A4 (M1 − 1)(M3 − 1)(M4 − 1)

CA2A3A4 = 1
M1

jt
M1
⊗ C̃A2 ⊗ C̃A3 ⊗ C̃A4 (M2 − 1)(M3 − 1)(M4 − 1)

CA1A2A3A4 = C̃A1 ⊗ C̃A2 ⊗ C̃A3 ⊗ C̃A4 (M1 − 1)(M2 − 1)(M3 − 1)(M4 − 1)

9 Further extensions

So far, experimental designs are considered where the ultimate sampling units of the sampling

design are randomized over the treatments. Owing to restrictions in the field work there might

be practical reasons to randomize clusters of sampling units over the different treatments, at the

cost of reduced power for testing hypotheses about treatment effects. It might for example be

attractive to assign the sampling units that belong to the same household or are assigned to the

same interviewer to the same treatment combination. In Van den Brakel (2008) a design-based

analysis procedure is developed for single-factor experiments designed as CRD’s and RBD’s where

clusters of sampling units are randomized over the treatments. These methods directly extend to

the analysis of the factorial designs that are considered in this paper.

Consider the general case of a M1×M2×. . .×MG factorial design. The clusters of sampling units

in the initial sample are randomized over the different treatment combinations. The conditional

probability that a sampling unit is assigned to a subsample are now derived from the fractions

of clusters that are assigned to the different treatment combinations within the sample or within

each block, see Van den Brakel (2008) for details. The generalised regression estimator for Ȳa1...aG

is defined analogously to expression (22). Design-based estimators for the covariance matrices of

the contrasts between the elements of ˆ̄YGREG are defined by (26), where the diagonal elements

of D̂ are defined analogously to expression (4.6) in Van den Brakel (2008), which is based on the

variance between the estimated cluster totals.

The target parameters of a survey are often defined as a ratio of two population totals. In

Van den Brakel (2008) a design-based analysis procedure is developed to test hypotheses about
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ratios in single-factor experiments designed as a CRD or an RBD. These results can be extended

to the analysis factorial designs treated in this paper. Based on each subsample a ratio of two

generalised regression estimators can be constructed for each treatment combination. Design-based

estimators for the covariance matrices of the contrasts between the ratios are defined by (26), where

the diagonal elements of D̂ are defined analogously to expression (4.11) in Van den Brakel (2008),

which is an estimator for the variance of the ratio of two regression estimators. Hypotheses about

main effects and interactions are tested with the Wald statistic (32).

10 Application to the Dutch LFS

In this section an experiment with different advance letters embedded in the Dutch Labor Force

Survey is described. The survey design of the LFS is summarized in section 10.1. The purpose of

this experiment is explained in section 10.2. The experimental design and the analysis results are

described in sections 10.3 and 10.4 respectively.

10.1 Survey design

The LFS is based on a rotating panel survey. Each month a stratified two-stage cluster sample of

about 6.500 addresses is drawn from a register of all known addresses in the Netherlands. Strata

are formed by geographical regions, municipalities are considered as primary sampling units, and

addresses as secondary sampling units. Addresses of people aged 65 and over are under-sampled,

since the target parameters of the LFS concern people aged 15 through 64. Finally the sample size

on a regional level is adapted to the available field staff capacity. All households, with a maximum

of three, residing on an address, are included in the sample. In the first wave, data are collected

by means of computer assisted personal interviewing (CAPI) using laptops. Interviewers collect

data for the LFS in areas close to where they live. The respondents are re-interviewed four times

at quarterly intervals. In these four subsequent waves, data are collected by means of computer

assisted telephone interviewing (CATI).

The weighting procedure of the LFS is based on the generalized regression estimator of Särndal

et al. (1992). The inclusion probabilities reflect the under-sampling of addresses described above

as well as the different response rates between geographical regions. The weighting scheme is based

on a combination of different socio-demographic categorical variables. The integrated method for

weighting persons and families of Lemâıtre and Dufour (1987) is applied to obtain equal weights

for persons belonging to the same household.

