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Preface 

There are still many puzzles to be solved concerning the relation between innovation and firm 

performance, in particular concerning the distinct roles of information and communication technology 

(ICT) and Research and Development (R&D) in creating new or improved products or production 

processes. This thesis provides evidence that both instances of innovation are important drivers of 

productivity and, thus, economic growth. This book consolidates the results of empirical work 

covering about 10 years of research aimed at understanding the importance for firm performance of 

innovation in a broad sense.  

Looking back over the last 10 years, and the years before, there is much to be grateful for. First of 

all, I would like to express my gratitude to my employer Statistics Netherlands for giving me the 

opportunity to do things that are so distant from the core business of statistical agencies and for such a 

long time. Almost during my entire career at Statistics Netherlands I have been able to do research on 

firm-level data. It started early enough to witness the shift from macro data oriented research to 

research that placed individual firms at the centre of interest. To a large extent, this shift was also 

technology driven, as technological opportunities enabled the increased availability of data sources 

and the development of computational and econometric methods for analyzing large data sets, 

covering data referring to what is now considered to be the preferred level of analysis for many types 

of economic research. 

Success has many fathers and with such a long period to reflect on, it would require a separate 

book to give everybody the credits they deserve. Thus, I am aware that I cannot do justice to all. I am 

especially grateful to Peter Kooiman and Johan Lock for their pioneering efforts to introduce micro 

data research in the statistical office. Probably, Peter will not be aware of this, but without his 

enthusiastic and inspiring method of teaching the econometric courses that I attended at the Erasmus 

University, my career certainly would have taken a completely different path.  

I am also very much indebted to Bert Balk and Kees Zeelenberg for providing an excellent research 

environment during the period that I joined the Statistical Methods Department of Statistics 

Netherlands. The foundations for much of the work included in this thesis were laid during the period 

that I was working as a researcher at the Centre for Research of Micro-economic Data (CEREM) in 

the years that Bert was director of this Centre. Special thanks also go to Eric Bartelsman for his 

support to proceed with microdata research (both tacit and more explicit in joint research projects) in 

times that microdata research was considered less important within the office. Without his continuous 

efforts, microdata research would not have obtained today’s important status, not only in the 

Netherlands but also world-wide. I also owe much to Henry van der Wiel and Henk Kox, not only for 

the pleasant and fruitful cooperation during my stay at CPB Netherlands Bureau for Economic Policy 



Analysis, but also for their permission to include our joint papers in this thesis. Similar thanks go to 

Luuk Klomp, who co-authored two papers on innovation during the first years that Statistics 

Netherlands was responsible for collecting innovation data. Last, but not least, I thank Alfred 

Kleinknecht for giving me the opportunity to defend this thesis at the Delft University of Technology, 

and Alfred and Bert for encouraging me to complete this thesis.  

 

George van Leeuwen 

October 2008 
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Chapter 1 
 
Introduction 

1.1  Motivation 
 

This thesis collects six papers dealing with the use of firm-level data for investigating 

various dimensions of firm performance. The first three papers relate firm performance in 

manufacturing to innovation. Next, two papers deal with the relation between Information and 

Communication Technology (ICT) and productivity in manufacturing and business services. 

The final paper discusses the issue of scale effects in business services.  

The common theme of these papers is the search for drivers of firm performance in renewing 

economies. Firm performance is measured as productivity (growth). Productivity (growth) has 

been an important field of research in the past decade. It became an important policy and 

research issue because of the perceived divergence of growth performance between European 

countries and the US in the second half of the previous decade, when US expanded its 

productivity lead over European countries. The exceptional productivity performance of the US 

during 1995 – 2000 took place in a time span that was labeled ‘new economy’ and that was 

characterized by a rapid diffusion of ICT technology. Examples are the diffusion of the internet 

and mobile telephony. These developments increased the interest in the analysis of economic 

growth and the causes behind differences in productivity (growth) across countries and within 

countries between firms. In policy circles the question was raised how to bridge the gap with the 

US and how to achieve sustained economic growth with more and better jobs and greater social 

cohesion in societies which, in addition, face the problem of an ageing population. These are the 

primary goals of the so-called Lisbon strategy formulated in 2000 for EU-countries. 

 
1.1.1 R&D and ICT  

The interest in the drivers of economic growth is not entirely new. The new thing was the 

focus on the role of ICT as a vehicle of technological progress that is embodied in computers. 

This special form of technological progress started more than 50 years ago with Research and 

Development (R&D) of Intel, which enabled the creation and further advancement and 

application of microprocessor technology. Since 1965 the speed of microprocessors doubled 

every two years and even more rapidly since 1995. The steep decline in prices of ICT hardware 

(among others due to increased competition between producers of ICT goods) and the growing 

scope for application of ICT technology has made ICT one of the most dynamic areas of 

investment as well as one of the most pervasive technologies.  

This brief summary demonstrates the important role of R&D for creating and accelerating 

(the diffusion of) technological progress and for cumulating the innovation process in general. 

This example also explains why innovation and technological change in a small country such as 
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the Netherlands is largely based on R&D performed abroad. In addition, it also stresses that the 

meaning (concept) of innovation has been broadened in the course of time. Innovation can no 

longer be conceived as a R&D story alone, as the adoption of technologies developed elsewhere 

can be seen as a substitute for performing own R&D.  

Nevertheless, it is often stated that own R&D or basic research remains the key to 

technology adoption and the best way to narrow the gap with technological leaders. In this view, 

investing in own knowledge is a pre-requisite for capturing the fruits of knowledge developed 

abroad and a necessary condition for creating own technological innovations in order to remain 

on a competitive edge in an economic environment that is increasingly governed by  

globalization of production as well as competition. Moreover, asserting that R&D directly or 

indirectly contributes to productivity (growth), explains the importance of a continuous search 

for new (national) policy instruments or for adapting existing policy instruments in order to 

enhance the upgrading or the maintenance of existing knowledge bases. 

 
1.1.2 ICT and innovation 

The potential of R&D to enhance product innovation, and the assessment of the contribution 

of R&D and other determinants of technological innovations to productivity (growth) are the 

subject of the first three papers of this thesis. By way of contrast, the other papers focus on the 

contribution of ICT to productivity, and the explanation of differences in productivity between 

important users of ICT technology (the business services sector). In these papers the relation 

with innovation is studied from the other side, by highlighting the special features of ICT as a 

general purpose technology. The use of ICT can make innovations more effective along 

different channels. It enables firms to customize services offered, to reduce inefficiency in the 

use of other inputs (e.g. by reducing inventories or by streamlining other business processes, for 

example via reorganizations), or to seize spillover effects generated by ICT networks. Business 

services are an important example of how ICT diffusion can transform economies whose 

production has become increasingly foot-loose, non-physical or intangible. The rapid growth of 

ICT-enabled services around the world demonstrates that previously sheltered sectors are 

increasingly more exposed to outsourcing and international competition, not in the least due to 

the increased use of ICT. This trend calls for the need to foster innovation in services as well as 

for adjusting the regulatory environment of service firms. The last issue is the subject of the 

final chapter of this thesis. Here, productivity differences within the European service sector are 

linked to scale-related optimality of service production. Next, the relation between (scale- 

related) X-inefficiencies and country-differences in the regulatory environment of business 

service firms is investigated.  
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1.2 Literature background 

 
Although the papers focus on firm performance, the motivation for conducting these studies 

can be understood better by beginning with a macro view on the relation between innovation1 

and aggregate productivity growth. The theoretical developments started about 20 years ago 

with the launching of the endogenous growth theory (Romer, 1986). This theory originated from 

the critics that neo-classical theory failed as a theory of economic development. The basic 

assumption of the (standard) neo-classical model is that technological change is exogenous and 

that the long-run pattern of economic growth is governed by the accumulation of reproducible 

capital. In this view differences in aggregate savings rates translate into permanent differences 

in (aggregate) income levels. 

The response of the endogenous growth theory can be broadly divided into two classes: 1) 

competitive models that renewed the role of capital accumulation and 2) non-competitive R&D 

models or – more generally – innovation-based growth models. The first class of models 

focuses on the decision of firms to accumulate capital, either tangible or intangible in nature. 

The key feature of these models (see e.g. Romer, 1986 and Rebelo, 1991) is that, at the 

aggregate level, there are no diminishing returns to reproducible capital. This is asserted by 

lumping together capital accumulation and technology. These so-called AK models2 

acknowledge that capital accumulation is an important vehicle of technology adoption, because   

technology adoption in one way or another is represented in the accumulation of (intangible) 

capital. Therefore, capital accumulation remains the basic driver of economic growth, and not 

innovation as such. With appropriate policy institutions, capital can move freely around the 

world so there is no need to deviate from the assumption of competitive markets. This last 

feature distinguishes the AK models from the second class of endogenous growth models. 

The second branch of the endogenous growth literature (see e.g. Romer, 1990, Grossman and 

Helpman, 1991) consists of papers that focus on the decisions of firms to conduct research and 

development (R&D) in a non-perfectly competitive environment. Deviations from perfect 

competition arise because of the attribution of some monopoly power to successful innovators.  

Without the potential to finance R&D from retained profits, no self-interested agent would be 

willing to engage in costly R&D. In this story, cumulating the innovation process is the engine 

of growth and the persistence of profits is assumed to be a pre-requisite for capturing increasing 

dynamic returns to innovation, and to support and reinforce the innovation process. Here, the 

central message is that policies should be directed to improving the conditions for performing 

R&D, e.g. by protecting property rights or by providing financial incentives (subsidizing R&D) 

or by refraining from competition policies that entail the risk of eroding post-innovation rents.  

                                                      
1 Being intrinsically an example of a major technological innovation, there is no need to treat ICT apart at 
this stage. 
2 A represents the technology parameter and K is the capital input of the production function.  
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Although endogenous growth theories provide a richer description of the fundamental forces 

underlying economic growth than the exogenous (neo-classical) growth theory, their success is 

not undisputed. An important reason for this is that endogenous growth models also do not give 

a fully satisfactory account of the stylized facts. An important example concerns the post-war 

labor productivity growth experience of Europe versus the US, with Europe first catching up 

(before 1990) and next lagging behind the US. This pattern can be explained neither by different 

capital-labor ratios (in Europe on average higher than in the US since 1990) nor by different 

R&D intensities (in the US higher than Europe before 1990).   

Aghion and Howitt (2006) argue that an important reason for the failure of the endogenous 

growth theories is the lack of a sound micro-economic basis. By introducing important insights 

from the theory of industrial organization they show that endogenous growth theory can be 

adapted to give a better account of stylized facts as well as deliver useful guidelines for 

designing policy instruments. The basic idea is that growth processes are best explained by 

starting from a continuous process of creative destruction that is fueled by the interplay between 

innovation and competition. A new element is that potential entry changes the balance between 

innovation and competition as entrants can be better placed than incumbent firms with respect to 

the introduction of new technology.  

In the Schumpeterian model, innovation remains the basic driver of productivity growth. 

However, and contrary to the earlier endogenous growth models, the Schumpeterian paradigm 

provides a more comprehensive account of the role of innovation for explaining patterns of 

productivity growth because it makes a distinction between (productivity growth of) ‘real’ 

innovators and innovation imitators. This distinction also makes more explicit that observed 

aggregate productivity growth results from a continuous process of pushing up the technological 

frontier and catching up to the frontier either by introducing ‘leading edge’ innovations or by 

implementing innovations that have been developed elsewhere. In such a story there is no 

reason to believe in permanent differences of productivity levels, nor in permanent growth 

differentials. Thus, besides encompassing earlier models of the endogenous growth literature, 

the Schumpeterian model has the virtue of providing a more realistic picture of the main forces 

that are driving productivity growth, both at the firm level and at the aggregate level.  

This brief historical overview of the (endogenous) growth literature can be used to make the 

step to the subject of this thesis, i.e. the use of firm-level data for understanding the relation 

between innovation and firm performance. An important conclusion that can be drawn at this 

stage is that macro theories these days start from ‘heterogeneous’ producers instead of a 

‘representative agent’. This implies that the empirical testing of these theories requires firm-

level data. Indeed, today many contributions to the empirical literature on endogenous growth 

are using firm-level data. This is in particular relevant for testing the contribution of innovation 
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to firm performance, as own innovations are not the only source of productivity growth for all 

firms.  

‘Going down’ to the firm-level, it can be easily verified that many firms are not permanently 

engaged in performing R&D,  but – nevertheless – show up to be more productive than firms 

that perform R&D on a permanent basis. A more complete picture emerges if one takes into 

account that productivity growth also arises from using inputs more efficiently. The usual way 

to quantify the impact on output of using more or less inputs is doing ‘growth-accounting’. This 

exercise is often conducted at the industry or macro level with the purpose of delivering e.g. an 

estimate for the contribution of ICT capital deepening to labor productivity growth. However, 

the change in the ICT capital intensity at the industry level arises from changes in the ICT 

capital intensities of incumbent firms as well as differences between ICT capital intensities of 

exiting and entering firms. Again, competition-driven selection of good and bad performing 

firms may play a dominant role here. Firm-level data are imperative for understanding the 

importance of each of these factors.  

Returning to innovation, similar conclusions can be drawn when evaluating the literature on 

firm-level innovation data. Much progress has been made with regard to understanding the link 

between the characteristics of technology regimes and innovation patterns observed at the firm 

level.3 An empirical regularity found in this strand of research is the skewness of R&D 

distributions. This skewness results from the co-existence of many firms spending little (or even 

nothing) on R&D and relatively few (large) firms that carry out the bulk of aggregate R&D. 

Such a pattern can be explained by the different types of knowledge underlying innovations. If 

this knowledge is specific, codified and ‘simple’, then technology adoption is easier and less 

costly than in case of generic, tacit and complex knowledge, which calls for investing in the 

creation and maintenance of own knowledge bases. Dependent on these conditions, one may 

expect that the need to perform R&D and the way innovation processes are organized can differ 

greatly between firms.4 In addition, this also explains why the probability of realizing 

innovation success does not depend on performing R&D only.   

Taking stock, identifying the contribution of innovation to productivity (growth) remains a 

difficult task for at least three reasons: 1) productivity (growth) at the firm-level cannot be 

attributed exclusively to own performed innovation or R&D, 2) besides performing own 

innovations or R&D, capital deepening also remains an important source of productivity 

(growth) as this is a vehicle for (embodied) technology adoption, and 3) being successful in 

innovation cannot be attributed to a single factor like R&D.  

                                                      
3 An important reference is Malerba and Orsenigo (1995).  
4 In the literature these different characteristics of knowledge bases mirror the distinction between the 
Schumpeter Mark I and the Schumpeter Mark II innovation regimes. In the Schumpeter Mark I regime 
the emphasis is on small firms as the most important drivers of innovation, whereas the Mark II regime is 
assumed to be better applicable to large R&D performers.  
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Nevertheless, the R&D (innovation) productivity literature has a long tradition. This strand 

of research owes much to Griliches.5 He started (in 1957) by introducing the concept of R&D 

capital as a separate input into production. The application of this R&D capital model has been 

the standard approach to the assessment of the R&D contribution to productivity growth in 

many applications and for many years. Not in the least due to the scarcity of data, there was 

little scope for improving substantially on the model specification6 or for refining the 

measurement of inputs into innovation. In spite of the increased use of sophisticated estimation 

techniques (e.g. panel data techniques to control for firm-specific effects) many conceptual and 

empirical problems could not be dealt with in a satisfactory way. 

An important heritage of the work of Griliches concerns the introduction of the so-called 

‘innovation production function’. This theoretical construct asserts that innovation can be best 

characterized as a separate production process with R&D and other factors used as inputs for the 

production of new or improved products. The adoption of this construct had two implications: 

1) the assessment of the link between innovation and overall firm performance should 

preferably start from a structural model because this enables a better understanding of the 

various factors that play a role, and 2) new data had to be collected on the realization of 

innovation output and for providing a richer description of the innovation process than does 

R&D alone. 

The introduction of Community Innovation Surveys (CIS) opened a window of new 

opportunities for innovation research. A seminal paper that explores this new route is the study 

of Crépon, Duguet and Mairesse (1998). Since then, several contributions to the literature have 

taken this paper as the starting point for replicating and refining the ‘CDM model’. Three 

examples are presented in this thesis. Their contribution to the literature will be outlined in the 

next section. 

 
1.3 Main contributions 

 
As to the contribution to the literature, a distinction must be made between the innovation 

chapters and the other chapters of this thesis. I start with the contribution of the innovation 

papers (Chapters 2, 3 and 4 of this thesis). These papers contribute to the literature as follows:  

1) Extending the CDM model, the joint dependence of innovation inputs and innovation output 

on innovation characteristics is taken into account more explicitly. This is achieved by 

estimating the equations for innovation inputs, innovation output and firm performance 

simultaneously and by using more variables that potentially characterize innovation 

processes. This extension is considered to be useful as the literature has not been conclusive  

                                                      
5 See Griliches (2000) for an account in retrospective and the references mentioned there.   
6 A notable refinement of the ‘baseline’ model concerned the extension of the model with R&D spillover 
capital in order to distinguish between private and social returns to R&D.  
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on the role of specific factors that (conditional on being innovative) affect the level of 

innovation inputs (measured by R&D- or total innovation expenditures) as well as the 

throughput stage of the innovation process simultaneously (their complementary 

contribution to innovation output). 

2)  The CDM model is extended by including a feedback link that runs from a firm’s total sales 

growth to innovation. Thus, Schmookler’s demand pull hypothesis could be tested in a more 

comprehensive framework than previously.  

3)  The assertion that a firm’s market power (the ability to increase market shares) also depends 

on the degree of product differentiation has been incorporated in the CDM model by using 

innovation output as ‘demand-shifter’. Besides enhancing the interpretation of the estimate 

of innovation output in production function models, this approach also forwards the 

reasoning of Klette and Griliches (1996) that productivity growth measured at the firm level 

is likely to be biased if deflation methods do not account in a satisfactory way for product 

differentiation.  

4)  The dynamic interdependencies for innovation considered from the input side as well as 

from the output side of the innovation process have been investigated by using two waves of 

CIS and by adopting a dynamic model for innovation inputs and innovation output.  

 
In the ICT papers of the thesis (Chapters 5 and 6), the emphasis is not on innovation as such, 

but on the interaction between capital accumulation and innovation. ICT is an excellent example 

to investigate this issue. In essence, investing in computer hardware (and software) can be seen 

as a form of adoption of technology as far as embodied in capital. The ICT papers of the thesis 

contribute to the literature by using enhanced production function models in order to estimate the 

contribution of ICT externalities to productivity growth. A distinction is made between ‘internal 

ICT spillovers’ (the ICT link with other innovation processes carried out within the firm, e.g. the 

streamlining of business processes via reorganizations) and ‘external spillovers’ (the productivity 

impacts arising from the ability to pick the fruits of ICT investment outside the firm). The papers 

also explain why ‘growth accounting’ results can be different from econometric estimates for the 

ICT-contribution to productivity growth. 

The final chapter underlines the importance of using ‘institutional’ data for appraising inter-

country productivity differences. It contributes to the literature in two ways: 1) the presence of 

local scale effects in business services is investigated by applying a frontier model and 2) it is 

investigated to which extent X-inefficiencies (distances to the best-practice frontier) in business 

services are related to different policy institutions. 
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1.4 Reader’s guide 

 
Chapter 2 combines the innovation model of Kline and Rosenberg (1986) with the CDM 

(1998) model to evaluate the importance of new CIS innovation variables for the contribution of 

innovation to sales growth and employment growth. The ‘chain-link innovation model’ of Kline 

and Rosenberg (1986) is used as a framework for investigating the interdependencies of the 

different stages of the innovation process and the link between innovation and firm 

performance. This link is analyzed in two directions 1) the contribution of innovation output to 

sales and employment growth and 2) the feedback links running from a firms’ sales growth 

performance to the innovation process. In this paper the relationships between the different 

stages of the innovation process and the two mentioned measures of overall economic 

performance are analyzed with the method of Full Information Maximum Likelihood (FIML). 

In Chapter 3, the focus is on the explanation of the contribution of innovation to multi-factor 

productivity (MFP) growth. By using similar variables as in Chapter 2, this chapter elaborates 

on the importance of innovation induced product differentiation for assessing the contribution of 

innovation to MFP growth (either measured in gross output or in value added terms). To achieve 

this objective, the revenue function approach of Klette and Griliches (1996) has been 

implemented in the CDM framework, thereby enhancing the interpretation of the contribution of 

innovation to productivity growth. Furthermore, other estimation techniques than FIML were 

applied in order to investigate the robustness of the estimates for the returns to innovation 

output of innovation investment and the contribution of innovation output to productivity 

growth. 

Chapter 4 presents a first attempt to estimate the persistence of innovation. Using two waves 

of the CIS, this chapter integrates the models for knowledge accumulation of Hall and Hayashi 

(1989) and Klette (1996) in the CDM framework. Similar to the preceding chapters, the CIS 

data are used to control for the complementarities of internal and external knowledge bases. The 

dynamics of innovation is investigated by implementing simple dynamic specifications for 

R&D inputs (R&D expenditures as a share of total sales) and innovation output (measured as 

the share of new products in total sales). A problem of using two waves of CIS concerns the 

missing R&D history of firms that stated to have created new products in the last wave, but 

were not surveyed in the preceding wave. For this reason, and in order to investigate the 

robustness of the estimates for the contribution of innovation to MFP growth, the model is re-

estimated using a broader measure of innovation output (including incremental innovations) and 

by comparing the contributions to MFP growth of the dynamic model with the same estimates 

obtained from a static innovation model in which the two waves are pooled.  

In Chapters 5 and 6, the focus is on the contribution of ICT to MFP growth. Both chapters 

deal with the problem that ICT can affect productivity growth via various channels. ICT related 
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productivity growth can arise as a result of ICT capital deepening (using more computers per 

employee), but also as a result of (innovation) externalities induced by ICT use. This last feature 

of ICT investment could not be taken into account satisfactorily in the (many) ‘growth-

accounting’ exercises that were conducted in the previous decade and that used industry data or 

data for the whole economy. It also explains why the contribution of ICT to labour productivity 

growth has been debated so much in the previous decade. Thus, in essence, Chapters 5 and 6 

elaborate on the problem of how to divide the contribution of ICT to labour productivity into a 

capital deepening contribution and a MFP contribution (output growth corrected for increased 

(ICT) capital inputs). The emphasis in these chapters is on productivity growth in business 

services (wholesale trade, retail trade and commercial services), because ICT is considered to be 

more important in these branches than in manufacturing. 

Chapter 5 analysis the contribution of ICT to labour productivity growth by comparing 

estimates for this contribution derived from standard production function models with those of 

‘growth accounting’ models at the firm-level. Subsequently, the differences between the results 

of these ‘parametric’ and ‘non-parametric’ approaches are investigated more profoundly by 

adding innovation and ICT spillover indicators to the production function model. The 

interaction between ICT and innovation is also explored in Chapter 6. Besides placing the 

results of Chapter 5 in a broader perspective, this chapter also elaborates more explicitly on the 

topic that ICT technology (being an example of capital embodied innovation itself) and other 

innovations are complementary, and that investing in ICT also contributes to productivity 

growth in an indirect way by being an ‘enabler’ of other types of innovations. This assertion is 

investigated e.g. by estimating models that take into account the interaction of ICT and 

reorganizations at the firm-level. 

In Chapter 7 the importance of scale economies for productivity in business services is 

investigated. The business-services sector is a rapidly growing industry that has important links 

with other industries. Some parts of the sector are very knowledge intensive. Furthermore, 

although many firms are still oriented at national markets, there is an increasing trend of 

globalization of production. The scale issue arises because many firms are small and might 

perform at a sub-optimal scale. As the business-services sector is an important supplier of 

intermediary inputs, improving on scale economies could ‘spill over’ to the productivity 

performance of other sectors It is investigated whether differences in scale economies can be 

related to market characteristics and institutional factors such as product market regulation or 

entry barriers. This is executed by applying a generalized stochastic frontier model to 

international cross-sectional data.  
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1.5  Picturing the framework of the thesis 
  
This section presents an overview of the framework underlying the various chapters by using a 

stylized and augmented input-output model. See Figure 1.17 
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Figure 1.1: Innovation and firm performance 
 
To analyze firm performance, a natural starting point is to look at a firm’s environment. This is 

taken into account by the two upper blocks and the arrows that shape the ‘outer loop’ of the 

model. At the start of operations a firm’s competitive and regulatory environment and the 

technological opportunities are assumed to be given. Examples are the existence of financial 

incentives to invest in R&D or other capital inputs, the existence of product-market regulations 

or entry-preventing barriers to competition. The regulatory environment of firms (or more 

generally the policy institutions that are in place) can affect the competitive environment and 

this link can also be reversed. For this reason, I have included a link between the two blocks that 

runs in both directions. 