The most important parameters of the LFS are total unemployment and the employed and

unemployed labor force. The unemployed labor force is defined as the ratio of total unemployment

and the total labor force. The employed labor force is defined as the ratio of total employed labor

force and the total population aged 15 through 64.
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10.2 Purpose

Advance letters are one of the design parameters of a survey that affect response rates and coop-

eration of respondents, De Leeuw et al. (2007). The standard advance letter of the Dutch Labour

Force Survey (LFS) is addressed to the occupants of the accommodation and the tone is formal and

high-handed. As a result, this letter does not conform to social psychological theories regarding

survey participation proposed by, for example, Dillman (2007), Groves, Cialdini and Couper (2001)

and Groves and Couper (1998). In an attempt to improve the LFS response rates, Luiten et al.

(2008) conducted an experiment to test the effect of different advance letters for the LFS that

better meet these principles about survey participation.

The first objective of this experiment was to test the effect of personalisation of the advance

letter by addressing the letter to a named individual instead of the standard approach where the

letter is addressed to ”the occupants of the accommodation”. It is anticipated that named letters are

more likely to be read and therefore increase response rates and survey participation. The second

objective was to compare the effect of two alternative variations on the content of the letter with

the standard letter. The first alternative is based on the previously mentioned theories regarding

survey participation. More specifically, the content of the standard letter is adapted by explaining

why the survey is conducted, what the respondent gains by participating and why it is important

for Statistics Netherlands that the respondent participates in the survey. The second alternative

attempts to improve the formal tone of the standard letter. Call-back surveys of nonrespondents

indicate that the autocratic tone of the letter is an important reason to refuse to participate in the

LFS. In an earlier experiment, however, it was concluded that a more informal letter resulted in

significantly smaller response rates, Van den Brakel (2008), section 2.4. This indicates that groups

of individuals react differently on formal and informal letters. The second alternative further

improves the content of the letter in first alternative using the theory of Language and Behavior

Profile, Charvet, (1997) and attempts to be appealing to different kinds of people. The wording

of the letter was adapted using influencing language so that it would attract people that react

positively to formal as well as informal letters. See Luiten et al. (2008) for more details and the

three versions of the advance letters.

Before a new advance letter is implemented as a standard in the Dutch LFS, its effect on re-

sponse behavior and response bias must be quantified. Therefore the effects of the alternative

letters on response behavior are analyzed using logistic regression analysis. The design-based pro-

cedures developed in the preceding sections are applied to analyze possible effects in the estimated

unemployed labor force.

10.3 Experimental design

The two objectives described in subsection 10.2 result in two treatment factors. The first factor,

say A, concerns the salutation of the respondent on two levels, i.e. the standard approach where

the letter is addressed to the occupants of the accommodation versus a named letter. The second

factor, say B, concerns the content of the letter on three levels, i.e. the standard formal letter

versus the two alternative letters described in the second last paragraph of subsection 10.2. Both
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factors are combined in a 2× 3 factorial design resulting in six treatment combinations, which are

summarized in Table 3.

Table 3: Treatment combinations experiment with advance letters
Treatment nr. Factor A (salutation) Factor B (content) Subsample fraction

1 A1 unnamed (standard) B1 formal (standard) 5/6

2 A1 unnamed (standard) B2 first alternative 1/30

3 A1 unnamed (standard) B3 second alternative 1/30

4 A2 named B1 formal (standard) 1/30

5 A2 named B2 first alternative 1/30

6 A2 named B3 second alternative 1/30

This experiment is embedded in the first wave of the LFS for a period of five months (December

2007 through April 2008). During this period the monthly gross sample size is randomized over

six subsamples according to an RBD with interviewers as the block variables. About 83 percent of

the sample is assigned to the regular advance letter. The remaining 17 percent is assigned to the

other five alternative treatment combinations. The fractions that were used to split the sample in

six subsamples are specified in Table 3.