The second layer of the figure represents the primary inputs into production, whereas the 

third ‘level’ of the model, consisting of the shaded parts, points to the throughput stage of the 

CDM innovation model. Under the assumption of perfect competition, one can think of a direct 

                                                      
7 The figure extends the one in CDM (1998). Among others, this extension concerns the inclusion of ICT 
as a separate knowledge input and the inclusion of feedback links.  
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link with exogenously given market conditions and the sales performance of our hypothetical 

firm. Thus, when leaving out the shaded innovation parts of the figure, the model resembles the 

standard KLEMS model, frequently used for the non-parametric estimation of Multi-Factor 

Productivity (MFP).8 In this view, MFP is often interpreted as a measure of technological 

capability whose main driver is investment in R&D and other innovation related sunk costs.  

Although treated similarly as other capital inputs in growth-accounting studies, I have 

included ICT as a separate input into production, because of its special features. In contrast to 

other capital inputs, ICT capital embodies a set of general purpose technologies that enable a 

firm to seize the benefits of internal spillovers. Internal spillovers refer to the potential of ICT to 

increase the efficiency of the use of other inputs. Moreover, ICT enhances product innovation as 

well other forms of process innovation. In the figure this is taken into account by assuming that 

ICT contributes to knowledge capital in a way that resembles investment in R&D.9 The second 

reason to focus on ICT, concerns the capability of ICT to create network externalities. The 

potential of a firm to seize the benefits of external ICT spillovers will increase with the level of 

ICT use of clients, customers and suppliers (i.e. with the technological opportunities offered by 

its environment). A symmetric reasoning calls for the inclusion of a backward linkage, as the 

own level of ICT use of a firm can affect the technological opportunities of other firms. 

However, investing in computer hardware is not a sufficient condition to capture the full fruits 

of ICT technology. Making ICT productive also calls for investing in complementary factors. In 

the figure this is implemented by including a link running from labor (skills) to knowledge 

capital. With respect to ICT, this link is assumed to represent more than only computer skills of 

the labor force available. Other labor-related factors such as managerial capabilities or 

organizational practices can also be interpreted as the use of (special types of) labor skills. 

The central part of the model runs from the R&D (and other innovation) investment block to 

the sales performance of our hypothetical firm. In essence this is the core of the CDM model, 

which asserts that the innovation process can be seen as a separate production process that 

establishes a link between inputs into innovation and firm performance, either measured by 

sales performance or by productivity. In the CDM model, the importance of product innovation 

is measured by the share of new and/or improved sales. In the figure I highlight the role of new 

sales. Generating new sales can be seen as a way to rejuvenate product lines, which, in turn, 

enhances sales opportunities as well as profitability. Thus, ‘real’ innovations are assumed to 

have a greater potential to increase market power than do innovation imitations. In both cases, it 

                                                      
8 The KLEMS model makes a distinction between physical capital (K), labor (L), energy (E), material 
(M) and service (S) inputs. E, M and S together are called ‘Intermediate inputs’.  
9 This view is also reflected in the design of the so-called Knowledge Module of the System of National 
Accounts that aims at a distinction between knowledge capital and other capital inputs. In this module 
ICT investment is a separate component of aggregate knowledge capital.  
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is assumed that product innovation is an important vehicle to remain on a competitive edge. For 

this reason one may expect a feedback link that runs from a firm’s own sales performance to its 

competitive environment. This ‘closing’ link also serves as the starting point for looking at the 

determinants of firm performance in a dynamic setting. Comparing the figure for two (adjacent) 

periods enables us to elaborate on the sources of Multi-Factor Productivity growth and their 

contribution to output growth, which, in essence, is the main objective of doing ‘growth-

accounting’. For this reason, I also include a link running from MFP (growth) to output 

(growth).10  

Keeping this dynamic extension in mind, the bottom line of the figure is that Multi-Factor 

Productivity growth is a multi-faceted, not purely physical phenomenon. MFP growth at the 

firm-level has to do with various internal as well as external factors, each of which can be 

influenced in some way by innovation in a broad sense. MFP-growth can mirror innovation 

induced efficiency change, increased market strength as a result of product innovation, an 

increase in the potential to seize the benefits of network externalities facilitated by higher levels 

of ICT use of other firms or even reflect changes in policy institutions that favor different firms 

in different ways. Analyzing the importance of some of these factors is the subject of the 

coming chapters. 
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Chapter 2 

Linking innovation and firm performance: a new approach* 

Abstract  
 
Using the second Community Innovation Survey (CIS-2) for the Netherlands we analyse the 
input and output stages of the innovation process and the links between the innovation process 
and overall economic performance. We investigate the existence of feedback links running from 
past economic performance to the input and the output stage of the innovation process and 
compare the results of a single-equations approach with the results obtained from a 
simultaneous-equations model.  
 
2.1 Introduction 
 

The recognition of knowledge being an important production factor becomes more and more 

widespread. The spate of literature from policy makers and scientists alike is a good indicator 

for the interest in the knowledge-based economy and thus in the innovation process (see e.g. 

Kleinknecht, 1996, Brouwer, 1997, Acs et al., 1999, and Audretsch and Thurik, 1999). The 

availability of new and improved indicators collected in the Community Innovation Surveys 

(CIS) opened the opportunity to study innovation as a separate process with R&D expenditures 

as the most important input into innovation and newly created or improved products or process 

innovation as the output of the innovation process. The data referring to the technological 

environment of firms and to the organisational aspects of their innovation processes created a 

major impetus for the explanation of differences in innovation activity as well as an analysis of 

the importance of firm-specific innovation characteristics for the output of the innovation 

process and the effects of the innovation output on firm performance.  

Recently, the interest in the innovation process has shifted away from the input (R&D) to the 

output stage (realised innovations). Moreover, the focus is now also on the linkages between the 

three stages of the innovation process: input, throughput and output, with the role of innovation 

as a driving factor of long-term macro-economic growth taken for granted.  

The importance of feedbacks from overall firm performance to the level of innovativeness 

has been one of the subjects of various innovation studies. Recent tests of the so-called demand 

pull hypothesis of Schmookler (1966) are presented in e.g. Brouwer and Kleinknecht (1997, 

1999) and Cosh et al. (1999). These studies have in common that one stage of the innovation 

process (for instance R&D expenditures or the realisation of innovations) has been isolated and 

subsequently linked to economic performance, thereby neglecting the joint dependence of 

                                                      
* This chapter, co-authored by Luuk Klomp, appeared in International Journal of the Economics of 
Business, vol. 8, 2001, pp. 343–364. I am are thankful to Bert Balk, Jos van Deventer, Niels de Lanoy 
Meijer, Sjaak Pronk and participants of the CAED’99 conference (The Hague, The Netherlands, August 
1999) for helpful comments and an anonymous referee for helpful suggestions. 
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measures of innovativeness on firm specific innovation characteristics or the joint dependence 

of innovative output and the overall economic performance of firms.  

In this paper we analyse the relationships between the different stages of the innovation 

process and overall economic performance using a simultaneous-equations model. To this end 

we use the ‘chain-link model’ of Kline and Rosenberg (1986) as a frame of reference. In our 

view the use of simultaneous-equations models that cover both the innovation process and (the 

overall) firm performance has two advantages compared to the single-equations approach. 

Firstly, the effects of the technological environment on a firm’s innovation process can be 

disentangled in two parts: an impact on the innovation input and an impact on innovation 

output. Secondly, a simultaneous-equations approach is more adapted to models that stress the 

importance of feedback links running from overall economic performance and the innovation 

process. 

The approach presented in this paper can be compared with other recent innovation studies 

which take account of the simultaneity problem. Contrary to e.g. Lööf and Heshmati (2000) and 

Crépon et al. (1998) we do not use a production function framework. In these studies innovation 

has been incorporated in the traditional R&D production function approach by using a structural 

model in which the R&D capital stock is assumed to determine the level of productivity 

indirectly, i.e. via its impact on innovation output. R&D capital stocks are not available in our 

data. Moreover, we believe that innovation is more than formal R&D only. For these reasons we 

follow a different route by choosing the innovation intensity as input for the production of 

innovative output and turnover and employment growth as our measures for firm performance.  

For the application of the full model we need a complete set of innovation variables and 

performance measures. These are obtained by linking different data sources. Common to other 

studies, the linking of data from different sources raises missing variable problems. In our study 

we also face a special missing variable problem due to the fact that the key variable ‘innovation 

output’ has not been measured for the innovating ‘service firms’ and this may show up as a 

selectivity problem in the estimation procedure. Following Lööf and Heshmati (2000) and 

Crépon et al. (1998) we try to take account of selectivity as well as simultaneity biases by 

incorporating the correction for selectivity in the estimation procedure for the full model.  

It is shown that the (relative) importance of variables referring to the technological 

environment and firm specific innovation characteristics diverges from the estimated impacts of 

the single-equations approach when taking into account the simultaneous nature of the 

variables. Furthermore, the estimate of a feedback from past economic performance to the 

innovation process appears to be more pronounced when one takes into account the joint 

dependence of the different stages of the innovation process and overall firm performance.  

The plan of the paper is as follows. In section 2.2 we describe the construction of the data 

and   present a brief summary of the results for the used measures of firm performance. It is 
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shown that innovative firms outperformed their non-innovative counterparts, although the 

differences for turnover growth are more pronounced than those for employment growth. 

Section 2.3 discusses how the model of Kline and Rosenberg has been used as a guide for 

setting up our model. The identification of our model requires some a priori assumptions on the 

specification of the equations and the choice of the exogenous variables. These topics and the 

related selectivity issue are discussed in section 2.4. The estimation results are presented in 

section 2.5 and section 2.6 closes with a summary and the most important findings. 

 
2.2 The data 

2.2.1 Matching CIS-2 and the Production Survey data 

In this subsection we outline the procedure followed to select the data used in the 

econometric part of the paper. As a starting point we used all the 10664 firms that responded to 

CIS-2, which covers the period 1994 – 1996. The majority of these firms were also covered in 

the Production Surveys of Statistics Netherlands, which provide data on e.g. total sales, 

employment, value added and profitability. However, a number of responding firms belong to 

sectors for which no Production Surveys were available, and for these firms use had to be made 

of the data on total sales and employment in 1994 and 1996 that were collected in CIS-2. We 

used the data on employment in 1996 collected in CIS-2 for all firms in order to check the 

comparability of the unit of observation in both surveys. On the basis of this consistency check 

it was decided to reject 1250 firms because of the large discrepancies in the employment 

figures. In addition we omitted 1032 firms from the analysis because their data on total sales 

and employment were missing in the Production Surveys of 1994 or 1996 and 54 respondents to 

CIS-2 were rejected at this stage because of an implausible score for their innovation intensity.1  

After this preliminary data cleansing 8328 firms were selected with a complete record of total 

sales and employment for 1994 and 1996. In total 3995 of these firms stated to have 

implemented product or process innovation. However, as a consequence of the choice of the 

exogenous variables, not all innovating firms could be used in the estimation procedure. In total 

936 firms had to be rejected due to missing data for the exogenous variables.2 For the remaining 

3059 firms data on the inputs into innovation were available and 1977 firms of this sub-sample 

also had data for the share of innovative products (‘new and improved to the firm’) in total 

sales, including the firms that reported zero innovative sales (N = 280) and the firms with sales 

in 1996 consisting entirely of new or improved products (N = 35). Furthermore, we recall that 

this measure for innovation output is not available for all firms belonging to the 'service' 

industries.  

                                                      
1 Firms were rejected if the ratio of total innovation expenditure to total sales was higher than 50 percent. 
2 For 917 firms data on profitability and in 17 cases data on the age in January 1994 were missing and 2 
firms were rejected because of an exceptional score for the profitability indicator. 
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Table 2.1  The selection of firms starting from the Production Survey (PS) data 

Of which: Sector of principal 
activity and classes  
of firm sizea  
  

Number of  
firms with 

data on sales 
and 

employment  

Non- 
innovating 

firms 

Innovating 
firms used in 

the model  

Firms with 
innovative 

output 
available  

R&D firms 

      
Manufacturing  2969 1002 1820 1820 979
 Small firms   1296 607 651 651 227
 Medium sized firms   1313 345 894 894 552
 Large firms 360 50 275 275 200
   
Services 4170 2496 1082  372
 Small firms 1852 1264 346  81
 Medium sized firms 1892 1076 550  196
 Large firms 426 156 186  95
   
Other industriesc 1189 835 157 157 23
 Small firms 529 402 69 69 6
 Medium sized firms  573 392 66 66 10
 Large firms 87 41 22 22 7
   
All sectors 8328 4333 3059 1977 1374
 Small firms 3677 2273 1066 720 314
 Medium sized firms 3778 1813 1510 960 758
 Large firms 873 247 483 297 302

a Small firms: firms employing more than 10 and less than 50 employees;  
  Medium sized firms: firms employing 50 or more and less than 200 employees;  
  Large firms: firms employing 200 or more employees; 
b Firms with a measurement for the share of products 'new to the firm' in total sales of 1996;  
c This sector includes the following industries: agriculture, forestry and fishing, mining, electricity, gas, 
  and water and the construction industry. 

 

Table 2.1 presents a breakdown of the initially selected firms according to some response 

characteristics. About 48 percent of the selected firms consist of firms that stated to have 

implemented product or process innovations in 1994 – 1996. The rate of innovativeness 

(measured by the number of innovating firms as a percentage of all firms) varies between 66 % 

for manufacturing and 30 % for 'other sectors' and is increasing with firm size in all sectors. It 

can be verified that, contrary to rate of innovativeness which increases with firm size, the share 

of firms reporting to have realised innovative output does not differ very much between classes 

of firm size. Thus, conditional on having implemented product or process innovation, the extent 

of innovation success seems not to depend on firm size at first sight. Finally, Table 2.1 indicates 

the well-known empirical fact that formal R&D activities are predominantly concentrated in 

manufacturing and that the probability of performing R&D on a permanent basis also is size 

dependent.  
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Figure 2.1.a The distribution of total sales growth (n = 8328)  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 2.1.b The distribution of employment growth (n = 8328) 
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2.2.2 A comparison of the performance of innovating and non-innovating firms 
 

Although the importance of innovation for economic activity is often widely acknowledged, 

this does not imply that non-innovating firm are performing worse than their innovating 

counterparts. One can not even exclude the possibility that non-innovating firms perform better 

on average. Matching the CIS-2 data and the production survey data enables us to compare the 

performance of innovating and non-innovating firms. A clear picture emerges when we look at 

the distributions of the two performance measures presented in Figures 2.1a and 2.1b. 

Evidently, innovating firms were performing better than non-innovating firms with regard to the 

record of total sales growth but the differences are less pronounced for the growth rates of 

employment. However, the main message from the distributions presented in these figures is the 

overwhelming heterogeneity in firm performance for the innovating as well as for the non- 

innovating firms. Consequently, it is expected that technological innovation will not be able to 

explain all observable heterogeneity.  

 
2.3 A tentative structural model for the analysis of innovation and economic        

performance   
 

Using an informal model of the innovation system as a frame of reference and taking into 

account the data at hand, there are different routes to the empirical testing of the many 

dimensions underlying the relationship between innovation and overall economic performance. 

In order to enhance further discussion and as a motivation for the route chosen in this paper, we 

first present a condensed and adapted summary of the innovation model of Kline and Rosenberg  

(1986). Figure 2.2 presents some of the main features of their well-known innovation model 

which we have adopted as a guideline for the specification of the empirical models. The central 

part of the figure summarises the innovation process and the surrounding bars indicate its 

positioning within the technological and economic environment.  

The two bars at the left side of Figure 2.2 represent a firm's market potential and 

technological environment respectively. In the empirical application we use the market share in 

1994, the growth rate of deflated sector sales for the period 1994 – 1996 (labelled as SEC) and 

dummy variables representing the Pavitt classification of firms to take account of the sector-

specific market potentials open to a firm. The technological environment of a firm is 

represented in the empirical model with the help of different firm-level data. We include two 

variables which are derived from a factor analysis of the technological opportunities open to the 

firm by applying a principal component analysis to the data collected on the use of information 

sources. Following Felder et al. (1996), we use two factors to represent the use of technological 

opportunities: technological information sourced from ‘science’ and technological information 
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sourced from ‘other firms’ such as suppliers, customers or competitors. These factors will be 

denoted by the variables ‘SCIENCE’ and ‘OTHER’ respectively.3 

 
Figure 2.2  The innovation process and firm performance 

 
 

The technological environment of a firm may also affect its organisational arrangements. In 

the empirical model we use proxy variables which refer to organisational aspects in order to 

                                                      
3 The use of publicly available information sources such as journals, scientific literature, fairs and 
exhibitions is also included in the principal components analysis. These information sources obtain the 
highest scores for the factor loadings of ‘other firms’. Details on the principal components analysis can be 
found in Klomp and Van Leeuwen (1999).  
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take account of the notion that a firm may absorb knowledge from the environment via supplier-

producer-customer-interactions, or may build up and maintain its own knowledge-base via R&D 

investment and R&D co-operation. In the empirical model the organisational arrangements will 

be represented by two dummy variables that indicate the presence of permanent R&D facilities 

(DR&D) and the emergence of innovation in partnerships with other firms (Dco-op) respectively.   
The relation between the presence of permanent R&D facilities, ‘innovation in partnership’ 

and the two technological opportunity variables (‘SCIENCE’ and ‘OTHER’) can be outlined as 

follows. One may expect a ‘cost-push’ effect on innovation expenditure of the technological 

opportunity factor ‘SCIENCE’ due to the absorptive capacity argument (see e.g. Cohen and 

Levinthal, 1989, and Leiponen, 1999). A co-operation between R&D firms and research 

institutes and universities requires relatively high internal research skills in order to assimilate 

the fruits of the co-operation and to internalise and commercialise the knowledge created during 

the co-operation. Contrary, a co-operation with e.g. suppliers, customers and competitors is 

expected to have lower research competence requirements, a smaller impact on the organisation 

of firms, and thus a lower ‘cost-push’ effect on innovation expenditure than the technological 

opportunity factor ‘SCIENCE’. On the other hand, one can imagine that non-R&D co-operation 

affects innovation throughput more directly than R&D co-operation and consequently may have 

a larger effect on the level of innovation output than the technological opportunity factor 

‘SCIENCE’.  

The central part of Figure 2.2 represents the links within the innovation system itself and the 

links between a firm’s innovation system and its technological environment. Given the market 

potentials and the technological opportunities open to the firm, the use of technological 

opportunities may both affect the level of innovation expenditures, as well as the innovation 

throughput directly. Therefore, the extent of innovation success is expected to depend on 

investment in innovation, e.g. by building up or maintaining own R&D capital stock or 

investment in the exploitation of technological opportunities via R&D co-operation, but also on 

more informal not R&D driven co-operation with other firms.  

The upper block of the central part of the figure represents the inputs into innovation.  

Different routes are open as regards the choice of the measure of the inputs into innovation. 

CIS-2 uses a rather broad definition of the sources devoted to innovation, with R&D 

expenditures as the most important component. In spite of the well-known deficiencies of R&D 

as an indicator for the innovation process, it remains one of the most frequently applied 

measures (see for instance Kleinknecht (1996) and Kleinknecht and Bain (1993) for a 

discussion of the deficiencies of the R&D indicator).4 We could restrict ourselves to R&D 

expenditures (both intramural and extramural R&D), but doing so we would neglect more than 

                                                      
4 The availability of time series data for most Western countries seems to be responsible for the frequent 
use of R&D as a measure for the innovation process. R&D is often the only indicator that allows for 
international comparison over a time period. 
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half of all innovation expenditures. Therefore, we use the total of all innovation expenditures 

components. Following the general practice, a firm's total innovation expenditures is scaled by 

its total sales and the resulting innovation intensity is used as the measure for the inputs into 

innovation (labelled as ININT).  

The lower block represents the well-known functional break-down of the innovation 

production process (a functional split-up of the innovation activities) which is adopted from the 

traditional linear innovation model. The interactions between the different innovation activities 

are indicated with dark arrows. Because we only have data pertaining to the final result of 

innovation production process, we can not incorporate the underlying activities into the 

empirical models.  

Finally, the bar at the right side of Figure 2.2 represents the feedback links between 

innovation and overall economic performance. In the empirical application we use the log-odds 

(labelled as LOP) of the share of new or improved products (P) to represent the level of 

innovation output  and a firm’s total sales (ΔlogS) and employment growth (ΔlogE) to represent 

the overall economic performance of firms.5 Contrary to Klomp and Van Leeuwen (1999) we 

use deflated turnover as our measure of sales performance.6 The bar indicates that a firm’s 

innovation output contributes to a firm’s total sales growth and thus affects its overall economic 

performance which in turn is assumed to affect the inputs into innovation. Notice further, that in 

addition to this link it is also assumed that a firm's overall sales growth may affect the level of 

innovation output directly.  

These feedback links close our tentative model. In a broad view, the model links a firm’s 

own innovation performance to the exogenously given market potentials and to the availability 

of technological opportunities. Moreover, the model also establishes a framework for the 

empirical testing of the existence of a persistent relation between its own overall economic 

performance and its level of innovativeness. The latter will be represented by feedback links 

running from a firm’s own record of sales performance, either to the input stage or to the output 

stage of the innovation process (or the throughput stage of the complete system if we take a 

broader view). These feedback loops explicitly acknowledge the dynamic nature of the system.  

The proper empirical testing of all lead and lag structures involved ideally would require the 

availability of longitudinal firm level innovation data. In CIS-2, some longitudinal aspects are 

present in a crude way, and moreover the longitudinal aspects are restricted to the measures of 

overall economic performance only. With the available data, the best we can do is to take 

account of the interdependency of the different stages of the system. Besides establishing a 

                                                      
5 The choice of the ‘log-odds’ ratio has been made in order to achieve that the predicted value of the 
throughput measure lies in between 0 % and 100 %.  As a pragmatic solution we imputed a value for P of 
0.001 respectively 0.999 in order to construct the ‘log-odds’ ratio for the 315 firms mentioned in 
subsection 2.2.1. 
6 We used sector price indices for total sales to calculate deflated turnover figures.  
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framework for the testing of a persistent relation between innovation and economic 

performance, the model also allows the empirical testing of other hypothesis. With the different 

variables at hand we can estimate separately equations for the levels of innovation intensity and 

innovation output. We can also start from the assumption that the inputs into innovation, 

innovation output and the overall economic performance are jointly determined, and then test 

e.g. whether technological opportunities and past performance have a separate role in the 

explanation of differences in innovation output, apart from their impact on innovation 

expenditures. 

 
2.4 The specification of the empirical model 

 
2.4.1 The structure of the model 

 
From the discussion in the preceding section it follows that a firm’s technological 

environment may affect both its level of innovation intensity (ININT) and its level of innovation 

output (LOP) simultaneously. For this reason ININT and LOP are considered jointly 

endogenous. The specification of the structure of the simultaneous model is completed by 

adopting the assumptions that the impact of innovation on a firm’s sales growth is channelled 

mainly through the sales of innovative products and that the feedback links from firm 

performance to the innovation process may be running to both the input and the output stage 

(the innovation output) of the innovation process. Furthermore it is assumed that turnover 

growth may affect employment growth but not the other way around.   

According to this reasoning the firm-specific innovation characteristics that are assumed to 

determine the inputs into innovation and the share of innovative sales should not appear in the 

equations for a firm's total sales growth (ΔlogS) and employment growth (ΔlogE). An 

exception is made for process innovation. With the data at hand the role of process innovation 

for innovation output and firm performance cannot be taken into account in a very satisfactory 

way. For many firms the innovation process appears to be directed to product innovation as well 

as to process innovation simultaneously and the relative importance of both types of innovation 

cannot be assessed.7 Process innovation may enhance product innovation (and thus increase the 

share of innovative sales) but may also lead to increased competitiveness for ‘non-innovative’ 

product lines due to reductions of production costs and thus may also affect the overall firm 

performance more directly. For instance, in Bartelsman et al. (1998) it has been documented 

that firms that had implemented advanced manufacturing technologies (AMT) showed better 

performance for employment growth than other firms.  