10.4 Results

The purpose of this experiment was to test hypotheses about the different versions of the advance

letters on response rates and response bias. Luiten et al. (2008) analyzed differences in response

rates using a chi-squared test for association in contingency tables. This approach doesn’t account

for the factorial setup and the block design of the experiment. Therefore a logistic regression

analysis will be applied to test hypotheses about effects on response rates. To investigate the

effect on response bias, it is tested whether the parameter estimates for the unemployed labor force

obtained with the subsamples assigned to the six treatment combinations are significantly different

using the design-based procedures for factorial designs developed in this paper.

Table 4 contains an overview of the response account of the six subsamples in the experiment.

The households are classified in completely responding households (response), partially responding

households, refusals, no contact, frame error and a rest category. Frame errors contain unable to

locate addresses, in construction, no housing units, or vacant housing units. The rest category

contains nonresponding households due to language problems, and no opportunity. Since the ex-

periment is based on an unbalanced design, crude and adjusted proportions are reported for the

margins in Table 4. Crude proportions are not corrected for the unequal distribution of observa-

tions over the different treatment combinations. As a result the crude marginal proportions are

dominated by the large sample size assigned to the regular advance letter. Adjusted proportions

are corrected for unbalanced allocation of the sample over the treatment combinations.

It follows from the results in Table 4 that the different advance letters result in relatively small

differences in the response rates. Factor A results in an increase of the response of 2.4 percent points

by using a personalized letter. The alternative letters considered in factor B did not increase the
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response rate. The differences in response rates between the six treatment combinations are larger.

Treatment combinations 2 and 5, e.g. differ about five percent points, which might indicate the

presence of interactions between the two treatment factors.

Table 4: Response account experiment with advance letters
Treatment response part. resp. refusal no contact frame error rest total

1 (A1 ×B1) 13234 183 5127 1843 1226 1733 23346

56.69% 0.78% 21.96% 7.89% 5.25% 7.42%

2 (A1 ×B2) 604 5 271 89 73 85 1127

53.59% 0.44% 24.05% 7.90% 6.48% 7.54%

3 (A1 ×B3) 635 10 254 93 62 73 1127

56.34% 0.89% 22.54% 8.25% 5.50% 6.48%

4 (A2 ×B1) 662 3 256 84 49 68 1122

59.00% 0.27% 22.82% 7.49% 4.37% 6.06%

5 (A2 ×B2) 663 9 236 80 47 87 1122

59.09% 0.80% 21.03% 7.13% 4.19% 7.75%

6 (A2 ×B3) 627 9 259 85 56 91 1127

55.63% 0.80% 22.98% 7.54% 4.97% 8.07%

No name (A1) 14473 198 5652 2025 1361 1891 25600

crude prop. 56.54% 0.77% 22.08% 7.91% 5.32% 7.39%

adjusted prop. 55.54% 0.70% 22.85% 8.01% 5.74% 7.15%

Name (A2) 1952 21 751 249 152 246 3371

crude/adj. prop. 57.91% 0.62% 22.28% 7.39% 4.51% 7.30%

Stand. cont. (B1) 13896 186 5383 1927 1275 1801 24468

crude prop. 56.79% 0.76% 22.00% 7.88% 5.21% 7.36%

adjusted prop. 57.85% 0.53% 22.39% 7.69% 4.81% 6.74%

Alt. 1 (B2) 1267 14 507 169 120 172 2249

crude/adj. prop. 56.34% 0.62% 22.54% 7.51% 5.34% 7.65%

Alt. 2 (B3) 1262 19 513 178 118 164 2254

crude/adj. prop. 55.99% 0.84% 22.76% 7.90% 5.24% 7.28%

Total 16425 219 6403 2274 1513 2137 28971

crude prop. 56.69% 0.76% 22.10% 7.85% 5.22% 7.38%

adjusted prop. 56.73% 0.66% 22.57% 7.70% 5.13% 7.23%

Response behavior is modeled in a logistic regression model. This analysis serves two purposes.

Firstly, hypotheses about the effect of the two treatment factors on response behavior may be tested.

Secondly, additional information may be obtained on whether the factors increase the response

across the entire target population or that specific groups react differently on the treatments.

Second and higher order interactions between the two treatment factors and socio-demographic

categorical variables in the logistic regression model indicate that the variation in response between
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different subpopulations increases and that they react differently to the treatments.

In the logistic regression model, the dependent binary variable indicates whether a household

completely responded versus the remaining five response categories. The response behavior is

assumed to depend upon:

• a general mean,

• treatment factor A (name) in two categories specifying the standard letter addressed to the

occupants of the accommodation versus the letter addressed to a named individual,

• treatment factor B (content) in three categories specifying the standard advance letter versus

two alternative letters,

• a block variable in 13 categories (interviewers are the block variable, but adjacent interviewer

regions are collapsed in 13 blocks),

• auxiliary variables:

– urbanization level at five categories,

– gender in three categories, specifying whether a household consists of men only, women

only, or a mixture of men and women,

– age as a quantitative variable containing the average age of the household members,

– ethnicity in seven categories, specifying household compositions of native, western back-

ground, non-western background, and all possible mixtures,

– family composition in four categories; partners, single-parent family, single, and a rest

category,

– accommodation type in nine categories.

All third order interactions between the variables are initially considered for backward model

selection. The final selected model contains the terms that are given in the first column of Table 5

of estimation results for response rates. For brevity, the regression coefficients with their standard

errors and test statistics for separate categories are only expressed for the treatment factors.

The logistic regression analysis shows that the hypothesis that there are no interactions between

the two treatment factors cannot be rejected (p-value Wald statistic equals 0.121). Therefore this

interaction term is excluded from the finally selected model. From Table 5 it follows that factor A,

i.e. using a letter addressed to a named individual, has a positive but non-significant effect on the

response rate. Factor B, i.e. two alternative letters with an improved content, has even a slightly

negative but non-significant effect on the response rates. This is a remarkable result, since the two

alternative letters attempt to improve the formal tone of the standard letter, and using influencing

language. This negative effect on the response rates is, on the other hand, in line with the results of

an earlier experiment where the response of a more informal advance letter of the LFS resulted in

significant smaller response rates, Van den Brakel (2008). Since there are no interactions between

the treatment factors and the auxiliary variables, there are also no indications that the treatment

factors induce the response of specific subpopulations.
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Table 5: Logistic regression analysis for response rates
Parameter Coefficient Standard Wald Degrees p-value

error statistic of freedom

Mean 0.287 0.078 13.604 1 0.000

Block 212.425 12 0.000

Treatment A (name, A2) 0.083 0.045 3.394 1 0.065

Treatment B (content) 2.965 2 0.227

Alternative 1 (B2) -0.046 0.051 0.816 1 0.366

Alternative 2 (B3) -0.083 0.051 2.678 1 0.102

Urbanization 16.589 4 0.002

Ethnic 127.734 6 0.000

Gender 48.076 2 0.000

Family composition 27.339 3 0.000

The second step in the analysis of this field experiment is to test whether the estimates for

the unemployed labor force obtained with the six subsamples under the different advance letters

are significantly different. The design-based analysis procedure developed in this paper is used

in this analysis to account for the sampling design and the estimation procedure of the LFS. The

generalized regression estimator is applied to obtain estimates for the unemployed labor force under

the six different treatment combinations in the first wave. The inclusion probabilities reflect the

sampling design of the LFS and the experimental design that is used to divide the initial sample

into six subsamples. The following weighting scheme was applied to calibrate the design weights:

age+region+marital status+gender+urbanization level, where the five variables are categorical.