                                                      
7 It should be noted further that for ‘service firms’ no distinction has been made between product and 
process innovation. Therefore, we can only use this variable for the firms belonging to manufacturing and 
other sectors. 
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Given the uncertainty regarding the precise nature of the interaction between product and 

process innovation and its impact on the overall firm performance it will be assumed that 

process innovation may have an additional effect on a firm’s innovative sales, turnover and 

employment growth.8 Summarizing the before mentioned reasoning we keep the specification of 

the model equations for total turnover growth and employment growth relatively simple. 

Besides the extent of innovation success, as measured by LOP, we include dummy variables to 

control for industry and size effects and the implementation of process innovation (labelled as 

Dprocess).  

 
2.4.2 The choice of the exogenous variables 

 
The selection of the exogenous variables has been guided by the following considerations. 

We make a distinction between variables referring to the availability of financial resources 

(collected in the vector X1), variables that reflect the organisational aspects of a firm's 

innovation process and its technological environment (collected in the vector X2), and other 

predetermined ‘non-innovation’ firm-specific variables and industry-specific variables that can 

be considered as exogenously given to the firm and that will be specified explicitly in the 

equations.  

For many firms the innovation expenditures consist to a large extent of investment 

components, e.g. expenditures on in-house R&D, licenses and patents and equipment purchased 

for the implementation of process innovation. We assume that these investment type 

expenditures are affected by the availability of financial resources and for this reason we take 

into account two financial variables: the ratio of cash-flow to total sales for 1994 (CF1994) and a 

dummy variable that refers to the awarding of innovation subsidies (Dsubs).  

The second group of exogenous variables (X2) consists of the variables already discussed in 

section 2.3. We use two dummy variables to indicate the presence of permanent R&D facilities 

(DR&D) and innovation in partnerships (Dco-op) and the two continuous variables ‘SCIENCE’ and 

‘OTHER’ derived from a principal components analysis in order to represent the use of 

technological opportunities. In addition to these variables we also included in the innovation 

output equation a dummy variable that captures a firm’s assessment of the importance of 

product innovation. This dummy variable (labelled Ddpull) takes on a value of one (and zero 

otherwise) if the replacement of old products or the improvement of the quality of existing 

products or the extension of market shares and product ranges were rated as (very) important.  

The list of exogenous variables is completed by including in the models ‘non-innovation’ 

variables that are assumed to be predetermined or exogenous to the firm. Apart from a constant 

                                                      
8 In the innovation output equation the variable that refers to the implementation of process innovation 
can be interpreted as a representation of the interaction effect on innovative sales of performing 
simultaneously product and process innovation. 
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term we include the logarithm of the age of firms in January 1994 (LA1994) and the logarithm of 

total sales in 1994 (LS1994) into the innovation input and output equation. This enables us to infer 

the impact on innovation performance of age conditional on size. Furthermore we include in all 

equations the growth rate of (deflated) sector sales9 (SEC), a set of dummy variables in order to 

capture industry-specific effects (IND) and a set of dummy variables to represent size effects 

(SIZE).10 

Then, after appending constant terms, the simultaneous system can be summarized as: 

 
ININT = F1 (C1, ΔlogS,,ΔlogS, SEC, X1 , X2,, LA1994  ,LS1994,, IND)        (1A)  

 
LOP   = F2 (C2, ININT, ΔlogS, SEC, X2 , LA1994  ,LS1994,,IND, Dprocess)        (1B) 

 
ΔlogS = F3 (C3 , LOP, SEC, IND, IND*SIZE, Dprocess)          (1C) 

 
ΔlogE = F4 (C4 , LOP, ΔlogS ,SEC, SIZE, IND, IND*SIZE, Dprocess)        (1D) 

 
where ININT, LOP, ΔlogS and ΔlogE are the jointly endogenous variables and X1 and X2 

represent vectors of predetermined financial variables and exogenous explanatory innovation 

variables that refer to the technological  environment of firms respectively. 

 
2.4.3 Selectivity issues   

 
As mentioned in the introduction, we face a special missing variable problem due to the fact 

that the key variable ‘innovation output’ has not been measured for the innovating ‘service 

firms’. For this reason the simultaneous model can only be applied using the data of firms 

belonging to manufacturing and other sectors. It is well known that the manufacturing and 

service sector showed a rather different performance in the period considered. This can also be 

verified from some simple descriptive statistics for the variables used in our study. In Appendix 

2.1 it can be seen, among others, that the (average) employment growth in the service sector 

was twice as high as the corresponding figure for manufacturing, a result which indicates that 

possibility of a selection biases cannot be excluded a priori.  

In order to reduce the effects of possible selectivity biases for the estimates of the 

simultaneous-equations model we incorporated the correction for selectivity in the estimation 

procedure. Similarly to Lööf and Heshmati (2000) we applied (separately) a generalised Tobit 

                                                      
9 Because of our interest in the feedback from firm performance to innovation we use both the growth rate 
of own sales (ΔlogS) and the growth rate of market shares (ΔlogS – SEC) in the innovation input equation. 
10 For the construction of industry dummy variables, the firms were classified into nine groups of the 
Pavitt classification and for the ‘size’ dummy variables we classified the firms into three groups (small, 
medium sized and large firms). The ‘supplier dependent’ manufacturing industry and small firms are the 
reference categories 
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model and Heckman’s two-step procedure for the inputs into innovation as well as innovation 

output. The methods are explained in Appendix 2.2.  

 
2.5 The estimation results 
 

As mentioned in the foregoing discussion our goal is to analyse the difference of the single-

equations and the simultaneous-equations approach. In Tables 2.2 and 2.3 we present the 

estimates of both approaches for the four endogenous variables of the model, including the 

results for the selectivity analysis applied to the level of inputs into innovation (ININT) and the 

output the innovation process (LOP). The simultaneous model consists of the equations of 

model (1), after extending the equations for ININT and LOP with the selectivity variable derived 

from Heckman’s two-step method. The simultaneous model has been estimated with the help of 

the method of Full Information Maximum Likelihood (FIML). This boils down to assuming that 

the disturbances of the extended system (1) follow a multivariate normal distribution. Before 

discussing the various estimates for the different equation we first summarize the results of the 

selectivity analysis. 

 
2.5.1 Results for the selectivity analysis   

 
The estimates for the Probit step (presented in Appendix 2.3) confirm the empirical fact that 

– on average – ‘business service’ firms are younger, performing R&D on a permanent basis less 

often and have lower market shares compared to manufacturing firms. However, given the 

market-share of a firm, its probability of ‘selection’ is negatively related to size (measured by 

the pre-existing sales level (LS1994)). This result indicates that large firms certainly are not 
overrepresented in the sample of firms for which a measure of innovation output is available. 

The probability of ‘selection’ also appears to be negatively related to sector specific growth 

opportunities (SEC), although the corresponding Probit estimates are much smaller then those 

obtained for the other variables. Finally it can be seen that the estimate of the correlation 

between the Probit and Tobit part of the system ( ρ ) are rather small for the two innovation 

equations (and only weakly significant for ININT). This indicates that the effects of selectivity 

for our data are modest.11  

 
2.5.2 The results of the single-equations approach for the innovation equations    
 

Table 2.2 presents the estimates for the two innovation equations: the equations for the 

inputs into innovation (ININT) and the equation for innovation output (as measured by LOP). 

We first discuss the OLS results and OLS plus the Heckman selectivity correction. We use the 

results of Heckman’s two-step method for two reasons. Firstly, Heckman’s two-step method is 

                                                      
11 We recall that the Tobit part of the selectivity model consists of the same variables as used in the 
simultaneous model. 
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much easier to integrate with the FIML approach applied for the simultaneous model, and, 

secondly, the results of Heckman’s two-step method were virtually the same as those for the 

Tobit part of the generalised Tobit model.  

Looking first at the results for the OLS estimates for the inputs into innovation, it can be 

seen that the explanatory variables are significant, with the exception of the estimates of own 

sales growth (ΔlogS) and the dummy variable that refers to innovation in corporation with other 

partners (Dco-op). The results for the simple OLS estimates and the ‘selectivity’ corrected 

estimates are virtually the same except for the dummy variable that refers to the presence of 

permanent R&D (DR&D). Thus, conditional on ‘selection’, the information that firms perform 

R&D on a permanent basis does not contribute any more to the observed dispersion in the level 

of inputs into innovation, because its impact on the level of innovation inputs has been captured 

by the selectivity variable. This result seems in agreement with Cohen and Klepper’s (1996) 

stylized fact 3.12  

The explanatory variables that remain most significant, also after the correction for 

selectivity, are the variables that refer to the use of technological opportunities, the availability 

of financial resources and size and age respectively. As to the financial variables, we found a 
significant and positive estimate for the effects of internal cash-flows, but also that the awarding 

of innovation subsidies contributes significantly and with the expected sign to the inputs into 

innovation. The estimates of size (LS1994) and age (LA1994) of both the simple OLS estimates and 

the OLS estimates corrected for selectivity are virtually the same. This indicates that we have 

decreasing returns to scale to innovation, but also that young firms do have higher innovation 

intensities than old firms. This result is rather robust as both variables also have been used to 

model the selection process and because it has also been found in the estimates for the 

simultaneous model.  

Next, we look at the single-equations estimate for the output of the innovation process. The 

estimation results for the innovation output equation (LOP) are presented in lower part of Table 

2.2. It is found that performing R&D on a permanent basis (DR&D), the objective ‘demand 

factors considered important’ (Ddpull) and the use of technological opportunities offered by other 

firms (OTHER) are the variables that are most significant. Notice further, that the effects of 

performing R&D on a permanent basis on the level of innovation output remains of the same 

order of magnitude after applying the selectivity correction. This in contrast to the pattern 

observed for the innovation intensity equation.  

                                                      
12 Stylized fact 3 of Cohen and Klepper (1996) states that for firms that are engaged in R&D no 
systematic relation between the level of R&D inputs and size can be observed. Our estimates of 
Heckman’s model indicate that conditional on size there is no effect on the level of innovation intensity of 
performing R&D on a permanent basis. 
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Table 2.2  OLS and FIML estimates for equation (1A) and (1B) 

 OLSa  Heckmana FIML 
 Est. Tb Est. Tb Est. Tb 

Number of firms           1977           1977         1977  
  
ININT  
       
Constant term        14.277       8.8 ***        16.073       8.9 ***      12.490         5.8 ***   
CF1994          0.039       3.0 ***          0.039       3.0 ***        0.024              2.6 ** 
LS1994         -0.840      -7.3 ***         -0.700      -4.8 ***       -0.530        -2.8 *** 
ΔlogS             0.035       1.4           0.051       1.9 *        0.305         3.2 *** 
ΔlogS – SEC         -0.051      -2.1 **         -0.067      -2.5 **        0.447         2.6 *** 
SCIENCE          0.632       3.9 ***          0.637       3.9 ***        0.480         3.3 *** 
OTHER          0.519       3.6 ***          0.529       3.7 ***        0.185         0.9 
LA1994         -0.712      -3.1 ***         -0.966      -3.5 ***       -0.608          -4.1 *** 
Dsubs          0.964       3.4 ***          0.937       3.3 ***        1.003         2.8 *** 
DR&D          0.783       2.5 **          0.073       0.2       -0.212        -0.3 
Dco-op          0.480       1.5 *          0.424       1.3        0.053            0.1 
Pavitt  dummy variables 
included 

            yes              yes            yes  

Selection variable          -2.836      -2.4 **       -1.314       -1.0 
    
LOP    
       
Constant term        -4.504      -6.6 ***         -4.736      -6.4 ***       -6.397        -3.4 *** 
ININT          0.031       2.8 ***           0.032       2.9 ***          0.211         1.5 *  
LS1994         -0.038      -0.8         -0.056      -1.1       -0.030        -0.3 
ΔlogS           0.006       1.8 *          0.006       1.8 *       -0.157        -1.1 
SEC        -0.004      -0.4         -0.006      -0.6        0.091         1.0 
SCIENCE          0.098       1.7 *           0.097       1.7 *         0.017         0.2 
OTHER          0.286       4.8 ***          0.285       4.8 ***        0.263         3.1 *** 
LA1994            -0.050      -0.7          -0.017      -0.2         0.114         0.8 
DR&D          0.974          8.1 ***         1.065             6.3 ***        1.132         4.8 *** 
Dco-op          0.278          2.3 **          0.285           2.3 **        0.265          1.4 
Ddpull          1.710        5.9 ***          1.705         5.9 ***        1.571          6.0 *** 
Dprocess          0.688        5.2 ***          0.689        5.2 ***        0.760         3.5 *** 
Pavitt dummy variables 
included 

           yes              yes            yes  

Selection variable           0.362       0.8        0.656         1.1 
       
R2 equation ININT          0.100           0.103         0.022  
R2 equation LOP          0.180           0.180         0.063  

a T-values are based on heteroscedasticity consistent estimates for the standard errors;  
b *, ** and *** denote significance at the level of 10, 5 and 1 % respectively.  

 

An interesting result is that the (significant) contribution to innovation output of SCIENCE is 

much lower than the estimated coefficient of OTHER indicating that the interactions with 

customers, suppliers and competitors contribute more directly to innovation output than the use 

of information from the ‘science’ sector. However, the latter contributes significantly to the 

level of inputs into innovation also after applying the correction of selectivity, as can be seen 

from the upper part of Table 2.2. Furthermore, the results show that the share of innovative sales 

in total sales does not depend on the size and the age of firms. Thus, conditional on having 

innovative sales, large (old) firms do not have higher shares of innovative products in total 
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turnover than small (young) firms. This result contradicts stylized fact 4 of Cohen and Klepper 

(1996), but is in agreement with Lööf and Heshmati (2000) and Crépon et al. (1998).   

According to the structure of the model innovation intensities determine the level of 

innovation output, which in turn are assumed to determine the overall sales performance. In 

Table 2.2 it can be seen that the single-equations estimate for the innovation intensity in the 

innovation output equation are rather robust to selectivity but the impact on innovative output is 

relatively modest. Another interesting result is found for the dummy variable that represents the 

implementation of process innovation. The impact of process innovation on the level of 

innovation output appears to be relatively important, indicating that the simultaneous 

application of product and process innovation enhances innovation output.13  

 
2.5.3 Simultaneous-equations estimation   
 

A notable result of the single-equation estimates is that the estimates for the feedback effect 

from a firm's total sales growth (ΔlogS) to the input and the output stage of the innovation 

process are very modest. For both equations the corresponding estimate of Heckman’s model is 

close to zero. This result can be compared with, for instance Brouwer and Kleinknecht (1999), 

where it was close to 0.07. This estimate is quite similar to the implied Heckman estimate for 

the impact of a firm’s sectoral demand growth on the inputs into innovation demand growth 

(SEC) of Table 2.2.14  

These relatively poor results for the testing the Schmookler’s demand pull hypothesis (see 

Schmookler, 1966) may be due to the joint endogeneity of the growth rate of total sales, the 

innovation-output indicator and the inputs into innovation. Putting it another way, this joint 

endogeneity calls for a simultaneous-equations approach. The application of a simultaneous 

model is also motivated by the estimation results of the single-equations approach for some 

innovation variables. Why does performing R&D on a permanent basis only affect the level of 

innovation output and not the inputs into innovation? Which are the consequences for 

‘technological environment’ variables for the innovation equations when all interdependencies 

are taken into account simultaneously? Therefore, we relaxed the implicit exogeneity 

assumptions underlying the single-equations estimates by assuming that the inputs into 

innovation, the extent of innovation success and the overall firm performance are jointly 

determined. After adding disturbance terms to the equations, the system (1A) – (1D) has been 

estimated with the method of Full Information Maximum Likelihood (FIML).15  

 

                                                      
13 This result is also in agreement with the findings in Lööf and Heshmati (2000).  We recall that this 
estimate should be interpreted as an interaction effect of process innovation on innovative sales.   
14  It should be noted that Brouwer and Kleinknecht (1999) used the growth rate of R&D man years as the 
dependent variable. 
15  We used the FIML estimation procedure implemented in TSP 4.3. 
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2.5.3.1 Simultaneous-equations estimates for the innovation equations   
 
The last two columns of Table 2.2 present the simultaneous-equations estimates for the two 

innovation equations. The results can be compared with the Heckman estimates of the single-

equations approach. The most striking difference is that the estimated feedback from overall 

firm performance to innovation has increased substantially if the interdependencies between the 

two stages of the innovation process and between the innovation process and overall 

performance are taken into account more properly. The coefficient of own sales performance 

rises from 0.05 to 0.30 and, in addition, a significant and positive feedback effect from 

improving market shares (see the estimated coefficient of ΔlogS - SEC) can be observed. 

Another notable difference is that the impact of innovation intensities on innovation output rises 

in the simultaneous model, although the estimate becomes only weakly significant. This result 

underlines the risk of obtaining a negative simultaneous bias for (gross) ‘returns’ to innovation 

output of investment in innovation when using a single-equations approach.  

Looking next at the variables that refer to the technological environment of firms, it can be 

seen that impact of the use of other technological opportunities than those sourced from the 

‘science sector’ no longer contributes significantly to the inputs into innovation, but these 

opportunities remain a significant determinant of innovation output. On the other hand the 

impact of the use of technological opportunities sourced from ‘science’ remains significant and 

positive in the innovation intensity equation. The latter result may be interpreted as a more 

robust corroboration of the absorptive capacity hypothesis which conjectures that a co-operation 

with ‘science’ requires higher internal R&D skills and thus higher innovation expenditures. The 

different impact from the environment when using a simultaneous approach also shows up in 

the estimate for the dummy variable representing a co-operation with other firms (Dco-op). When 

estimating both innovation equations simultaneously, the corresponding estimate turns out to 

become insignificant in the innovation intensity equation but remains of the same order of 

magnitude in the innovation output equation (although its significance has been reduced). 

In closing the discussion of the estimates for the two innovation equations some brief 

comments are in order with respect to other variables. The impacts of ‘size’ and ‘age’ on the 

inputs into innovation and the innovation output remain of the same order of magnitude, and 

also remain insignificant in the innovation output equation. Thus, the results for the tests of 

stylized facts 3 and 4 of Cohen and Klepper (1996) are preserved in the estimates for the 

simultaneous model. Finally, there appears to be no feedback effect from the overall firm 

performance to innovation output, when taking into account the joint endogeneity of innovation 

output and the overall sales performance. 
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2.5.3.2 Simultaneous-equations estimates for firm performance 
   
So far, the discussion of the results has been restricted to the equations for the input and output 

stage of the innovation process only and nothing has been said about the impact of innovation 

on firm performance, as measured by a firm’s growth rate of total turnover and employment 

growth. We recall that the specifications for the two measures of firm performance are kept 

relatively simple by assuming that the impact of innovation on firm performance is directed via 

the impact of innovative sales on total turnover and employment growth, and that, in addition, a  

 
Table 2.3  OLS and FIML estimates for equation (1C) and (1D) 
 OLSa FIML 
 Est. Tb Est. Tb 

Number of firms           1977        1977  
   
ΔlogS   
     
Constant term          0.034         0.0         2.710          1.7    
LOP          0.352         2.1 **         0.893           2.2 ** 
Dprocess          1.648         1.7 *         1.584          2.0 ** 
SEC          0.664         6.3 ***        0.665        10.8 *** 
Pavitt and size dummy variables  
included 

            yes           yes  

     
ΔlogE     
     
Constant term        -2.019        -2.5 **        -3.095        -2.4 ** 
LOP        -0.154        -1.7 *        -0.430        -1.5 * 
ΔlogS          0.250         8.7 ***         0.006         0.1 
SEC         0.005         0.1         0.168         3.0 *** 
Dprocess         1.286         2.6 ***         2.183         3.3 *** 
Pavitt and size dummy variables  
included 

           Yes             yes   

     
R2 equation ΔlogS          0.070          0.063  
R2 equation ΔlogE          0.183          0.030  

a T-values are based on heteroscedasticity consistent estimates for the standard errors; 
b  *, ** and *** denote significance at the level of 10, 5 and 1 % respectively.  

 

firm’s performance may be enhanced by the actual implementation of process  innovation.16 

Given these assumptions the discussion of the impacts of innovation on firm performance 

can be relatively brief. The OLS and the FIML results for the two performance measures are 

presented in Table 2.3. As expected, the results show a considerable (positive) bias for the 

single-equations estimate for the coefficient of the sales variable in the employment equation: 

the estimate for the effects on employment growth of the growth rate of (deflated) total turnover 

                                                      
16 In contrast to Klomp and Van Leeuwen (1999) we do not use the data on innovation objectives related 
to process innovation but instead we use the information that firms have actually implemented process 
innovation. 
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vanishes when taking into account simultaneity. However, the impact of innovative products on 

a firm’s growth rate of total turnover increases considerably: it is more than doubled if we use a   
simultaneous-equation model in stead of a single-equations approach. Nevertheless, only a 

small part of the observed differences in firm performance is explained by the model. This 

mirrors two things. Firstly, by taking into account all the interdependencies of the whole system, 

a more significant estimate (in the economic sense) for the impact of innovative sales on the 

growth rate of total turnover can be obtained, but, secondly, differences in the innovation 

performances of firms cannot provide more than a partial explanation of the observable 

heterogeneity in firm performance.  

Another interesting result pertains to the contribution of process innovation to firm 

performance. The estimates indicate that firms who stated to have implemented process 

innovation show higher turnover growth as well as higher employment growth than other firms. 

Apparently, implementing process innovation enhances the competitiveness of all sales, and 

thus a firm’s total turnover growth and employment growth. However, the direct impact of 

innovative sales on employment growth is negative (be it only weakly significant), a results 

which contradicts the a priori reasoning (and empirical findings of other studies) that the 

introduction of new and improved products has a positive impact on employment growth. 

 
2.5.4 A comparison with the results of other empirical studies  

 
Our results can be compared with other innovation studies which follow a similar structural 

approach to the empirical assessment of the importance of innovation for firm performance.   

Recent examples are presented in Lööf and Heshmati (2000) and Crépon et al. (1998). Contrary 

to these studies we did not use a production function framework. Consequently, our model is 

not directed explicitly to an explanation of the impact of innovation on productivity (growth). 

Furthermore, we use the innovation intensity as an input for the production of innovative output 

instead of the R&D capital stock. Nevertheless, and notwithstanding these differences, some 

striking similarities can be observed. Both studies also show that the returns to innovation are 

higher if one takes into account joint endogeneity of the inputs into innovation, innovative sales 

and firm performance. 

By choosing a firm’s total turnover growth and employment growth as the measure of firm 

performance our study shows more similarities with earlier innovation research, as presented 

e.g. in Brouwer and Kleinknecht (1994). In these studies a more limited system approach has 

been followed by linking simultaneously the growth rate of turnover growth and the growth rate 

for turnover per employee to innovation characteristics. The reduced-form estimates of Brouwer 
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and Kleinknecht (1994) pointed to a (derived) positive effect on employment growth of both 

product related and process related R&D for the period 1988 – 1990.17  

With different data, a different observation period and a different model it goes without 

saying that our results are not very comparable. Our preferred estimates (of the simultaneous-

equations model) show a significant and positive effect of innovative sales on turnover growth 

but not for employment growth. However, our results also indicate that the (derived) effects of 

innovation on productivity growth are not negligible. The latter result is merely due to the 

‘direct’ impact of process innovation on our performance measures. It can be verified that the 

implementation of process innovation increases innovative sales as well as (total) turnover 

growth and employment growth. The last mentioned result seems to be in agreement with 

Bartelsman et al. (1998). An assessment of the impact of innovation on productivity is – given 

the structure of the used model – less clear. Nevertheless, it can be seen that difference between 

the estimates for the coefficient of LOP in the equations for turnover and employment growth is 

about 1.57.18 Then, taking also into account the ‘direct’ impact of process innovation on non-

innovative sales and employment, one arrives at the conclusion that innovation positively 

contributes to productivity growth. 

 
2.6 Summary and conclusions 
 

Recent innovation studies place much emphasis on innovation as a production process, with 

new or improved products as a separate output which enhances the overall firm performance. 

This enables the linking of a firm’s overall sales performance more explicitly to the innovation 

process, but also calls for empirical methods which are more adapted to new theoretical 

constructs. This paper presents the results of a micro econometric analysis using the data of the 

second wave of the Dutch Community Innovation Survey (CIS-2) and methods that take into 

account the joint dependence of the stages of the innovation process and overall firm 

performance.  

Using the well-known innovation model of Kline and Rosenberg (1986) we have tried to 

assess the importance of innovation variables for the different stages of the innovation process, 

the links between innovation and firm performance, as well the existence of feedback effect 

from a firm’s overall performance to its innovation endeavour. This has been achieved by using 

a four equations model for the inputs into innovation, the probability of innovation success and 

a firm’s total turnover and employment growth. Notwithstanding the limited information in the 

time dimension of the data we obtain rather plausible and surprising results.  

                                                      
17 Similarly Van Leeuwen and Nieuwenhuijsen (1999) reported a significant impact of product related 
R&D on employment as well as total turnover. Unfortunately there are no data available in CIS-2 that 
enables an assessment of the relative importance of both types of innovation. 
18 Using the (co)variances of the corresponding estimates yield a standard error for the difference of 0.8. 
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Among others, it is found that the impact of the technological environment of a firm on the 

two stages of the innovation process differs between a single-equations and the simultaneous-

equations approach. We found a rather strong evidence for the ‘absorptive-capacity’ hypothesis 

in the pattern for the estimates pertaining to the use of different technological opportunities. 

Technological opportunities sourced from ‘science’ are only significant for the explanation of 

inputs into innovation, but the use of other sources (provided by customers, suppliers or 

competitors) contribute more directly to innovation output. Furthermore, we found a sizeable 

impact of performing R&D on a permanent basis on the probability of innovation success and a 

strong and positive impact of applying process innovation. Our estimates show that, besides 

enhancing innovation output, the implementation of process innovation also contributes directly 

to a firm’s overall sales performance and employment growth. In agreement with stylized fact 3 

of Cohen and Klepper (1996) we found no impact of ‘permanent’ R&D on the firm’s innovation 

intensity after conditioning on ‘size’ and ‘age’. However, their stylized fact (4) is rejected in the 

estimates for ‘size’ and ‘age’ in the innovation output equation: conditional on having 

innovation output ‘size’ and ‘age’ do not matter any more. Furthermore, our results show that 

younger firms devote relatively more resources to innovation than large and older firms.  

The most notable result is obtained for the links between the innovation process and the 

overall performance of firms. Similar to Crépon et al. (1998) and Lööf and Heshmati (2000) our 

estimates underline the benefits of taking into account the joint endogeneity of the key variables 

of the whole system. Doing this increases both the (gross) returns to innovation output as well 

as the returns to overall sales performance of inputs into innovation. Taking a shortcut through 

the preferred estimates it can be seen that innovation contributes significantly to the overall 

sales performance, productivity (as measured by sales per employee) and employment growth. 

However, the last result is merely due to the strong and positive impact of process innovation, as 

the impact of innovative sales on employment growth was found to be negligible. Finally, it can 

be verified that a more sensible results is obtained for the feedback effect from a firm’s (total) 

sales performance to its innovation endeavour, when allowing for the joint endogeneity of the 

innovation process and the overall firm performance: the corresponding simultaneous-equations 

estimates strongly corroborate Schmookler’s hypothesis. 
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Appendix 2.1  Descriptive statistics for the variables used in the models  

Variable Innovating firms 
(N = 3059) 

Firms with 
innovative output  

(N = 1977) 
 Mean  SD Mean SD 
     
     
Continous variables      
     
Endogenous variables:      
• Innovation intensity (ININT) 3.295 5.545 3.806 6.105
• Share of innovative sales in total sales (P)a   0.255 0.253
• ‘Log-odds’ ratio (LOP)  -1.964 2.715
• Annualized growth of deflated sales 1994 – 1996 (ΔlogS) 5.410 16.752 4.526 17.573
• Annualized employment growth 1994 – 1996 (ΔlogE) 2.152 12.419 0.959 10.480
   
Exogenous variables:   
• Log Sales 1994  (LS1994) 9.786 1.412 9.707 1.378
• Growth rate of deflated sector sales 1994 – 1996 (SEC) 6.261 5.463 6.114 6.104
• Cash-flow ratio 1994  (CF1994) 12.244 13.411 11.925 13.294
• Technological opportunity ‘science’ (SCIENCE) -0.002 0.998 0.057 1.039
• Technological opportunity ‘other firms’ (OTHER) 0.013 1.006 0.004 0.991
• Log age in 1994 (LA1994) 5.219 0.871 5.288 0.841
• Selectivity variable   0.531 0.199
• Market share in 1994 (MS1994) 1.660 5.624 2.136 6.599
   
Qualitative variables N  N 
   
Number of firms with:   
• Innovation subsidies awarded (Dsubs) 1123  936 
• Demand factors considered (very) important (Ddpull) 2861  1869 
• R&D on a permanent basis (DR&D) 1374  1002 
• Innovation in partnership (Dco-op) 874  565 
• Process innovation implemented in 1994 – 1996 (Dprocess) NAb  1426 
   
Firms classified into:   
• Manufacturing ‘supplier dependent’ (base category) 607  607 
• Chemical industry ‘science based’  (Pavitt1) 249  249 
• Electrotechnical industry ‘science based’ (Pavitt2) 177  177 
• Manufacturing of  food ‘scale intensive’ (Pavitt3) 219  219 
• Metal industry ‘scale intensive’ (Pavitt4) 248  248 
• Other industries ‘scale intensitive’ (Pavitt5) 203  203 
• Manufacturing ‘specialized supplier’ (Pavitt7) 274  274 
• Business services ‘specialized supplier’ (Pavitt6) 333   
• Business services ‘supplier dominated’ (Pavitt8) 749   
   
• Small firms  (base category) 1066  720 
• Medium sized firms  (SC1) 1510  960 
• Large firms  (SC2)          483  297 

                  a For firms with a percentage share of  0 or 100,  a value of  0.001 respectively 0.999 has been imputed; 
b For ‘service firms’ no distinction has been made between product and process innovation. 
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Appendix 2.2 The Methods of Correcting for Selectivity 

 

The methods can be explained using the following two equations: 
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In (2) *
0y represents a latent (unobserved) variable which describes the probability of being 

‘selected’ and *
1y the (possibly observed) inputs into innovation (ININT) or innovation output 

(LOP). We have 00
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1 | ii yy  are replaced by ININT or LOP respectively. The selectivity 

bias is expected to be absent, if the errors i0ε and i1ε are not correlated.  

In the generalised Tobit model, it is assumed that the disturbances i0ε and i1ε  are drawings 

from a multivariate normal distribution as  
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The Generalised Tobit model can be estimated by maximum likelihood after pinpointing 0σ at 

unity for identification of the parameters. Heckman’s two-step consists of estimating a Probit 

model for the probability of ‘selection’ and the OLS estimation of the parameters of the 

equations for ININT and LOP after including the Mills’s ratio derived from the Probit step. 

Then, the importance of a selectivity bias can be inferred from the OLS estimate for the 

coefficient of the Mill’s ratio. 

The parameters 0β and 1β  represent the impacts of variables 0Z on the probability of being 

observed and the effects on inputs into innovation or innovation output (conditional on being 

observed) of explanatory variables ( 1Z ). Because of our intention to purify the estimates of the 

simultaneous-equations model from (possible) selectivity biases it seems natural to choose 

for 1Z  the same set of variables as included in the corresponding equations of model (1). 

Consequently we use in case of the inputs into innovation for 1Z  the explanatory variables of 

model equation (1A) and for innovation output the explanatory variables of model equation 

(1B). 

For the choice of the variables to be included in different alternatives are available for the 

variables to be included in 0Z . We use exogeneous variables that reflect some a priori 
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knowledge about the features that are considered typically different for ‘service firms’ 

compared to e.g. manufacturing firms. The variables selected for 0Z  refer to the performance of 

R&D on a permanent basis (DR&D), the market share in total sales in 1994 (labelled as MS1994), 

the growth rate of deflated sector sales (SEC) and the available data on the age of firms and their 

initial size, measured by LA1994 and LS1994 respectively. After including a constant term this 

yields the following composition of the vector 0Z : 

 
}.,,,,,{ 949494&00 SECLALSMSDCZ DR=   

 
 
Appendix 2.3  Results of the Generalised Tobit model 
 ININT LOP 

 Est. Ta Est. Ta 

Number of firms          3059        3059 
  
Probit part   
  
Constant term (C0)         1.215       5.2 ***       1.201           5.2 *** 
R&D on a permanent basis (DR&D)         0.487       9.6 ***       0.487           9.6 *** 
Market share 1994 (MS1994)         0.084     18.8 ***       0.083         18.5 *** 
Log Sales 1994  (LS1994)        -0.208    -10.9 ***      -0.206        -10.7 *** 
Log age in 1994 (LA1994)         0.186        7.1 ***       0.185           7.1 *** 
Growth rate sector sales 1994 – 1996 (SEC)        -0.014      -2.8 ***      -0.014          -2.8 *** 
     
Tobit part     
     
Constant term       14.770        9.5 ***      -4.624          -6.8 *** 
CF1994        0.039               4.5 ***   
Dsubs         0.958        2.7 ***   
ININT                          0.032           3.5 *** 
ΔlogS            0.039        1.5 *        0.006           2.1 ** 
SEC         -0.005          -0.5 
ΔlogS - SEC        -0.056       -2.1 **   
LS1994        -0.803       -7.3 ***       -0.047          -0.9 
LA1994        -0.781       -5.4 ***       -0.033          -0.4 
     
SCIENCE         0.634        4.9 ***        0.097           1.6 * 
OTHER         0.522        3.7 ***        0.285           4.6 *** 
DR&D         0.591        1.5 *         1.021           5.8 *** 
Dco-op         0.465        1.4        0.282           1.9 * 
Pavitt  dummy variables included     
     

2
1σ          5.793        6.8 ***      2.451                75.5 *** 

ρ         -0.133       -1.8 *       0.076           0.4     
Log Likelihood     -8112.8      -6419.4 

a *, ** and *** denote significance at the level of 10, 5 and 1 % respectively.  
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Chapter 3 
 

On the contribution of innovation to multi-factor productivity growth* 
 
Abstract  
 
We embed the innovation production function in a model that analyses the impact of innovation 
output on multi-factor productivity growth. We combine a market share model with a gross 
output production function. This revenue approach enables a ‘demand-shift’ interpretation of 
the contribution of innovation to multi-factor productivity growth. We apply different sets of 
instrumental variables and different estimation methods to estimate simultaneously the returns 
from innovation investment to innovation output, the contribution of innovation output to 
productivity growth and the feedback link running from a firm’s overall sales performance to its 
innovation endeavour. We draw our empirical results from the second Community Innovation 
Survey (CIS-2) for the Netherlands. The estimation results from our model show that the impact 
of innovation differs between measures of firm performance, and that – in our data – the 
revenue function approach yields more sensible results for the contribution of innovation to 
multi-factor productivity growth than the value-added production function framework. 
Furthermore, the results show that the estimation of return on innovation investment benefit 
from the inclusion of more information on the technological environment of the firm. 
 
 
3.1 Introduction 

 
A major advantage of innovation surveys over traditional R&D surveys is that they have 

opened new routes for the assessment of the contribution of innovation to productivity (growth) 

by enabling an explicit estimation of the innovation production function. According to Griliches 

(1995), this production function should describe the transformation process that runs from 

innovation inputs to innovation output. The measurement of a firm’s innovation output and the 

(firm specific) characteristics of the underlying innovation process opens the opportunity for the 

empirical researcher to disentangle the complex links between innovation and the overall firm 

performance. By allowing more structure (more equations) and by providing new instruments 

the new data sources facilitate another step forward in the search of the identification of the 

contribution of innovation, or more specifically R&D, to productivity (growth) along the lines 

proposed in Griliches and Mairesse (1997).  

Since the data collected in the Community Innovation Surveys have become available, a 

substantial and still growing body of research has been devoted to the understanding of 

innovation as a separate process. In a broad sense this strand of research investigates the 

                                                      
* This chapter, co-authored by Luuk Klomp, appeared as a Special Issue of Economics of Innovation and 
New Technology, 2006, volume 15 (4/5), pp. 367 – 390. I am thankful to Bert Balk and Gerhard Meinen 
of Statistics Netherlands, Paul de Boer of the Erasmus University of Rotterdam, the editor and two 
anonymous referees of ‘Economic of Innovation and New Technology’, participants of the Workshop on 
Innovation, Technological Change and Growth in Knowledge-based and Service-intensive Economies, 
held at Stockholm, February 2001 and participants of the EU Commission Seminar on Innovation and 
Enterprise Creation, Nice 2000, for their valuable comments and suggestions on earlier versions of this 
paper and Lieneke Hoeksma for translation assistance.   
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determinants of innovation strategies and the related decision of how to organise the innovation 

process in order to capitalise on mutual complementarities between internal and external 

knowledge bases (see e.g. for recent examples Leiponen (2001), Veugelers (1997) and 

Veugelers and Cassiman (1999)). By contrast, the newly available data have only been scantly 

used to disentangle the contribution of innovation to productivity into the return on innovation 

investment (i.e. the estimation of the innovation production function) and the contribution of 

innovation output to the overall firm performance. Recent examples of this line of research are 

presented in Crépon, Duguet and Mairesse (1998), Lööf and Heshmati (2001, this issue) and 

Klomp and Van Leeuwen (2001). 

These studies still differ in many aspects of their empirical setting, in spite of sharing a 

structural modelling approach to the assessment of the links between innovation and firm 

performance and the use of the same indicator for innovation output. Differences appear in the 

choice of the empirical specification for the measures of overall performance and in the way 

these choices are related to previous research, in the use of data referring to the firm-specific 

characteristics of the innovation process and in the estimation methods used. Of the three 

studies mentioned above, Crépon et al. (1998) established a link with previous productivity 

research by using a value added production function (in levels) to estimate an innovation output 

elasticity of (total) production.1 By contrast, the simultaneous linking of innovation output to a 

firm’s employment growth and total sales growth of Klomp and Van Leeuwen (2001) only 

enables an indirect inference of the contribution of innovation to productivity growth. On the 

other hand the latter study makes a more extensive use of innovation variables referring to the 

characteristics of the innovation process itself (the first strand of innovation research mentioned 

above) than Crépon et al. (1998). 

It goes without saying that the results of these different approaches are not directly 

comparable and that harmonisation of approaches and additional research should be considered. 

Crépon et al. (1998) mention the use of panel data as an important topic for further research. 

This would enhance the investigation of dynamics and a better control for unobservable time 

invariant effects. Controlling for these effects will be possible in the near future if data 

collection is to be continued in harmonised CIS surveys and if future waves of these surveys 

remain to be linked to firm-level accounting data.  

However, in the mean time, other potential sources of differences require further 

investigation. The paper has the following contribution to the literature. First, it extends the 

existing simultaneous models describing the innovation process as well as firm performance. 

                                                      
1 Contrary to Crépon et al. (1998) the paper of Lööf and Heshmati (2001) also uses other measures of 
firm performance (e.g. measures related to profitability) which are not taken into account in Klomp and 
Van Leeuwen (2001).  
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Our models include a larger set of variables reflecting the innovation process than those used in  

Crépon et al. (1998) and Lööf and Heshmati (2001). Secondly, the paper sheds light on 

differences between the approaches applied by Crépon et al. (1998) and Lööf and Heshmati 

(2001) – hereafter referred to as CDM and LH respectively – and Klomp and Van Leeuwen  

(2001), hereafter referred to as KL. In our comparison of the various models applied, we show 

which relations exist between the various approaches. This enhances the interpretation of the 

different models. Moreover, we conduct a sensitivity analysis using different model 

specifications and different estimation methods. Among other things our sensitivity analysis 

will examine the following questions: 1) can we reconcile why KL found a much higher 

(implied) impact of innovation on labour productivity growth with the lower total factor 

productivity than that obtained by CDM and LH? 2) to which extent are the different results 

related to the scope of the simultaneous models and the measures for the inputs into 

innovation?, and 3) do different estimation methods matter?  

Our results show the benefits of including more information on the technological 

environment of firms for the estimation of return on innovation investment. Furthermore, our 

model shows that the impact of innovation differs between measures of firm performance and 

that – in our data – the revenue function approach yields more sensible results for the 

contribution of innovation to multi-factor productivity growth than the value-added production 

function framework. 

The plan of the paper is as follows. In section 3.2 we outline the specification of the models 

used in the empirical part of the paper. Section 3.3 summarises the differences and similarities 

of the various approaches in the literature to embed the knowledge production function in the 

simultaneous models. Section 3.4 delineates the various alternatives of the benchmark exercise 

applied in this paper. Section 3.5 discusses the data used in the estimation procedures. The 

estimation results are presented in section 3.6 and section 3.7 closes with conclusions and a 

summary of the most important findings. 

 
3.2 A rationalisation of the role of innovation output in a production function  
      framework 
 

A broad view on the various modelling strategies applied to account for the importance of 

innovation for productivity (growth) is that the different strands of research reflect competing 

beliefs in the paradigms underlying the explanation of firm performance. At one side of the 

spectrum we have modelling strategies that fall into the class of (empirical) productivity 

research based on (adaptations of) the neo-classical theory of production and firm behaviour. In 

this strand of research – which owes much to Griliches (see e.g. Griliches, 1999) – the 

production function framework remains the most dominant empirical device. The research of 

Crépon et al. (1998) and Lööf and Heshmati (2001) are recent examples of an attempt to exploit 

the newly available innovation data in a production function framework. On the other side of the 
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spectrum we have the less formally based and more indirect investigations of the contribution of 

innovation to the development of firm performance (for instance measured by productivity or 

growth in sales or employment). Examples of empirical studies that use the innovation data in 

this way are given in Brouwer and Kleinknecht (1994), Brouwer (1997), Brouwer and 

Kleinknecht (1999) and Klomp and Van Leeuwen (2001). In our previous study we analysed the 

impact of innovation on firm performance with the help of the Dutch innovation survey (CIS2) 

that covered the years 1994 – 1996. In that study we estimated the impact of innovative sales on 

the (annualised) growth rates of total sales and employment during 1994 – 1996 simultaneously, 

thereby obtaining indirectly an estimate of the contribution of innovation to productivity growth 

(the growth rate of total sales per employee). In this section we summarise well-known material 

of the standard production function framework and describe a recently proposed modification of 

this framework to show the relation between the different approaches. Thereafter, we summarise 

the arguments behind the specification of the equations for the innovation process of our model.  

 
3.2.1 Two alternative specifications of the production function 

 
We start with a production function framework with ‘knowledge capital’ as a separate input 

which has been used extensively in empirical applications (see e.g. Mairesse and Sassenou, 

1991, and Griliches, 1999 − chapter 4, for an overview). The production function with the 

inputs physical capital (C), labour inputs (L), material inputs (M) and knowledge capital (K) is 

approximated by a Cobb-Douglas function 

 
γλβα= ititititit KMLACQ ,                (1) 

 
where Q is gross output, A an efficiency parameter (which may be firm-specific) and i and t 

refer to firms and time respectively. Denoting the logarithms of variables with lower case letters 

and deleting time subscripts from now on2, then we can write the corresponding value added 

productivity equation in terms of value added per employee ( ly − ) as    

 
iiiiii lklcaly )1()( 11111 −β+α+γ+−α+=− .            (2) 

 
where 1α  is the elasticity of value added with respect to physical capital and 

111 −β+α measures the deviation from constant returns to scale.3  

                                                      
2 There is no need to distinguish time further because CDM and LH used a cross-section of firm-level 
data and we use a cross-section of annualised growth rates calculated over the period 1994 – 1996. 
3 For ease of exposition, we do not introduce disturbance terms at this stage. It goes without saying that 
the different specifications subsequently discussed lead to different interpretations of the disturbance 
terms. 
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Another route is to take differences of the logarithmic form of Eq. (1).4 This yields an 

expression which relates differences in the growth rates of gross output to the differences in the 

growth rates of the inputs:  

 
iiiii kmlcq ΔΔΔΔΔ γ+λ+β+α= .               (3) 

 
Using Eq. (3) has the advantage of providing a control for firm-specific fixed effects in the 

production model, but Eq. (3) or (2) can only be estimated if we have firm-level time-series data 

for K. However, we only used data for total innovation investment in 1996, with R&D 

expenditures (R) as an important component. For this reason we have to reformulate Eq. (3), 

assuming that gross rates of return to innovation or the marginal product of innovation capital 

( ρ ) are constant across the sample, whereas the elasticities γ  vary. Defining K/Q ∂∂=ρ , 

assuming no depreciation of R&D capital stocks ( δ  = 0) and using 
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then the R&D-intensity form of the Cobb-Douglas production function is  
 

iiii Q
Rmlcq )(ρ+λ+β+α= ΔΔΔΔ .              (4) 

 
3.2.2 Modifications of the basic framework 

 
Using the standard production function framework as a starting point, we now describe in 

more detail the approaches of CDM and LH on one hand and of KL on the other hand. The 

bottom line in both approaches is that it is not innovation investment (or cumulated innovation 

investment) but innovation output that determines the observable differences in productivity 

(growth). In the case of the CDM model this is implemented rather directly by replacing k in (2) 

with the logarithm of the share of innovative sales in total sales (ln t).5 This yields   

 
iiiiii ltlcaly )1(ln)( 22222 −β+α+γ+−α+=− .            (5) 

 
Equation (5) is the expression for (value-added) labour productivity included in their basic 

model. Notice, that ‘returns to scale’ are defined relative to the inputs C and L and that 2γ  thus 

represents the contribution of knowledge capital to multi-factor productivity (MFP). In fact 

                                                      
4 As our data on performance measures refers to the years 1994 and 1996 we apply the ‘long-difference’ 
form (Δ) instead of ‘first difference’ (d). Thus, Δ denotes annualised growth. 
5 It should be noted that Crépon et al. (1998) also use another indicator for innovation output, i.e. the 
number of patents applied. We will not discuss this alternative because this variable is not available in our 
data.  
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what is implied by this mutation is that ln(t) captures differences in the level of technological 

capability and that this variable is endogenous.6  

It is straightforward to follow the same line of reasoning for Eq. (4), but this would lead to 

the replacement of the input measure QR /  by the measure of innovation output, i.e. the share 

of innovative sales in total sales (t) 

 
iiiii tmlcq 3333 ρ+λ+β+α= ΔΔΔΔ .               (6) 

 
In the remainder of this section we elaborate on the specification in Eq. (6) in order to be 

able to obtain a specification that is adapted to the available data and to establish a link with 

earlier, comparable studies. What does the coefficient of t measure if we abandon the ‘old’ 

practice of using innovation inputs or derived stocks from them and substitute (the share of) 

innovative sales as a measure of ‘knowledge capital’?7 It seems reasonable to assume that this 

new variable is more related to market conditions, as innovative sales do not refer directly to 

‘new’ value added by definition. But then, we have to face another problem: the assumption that 

the impact of innovation on a firm’s overall sales performance is channelled through new or 

improved sales mainly, points to a non-perfect competitive environment by definition. 

Neglecting that firms operate in an increasingly competitive environment may render theoretical 

and empirical constructs derived from the assumption of perfect competition inadequately. 

Klette and Griliches (1996) and Griliches (1999) have shown that this failure may lead to biased 

estimates for the coefficients of the production function. If knowledge capital is considered to 

be an input into production, then this implies that the impact of innovation on productivity 

(growth) may be ‘biased’. Firms operating in markets characterised by horizontal product 

differentiation may possess market power and this makes their relative prices endogenous. The 

‘solution’ of Klette and Griliches (1996) to this problem is to incorporate an equation for market 

shares and to proceed with a revenue function.  