This is a reduced version of the regular weighting scheme of the LFS. The estimation results for

the six subsamples are summarized in Table 6. Finally the main effects and the interaction effects

of the two treatment factors are tested, taking into account that the experiment was designed as

an RBD where adjacent interviewer regions are collapsed in 13 blocks. The analysis results are

summarized in Table 7.

Table 6: Point and variance estimates unemployed labor force
Treatment nr. Estimate Variance

1 ˆ̄Y 11;greg = 4.100 d̂11 = 0.021

2 ˆ̄Y 12;greg = 3.761 d̂12 = 0.417

3 ˆ̄Y 13;greg = 5.264 d̂13 = 0.567

4 ˆ̄Y 21;greg = 3.609 d̂21 = 0.370

5 ˆ̄Y 22;greg = 4.546 d̂22 = 0.443

6 ˆ̄Y 23;greg = 3.385 d̂23 = 0.441
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Table 7: Analysis main effects and interactions unemployed labor force
Source Estimate Variance matrix Wald Degrees p-value

C ˆ̄YGREG CD̂C
t

statistic of freedom

Treatment A (name) A1 −A2 0.528 [1,1]=0.251 1.109 1 0.292

Treatment B (content) 0.732 2 0.694

B1 −B2 -0.300 [1,1]= 0.313

B1 −B3 -0.471 [2,2]= 0.350

[1,2]= 0.098

Interaction 3.801 2 0.150

AB11 −AB12 −AB21 +AB22 1.276 [1,1]=1.252

AB11 −AB13 −AB21 +AB23 -1.388 [2,2]=1.400

[1,2]=0.392

From the analysis results, summarized in Table 7, it can be concluded that there are no indica-

tions that the different advance letters result in different parameter estimates. This is in line with

the analysis results of the response rates. Since there is no empirical evidence that the different ad-

vance letters affect response rates of the entire population or a subpopulation, it might be expected

that no significant differences between the parameter estimates occur.

There is no empirical evidence that the alternative letters, considered in this experiment, im-

prove response behavior or the accuracy of the estimates for target variables like the unemployed

labor force. Therefore it was decided not to adapt the standard advance letter of the LFS.

11 Discusssion

In factorial designs the levels of two or more treatment factors are varied and all possible treatment

combinations are considered simultaneously. These designs are widely used in scientific experimen-

tation for several reasons. The main effects of the factors are averaged over the levels of the other

factors. Conclusions about the various effects are therefore based on a wider range of conditions,

which increases the validity of the results. Furthermore, interaction between the different treat-

ment factors can be analyzed. Finally factorial designs are more efficient compared to single-factor

experiments, since less experimental units are required to estimate the main effects with the same

precision.

In this paper a design-based theory is developed for the analysis of factorial designs that are

embedded in probability samples. This approach is particularly appropriate to quantify the effects

of the different design parameters of a survey process on the parameter estimates of a sample sur-

vey. Design-based analyses procedures are developed to test hypotheses about population means

for factorial designs where the ultimate sampling units are randomized over the different treatment

combinations through a CRD or and RBD. Procedures for factorial designs where clusters of sam-

pling units are randomized over the treatment combinations or to test hypotheses about ratios of

population totals are obtained analogously to the methods developed in Van den Brakel (2008) for

single-factor experiments.
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The design-based variance estimator that is developed for the various treatment effects does not

require joint inclusion probabilities nor design-covariances between the different subsamples. As

a result a design-based analysis procedure for factorial designs embedded in complex probability

samples is obtained with the attractive relatively simple structure as if the sampling units are

drawn with unequal selection probabilities with replacement. The traditional advantages of factorial

designs, summarized in the first paragraph of the discussion, still apply under this design-based

approach.