Let the market share equation (in logarithmic form) for firm i operating on market (sector) I 

be given by  

 
)( IiiI

d
i ppdqq −η++= .               (7) 

 
In Eq. (7), d

iq , ip and Iq denote, respectively, the demand and own price (index) of firm i and 
total sales of market (sector) I (see section 3.5 for a discussion of the data used in this paper). 
Furthermore, η  represents the demand elasticity with respect to relative prices (or stated 
otherwise: the ‘own’ price index relative to the aggregate deflator for market I) and id  is a 

                                                      
6 Crépon et al. (1998) and Lööf and Heshmati (2001) use the phrase innovation output and ‘knowledge 
capital’ interchangeably.  
7 We use the share of the share of innovative sales as a measure of ‘knowledge capital’ in our 
specifications of the estimated models. Thus, ‘knowledge capital’ is an output measure in these models, 
where traditional models usually apply an input measure like R&D capital. 
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demand-shifter’.8 Taking into account the definition of deflated total sales or revenues ( ir ) 
given by  
 

Iiii ppqr −+= )(    

 
depending on the specification of the ‘demand-shifter’ in Eq. (7), we can obtain two 

interpretations for innovative output in the revenue function in ‘difference’ form.  

Let us first assume, in line with CDM, that ‘knowledge capital’ or (equivalently) the level of 

technological capability is an input into production. This boils down to assuming that 0=id . 

Then, using Eqs. (6) and (7) and taking into account the definition of deflated sales, the revenue 

function in ‘long-difference’ form reads  

 

Iiiiii qtmlcr ΔΔΔΔΔ
η

−ρ+λ+β+αε= 1)( 3333 ,                (8) 

where the inverse of the mark-up factor is given by
η

ηε 1+= . 

It can now be verified that Eq. (8) coincides with Eq. (6) only if −∞→η , the case of perfect 

competition. It can also be seen that imposing the assumption of perfect competition in an 

invalid way may lead to biased estimates of the production function parameters, including a bias 

for the parameter which represents the impact of ‘technology’ on productivity growth.  

The opposite approach is to assume that the impacts of innovativeness are directed via their 

effects on demand conditions. This can be implemented by a parametrization of the ‘demand-

shifter’ with the help of the innovative sales variable. Basically, this approach is similar to 

Mairesse and Griliches (1984) and Van Leeuwen and Nieuwenhuijsen (1999), who used (the 

logarithm of) the R&D capital stock for the parametrization of the ‘demand-shifter’. However, it 

is obvious that – taking into consideration the importance of product innovation – a measure of 

innovative output is more appropriate to capture ‘demand shifts’ than any measure of inputs into 

innovation, because it points directly to the final results of innovation. Therefore, we use t for 

the parametrization of the change of the ‘demand-shifter’ (Δd) in the ‘differenced’ form of Eq. 

(7). Thus, we assume that the inter-firm differences in changes of market shares are generated 

by changes in ‘demand-shifts’ that are driven by the relative importance of innovative output. 

To model the impact of innovation on sales conditions, we remove the term in t from Eq. (6) 

and, using Δ ii td θ=  in Eq. (7), we then obtain the following alternative specification of the 

revenue function:  

 

                                                      
8 The ‘demand-shifter’ represents all other effects on demand except price effects. 
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iIiiii tqmlcr
η
θ−

η
−λ+β+αε= ΔΔΔΔΔ 1)( 333 .          (9) 

 
Griliches (1999) pointed out that Eq. (9) reveals what is really estimated when incorporating, 

under this assumption, an innovation output indicator ( it ) in the production function, namely a 

shift in demand, attenuated by the price elasticity of demand )(η . Nevertheless, there remains 

an identification problem as we have to assume that the impact of innovation on productivity is 

a demand effect primarily.  

In the empirical application, we try to circumvent this problem by using a dummy 

variable )( procD to capture the effects of process innovation on productivity growth.9 

Then, after simple manipulations and adding a constant term to capture the general 

trend, we can transform Eq. (9) into the following revenue-per-employee growth equation:10 

 
iiiiiii llmlclr Δ−+++Δ−Δ+Δ−Δ+=Δ−Δ )1()()( 44444 λβαεελεαμ    

                (10) 

                    iIprocc tqD
η
θ−

η
−ζ+ Δ1

,  

 
where 1444 −++ λβα measures ‘returns to scale’ in the traditional production factors: labour 

inputs, material inputs and physical capital. 

Summarising the exposition given earlier, the main differences between our production 

model and the model of CDM are as follows. Contrary to CDM we use the revenue-per-

employee growth as the measure of firm-performance instead of the level of value-added per 

employee (in logarithmic terms). To our view the applied adaptation of the revenue model is a 

more appropriate device than the value-added framework of CDM for three reasons. First, our 

model offers a better framework for assessing the links between the results of the innovation 

process and firm performance, as the results of the innovation process are measured in revenue 

terms and not in value-added terms. Secondly, with our model we can also investigate 

simultaneously the adequacy of the assumption of perfect-competition and the importance of 

scale economies in the ordinary production factors. Thirdly, the share of innovative sales in total 

sales is, from a theoretical point of view, a more logical substitute for R&D- or innovation 

intensities (share of innovation inputs in total sales) than for R&D (innovation) capital stocks. 

                                                      
9

procD takes on a value of one if a firm actually implemented process innovation in the years 1994 – 1996 
and zero otherwise.  
10 Moreover, we include industry and size dummy variables (IND and SIZE) to control for unobserved 
industry and size specific effects. 
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3.2.3 The model for the innovation process  

 
A central part of the various simultaneous approaches consists of a separate modelling of the 

so-called ‘knowledge production function’ of Griliches (1998). In a broad sense this function 

describes the transformation process running from inputs into innovation or from innovation 

investment to innovation output. Innovation surveys provide a direct measurement of innovation 

output, innovation input and a host of qualitative variables that capture various firm-specific 

characteristics of the innovation process. However, a generally accepted framework which 

guides the empirical analysis of all these data is still lacking.11 Nevertheless, a natural starting 

point is to regress some measure of innovation output on some measure of (cumulated) 

innovation investment. Actually this is the basic model for the ‘knowledge production function’ 

used in CDM. They used data on R&D capital stocks to explain differences in the share of 

innovative sales in total sales. In their paper they also used an extended model by including 

indicators capturing whether innovation is driven by ‘demand pull’ or ‘technology push’ factors. 

Both versions of their model, however, do not pay attention to the organisation of the innovation 

process at the firm level. However, it is increasingly acknowledged, that the process of 

knowledge generation at the firm level may be too complex to be captured solely by (the history 

of) own innovation investment. Measures that refer to (cumulated) innovation investment only, 

are supposed to provide an incomplete picture of a firm’s own knowledge base. Innovation 

processes are not purely internal to firms, but may also involve many diverse links with their 

technological environment, i.e. the so-called external knowledge base.  

The interaction between internal and external knowledge bases has been the subject of many 

studies (see e.g. Cohen and Levinthal, 1989, Lhuillery, 2001, and Marsili, 2001; the last study 

gives an overview of the micro foundations of knowledge bases). One of the conclusions from 

these studies is that the technological environment of a firm may also affect its organisational 

arrangements. Firms may absorb knowledge from the environment via supplier-producer-

customer-interactions, or may build up and maintain their own knowledge bases via R&D 

investment and (R&D) co-operation. The choice between the ‘make’, ‘buy’ or ‘make and buy’ 

option at the one hand, or between ‘formal’ and ‘informal’ R&D or, more general, innovation at 

the other hand, may have diverging impacts on the level and composition of innovation 

expenses. Moreover, utilising the technological environment may also contribute to innovation 

output more directly. For instance, one can imagine that firms have innovative sales even 

without spending one dollar on R&D. Therefore, it is expected that innovation expenses only (or 

                                                      
11 There are various theoretical models which describe the role of innovation for the evolution of firms, 
but these models do not deliver well defined rules for the empirical testing of the many intricacies at 
work. See e.g. Klette and Kortum (2001) for a recent attempt to construct theoretical models of industrial 
evolution that are capable of explaining the observable heterogeneity and dynamics of firm performance 
and the complexities of the innovation process.  
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derived input measures from them) do not reveal all intricacies at work.   

The innovation surveys contain several variables that refer to the organisation of innovation 

processes of firms and the interactions with the external knowledge base. We use these variables 

to model both the inputs into innovation and innovation output simultaneously. We use the 

variables referring to the objectives underlying the innovation process in the CDM model as a 

basis. Subsequently, we extend the set of explanatory variables into the direction of the model 

used in Klomp and Van Leeuwen (2001). We constructed dummy variables, Dpull1 , Dpull2 and  

Dpull3, if firms rated the impetus on innovation from demand factors ‘weakly’, ‘moderately’ of 

‘strongly’ important respectively (‘not important’ is the base category).12 Similarly, we 

constructed dummy variables Dpush1, Dpush2 and Dpush3 which represent ‘technology push’ 

indicators.13 This yields a first set of exogenous variables ( 1X ) which will be included in both 

equations (see Appendix 3.1 for descriptive measures of the qualitative innovation variables): 

 
},,,,,{ 3213211 pushpushpushpullpullpull DDDDDDX = . 

 
The technological environment of a firm is represented in the empirical model with the help 

of different firm-level data. We include two variables which are derived from a factor analysis 

of the technological opportunities open to the firm by applying a principal components analysis 

to the data collected on the use of information sources. Following Felder et al. (1996), we use 

two factors to represent the use of technological opportunities: technological information 

sourced from ‘science’ and technological information sourced from ‘other firms’ such as 

suppliers, customers or competitors. These factors will be denoted by the variables ‘SCIENCE’ 

and ‘OTHER’ respectively.14 The organisational arrangements will be represented by two 

dummy variables indicating the presence of permanent R&D facilities (DR&D) and the 

emergence of innovation in partnerships with other firms (Dco-op), respectively.  

The relation between the presence of permanent R&D facilities, ‘innovation in partnership’ and 

the two technological opportunity variables (‘SCIENCE’ and ‘OTHER’) can be outlined as 

follows. One may expect a ‘cost-push’ effect on innovation expenditure of the technological 

opportunity factor ‘SCIENCE’ due to the absorptive capacity argument (see e.g. Cohen and 

Levinthal, 1989). A co-operation between R&D firms and research institutes or universities 

requires relatively high internal research skills in order to assimilate the fruits of the co-

                                                      
12 For the construction of these variables we used the answers to the questions concerning the importance 
of improving product quality, replacing new for old products and extending existing or creating new 
product lines. 
13 These variables were derived from the questions concerning innovation objectives which are related to 
the streamlining of production processes or to economising on the costs of variable inputs.  
14 The use of publicly available information sources such as journals, scientific literature, fairs and 
exhibitions is also included in the principal components analysis. These information sources obtain the 
highest scores for the factor loadings of ‘OTHER’. Details on the principal components analysis can be 
found in Klomp and Van Leeuwen (1999).  
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operation and to internalise and commercialise the knowledge created during the co-operation. 

In contrast, R&D co-operation with, for example, suppliers, customers and competitors is 

expected to have lower research competence requirements, a smaller impact on the organization 

of firms, and thus a lower ‘cost-push’ effect on innovation expenditure than the technological 

opportunity factor ‘SCIENCE’. On the other hand, as mentioned before, informal innovation co-

operation may affect innovation output more directly. Collecting these variables yields the 

second set of exogenous variables ( 2X ): 

 
},,,{ &2 DRopco DDOTHERSCIENCEX −= . 

 
In addition to these ‘innovation variables’ we also included variables taken from other 

surveys and business register data in our model. By definition, these are assumed to be 

predetermined or exogenous to the firm. We include both into the innovation input and output 

equation the logarithm of the age of firms in January 1994 (LA1994) and the logarithm of 

employment in 1994 (LE1994).15 This enables us to infer the impact on innovation performance 

of age conditional on size and to test whether the stylized facts reported in Cohen and Klepper 

(1996) also apply to our data. Furthermore we include in both equations the market share of the 

firm in 1994 (MS1994)16 and the (annualised) growth rate of deflated sectoral sales for the period 

1994–1996, already introduced in section 3.2.2 ( IqΔ ). These variables aim at capturing 

differences in initial states of competitiveness and exogenously given potentials for sales 

growth. 

The final list of exogenous variables for the modelling of the innovation process consists of 

financial indicators. For many firms the innovation expenditures consist to a large extent of 

investment components, e.g. expenditures on in-house R&D, and/or licenses and patents and 

equipment purchased for the implementation of process innovation. We assume that these 

investment type expenditures are affected by the availability of financial resources and for this 

reason we include in the model two financial variables: the ratio of cash-flow to total sales for 

1994 (CF1994) and a dummy variable that refers to the awarding of innovation subsidies (Dsubs). 

To summarise, we can define three other sets of exogenous variables:17 

 
},,{ 199419943 LEqMSX Ia Δ= , },,,{ 1994199419943 LELAqMSX Ib Δ= and },{ 19944 subsDCFX = . 

 

                                                      
15 In Klomp and Van Leeuwen (2001) we used the logarithm of total sales in 1994 as a measure of initial 
size. To be in line with Crépon et al. (1998) we use here employment as the measure of size. 
16 The market share is defined as the turnover of the firm expressed as a percentage of the total turnover in 
the 3 digit NACE class.  
17To allow a better comparison with the set of instrumental variables used in the CDM model, a 
distinction is made between aX 3 and bX 3 . 
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The matrices 321 ,, XXX  and 4X are the building blocks for the construction of the model 

equations for the innovation process. From the earlier mentioned reasoning, it follows that 

innovation investment as well as innovation output can be affected by the same factors, 

although possibly in a different way. Therefore, we assume that the inputs into innovation and 

innovation output are jointly endogenous. We have no reasons to exclude some of the 

exogenous variables a priori, except that we do not expect that innovation output will be 

determined directly by the financial variables contained in 4X . Thus we use the following 

specifications for the innovation sub-system: 

 
kikikii ZZI ε+π+π= 2211               (11) 

titiiki Zkt επα ++= 11)ln( ,                        (12) 

 
with },,{ 3211 bXXXZ = , 42 XZ = . The variable iI in Eq. (11) represents either the R&D 

intensity or the innovation intensity (the total of innovation costs as a percentage of total sales) 

as the measure of innovation inputs, and it  in Eq. (12) is the share of new and improved sales in 

total sales.18 Furthermore, 21, kk ππ , 1tπ  are vectors of parameters and kiε and tiε  are random 

error terms which are assumed not to be correlated with the exogenous variables. The main 

parameter of interest is kα , measuring the impact of innovation investment on innovation 

output.  

 
3.3 A summary of the differences between the models 

 
Armed with the exposition given in the preceding sections, we now summarise our complete 

model and discuss the similarities and differences between our model and the CDM model more 

precisely.19 The basic feature of our model is that we link two sub-systems, i.e. the model for the 

innovation process (11) and (12) and the productivity growth Eq. (10) derived from the revenue 

model. Besides linking innovation output to the overall firm performance we also include 

backward linkages running from the overall firm performance to the innovation process. This 

enables us to test Schmookler’s (1966) demand pull hypothesis. Then, after adding a firm’s total 

sales growth ( rΔ ) to Eq. (11) and collecting Eqs. (10) – (12), we obtain, after also including 

disturbance terms, the following system of equations 

 
kirikikii rZZI ε+α+π+π= ~

2211 Δ         
  

                                                      
18 Similar to CDM we use the logarithmic transformation for the dependent variable of the innovation-
output equation.  
19 We do not discuss the model of Lööf and Heshmati (2001) separately, because – in essence – it follows 
the same structure as the CDM model. 
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titiiki ZIt ε+π+α= 11)ln( ,                 (13) 

iiiiiii llmlclr Δ−+++Δ−Δ+Δ−Δ+=Δ−Δ )1()()( 44444 λβαεελεαμ   
  

                    riiIprocc etqD +
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η
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.   

 
The parameters rα , kα , and – ηθ / represent the linkages between the various equations of our 

system in (13). The estimated parameters represent respectively 1) the backward linkage from a 

firm's sales performance to innovation inputs, 2) the returns from innovation inputs to 

innovation output and 3) the impact of innovation output on productivity growth (measured as 

the growth rate of sales per employee).  

Next, we can compare our model with the framework used by CDM. Omitting the constant 

terms and the error components from their equations, their basic model is given by  
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                                 (14)    

 
The first part of their system (the two equations) consist of a generalised Tobit model used for 

the estimation of the probability of being engaged in innovation )( *g and the (latent) inputs into 

innovation )( *k , which in their application is the (latent) R&D knowledge stock. For the Probit 

and Tobit part of the model the same set of exogenous variables were used. In their 

application 0
~Z  contains data on the size of firms (employment), market shares, diversification,20 

‘demand-pull’ and ‘technology push’ dummy variables, and a set of industry dummy variables. 

Thus, apart from their diversification index, this is a similar set of exogenous variables as given 

by 1X and aX 3 . The second step in the CDM approach consists of using the estimates of the 

Tobit part of the generalised Tobit model to construct *
ik  for the estimation of the innovation 

output equation, the third equation of system (B). In this equation 1
~Z contains the same 

exogenous variables as in 0
~Z , but with the exclusion of the market share variable. Finally, the 

predictions from the innovation output equation were used in their productivity equation, which 

                                                      
20 CDM used the decomposition of sales by ‘lines-of-business’ to construct an index of diversification.  
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is equation Eq. (5).  

Summarising, we conclude that the main difference between the various approaches 

concerns the scope of the models, the measurement of firm performance and the use of 

instrumental variables. In our approach we assume that the firm-specific characteristics of the 

innovation process may have a diverging impact on the inputs into innovation and innovation 

output simultaneously. For this reason we use additional instrumental variables to investigate 

the possible impact of other firm-specific characteristics of innovation processes in addition to 

innovation or R&D expenses and extend the simultaneous model with an equation for the inputs 

into innovation. In our research we first look at the selectivity problem for all system equations 

and thereafter we estimate the whole system simultaneously. In contrast, the CDM approach 

first ‘solves’ the possible selectivity problem related to the restricted availability of data on 

R&D capital stocks, then estimates the return of innovation to these stocks, and finally takes 

into account the endogeneity of this measure in the productivity equation.  

 
3.3.1 Econometric issues  

 
Another difference between the various approaches concerns the estimation methods used. 

The preferred estimates of Crépon et al. (1998, CDM) were based on the application of the 

method of asymptotic least squares21, those of Lööf and Heshmati on the method of Three-

Stages-Least-Squares (3SLS), whereas we used in our previous research the method of Full 

Information Maximum Likelihood (FIML). The FIML method starts from the rather restrictive 

assumption that the errors of the system follow a multivariate normal distribution. However, this 

method is able to account for the constraints linking the parameters of the system. As we do not 

have cross-equation constraints between parameters and as the 3SLS method assumes no 

specific distribution of the errors of the system and, moreover, the 3SLS estimates are 

consistent, we will adopt 3SLS as the preferred method in this paper. This enhances the 

comparability with the results in the studies by CDM and LH.22  

The implementation of the estimation method and the identification of the models require 

that the available instrumental variables are assigned to the endogenous variables of the system. 

Various candidates for the instrumental variables are already introduced in section 3.2.3. We 

extend the set of instrumental variables mentioned there with the explanatory variables of the 

‘performance equation’ introduced in section 3.2.2. For instance. for the model that uses Eq. 

(10), this yields another set of exogenous variables )( 5X  

                                                      
21 This method is a generalisation of the method of Indirect Least Squares (ILS). 
22 The FIML-estimates are only considered to be better (or at least more efficient) in case of a fully 
identified model. As we have to do with over-identified models in our study, this requirement is not 
expected to be fulfilled. Nevertheless, we also applied the FIML-method for some models in order to 
investigate whether the differences between the estimates of the two methods were statistically significant 
for our data. 
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}SIZE,IND,D,l,lm,lc{X procΔΔ−ΔΔ−Δ=5 . 

 
3.4 Delineating the ‘benchmark’ exercise 
 

In the empirical application we can perform a sensitivity analysis by ‘iterating’ on different 

dimensions. We may (1) choose between different measures for innovation inputs and 

innovation output (2) compare the results of a three-equation system (two equations for the 

innovation process and one equation for firm performance) with a more limited simultaneous 

model consisting of equations for innovation-output and firm-performance only, (3) apply 

different sets of exogenous variables in the estimation method and (4) compare the results of 

using a simple value-added production function or the revenue function. In order to keep things 

tractable we have chosen the following route. We start with a comparison of the results for the 

two-equation system (comparable to system (14) with the results of our model (system (13)). 

We do so by combining selectivity models (see section 3.6.1) with the estimation of a system 

consisting of two (three) equations and compare the result of using different sets of exogenous 

variables. We use two sets of exogenous variables for the simultaneous estimation of the 

innovation model and the equation for revenue-per-employee growth (10). The first set of 

instruments consists of the exogenous variables collected in 1X , aX 3 and 5X .23 Thereafter, we 

repeat the same procedure, but now using all available exogenous variables. In all cases we use 

one measure of innovation output, i.e. the share of innovative sales in total sales, but we shall 

compare the results for two measures for innovation inputs: the innovation intensity for 1996 

(total innovation expenses as a percentage of total sales)24 and the R&D intensity (total in-house 

R&D expenditure as a percentage of total sales) for the same year. Finally, and after the 

sensitivity analysis concerning the specification of the innovation model, we look at the 

estimates obtained for the alternative measures of firm-performance and starting from the 

preferred specification of the innovation model.  

 
3.5 The data 

 
As this paper builds on earlier research the data used to estimate our previous models are our 

reference. The model was applied to the data for 3059 innovating firms, i.e. firms that stated to 

have implemented product or process innovation during 1994–1996 in some way. After 

matching the CIS survey with the production surveys it was shown that these firms had higher 

total sales growth than non-innovating firms but did not show better performance with respect to 

employment growth on the other hand (see Klomp and Van Leeuwen, 2001, for details). In our  

                                                      
23 We recall that 1X and aX 3 together constitute a similar set of instruments as used by CDM in the 
reduced-form equations of their innovation model. 
24 When we use innovation intensity in this study, it refers to total innovation expenses as a percentage of 
total sales and not to innovative sales as a percentage of total sales. 
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previous paper we estimated a simultaneous model for only 1977 of the 3059 innovating firms. 

This reduction was due to the fact that the key-variable of the model (the share of innovative 

sales in total sales) was not recorded for firms belonging to the services sector. Firms in services 

showed (on average) both higher employment and sales growth than manufacturing firms in the 

period under consideration. The selectivity raised by excluding these firms has been tackled by 

using a generalised Tobit model.  

To estimate our model we need data for the inputs of labour, physical capital, price indices 

for deflating total sales and material inputs and data on market shares and industry sales 

(growth). For labour input we use the number of employees reported in the production surveys. 

The capital input measure required to estimate the models is proxied by the depreciation cost, 

available in the same surveys. This financial measure is related to the capital stock but does not 

reflect directly the capital service flow. Tax laws, vintage structures and type distribution of the 

assets, and cyclical capital utilisation all cause differences between the depreciation data and the 

desired measure of real capital input. The nominal variables in the data set are deflated by 

applying industry output (total sales) and material price indices to all firms within the 

corresponding industry.25 Furthermore, we constructed market share data for 1994 by linking to 

the firm-level data the data on total sales at the aggregate (three-digit industry) level for the 

corresponding year. Finally, we constructed the growth rate of industry sales by deflating the 

nominal industry sales data at the level corresponding with the available output price indices.  

As a consequence of these data manipulations, some additional firms had to be deleted (in 

particular firms with missing data on their depreciation costs or with a negative score for value-

added). Another aspect of the data selection concerns the cleansing of data required to safeguard 

against undesirable results due to influential observations. In our previous research we did not 

apply a censoring to the endogenous variables (annualised employment growth and annualised 

total sales growth), but in this paper we will use the same censoring rules as used in Lööf and 

Heshmati (2001). Thus, we remove the firms with growth rates for (real) sales per employee and 

(real) value-added per employee less than -75 % or more than 300%. After this cleansing, our 

data set reduces to 2985 innovating firms, of which 1926 firms reported innovative output.  