The advantage of an RBD over a CRD is that the between block variance is removed from the

estimated treatment effects. In the standard model-based theory for the analysis of randomized

experiments, an F -test for the blocks as well as the treatment factors is available. Under restricted

randomization of an RBD, however, it is generally argued that an F -test for the block effects is not

valid. In these cases alternative measures to evaluate the efficiency of an RBD are available; see

e.g. Montgomery (2001). In the design-based theory developed for RBD’s in this paper there is an

asymmetry between the block and treatment factors, as in the case of the randomization approach

followed by Hinkelmann and Kempthorne (1994). Due to the restricted randomization within the

blocks there is no meaningful test for the main effect of the block factor available.

As a numerical example, the methods developed in this paper are applied to a 2 × 3 factorial

design embedded in the Dutch LFS to test the effect of six different versions of an advance letter.

The parameter and variance estimators developed in this paper are implemented in the software

package X-tool, which is available as a component of the Blaise survey processing software package,

Statistics Netherlands (2002). This component supports the analysis of single-factor experiments,

see Van den Brakel (2008) for details. The Wald statistics for the different hypotheses about main

effects and interactions for factorial designs are not implemented yet and require a separate matrix

programming package for the moment.
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Appendix: Variances of treatment effects

Generalized regression estimator

The first order Taylor approximation of the generalized regression estimator (22) can be expressed

as

ˆ̄Y kl;greg
.= ˆ̄Ekl + btklX̄, (43)

according to (24) with

ˆ̄Ekl = ˆ̄Y kl − btkl
ˆ̄X =

∑
i∈s

(
ptikl(yi −Btxi)

πi N

)
. (44)

Here B denotes a H ×KL matrix whose columns are the H−vectors bkl and pikl are KL−vectors

that describe the randomization mechanism of the experimental design. For a CRD, it follows that

pikl ≡

{
n++

nkl
rkl if i ∈ skl
0 if i ∈/ skl

, (45)

and for an RBD

pikl ≡

{
nb++

nbkl
rkl if i ∈ sbkl
0 if i ∈/ sbkl

, (46)

where rkl denotes the unit vector of order KL with the kl−th element equal to one and the other

elements equal to zero and 0 a vector of order KL with each element equal to zero.

Properties of the randomization vectors pikl

In this subsection the statistical properties of the randomization vectors pikl are derived. They

are required to derive the covariance matrix of the contrasts between the generalized regression

estimators for the different treatment combinations. From the randomization mechanism of a

CRD, the following probability mass function for pikl can be derived:

P

(
pikl =

n++

nkl
rkl | s

)
=

nkl
n++

, and P (pikl = 0 | s) = 1− nkl
n++

.

The pikl for an RBD have the following probability mass function

P

(
pikl =

nb++

nbkl
rkl | sb

)
=

nbkl
nb++

, and P (pikl = 0 | sb) = 1− nbkl
nb++

.
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The expectation of pikl with respect to the experimental design for CRD is given by:

Eε(pikl) = P

(
pikl =

n++

nkl
rkl

)
n++

nkl
rkl + P (pikl = 0) 0 = rkl.

For an RBD, the expectation of pikl with respect to the experimental design is given by:

Eε(pikl) = P

(
pikl =

nb++

nbkl
rkl

)
nb++

nbkl
rkl + P (pikl = 0) 0 = rkl.

Equivalent to the derivation for these randomization vectors given by Van den Brakel and Renssen

(2005) it follows that the following covariances with respect to the experimental design of a factorial

CRD can be derived:

Covε(pikl,ptikl) =
(n++ − nkl)

nkl
rklrtkl,

Covε(pikl,pti′kl) = −(n++ − nkl)
nkl

1
(n++ − 1)

rklrtkl,

Covε(pikl,ptik′l′) = −rklrtk′l′ , for k 6= k′ or l 6= l′,

Covε(pikl,pti′k′l′) =
1

(n++ − 1)
rklrtk′l′ , for k 6= k′ or l 6= l′.