Tables 3.1a and 3.1b present some simple descriptive measures for the key variables used in 

this study for the sample of innovative firms (N = 2985) and the sample of firms used for the 

estimation of our models (N = 1926) in the period considered.26 Looking at the median value for  

the scores, these tables already reveal some interesting aspects of the selectivity problem 

encountered in our study. The results for the performance measures such as a firm’s total sales  

 

                                                      
25 The level of detail varies between the two- and three-digit level of the NACE industry classification of 
firms, with a greater level of detail for output (total sales) price indices than for material price indices. 
26 The growth rates over the period 1994 – 1996 are calculated on an annual basis. See appendix I for the 
descriptive statistics of the qualitative variables.  
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Table 3.1a  Summary statistics for selected variables innovating firms, N = 2985) 

Variable Median Q1 Q3 SD

  

Growth rate of :1  

• Employment  1.1 -3.1 6.7 12.4
• Total sales  4.5 -1.9 11.7 15.1
• Value-added  2.3 -5.5 10.7 17.9
• Material inputs 6.9 -1.8 17.0 24.7
• Value added per employee 0.6 -6.5 8.2 16.4
• Sales per employee 2.8 -3.1 9.5 14.0
• Industry sales  5.9 3.8 8.6 5.4
  

Levels:  
• R&D intensity 1996 (%) 0.2 0.0 1.0 2.5
• Innovation intensity 1996 (%) 1.3 0.4 3.6 5.5
• Market share 1994 (%) 0.3 0.1 1.0 5.6
• Employment in 1994  68 33 135 955
• Employment in 1996 72 35 140 991
• Sales per employee in 19942  103 70 172 470
• Sales per employee in 19962  113 78 181 567
• Value-added per employee in 19942 41 33 54 30
• Value-added per employee in 19962 43 34 56 36
1 Annualised growth calculated over the period 1994 – 1996. 
2 In 1000 Euro. 
 
Table 3.1b Summary statistics for selected variables (firms with innovative sales, N = 
1926) 

Median Q1 Q3 Std Dev
  
Growth rate of :1  
• Employment  0.0 -3.5 5.2 10.5
• Total sales  3.7 -3.0 11.3 15.2
• Value-added  1.7 -5.8 9.7 17.5
• Material inputs 5.3 -3.7 15.1 23.6
• Value added per employee 1.1 -6.2 8.6 16.1
• Sales per employee 2.9 -3.2 10.2 13.9
• Industry sales   4.9 3.6 9.6 6.0
  
Levels:  
• R&D intensity 1996 (%) 0.4 0.0 1.3 2.7
• Innovation intensity 1996 (%) 1.7 0.5 4.3 6.1
• Market share 1994 (%) 0.4 0.1 1.4 6.6
• Share of innovative sales in total sales (%) 0.2 0.1 0.4 0.3
• Employment in 1994  67 30 135 922
• Employment in 1996 68 32 135 944
• Sales per employee in 19942  103 75 149 162
• Sales per employee in 19962   115 86 163 168
• Value-added per employee in 19942 41 33 54 26
• Value-added per employee in 19962 44 35 56 29
1 Annualised growth calculated over the period 1994 – 1996. 
2 In 1000 Euro. 
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growth and (in particular) its employment growth in the period under consideration, are 

substantially higher for the business service firms (the firms for which no innovative sales were  

recorded). It also can be seen that these firms had less inputs into innovation (no matter how it is 

measured) but, on the other hand, were operating on markets which showed a higher growth 

potential for their sales performance. Notice further, that this conclusion does not apply to the 

results for value-added growth in employee terms.  

Another striking result concerns material inputs during the period under consideration. For 

all firms we see (on average) a higher growth rate for material input usage than for (real) sales. 

We also see that (on average and in both samples) material usage per employee grew much 

faster than real sales in employee terms. This result points, at least in our data, to an inadequacy 

of the assumption that materials are used in a fixed proportion of gross output. 

 
3.6 Estimation results 
 
3.6.1 Selectivity issues  
 

We begin the presentation of the empirical results by first looking at the selectivity problem. 

It should be noted, that our selectivity problem differs from the selectivity encountered by 

Crépon et al. (1998), where the availability of data on R&D capital stocks has been taken as a 

starting point for the selectivity analysis. We could follow a similar selection rule here, but we 

have chosen not to do so, because this may draw too heavily on the role of R&D in explaining 

differences in innovation output or the overall firm performance. In our data we have no 

innovative sales recorded for the ‘business service’ firms and we know that this industry had (on 

average) a better employment and sales performance than manufacturing in the years 1994 – 

1996. For this reason, we investigated whether the impact of the exogenous innovation 

characteristics, the exogenously given market conditions and the firm's record of overall sales 

performance (represented by the firm’s annualised growth rate of real turnover) on the 

‘probability of selection’ varied between the two industries. Contrary to CDM, we extended the 

selectivity analysis to all equations of the simultaneous model. To save space we will not 

comment on the results of all Tobit models applied, but we shall restrict the discussion to the 

Tobit analysis for the innovation inputs.27  

The estimates for the Probit part of the corresponding Generalised Tobit model for the two 

measures of innovation inputs are presented in Appendix 3.2. The results confirm the empirical 

fact that – on average – ‘business service’ firms are younger, perform R&D on a permanent 

basis less frequently and have lower market shares compared to manufacturing firms. The 

probability of selection also appears to be negatively related to the industry specific growth 

opportunities ( IqΔ ), although the corresponding Probit estimates are much smaller than those  

                                                      
27 Only this part of the selectivity analysis applied in this paper can be compared to the approach of CDM.  
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obtained for the other variables. Conditional on selection, the level of innovation inputs appears 

to be negatively related to size (measured by their initial employment (LE1994)) and the initial 

age of the firm (measured by LA1994). These results indicate that large firms certainly are not 

overrepresented in the sample of firms for which a measure of innovation output is available. It 

is also interesting to see that the variables referring to the objectives underlying the innovation 

process have a complete different impact on the Tobit part than on the Probit part of the model. 

The Probit estimates are significant in most cases, but the Tobit estimates are not. Finally, it can 

be seen that the estimate of the correlation between the Probit and Tobit part of the system 

( Tobitρ ) is rather small and insignificant for the two innovation input measures. At first sight 

this seems to indicate that the effects of selectivity for our data are modest.  

The earlier mentioned estimates for the relation between innovation and firm size seem to 

contradict stylized fact 3 of Cohen and Klepper (1996).28 However, this result should be 

interpreted with care, as the Tobit estimates also show that the contribution of the other 

innovation characteristics differ between the two measures of innovation inputs. Moreover, the 

Generalised Tobit analysis for innovation inputs does not take into account the joint dependence 

of the two stages of the innovation process on the innovation characteristics used. Therefore, the 

estimated relation between innovation (inputs) and firm size may be different when applying the 

full model. This has been investigated by including ‘selectivity correction’ variables derived 

from Heckman's two-step method in all equations of the simultaneous model. Appendix 3.3 

(with presents the preferred system estimates for the innovation equations) reveals some 

evidence on this. There, it is shown that the negative relation between R&D intensities and firm 

size vanishes when the ‘selectivity correction’ is applied. This indicates that stylized fact 3 of 

Cohen and Klepper (1996) is corroborated in our data if we use a simultaneous approach.29 

 
3.6.2 Return on innovation investment  
 

In this subsection, our sensitivity analysis concerns the results for the estimated returns from 

innovation investment to innovation output (αk) obtained after applying different model 

specifications. Furthermore, we also look at the consequences of using different sets of 

instrumental variables. 

Let us first compare the results for the return on innovation investment for the alternative 

models. These are summarised in Table 3.2 for the two input measures. A striking result is that 

these returns are significantly positive (but small) if we use the single-equation OLS estimates 

and that these estimates become insignificant (and even negative) in the ‘limited system’ 

                                                      
28 Stylized fact 3 of Cohen and Klepper (1996) states that for firms engaged in R&D no systematic 
relation between the level of R&D inputs and size can be observed. 
29 The latter insignificant estimate for the relation between R&D and firm size is in agreement with the 
results presented in Crépon et al. (1998).  
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approach combined with a limited set of instrumental variables. The first mentioned result is not 

very useful as the OLS results are not valid due to the joint endogeneity of the inputs into 

innovation and innovation output. In principle this endogeneity problem is taken into account in 

the system approaches. Table 3.2 also shows that it matters which innovation characteristics are 

used as instrumental variables for the jointly endogenous variables, in particular if we use R&D 

intensities as the measure of innovation inputs.  

 
Table 3.2  The impact of innovation inputs (k) on innovation output (ln(t))1 

Inputs into innovation  Innovation intensity 
(a) 

R&D intensity 
(b) 

   
 Est. SE Est. SE
     
a) Limited set of instruments  

     
OLS 0.041          0.009 0.109 0.040
3-SLS limited system, no selectivity correction2 -0.137 0.107 -0.214 0.168
3-SLS full system, no selectivity correction2 0.376 0.031 0.678 0.051
3-SLS full system, with selectivity correction3 0.466 0.034 0.787 0.053
    
    
b) Extended set of instruments    
    
OLS 0.025 0.008 0.043 0.030
3-SLS limited system, no selectivity correction2 0.048 0.056 0.282 0.106
3-SLS full system, no selectivity correction2 0.229 0.030 0.515 0.056
3-SLS full system, with selectivity correction3 0.297 0.032 0.549 0.057
FIML full system, with selectivity correction3 0.242 0.082 0.554 0.195

1 All estimates represent the return on innovation investment in terms of innovation output and are based 
on the data of the firms which had innovative sales (N = 1926). 
2 The limited system consists of equations (5c) and (8b); the full system consists of equations (5c), (8a) 
and (8b). 
3 Selectivity is taken into account by including the inverse of the Mill’s ratio as an additional regressor in 
all equations of the corresponding system. 

 

However, the most striking result is that we obtain the most robust estimates for the return on 

innovation investment if we take into account the joint dependence of innovation investment as 

well as innovation output on the innovation characteristics. These results clearly show the 

combined benefits of using both more ‘structure’ and more instruments: the estimates of the 

returns from innovation investment to innovation output increase considerably when the full 

system is used. Furthermore, it can be noted that this conclusion applies to both measures for 

innovation inputs.  

It is also interesting to see that this conclusion does not change if we correct our estimates 

for possible selectivity biases, as the results of the models with selectivity correction terms 

included are not statistically different. The remarkably different results for the return on 

innovation investment presented in Table 3.2 merit a more detailed discussion of the underlying 

models for the innovation process. To save space we will only comment on two variants of the 
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model in more detail in Appendix 3.3. It is also interesting to see that the results of the system 

approaches are not very sensitive to the used estimation procedure. If we adopt the model that 

uses the full system and all instrumental variables, then the FIML estimates appear to be rather 

similar to corresponding results of the 3SLS method.  

A final comment on Table 3.2 concerns the results for the estimated return on innovation 

investment if we choose different alternatives for the measure of innovation investment. If we 

define innovation investment as expenditures on R&D, we have higher return on innovation 

investment than if we use a ‘broader’ concept such as the total of innovation expenses. Because 

we use the same measure for innovation output in both alternatives this is, of course, not a very 

surprising result. 

 
Table 3.3   3SLS estimates for the parameters of the value-added production functions1 

Specification Levels  'Long-differences' 
     
 Est. SE Est. SE
     
Number of firms  1389 1389 
     
A) Specification in levels     
     
Return on innovation investment 2 0.742 0.104 0.836 0.107
  
Physical capital (α) 0.181 0.009 0.056 0.010
Labour (β) 0.888 0.022 0.710 0.048
Share of innovative sales -0.002 -0.001 0.007 0.056
Returns to scale 0.070 0.019 -0.234 0.047
  
R2 0.330 0.085 

1 All estimates are obtained after using the full system and the extended set of instrumental variables. 
Selectivity corrections were included in all equations of the full system. 
2 Innovation inputs are measured by the logarithm of R&D per employee in 1996. 

 

 
3.6.3 The impact of innovation on productivity (growth) 
 

The next step in our analysis concerns the estimates for the two alternative models 

representing the ‘performance’ equations of the estimated systems. In this section, we compare 

the results for the model that uses the value-added production function with the estimates of the 

productivity-growth model derived from the revenue function approach. We, again, apply two 

measures of innovation inputs.30 The equation derived from the revenue model is directly linked 

to the traditional R&D intensity approach, but instead of innovation inputs as a share of total 

                                                      
30 We recall that in both models we take into account the endogeneity of the innovative sales indicator and 
that we have used the logarithmic transformation of the share of innovative sales in total sales as the 
dependent variable of the innovation output equation and the untransformed (same) share as an 
explanatory variable in the productivity-growth equations. 
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output (total sales) we now have innovation output as a share of total output (total sales) as an 

explanatory variable.  

We first present – in Table 3.3 – the parameters of the value-added production function in 

levels (Eq. (5)) as well as for its ‘differenced’ form (estimated on the basis of annualised growth 

rates) and obtained after estimating the full system with the help of the complete list of 

instrumental variables. In addition to the production function parameters we also present 

estimates for the return on innovation investment, the latter defined (for this model) as the 

logarithm of R&D expenditures per employee.31 Our estimates for the return on R&D 

investment appear to be very significant and also close to those obtained by CDM and LH. 

However, looking next at the production function parameters, we see insignificant estimates for 

the impact of innovation output on (multi-factor) productivity (growth), irrespective of the used 

measure of innovation inputs32 

This result sharply contrasts the contribution of innovation output to productivity (value-

added per employee) of 0.10 found in, for example, CDM. The table also shows the familiar 

pattern of decreasing production function elasticities and, consequently, a changed interpretation 

of the scale elasticities, if one changes from the cross-sectional dimension to the time-series 

dimension of the data. This decrease is more pronounced for capital inputs than for labour 

inputs and this is probably due to the rather poor measure for the inputs of physical capital used 

in this study.33  

Next, we turn to the estimates of the model that uses a productivity growth equation derived 

from the revenue model (in ‘differenced’ form). These are presented in Table 3.4. In this variant 

we have a different measure of multi-factor productivity (MFP) and, consequently, a different 

interpretation of the contribution of innovation output to MFP.  

Beginning with the (traditional) production function elasticities, it can be seen that the two 

measures of innovation inputs yield very similar and plausible estimates for the elasticities of 

material inputs as well as for labour inputs. This result carries over to our estimates for the scale 

elasticities: Table 3.4 shows that the 3SLS estimates indicate significant decreasing returns to 

scale. These ‘scale’ estimates seem to be more plausible than the corresponding results obtained 

for the value-added framework (see the long-difference estimates of Table 3.3). However, it 

should be noted that the latter results should be taken with care, because the estimate of the 

capital elasticity remains unsatisfactory low.  

                                                      
31 This choice enables a comparison with the results of Lööf and Heshmati (2001), who used the same 
measure of innovation investment in their models. However, this measure of innovation inputs is only 
comparable to the well-known R&D-capital measure (used also in CDM) in the case of zero R&D 
depreciation. Furthermore, it should be noted, that this model could be estimated only for the 1389 firms 
that reported to have R&D expenditures. 
32 We also obtain insignificant coefficients if we use the logarithm of the share of innovative sales in total 
sales as the innovation output indicator in the two versions of the value-added production function. 
33 For a detailed account of this phenomenon, see Mairesse (1990).  
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Another notable result concerns the estimates for impact of process innovation on 

productivity growth. We found a (significantly) negative estimate for this variable. This result 

may mirror a (possibly) positive impact of innovation on employment growth. On the one hand, 

one can imagine that process innovation reduces employment in the short term. On the other 

hand, it may affect employment positively in the longer run, as efficiency gains are transmitted 

to an increased competitiveness on output markets. However, given our models (which assume 

labour inputs to be exogenous) we cannot address this issue more properly in this study.34  

 
Table 3.4   3SLS estimates for the model for revenue-per-employee growth1 

Innovation inputs Innovation intensity R&D intensity 
     
 Est. SE Est. SE
     
Number of firms  1926 1926 
     
Return on innovation investment  0.297 0.032 0.549 0.057
     
Constant  -1.383 0.891 -1.443 0.890
Physical capital (α) 0.032 0.005 0.032 0.005
Labour (β) 0.342 0.026 0.346 0.026
Material inputs (λ)  0.52 0.022 0.532 0.022
Innovation output (φ)2 0.133 0.026 0.132 0.026
Dummy process innovation  -1.256 0.471 -1.028 0.467
Selectivity correction 0.988 1.025 0.945 1.026
  
‘Demand shift’ (θ) 1.271 0.530 1.192 0.480
Price elasticity of demand (η) -9.545 3.289 -9.060 2.962
Inverse of  mark-up factor: (η+ 1)/η 0.895 0.036 0.890 0.036
Returns to scale -0.098 0.042 -0.089 0.042
  
R2 0.662 0.663 

1The estimates are obtained after using the full system and the extended set of instrumental variables;    
  Selectivity corrections were included in all equations of the full system and size and sector dummy 
variables were included performance equation of the system;    
2 Innovation output is measured as the share of innovative sales in total sales. 

 

Our final observation of the results in Table 3.4 concerns the structural parameters of the 

underlying demand model. It can be seen that we obtained rather robust estimates for the 

(inverse) of the mark-up factor. Our results clearly point to a failure of the perfect-competition 

assumption. Furthermore, the estimates for the ‘demand-shift’ parameter of the model are rather 

stable across the two used measures of innovation inputs. The corresponding estimates indicate 

that if, ceteris paribus, the (median) firm increases its share of innovative sales in total sales 

with 10 percent point (e.g. from 20% to 30%), then, according to our model, the (annualised) 

                                                      
34 The problem arises − among other things − due to the fact that the majority of the innovative firms in 
our data stated to have implemented product as well as process innovation simultaneously. 
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relative growth of its market share will be about 12%.35 The rather strong impact of innovation 

output on demand carries over to contribution of innovation to MFP growth. Thus, the 

productivity-growth model derived from a revenue approach gives much more robust estimates 

for the impact of innovation on productivity growth, than after using the value-added 

framework. In our data, the simultaneous estimation of the preferred innovation model and the 

revenue model leads to an implied estimate of innovation to multi-factor productivity growth of 

about 0.13. 

Summing up, we conclude that we have obtained rather interesting results with respect to the 

link between innovation and productivity. In the empirical literature it has been often found that 

the impact of innovation (R&D) on productivity differences is more pronounced than the impact 

of the same variables on productivity growth, which were often not significant. The results of 

Table 3.4 show that the contribution of innovation to productivity in the cross-sectional 

dimension of the data may be carried over to the time-series dimension of the data after using 

more elaborate models. Stated otherwise, our results underline the benefits of exploiting 

innovation surveys for the integration of (more) comprehensive innovation models into a 

framework for firm performance that is capable of capturing the main features of the links 

between innovation and firm performance. Finally, we comment on the estimation results 

concerning the feedback link from firm performance to the input stage of the innovation 

process. In this paper, the feedback link is represented by the coefficient of rΔ  in the 

innovation-input equation. In Appendix 3.3, it is shown that the estimates for the testing of 

Schmookler’s (1966) demand-pull hypothesis point to a positive feedback from total revenue 

growth ( rΔ ) to innovation inputs (although less significantly if R&D expenditures are taken as 

the measure of inputs into innovation). It should be noted, however, that the corresponding point 

estimate is much smaller than that obtained in our previous study (Klomp and van Leeuwen, 

2001). This is expected to be due to scope of the model used in this study. In this study we have 

productivity growth ( lr ΔΔ − ) as the single measure of firm performance. In contrast, in our 

previous study, both total revenue growth ( rΔ ) and employment growth ( lΔ ) were included as 

the jointly endogenous performance measures in the full model and this may account for the 

difference when including only rΔ , as has been done in this study. 

 
3.7 Summary and conclusions 

 
This paper presents an overview of recent studies on the relation between innovation and 

firm performance. The exploitation of innovation surveys for the estimation of the so-called 

knowledge production function and the link between innovation and firm performance 

(productivity (growth) or growth of turnover or employment) are two common features in these 

                                                      
35 The median value for the innovation output indicator in our data is approximately 20% and the median 
market share of firms that had recorded innovative sales is about 0.4%. 
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studies. The bottom line of the different approaches is that it is not innovation investment but 

innovation output (measured by the share of innovative sales in total sales) that should be used 

for the estimation of the contribution of innovation to firm performance (e.g. multi-factor 

productivity (growth)). This paper raises the question of the interpretation of innovation output 

in the new modelling approaches. In earlier studies innovation output has been used as a 

measure of technological capability, thereby abandoning the old practice of using measures of 

innovation investment or stocks derived from them in the production function framework. This 

paper suggests an alternative interpretation which – in our opinion – seems to be more adapted 

to the nature of innovation output.  

We use a recently proposed adaptation of the standard production function framework to 

account for the fact that a firm’s innovation output may ‘shift’ its demand if the firm is 

operating in a competitive environment. In our empirical application we replace the value-added 

production function framework used in the other studies by a revenue function approach which 

combines a gross output production function with a market share model. This enables us to 

interpret the impact of innovation on productivity growth as a ‘demand-shifting’ effect. Our 

baseline model consists of a system that links the innovation process to a single value-added 

production function or revenue function. The models have been applied to the data of the Dutch 

Community Innovation Survey (CIS-2) covering the period 1994 – 1996 and production survey 

data for the same period. We also experimented with different specifications of the exogenous 

variables for the various endogenous variables of the systems. 

Notwithstanding the limited information in the time dimension of the data, we obtain rather 

plausible results. Among other things, it is found that the return on innovation investment 

increase if we use information concerning a firm’s technological environment in addition to 

only innovation or R&D intensities. Furthermore, we found that the same innovation 

characteristics may have different impacts on the input and the output stage of the innovation 

process. We found rather strong evidence for the ‘absorptive-capacity’ hypothesis in the pattern 

for the estimates pertaining to the use of different technological opportunities. Technological 

opportunities for which ‘science’ is the source, are only significant for the explanation of inputs 

into innovation, but the use of other sources (provided by customers, suppliers or competitors) 

contribute more directly to innovation output. Furthermore, we also found a sizeable impact of 

performing R&D on a permanent basis on the level of innovation output.  

Our estimates for the innovation input equation of the model also show that, conditional on 

selection, the R&D intensities of firms appear to be invariant to size, which corroborates 

stylized fact 3 of Cohen and Klepper (1996). However, their stylized fact 4 is rejected for the 

estimates of ‘size’ in the innovation output equation: conditional on having innovation output 

‘size’ does not matter, as small firms do not have significant higher innovation output than large 

firms. 
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The most robust estimate for the return on innovation investment is obtained when all links 

between the innovation process and the overall performance of firms are included. Similar to 

CDM and LH, our estimates underline the benefits of taking into account the joint endogeneity 

of the key variables of the whole system. However, and in contradiction to the findings in other 

studies, we do not find a significant impact of innovation output on the level of productivity if 

we use a value-added productivity equation in our model. By contrast, the use of a revenue 

function approach appears to yield more sensible results for the contribution of innovation 

output to productivity growth in terms of the parameters of the underlying market share model. 

The estimates of the structural parameters of the single-equation revenue function as well as 

those for the semi-reduced form model point to a significant ‘demand-shift’ effect of innovation 

output and a derived multi-factor productivity estimate, which is closer to the results obtained 

by CDM and LH.  

In conclusion, we find two main results. First, when similar model specifications are applied 

to France (CDM), Sweden (LH) or The Netherlands (this study) rather limited differences are 

found in the results for the estimated returns − in terms of innovation output − on innovation 

investment. The exception is that our results for the Netherlands show that the impact of 

innovation on firm performance, if measured as value-added per employee, is insignificant, 

which contrasts the results for France and Sweden. On the other hand we obtain a rather 

sensible result if we use the revenue-per-employee growth as the measure of firm performance. 

Secondly, the results benefit from the inclusion of additional information on the organisation of 

the innovation process. In other words, are sensitive to the specification of the model that is 

applied. 
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APPENDIX 3.1  DESCRIPTIVE STATISTICS FOR THE QUALITATIVE VARIABLES 
 
Variable Innovating 

firms 
Firms 
with 

innovative 
output  

 N = 2985 N = 1926 
  
Qualitative variables   
  
Number of firms with:  
• Innovation subsidies awarded (Dsubs) 1096 979
• Demand factors considered weakly important (Ddpull1) 297 160
• Demand factors considered moderately important (Ddpull2) 904 653
• Demand factors considered strongly important (Ddpull3) 1686 1068
• Technology-push factors considered weakly important (Ddpush1) 244 155
• Technology-push factors considered moderately important (Ddpush2) 1200 810
• Technology-push factors considered strongly important (Ddpush3) 1315 841
• R&D on a permanent basis (DR&D) 1346 979
• Innovation in partnership (Dco-op) 852 553
• Process innovation implemented in 1994 – 1996 (Dprocess) NA1 1403
  
Firms classified into:   
• Chemical industry ‘science based’,  NACE 23 - 25 (Pavitt1) 246 246
• Electro technical industry ‘science based’ , NACE 30 - 33 (Pavitt2) 165 165
• Manufacturing of  food ‘scale intensive’, NACE 15 - 16 (Pavitt3) 218 218
• Metal industry ‘scale intensive’, NACE 27 - 28 (Pavitt4) 245 245
• Other industries ‘scale intensive’, NACE 10, 11,14, 26, 34, 35, 40, 41 (Pavitt5) 196 196
• Manufacturing ‘specialized supplier’, NACE 32 (Pavitt7) 261 261
• Business services ‘specialized supplier’, NACE 70 -72, 74 (Pavitt6) 327 
• Business services ‘supplier dominated’, NACE 50 - 52, 55, 60 - 67, 90, 93  

(Pavitt8) 
732 

• Manufacturing ‘supplier dependent’,  NACE 17 - 22, 29, 36 - 37 (base category) 595 595
  
• Small firms  (base category) 1039 700
• Medium sized firms  (SC1) 1472 932
• Large firms  (SC2)          474 294

1 For ‘service firms’ no distinction has been made between product and process innovation. 
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APPENDIX 3.2  THE GENERALIZED TOBIT MODEL FOR INNOVATION INPUTS 
 
Variable Innovation intensity R&D intensity 

 Est. SE T Est. SE T
   
Number of firms 2985 2985  
   
A) Probit part   
   
Constant -0.201 0.239 -0.8 -0.197 0.239 -0.8
MS1994 0.080 0.005 15.6 0.080 0.005 15.7
LE1994 -0.254 0.026 -9.7 -0.254 0.026 -9.7

IqΔ  -0.010 0.006 -1.7 -0.009 0.005 -1.7

Dpull1 0.361 0.183 2.0 0.362 0.183 2.0
Dpull2 0.448 0.137 3.3 0.448 0.137 3.3
Dpull3 0.286 0.138 2.1 0.285 0.138 2.1
Dpush1 0.152 0.122 1.2 0.151 0.122 1.2
Dpush2 0.327 0.097 3.4 0.327 0.097 3.4
Dpush3 0.245 0.099 2.5 0.243 0.099 2.5
DR&D 0.468 0.054 8.7 0.470 0.054 8.7
LA1994 0.166 0.027 6.1 0.165 0.028 6.0
Science 0.087 0.027 3.2 0.087 0.027 3.2
Other -0.051 0.027 -1.9 -0.051 0.027 -1.9

rΔ  -0.005 0.002 -3.2 -0.005 0.002 -3.2
   
B) Tobit part   
   
Constant 9.946 2.274 4.4 2.489 1.387 1.8
MS1994 0.056 0.023 2.4 0.035 0.008 4.2
LE1994 -1.059 0.174 -6.1 -0.171 0.063 -2.7

IqΔ  0.024 0.028 0.9 0.015 0.013 1.2

Dpull1 -1.470 2.072 -0.7 -0.302 1.475 -0.2
Dpull2 -0.091 1.368 -0.1 -0.023 1.128 0.0
Dpull3 0.178 1.347 0.1 -0.061 1.130 -0.1
Dpush1 1.047 0.995 1.1 0.149 0.669 0.2
Dpush2 0.666 0.885 0.8 0.162 0.591 0.3
Dpush3 1.063 0.884 1.2 0.133 0.586 0.2
DR&D 0.537 0.497 1.1 1.080 0.264 4.1
LA1994 -0.743 0.176 -4.2 -0.304 0.078 -3.9
Science 0.531 0.145 3.7 0.324 0.053 6.2
Other 0.507 0.160 3.2 0.064 0.080 0.8
DSUBS 0.893 0.346 2.6 0.830 0.235 3.5
CF1994 0.058 0.011 5.4 -0.001 0.005 -0.2

rΔ  0.001 0.011 0.1 0.000 0.005 -0.1
   

2σ  5.833 0.092 63.3 2.473 0.031 79.4

Tobitρ  -0.102 0.238 -0.4 -0.104 0.195 -0.5
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APPENDIX 3.3  INNOVATION-INPUT AND INNOVATION-OUTPUT EQUATIONS 
 

In this appendix we present the 3SLS estimates for the innovation model underlying the full 

system. We compare the results for two measures of innovation inputs: the innovation intensity 

(a) and the R&D intensity (b). An important conclusion is that different innovation 

characteristics considered have a diverging impact on the various stages of the innovation 

process. Similar to Klomp and Van Leeuwen (2001), we see a corroboration of the ‘absorptive 

capacity’ hypothesis of Cohen and Levinthal (1989) in the estimates of the variables referring to 

the use of information sources. The use of the technological opportunity ’SCIENCE’ appears to 

have a significant impact on the inputs into innovation, but not so on innovation output. By 

contrast, the use of other information sources (e.g. information sourced from customers, clients, 

competitors seems to have a more direct impact on the level of innovation output than on 

innovation investment (see the coefficient of the variable ‘OTHER’). Furthermore, and not 

surprising, our results show that performing R&D on a permanent basis and innovating in 

partnership both contribute significantly to the level of innovation output.  

The results presented here also show some interesting patterns for the contribution of the 

‘technology push’ and ‘demand-pull’ indicators to the two stages of the innovation process. In 

the Tobit estimates of Appendix 3.2 model we saw already no significant impact of these 

variables on the level of the inputs into innovation. This is now confirmed in the estimates for 

the innovation-input equations. However, it can also be seen that these indicators appear to be 

very significant for the explanation of differences in innovation output. The pattern and sign of 

the estimates seems to be consistent with a priori beliefs in a sense that estimates of the 

‘demand-pull’ indicators are positive and increasing with their underlying importance ratings. 

As we also obtained less significant estimates for the 'technology push' indicators, these results 

clearly underline that innovation is a demand driven process predominantly. 

The results presented in this appendix enable a more accurate verification of the stylized 

facts of Cohen and Klepper (1996). If we take the results of the extended model as our preferred 

results, then their stylized fact 3, referring to the positive relation between R&D investment and 

firm size, seems to be corroborated in our estimates. Furthermore, our estimates also show no 

significant relation between innovation output and size in our preferred model. This contrasts 

stylized fact 4 of Cohen and Klepper (1996).  

Finally, we comment on the estimation results for the two stages of the innovation process 

concerning the estimated feedback link from the overall sales performance to the input stage of 

the innovation process, represented by the coefficient of rΔ  in the innovation-input equation. 

The estimates for testing Schmookler’s (1966) demand-pull hypothesis show that we have a 

significant positive feedback from revenue growth on innovation inputs, but the estimate is less 

significant if we use the R&D intensity as the measure of inputs into innovation. 
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Estimation results for the innovation input and innovation output equations 
Variable Innovation intensity (a) R&D intensity (b) 

 Est. SE T Est. SE T
   

Number of firms 1926 1926  
   
A) Input equation    
   
Constant 13.758 2.348 5.9 3.673 1.005 3.7
MS1994 -0.004 0.036 -0.1 0.015 0.015 0.9
LE1994 -0.634 0.233 -2.7 -0.033 0.100 -0.3

IqΔ  0.028 0.024 1.2 0.018 0.010 1.7

Dpull1 -2.289 1.222 -1.9 -0.548 0.519 -1.1
Dpull2 -1.072 1.017 -1.1 -0.321 0.433 -0.7
Dpull3 -0.494 0.971 -0.5 -0.263 0.413 -0.6
Dpush1 0.832 0.733 1.1 0.071 0.311 0.2
Dpush2 0.079 0.661 0.1 -0.032 0.281 -0.1
Dpush3 0.627 0.640 1.0 -0.010 0.272 0.0
DR&D -0.431 0.533 -0.8 0.795 0.228 3.5
LA1994 -1.042 0.226 -4.6 -0.405 0.097 -4.2
Science 0.374 0.158 2.4 0.276 0.067 4.1
Other 0.608 0.156 3.9 0.093 0.066 1.4
DSUBS 1.008 0.281 3.6 0.786 0.123 6.4
CF1994 0.024 0.012 2.0 -0.006 0.005 -1.2

rΔ  0.025 0.010 2.5 0.008 0.004 1.8

Selectivity correction -4.293 1.802 -2.4 -1.445 0.776 -1.9
   
Pseudo R2 0.082 0.162  
   
B) Output equation    
   
Innovation inputs 0.297 0.032 9.4 0.549 0.057 9.6
Constant -9.606 0.782 -12.3 -7.896 0.683 -11.6
LE1994 0.019 0.057 0.3 -0.202 0.052 -3.9

IqΔ  -0.010 0.008 -1.1 -0.014 0.008 -1.7

Dpull1 2.033 0.425 4.8 1.734 0.411 4.2
Dpull2 2.619 0.339 7.7 2.554 0.330 7.7
Dpull3 2.779 0.334 8.3 2.829 0.326 8.7
Dpush1 -0.279 0.259 -1.1 -0.028 0.252 -0.1
Dpush2 -0.153 0.217 -0.7 -0.029 0.212 -0.1
Dpush3 -0.511 0.218 -2.3 -0.259 0.212 -1.2
DR&D 1.200 0.137 8.7 0.699 0.145 4.8
LA1994 0.370 0.071 5.2 0.330 0.067 4.9
Science 0.032 0.054 0.6 0.007 0.053 0.1
Other 0.046 0.057 0.8 0.166 0.053 3.1
Dco-op 0.182 0.103 1.8 0.204 0.102 2.0
Selectivity correction 2.073 0.383 5.4 2.033 0.373 5.4
   
Pseudo R2 0.071 0.083  
1 The (3SLS) estimates are obtained after using the full system and all instrumental variables.  
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Chapter 4 
 
Linking innovation to productivity growth using two waves of the 
Community Innovation Survey (CIS)* 
                      
Abstract  
 
Using two waves of the Community Innovation Survey for the Netherlands we integrate recent 
lines of research to estimate the contribution of innovation to manufacturing multi-factor 
productivity (MFP) growth. The model uses CIS data to control for the complementarity 
between internal and external knowledge bases and also investigates the importance of within-
firm time interdependencies for inputs into innovation and innovation output. Our results show 
the benefits of including more information on the technological environment of firms. 
Furthermore, the model shows that tracking the innovation performance of firm over time leads 
to a lower persistence of innovativeness when measured from the output side than when 
measured from the input side through use of R&D. Moreover, the contribution of innovation to 
MFP increases when estimating a static innovation model that uses the data obtained after 
pooling the two waves of CIS. The latter result reflects the difficulty of accounting properly for 
the non-rivalry of innovation and the associated inter-firm ‘spillovers’ of knowledge creation 
when using firm-panel data alone. 
 

4.1 Introduction 
 
About ten years ago that the OECD took the initiative of setting up guidelines for the 

formulation and the design of innovation surveys. Since the emergence of the Oslo Manual 

(OECD, 1992) a number of countries have launched at least two surveys, known as Community 

Innovation Surveys (CIS). In contrast to other countries, and prior to the third wave of the big 

and harmonised European CIS3 survey which is now underway, Statistics Netherlands has 

carried out an intervening survey (called CIS2,5) on the basis of a panel design. This paper 

presents the results of a first attempt to make use of two similar innovation surveys (CIS2 and 

CIS2,5) and the production surveys for the same reporting units to construct a panel for both 

innovation variables and performance measures.1 To our knowledge this is the first example of 

the use of panel data for innovation variables to investigate a number of theoretical issues raised 

over the past decade.  

Innovation surveys emerged from a growing concern about the following deficiencies of the 

traditional R&D surveys: 1) inputs into innovation were insufficiently covered by R&D 

                                                      
* This chapter was published as STI working paper 2002/8, OECD Directorate for Science, Technology 
and Industry, Paris. A first version of this paper was presented at the OECD Workshop on Firm-level 
Statistics, Paris, 26-27 November 2001. The author would like to thank Bert Balk for his valuable 
comments. 
1 In the Netherlands, CIS1 (covering 1992–1994) and CIS2 (covering 1994–1996) were conducted by 
different institutions. As a consequence of the use of different sampling frames, it appeared to be 
impossible to link these surveys at the micro level and to use the linked data for analysing the dynamics 
of innovation. Another difference between the two surveys concerns the questions asked and the reporting 
unit. From CIS2 onwards, the CIS surveys are considered to be harmonised and are conducted in more or 
less the same fashion.  
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expenditures alone, 2) appropriate and direct measures of the output of the innovation process 

were lacking, indirect measures such as patent applications were considered insufficient, and 3) 

data on the organisation of innovation process and the importance of knowledge flows between 

firms were required.  

It is clear that CIS has opened new routes for the assessment of the contribution of 

innovation to productivity (growth). First, the use of a direct measurement of a firm’s 

innovation output enables an explicit estimation of the innovation production function (see e.g. 

Griliches, 1998). In addition, the data on the (firm specific) characteristics of the innovation 

process permit a more direct analysis of the importance of knowledge flows between firms or 

between firms and other organisations, both for building up and maintaining internal knowledge 

bases or for the output of the innovation process. Second, if direct measures of innovation 

output are available, some of the disadvantages of the widely used knowledge-capital-stock 

approach can be circumvented. Third, embedding the innovation production function in a 

structural model enables a better understanding of the complex links between innovation and 

productivity growth. By allowing greater structure (more equations) and by providing new 

instruments, the new data sources are a step forward in the search for the identification of the 

contribution of innovation, or more specifically R&D, to productivity growth along the lines 

proposed in Griliches and Mairesse (1997).    

Since the harmonised CIS data have become available, only relatively few studies have tried 

to use the new data for the purpose of estimating the contribution of innovation to firm 

performance. Recent examples are presented in Crépon et al. (1998), Lööf and Heshmati (2001) 

and Klomp and Van Leeuwen (2001a). All these studies could make use of only one wave of 

CIS. In the present paper previous cross-sectional analysis by Klomp and Van Leeuwen (2001) 

is extended using the two waves of CIS to incorporate recent lines of research in a structural 

modelling approach. Adaptations of the model for knowledge-stock accumulation suggested by, 

among others, Hall and Hayashi (1989) and Klette (1996) and the revenue approach of Klette 

and Griliches (1996) are used to embed the innovation process in a model that aims to explain 

differences in productivity growth. The model simultaneously takes into account the importance 

of innovation for the competitive environment of firms and uses the innovation panel to 

investigate the within-firm time interdependencies of innovation output and the importance of 

inter-firm knowledge flows.  

The model adaptations yield a dynamic system for the innovation process which, on the one 

hand, may present a better description of the intricacies at work, but, on the other hand, also 

introduce a myriad of other problems. The first results show that many firms that innovated in 

CIS2 were absent in CIS2,5. Nevertheless, the coverage of innovating firms was very similar in 

the two surveys. This loss of data severely complicates the use of a dynamic innovation model, 

as it may be due to discontinuities of the innovation process itself (e.g. triggered by the 
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depletion of technological opportunities). In the estimation procedure I have tried as far as 

possible to control for this source of endogenous attrition. Furthermore, the results obtained 

using the dynamic innovation equations in the full model are compared with those from 

implementing a static version of the innovation model that can be applied to a more extensive 

data set.  

The plan of the paper is as follows. In sections 4.2 and 4.3 I discuss the derivation of the 

dynamic innovation model and the linking of this model to our model for productivity growth. 

Section 4.4 discusses the construction of the data. In this section some descriptive measures that 

enable a comparison of the performance of innovating and non-innovating firms are presented. 

The estimation results for the various models are presented in section 4.5. Section 4.6 

summarises and concludes. 

 
4.2 The relation with previous research  
 
4.2.1 Adaptations of the basic framework  

 
In this section some adaptations of the basic framework proposed in recent literature are 

outlined (see Appendix 4.1 for a summary of this framework). These adaptations concern 1) 

modification of the model for the process of knowledge accumulation underlying the R&D 

production function framework and 2) extension of the traditional reduced-form R&D models 

into the direction of a structural model as an attempt to exploit the CIS data. The first strand of 

research (which is the subject of subsection 4.2.1) discusses the separability of current R&D 

efforts and the internal knowledge base previously acquired. The second strand of research 

(discussed in subsection 4.2.2) models innovation as a separate process and discusses how this 

process can be linked to the overall firm performance. A link is established between the two 

strands of research by combining a (reduced-form) revenue model and a dynamic model for the 

innovation process.  

 
4.2.2 The process of knowledge accumulation  
 

Many discussions concerning the traditional R&D-productivity framework are centred 

around the concept of knowledge production and how the usually applied procedure of 

constructing R&D-capital stocks fits into this concept. The disadvantages of using the capital-

accumulation equation for firm I (I = 1, … , N) in year t (t = 1996, 1998): 

 
ititit RKK +δ−= −1)1(               (1) 

 
as a model for knowledge production has been discussed extensively in the literature (see e.g. 

Griliches, 1998). In this framework, K is a measure of knowledge stocks and R a measure of 

R&D or innovation investment. In this paper the focus is on the central point of criticism which 
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concerns the separability of current R&D efforts and the level of innovativeness already 

achieved.  

As the equation is homogeneous of degree one in current R&D, Equation (1) implies 

constant returns of R&D to knowledge production. Thus (1) neglects any complementarity 

between current R&D and the knowledge already captured in the existing stock or the history of 

R&D investment. Griliches (1998) has been pointed out that the process of knowledge 

production of firms induced by their own R&D history may be different in this respect from 

other capital investment. A firm’s R&D investment may depend in a non-linear fashion not only 

on its current own R&D but also on (own) previously accumulated results derived from R&D 

and – moreover – also on the absorption of knowledge sourced from its technological 

environment. 

An alternative specification provided by e.g. Hall and Hayashi (1989) and Klettte (1996) gets 

to the core of this criticism and is given by: 

 
υυρ

11 −
−
−= ititit RKK ,                                (2a) 

 
From Equation (2a) it can be derived that the marginal product of R&D is inversely related to 

the current R&D effort, which implies decreasing returns of R&D to knowledge capital.2 Klette 

(1996) rationalises (2a) as follows: "… the complementarity in knowledge production may 

explain why firms with a high rate of return to knowledge capital may have little incentive to 

carry out R&D because they may have too little knowledge capital or too few R&D skills to get 

much knowledge out of its new R&D investment. Similarly, firms with a low rate of return to 

knowledge capital might prefer to carry out more R&D as the knowledge capital already 

acquired makes the current R&D effort more productive …".  

Taking logarithms of the variables and adding a constant term, equation (2a) can be 

transformed into:  

 
12113 −− ++= ititit rkk θθμ                                   (2b) 

 
The parameters of interest in (2b) are 1θ and 2θ . If 1θ  is larger (smaller) than one, then we 

have increasing (decreasing) returns in the knowledge production function. The estimate of 2θ  

represents the innovation opportunities of R&D. The estimate of 1θ  can be considered as a 

measure of the persistence of the knowledge capital already acquired. A high value signals 

significant scale economies in R&D. An estimate larger than one points to a cumulative process,  

                                                      
2 Equation (2a) has the undesirable property that knowledge capital vanishes if R&D expenditure is zero. 
This problem can be taken into account in the estimation procedure by imputing one (guilder) for R&D 
and using a 'No-R&D' dummy variable in the regression model.    
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whereby an above-average firm departs more and more from the average firm, even if its R&D 

efforts are average.3 By contrast, a low value of 1θ  signals a low persistence of knowledge 

capital. This may be due to the depletion of technological opportunities as a result of 

(unintended) spillovers and diffusion of knowledge to competitors. In this case, there is a 

tendency to convergence, as a firm with an above average knowledge capital gravitates down 

towards to the average firm, even if it carries out the average amount of R&D.  

The usual procedure to implement (2b) in the empirical model is to find some way to solve 

out the unobservable k. Klette (1996) achieved this by combining a demand model with an 

equation for productivity differences relative to the reference firm (represented by the average 

over all firms). The empirical model finally obtained is a dynamic equation in Solow-residual 

productivity differences with the contribution of innovation represented by (the logarithm of) 

lagged R&D. Thus in essence this remains a (modified) reduced-form R&D model. Besides the 

drawback that these types of models remain based on measures of inputs into innovation,4 they 

also suffer from the disadvantage that the importance of knowledge flows between firms is not 

taken into account.  

 
4.2.3 Structural modelling approaches   
 

It is at this stage that the CIS data come into play. The main feature of CIS is that the survey 

is directed at the innovation process itself. The CIS surveys aim to describe the innovation 

process by collecting data on the inputs into innovation (innovation investment disaggregated by 

type), innovation output (measured by the share of new or improved sales in total sales), and 

data to describe the technological environment of firms and the importance of inter-firm 

knowledge flows.  

One of the new variables collected, and which seems to be most promising in view of the 

problems encountered in previous research, concerns the direct measurement of innovation 

output, represented by the share of new and of improved sales in total sales. It seems 

straightforward to use this variable and data on the firm-specific characteristics of the 

innovation process for the estimation of a (enhanced) knowledge production function as an 

alternative for (2b).  

Unfortunately, this new comes has a price. A first problem to note is that innovation output 

should be linked to the overall firm performance in some way, in order to enable an assessment 

of the contribution of innovation to productivity (growth). The change from input to output 

                                                      
3 This interpretation can be obtained after using deviations from the means of the variables included in 
(2b).   
4 A central problem related to the use of input measures remains the unknown relation between R&D 
investment and the output of the innovation process. This concerns – among others – the time delay 
between R&D investment and innovation success, or the depletion of technological opportunities built up 
by the history of R&D investment.   
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measures would aggravate the endogeneity problem5 as in this case the productivity equations 

will contain an output measure as one of the explanatory variable. A second point concerns the 

definition of innovation output. Which choice between the available alternatives should be 

made? For instance, should one use (the share of) new products or new and improved products, 

products new to the firm or new to the market? Third, is innovation output measured in this way 

equivalent to the output of a knowledge-production function or, more precisely, the result of 

applying the knowledge-capital accumulation equation given by (2b)?  

 
4.3 Adaptations of our previous model 
 
4.3.1 The derivation of an enhanced productivity-growth equation   
  

Recent studies (see e.g. Crépon et al., 1998, and Klomp and Van Leeuwen, 2001) have 

exploited the new CIS data in a structural modelling approach. These approaches claim that it is 

not differences in innovation investment (or more specifically, the history of R&D investment), 

but rather differences in innovation output that determine the observable differences in 

productivity (growth). In this section an extension of the model used in Van Leeuwen and 

Klomp (2001) is presented. The proposed model aims to capture the theoretical issues of the 

preceding section and also makes a more extensive use of the CIS data than does the study of 

Crépon et al. (1998). Similar to Klette (1996), a firm’s total sales are used as the starting point 

for the model derivation but, contrary to his study, sales performance of firms is embedded in a 

market-share model. Therefore, the model proposed here is similar to that of Klette and 

Griliches (1996), with the difference that an innovation output measure is used to capture the 

impact of ‘demand-shifts’ on sales-per-employee growth. This adaptation can be argued as 

follows. Saying that innovation output is similar to relative product quality, by definition 

implies that innovating firms are operating on markets characterised by horizontal product 

differentiation. Thus, one may expect that successful innovators have the discretion of market 

power; this makes their relative prices endogenous.  

Let the differential equation for the market share of firm i operating on market (industry) I be 

given by  

 

)( IiiI
d
i ppdqq −Δ+Δ=Δ−Δ η 6.                          (3a) 

 

In (3a) d
iq , ip and Iq denote respectively the demand and own price (index) of firm i and total 

sales of market (industry) I. Furthermore, η  represents the demand elasticity with respect to  

                                                      
5 This econometric problem also complicates the use of traditional R&D models as one may expect that 
the R&D investment decision may be dependent on firm performance.  
6 Equation (3a) is the ‘long-difference’ form of the market-share, where the ‘long-difference’ operator Δ  
refers to annualised growth rates calculated for the periods 1994-1996 and 1996-1998. 
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relative prices (or stated otherwise: the ‘own’ price index relative to the aggregate deflator for 

industry I) and idΔ  summarises the contribution of ‘demand-shifting’ variables to the growth 

rate of a firm’s own demand relative to the growth of exogenously given sales opportunities, 

represented by IqΔ .  