Finally the following covariances with respect to the experimental design for a factorial RBD can

be derived:

Covε(pikl,ptikl) =
(nb++ − nbkl)

nbkl
rklrtkl,

Covε(pikl,pti′kl) = −(nb++ − nbkl)
nbkl

1
(nb++ − 1)

rklrtkl, if i ∈ sb and i′ ∈ sb

Covε(pikl,pti′kl) = O, if i ∈ sb and i′ ∈ sb′

Covε(pikl,ptik′l′) = −rklrtk′l′ , for k 6= k′ or l 6= l′,

Covε(pikl,pti′k′l′) =
1

(nb++ − 1)
rklrtk′l′ , if i ∈ sb and i′ ∈ sb; for k 6= k′ or l 6= l′.

Covε(pikl,pti′k′l′) = O, if i ∈ sb and i′ ∈ sb′ ; for k 6= k′ or l 6= l′.

Covariance matrix of contrasts between GREG estimates

The covariance matrix of the contrasts between the elements of ˆ̄YGREG is obtained by deriving

the covariance matrix of Cˆ̄E, where ˆ̄E is the KL − vector with elements ˆ̄Ekl, defined by (44).

Conditioning on the realization of the measurement error model (1) and the sample s results into

the following covariance decomposition:

Cov(C ˆ̄YGREG)=CovmEsEε(Cˆ̄E | m, s)+EmCovsEε(Cˆ̄E | m, s)+EmEsCovε(Cˆ̄E | m, s). (47)

Under the condition that a constant H−vector a exsists such that atxi = 1 for all i ∈ U , it follows

for bkl in (25) that bkl = b + a(ψ + βkl), where b is defined by (19). Subsequently it follows that

Btxi = jKL(btxi + ψ) + β. Since CjKL = 0, it follows from measurement error model (1) that

C
(
yi −Btxi

)
= C

(
jKL(ui + γq) + β + εi − jKL(btxi + ψ)− β

)
= Cεi. (48)
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Taking covariances and expectations over the three components in (47) and taking advantage of

result (48), the expectations and covariances of the randomization vectors pikl and the assumptions

of the measurement error model (2), (3), (4), (5), and (6) gives:

CovmEsEε(Cˆ̄E | m, s) =
1
N2

N∑
i=1

CΣiCt, (49)

EmCovsEε(Cˆ̄E | m, s) =
1
N2

N∑
i=1

(
1
πi
− 1
)

CΣiCt, (50)

EmEsCovε(Cˆ̄E | m, s) = EmEs(CDCt)− 1
N2

N∑
i=1

CΣiCt

πi
. (51)

In (51), D denotes a KL×KL diagonal matrix with diagonal elements

dkl =
1
nkl

1
n++ − 1

n++∑
i=1

(
n++(yikl − btklxi)

Nπi
− 1
n++

n++∑
i′=1

n++(yi′kl − btklxi′)
Nπi′

)2

, (52)

in the case of a CRD and

dkl=
B∑
b=1

1
nbkl

1
nb++ − 1

nb++∑
i=1

(
nb++(yikl − btklxi)

Nπi
− 1
nb++

nb++∑
i′=1

nb++(yi′kl − btklxi′)
Nπi′

)2

, (53)

in the case of an RBD. Insersting (49), (50), and (51) in (47) gives

Cov(C ˆ̄YGREG) = EmEsCDCt. (54)

An estimator for D can be derived from the experimental design, conditionally on the measurement

error model and the sampling design. Therefore the covariance matrix (54) is conveniently stated

implicitly as the expectation over the measurement error model and the sampling design. In the

case of a CRD, the allocation of the experimental units to subsample skl can be considered as

simple random sampling without replacement from s. Consequently, an unbiased estimator for dkl
in the case of a CRD is given by (27). Equivalently, for an RBD the allocation of the experimental

units to subsample skl can be considered as stratified simple random sampling without replacement

from s, where the strata are the blocks and an unbiased estimator for dkl is given by (28).
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