The proposed model adopts a parametrisation of the ‘demand-shifter’ that uses the data on 

cross-sectional differences in relative product quality observed in CIS. More precisely, 

ii Sd φ=Δ  is used, with Si the share of new (or new and improved) sales in total sales. Taking 

into account the definition of the growth rate of deflated revenues ( irΔ ), expressed as:  

 
Iiii ppqr Δ−+Δ=Δ )( ,                                                                                     (3b) 

 
and after equation demand and output, and combining (3a) and (3b) with a traditional gross-

output-production-function model,7  this yields 

ititItitititit eSqlmcr 1
1)( +−Δ−Δ+Δ+Δ=Δ

η
φ

η
βλαε ,          (3c) 

whereε  represents the inverse of the mark-up factor,8 ie1  is a disturbance term and a time 

subscript is added to distinguish between observation periods. 

In the empirical application, the productivity equivalent of (3c) is used after adding a 

constant term and dummy variables to capture a general trend and the impact of process 

innovation on a firm’s revenue-per-employee growth respectively.9 Therefore, the empirical 

specification for the revenue-per-employee equation of the model reads: 

 

ititititititit llmlclr Δ−+++Δ−Δ+Δ−Δ+=Δ−Δ )1()()( λβαεελεαμ    

                   (4) 

                    ititprocitIt eDSq 2,
1 +ξ+

η
φ−

η
− Δ . 

 
The estimation of (4) yields an implicit estimate of the contribution of innovation to multi-

factor-productivity growth (MFP), given by - S)ˆ/ˆ( ηφ , and also controls for biases in the 

returns-to-scale estimates.10 Note that, contrary to the basic framework (see Appendix 4.1), 

                                                      
7 The model uses as inputs into production ordinary physical capital (C), labour (L) and material inputs 
(M) (see appendix 4.1).  
8 The inverse of the mark-up factor is related to the price elasticity of demand as follows: ηηε /)1( +=   
9 This dummy variable takes on a value of one if firms stated to have implemented process innovation and 
zero otherwise.  
10 S represents the average share of innovative sales and the estimate for 1−++ λβα  in (4) 
represents the deviation from constant-returns-to-scale. 



 90

innovation investment is no longer interpreted as a separate input. Instead, the model assumes 

that differences in innovation intensities are transmitted to differences in revenue-per-employee 

growth to the extent that a firm’s investment endeavour has been successful.  

 
4.3.2 Linking the revenue model to the innovation process  

 
The next step is to embed (4) in a structural model that is sufficiently flexible to capture 

important  features of  the innovation process and that takes into account the joint endogeneity 

of innovative sales and sales-per-employee growth. With sufficiently flexible I mean that this 

model should be able to account for within-firm time interdependencies of knowledge 

production as well as the various interactions between internal and external knowledge bases. 

However, this is a daunting task in view of the available data and the intricacies involved. Many 

variables collected in CIS are of a qualitative nature and how to use these data optimally 

together with the continuous variables for innovation investment and innovation output remains 

an open question. A related problem is that a firm’s technological environment may affect its 

innovation investment and its level of innovation output achieved at the same time. 

A recurrent conclusion of previous research (see e.g. Cohen and Levinthal, 1989, Leiponen, 

2001, Veugelers, 1997, and Veugelers and Cassiman, 1999), is that the technological 

environment of a firm may affect its organisational arrangements. Firms absorb knowledge from 

the environment via supplier-producer-customer-interactions, the use of available information 

sources in addition to building up and maintaining their own knowledge bases via R&D 

investment and (R&D) co-operation. The choice between the ‘make’, ‘buy’ or ‘make and buy’ 

option at the one hand, or between ‘formal’ and ‘informal’ R&D or – more general – innovation 

at the other hand, may have diverging impacts on the level and composition of innovation cost. 

Moreover, utilising the technological environment may also contribute to innovation output 

more directly. For instance, one can imagine that firms innovate by exploiting the available 

information sources or by relying on informal innovation co-operation even without spending 

one dollar on R&D.  

In order to account for the complementarity between internal and external knowledge bases 

and knowledge flows between firms, R&D investment decision and the level of innovative sales 

achieved are assumed to be jointly dependent on various firm-specific innovation 

characteristics.11 In addition, the within-firm time interdependencies is modelled for the two 

stages of the innovation process by adopting a dynamic specification for the R&D intensities 

(denoted by R/Q) as well as for the (logarithm of the) share of new sales in total sales.12 This 

yields the following two equations  

                                                      
11 A description of all instrumental variables is given in appendix II. 
12 I use the R&D intensity form and the logarithmic transformation of S in (5a) and (5b) because this 
enables a comparison with, for example, Crépon et al. (1998) and Van Leeuwen and Klomp (2001). 
Furthermore, to be consistent with (5a) and (5b), I replaced S in (4) by exp{ln(S)}.   
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rtttititt eZXSQRQR +Π′+Π′+++= −− 14113111211110 )ln()/()/( πππ               (5a) 

                                    
sitttititit eZXQRSS +Π′+Π′+++= − 2422322212120 )/()ln()ln( πππ ,       (5b) 

  
The capital Π ’s in (5a) and (5b) denote vectors of parameters associated with the 

instrumental variables (other than the lagged dependent variables included). We collect these 

variables into two vectors X (for production survey data) and Z (for innovation survey data). The 

identification of the model rests on the partitioning of these vectors across the two equations. A 

similar partitioning to that used in Van Leeuwen and Klomp (2001) has been chosen (see also 

Appendix 4.2): 

 
},,,{ 111 −−− Δ= ttIt CFlqMSX ;   

 
},,,,,,,{ &2121 DRopcopushpushpullpull DDOTHERSCIENCEDDDDZ −= , 

 
},{1 subsDZZ = , },,,{ 1111 −−− Δ= ttIt CFlqMSX ,  

 
},,{2 PAVITDZZ proc= and },{ 12 −Δ= tI lqX .13 

 
Note that (5a) generalises (2b) and that system (5) as a whole can be used to compare the 

differences between the persistence of R&D input and innovation output. In addition, an 

estimate for the impact of the initial level of innovativeness (represented by ln(St-1)) on the 

current R&D endeavour is obtained. Furthermore, system (5) can be reduced to a static version 

by removing the lagged endogenous variables, thus enabling a comparison with our previous 

research. 

 
4.4 The data    

 
The data used in this paper are obtained by matching the two waves of CIS to the production 

surveys for manufacturing. In general, the two innovation surveys asked the same questions and 

were based on the same sampling frame that underlies the production surveys. Thus, in 

principle, matching the two innovation surveys is straightforward. However, an exception 

should be made for few enterprises that have their R&D function centralised in special units. As 

their innovation data for 1996–1998 were collected in a different way than the corresponding 

data for 1994–1996 (CIS2), these data have not been used.  

The model makes extensive use of market (industry) variables. Therefore, industry data on 

nominal sales were first constructed for the years 1994, 1996 and 1998. Using the raising factors 

of the underlying production surveys the value of total sales was calculated on the ISIC three-

                                                      
13 PAVIT denotes a set of dummy variables that represent the industry classification of firms according to 
technology regimes. See Appendix 4.2 for an explanation of the other instruments collected in X and Z. 
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digit level for each year. Subsequently, these data were linked to the corresponding industry 

price indices for total sales and material usage.14 In the next step a clean set of complete firm-

level production survey data was constructed for the two periods covered by the innovation 

surveys. In order to obtain two short panels, firms with complete production survey data in 1994 

and 1996 or 1996 and 1998 were selected. The cleansing rules eliminated firms with a negative 

score for their value added or missing data on employment, the cost of material usage and 

depreciation costs. In addition, and to safeguard against a mismatch with our industry data, 

firms that showed a change of the (3-digit) ISIC classification were also eliminated.15  

To estimate the parameters of the productivity growth equation of our model, data on labour 

input, material usage and physical capital are also needed. The first two variables are readily 

available, although for labour input ‘head counts’ (the number of employees) are the only 

variable available. Unfortunately, not uncommonly for this type of data, measures of capital 

inputs raise more problems. The capital input measure used to estimate the models is 

approximated by the depreciation costs (deflated with the price index for total sales) available in 

the production surveys.16 Similarly, the other nominal variables in the data set were deflated 

after linking the industry data to the firm-level data, by applying the industry sales - or material 

price indices to all firms within the corresponding industry. In the final stage of the data 

construction, the two innovation surveys were linked to the corresponding production survey 

panels after removing firms with a suspiciously high innovation intensity.17  

 
Table 4.1 Summary of the data sets available for manufacturing 

 1994-1996 1996-1998 1994-1998

 

Complete PS data 4134 5087 3180

 

Covered in CIS 2516 3012 1160

• Innovative  1428 1618 758

• Non-innovative  1088 1394 402

 

                                                      
14 The price indices represent the average change in prices compared to (base-year) 1990. Their level of 
detail varies between the two- and three-digit level of the ISIC industry classification of firms, with a 
greater level of detail for the sales deflators than for the price indices concerning material usage. 
15 A firm for which the 3-digit industry classification was changed in 1994–1996 has been eliminated 
from the panel for this period. Nevertheless, this firm can be included in the panel for 1996–1998, 
provided that its classification did not change in the latter period.  
16 This financial measure is related to the capital stock but does not reflect directly the capital service 
flow. Tax laws, vintage structures and type distribution of the assets, and cyclical capital utilisation all 
cause differences between the depreciation data and the desired measure of real capital input. 
17 Firms covered in CIS2 or CIS2,5 were removed from the data if their innovation intensity  (total 
innovation cost scaled by nominal sales) exceeded 50%. 
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A summary of the data available after the before mentioned steps is given in Table 4.1. It 

should be noted that the second period covers many more very small firms than the first period. 

This applies to the production survey as well as to the innovation survey. Nevertheless, the CIS 

coverage ratios for the two periods are more or less equal (about 60%). For the coverage with 

respect to innovating firms, the result is similar: the share of innovating firms as a percentage of 

all firms covered by CIS differs only slightly between the periods covered by CIS2 and CIS2,5. 

However, if a balanced innovation panel is used, then the coverage ratio of CIS decreases to 

36% (see the last column of Table 4.1). This unexpected result may have different causes and 

deserves further investigation. On the other hand, it can be seen that the use of a balanced 

innovation panel may invoke another selectivity problem, as the percentage share of innovating 

firms is larger for the balanced innovation panel (65% compared to 57% in 1994–1996 and 54% 

in 1996–1998). The latter result may be due to the combined effect of a higher probability of 

survival and a higher persistence of innovativeness for larger firms.  

In closing, it should be noted that the definition of ‘innovativeness’ used in this study differs 

from the one used in Statistics Netherlands (2000). In the present study, firms that responded to 

CIS are labelled 'innovative' if they have a complete set of data on its innovation investment, 

innovation output and the qualitative variables referring to the technological environment. By 

contrast, Statistics Netherlands (2000) uses a broader definition, and firms are classified 

‘innovative’ if they have carried out innovative activities in some way. In the latter definition, 

firms are considered to be ‘innovative’ even if they did not actually implement any product or 

process innovation in the period considered. For these firms the variables included in the model 

discussed above are not available.  

 
4.4.1 A comparison of the performance of innovating and non-innovating firms    
 

Tables 4.2a and 4.2b present some simple descriptive measures for the key variables used in 

this study, enabling a comparison of the performance of innovating (I) and non-innovating (N) 

firms for 1994–1996 and 1996–1998. On the whole, the tables confirm our previous result 

(Klomp and Van Leeuwen, 2001) that innovating firms are performing better than non-

innovating firms. This conclusion applies to all performance measures included, except for the 

industry variables. The latter result shows that general business conditions did not favour 

innovating firms in particular. The most striking difference between the two periods concerns 

the growth rate of employment. The accelerating growth of industry sales in 1996 – 1998 shows 

up in a positive employment growth in this period, in particular for innovation firms. However, I 

do not observe a similar acceleration of sales-per-employee growth. Moreover, the acceleration 

of labour productivity growth (measured as value-added-per-employee) appears to be modest.  
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Table 4.2a  Descriptive statistics for selected variables in 1994 – 19961 

Variable Median Q1 Q3 SD
Growth rate of :2     
Employment  (I) 0.0 -3.8 4.6 11.0
Employment (N)  0.0 -4.6 4.6 13.5
Value added per employee (I)  2.0 -4.5 8.6 15.8
Value added per employee (N) 1.4 -5.6 8.9 19.2
Sales per employee (I) 3.3 -2.6 9.6 13.8
Sales per employee (N) 2.6 -3.9 9.7 16.2
Industry sales (I) 3.6 1.2 6.9 7.7
Industry sales (N) 3.5 1.4 5.8 6.7
  
Levels:  
Market share 1994 (%)  (I) 0.6 0.2 1.9 7.6
Market share 1994 (%) (N) 0.2 0.1 0.6 4.1
Employment 1994  (I) 89 53 175 1152.8
Employment 1994 (N) 42 28 73 224.9
Profitability 1996 (%)  (I) 9.8 5.1 16.5 13.9
Profitability 1996 (%) (N) 8.4 3.3 14.9 14.4
Value added per employee 1996  (I)3 97.0 76.5 131.7 82.2
Value added per employee 1996 (N)3 84.4 66.3 109.6 82.3
Sales per employee  1996 (I)3 251.1 184.3 373.8 422.0
Sales per employee  1996 (N)3 212.6 151.7 317.5 565.4
1 Number of innovative firms (I) is 1428; Number non- innovative firms (N) is 1088. 
2 Annualised growth calculated over the period 1994 – 1996. 
3 In NLG thousand. 
 
Table 4.2b  Descriptive statistics for selected variables in 1996 – 19981 

Variable Median Q1 Q3 SD 
     
Growth rate of :2     
Employment  (I) 1.3 -2.5 7.0 14.0 
Employment (N)  0.4 -3.2 7.7 17.6 
Value added per employee (I)  2.3 -4.8 9.8 17.8 
Value added per employee (N) 1.7 -6.7 10.3 21.9 
Sales per employee (I) 3.2 -3.3 9.7 17.4 
Sales per employee (N) 2.2 -5.5 10.1 21.6 
Industry sales (I) 5.4 2.3 6.9 5.3 
Industry sales (N) 5.4 1.4 6.9 5.9 
     
Levels:     
Market share  1996  (%)  (I) 0.4 0.1 1.6 6.8 
Market share  1996  (%) (N) 0.2 0.1 0.5 4.1 
Employment  1996  (I) 74 34 159 1077.5 
Employment  1996 (N) 30 15 57 170.7 
Profitability  1998 (%) (I) 10.1 4.8 16.4 13.7 
Profitability  1998 (%) (N) 9.9 4.3 18.0 16.6 
Value added per employee 1998  (I)3  99.0 77.7 133.4 138.9 
Value added per employee 1998 (N)3 88.4 67.4 118.8 72.3 
Sales per employee  1998 (I)3 264.7 187.5 394.6 834.6 
Sales per employee  1998 (N)3 218.1 150.5 337.9 1751.3 
1 Number of innovative firms (I) is 1618; Number non-innovative firms (N) is 1394. 
2 Annualised growth calculated over the period 1996 – 1998. 
3 In NLG thousand. 
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The simple descriptive measures used for the level data also point to some well-known stylised 

facts as the tables show that size distributions are very skew and that innovating firms are 

smaller and have higher median values for the market shares. It can also be seen that the 

different survey design for the period 1996–1998 shows up in a lower median value for 

employment, both for innovating and non-innovating firms.  

 
4.5 Estimation results    

4.5.1 Selectivity issues     

In this section, the estimation results for the various implementations of the full model are 

presented. In all implementations the estimated system contains the productivity-growth 

Equation (4), but I shall iterate on the functional form of the equations that refer to the 

innovation process. In any case, the estimation of the system takes into account the simultaneity 

of innovation investment, innovation output and productivity growth. The data allow a break-

down for the total of innovation cost and I can also choose between different measures of 

innovative sales. In order to keep things tractable, and to preserve the link with previous R&D-

productivity research, R&D intensity was chosen as the measure of inputs into innovation. For 

the output side of the innovation process, I have chosen to compare the model estimates 

obtained after using two alternative measures: the share of new sales (new to the firm) in total 

sales; and the share of new and improved sales in total sales. I begin by using the second 

measure18 and then recalculate the models using the first definition of innovation output. 

In the estimation procedure I try to correct for possible biases due to selectivity problems. A 

priori reasoning suggests that the emergence of such problems may be dependent on the 

adopted specification for the innovation model. For instance, if (5a) and (5b) are used as the 

model for the innovation process, then the complete system can only be estimated using the 

firms that were innovative in the two periods considered. In this case a severe loss of 

information is encountered. This problem can be overcome by transforming (5a) and (5b) into a 

static version by removing the lagged dependent variables from the equations.  

However, this change of modelling strategy seems not be trivial in view of the very nature of 

the process of ‘knowledge production’ and the measure used for the output of this ‘production 

process’. It may be the case that part of the sample attrition is due to discontinuities in 

knowledge creation (or more precisely the generation of new or improved products) at the firm 

level. Put simply: ‘the fact of having achieved new or improved sales in 1994–1996 may reduce 

the incentive to innovate in 1996–1998, as the technological opportunities may be depleted’. All 

this is tantamount to saying that a problem of endogenous attrition may be encountered if a 

dynamic innovation model is used. Note that the selectivity issue can be carried over to the use 

                                                      
18 This measure has also been used in previous research (Van Leeuwen and Klomp, 2001). 
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of a static version of (5a) and (5b): a situation might arise in which firms facing favourable sales 

opportunities have less incentives to be engaged in innovation.  

 
Table 4.3  Results of the innovation input - and innovation-output equation 

Type of model  Dynamic model1 Pooled model1 
 Est. T Est. T
     
Number of firms 758 3046  
     
A) R&D intensity 1996 or 1998     
Constant 2.792 2.0 6.269 7.2
R&D intensity 1996  0.434 24.2  
Innovation output 1996 -0.014 -0.2  
Size 1994 or 1996  -0.255 -2.0 -0.784 -7.4
Market share 1994 or 1996 0.042 5.8 0.034 8.2
Subsidy awarded 0.269 1.1 0.582 3.9
Cash-flow ratio 1994 or 1996 -0.004 -0.6 -0.005 -1.7
Permanent R&D facilities 0.505 1.6 0.895 4.7
Innovation co-operation  0.156 0.8 0.258 2.1
Technological opportunity 'Science' 0.247 2.9 0.544 13.5
Technological opportunity 'Other' 0.062 0.5 0.150 2.3
Demand-pull important -0.108 -0.2 -0.155 -1.0
Demand-pull very important 0.029 0.1 0.023 0.1
Technology-push important 0.182 1.0 -0.181 -1.6
Technology-push very important -0.016 -0.1 -0.220 -2.0
Industry sales growth 1994 - 1996 
or 1996 – 1998 

0.001 0.7 0.042 6.2

Period dummy -0.294 -2.4
Heckman’s selectivity correction -2.912 -1.9 -2.250 -6.3
  
Pseudo R2 0.522 0.169 
     
B) Innovation output 1996 or 19982     
Constant -5.624 -1.5 -4.790 -16.6
Innovation output 1996 0.295 2.9  
R&D intensity 1996 or 1998 0.067 0.5 0.615 3.9
Size 1994 or 1996 0.135 0.5 -0.036 -0.9
Permanent R&D facilities 0.490 3.0 0.237 1.1
Innovation co-operation  0.174 1.1 0.002 0.0
Technological opportunity 'Science' 0.056 0.6 -0.025 -0.5
Technological opportunity 'Other' 0.230 3.2 0.237 4.0
Demand-pull important 2.025 9.9 0.839 6.7
Demand-pull very important 2.159 9.8 0.838 6.6
Technology-push important 0.033 0.2 -0.063 -0.6
Technology-push very important -0.267 -1.9 -0.114 -1.1
Industry sales growth 1994 - 1996 
or 1996 – 1998 

0.003 0.2 -0.026 -2.7

Process innovation implemented 0.252 1.6 0.601 7.6
Period dummy 0.512 4.4
Heckman’s selectivity correction3 1.096 0.3 x 

  
Pseudo R2 0.354 0.088 
1 The 'dynamic model' covers the 1996 - 1998, the 'pooled' model the periods 1994-1996 and 1996-1998. 
2 Calculated as the (logarithm of the) share of new and improved products in total sales. 
3 I did not include a selectivity correction for the pooled model as the preliminary Tobit selectivity 
analysis did not indicate a selectivity problem. 
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The usual way to account for this type of problems is to apply Generalised Tobit models to 

the equations of the dynamic or static innovation model. These models have been applied as a 

first step in the estimation procedure. By doing so, the joint dependence on the available 

exogenous variables can be assessed for the probability of being innovative as well as for the 

dependent variables of the innovation equations. To save space, the results will not be discussed 

in great detail in the present paper (see Appendix 4.3 for the model estimates). The main 

conclusion is that the selectivity problem is more severe for innovation inputs than for 

innovation output. 

The next step consists of finding a way to control for possible selectivity biases of the 

estimates of the full model. This has been achieved as follows. Dependent on the results of the 

Tobit analysis, selectivity-correction terms derived from Heckman's two-step method were 

added. Furthermore, and only for the full model that uses the static innovation equations, time 

dummy variables were added to all equations of the full model to control for period-specific 

effects. It should be born in mind that the dynamic version of the full model is estimated for the 

period 1996–1998, and uses the data for the 758 firms that were innovative in 1994–1996 as 

well as in 1996–1998 (Table 4.1).19 The full model, with the static version of the innovation 

equation included, uses the 3046 firms that were innovative in either 1994–1996 or in 1996– 

1998.  

The two versions of the full model are estimated with the help of the method of Full 

Information Maximum Likelihood (FIML). The FIML estimates are presented in Tables 4.3 and 

4.4. First I look at the estimates for the equations of the innovation process, thereby focusing on 

two central themes: 1) the persistence of innovativeness and 2) the returns to R&D investment. 

 
4.5.2 The estimates for the innovation equations      

 
The first, and most notable, point to observe is that the estimates for the lagged dependent 

variable in the R&D-intensity equation, as well as the lagged dependent variable in the 

innovation-output equation are statistically significant and that the estimate is higher (and 

estimated with more precision) for R&D-intensities than for innovation-output. This result 

suggests that there is less persistence when innovation is measured from the output side than 

when it is measured from the input side of the innovation process. Apparently, the often quoted 

stylised fact that differences in R&D intensities across industries are persistent cannot be carried 

over to the output of knowledge production. Moreover, the coefficient of the lagged R&D 

intensity presented in Table 4.3 may be considered too low to make a very strong statement 

about its persistence on the basis of our data.20 In any event, the obtained estimates indicate that, 

                                                      
19 The data for 1994-1996 were used to construct the lagged dependent variable in the innovation 
equations. 
20 Note that this stylized fact has been often found after using other types of data, e.g. time series data for 
industry aggregates or long R&D time series data of very large enterprises. 
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at least for innovative sales, there is a strong tendency towards convergence when using firm-

level data.21 As mentioned above, the results for innovative sales may be due to a depletion of 

technological opportunities. One can imagine that this source of non-persistence is far more 

valid at the firm level than in the aggregate, where the decrease of innovative sales of a 

particular firm is counterbalanced by an increase of innovative sales of other firms. This leads to 

the conclusion that there is much turbulence at the firm levels, and much turbulence at the 

product level, hidden behind the observed regularity of aggregate statistics.22   

From this point of view it is also understandable that the returns to innovation investment to 

innovation output (represented by the coefficient of the contemporaneous R&D intensity in the 

innovation-output equation of the model) are small and statistically insignificant in the dynamic 

model. If the level of product quality achieved captures the history of a firm’s R&D endeavour 

(and the technological opportunities of this firm are depleted), then the innovation opportunities 

of the most recent R&D investments may be small. This is the basic conjecture of the models of 

Hall and Hayashi (1989) and Klette (1996).23 In the dynamic model, the initial level of 

‘innovativeness’ in terms of innovation output is controlled for. Thus, the estimate of the 

contemporaneous R&D intensity in the innovation-output equation of the dynamic model seems 

to corroborate Hall and Hayashi (1989) and Klette (1996).  

However, this point deserves further reflection for two reasons. Firstly, how should this 

result be understood, given that I also obtained a much higher estimate for the returns of 

innovation investments to innovative sales in the static model, where it is about 0.6 and, 

moreover, rather significant? Secondly, how to explain the pattern of the estimates for the 

variable that controls for the presence of permanent R&D in the two equations? The dynamic 

model contains two different ‘forms of control’ that are related to the same phenomenon. First, 

let us compare the corresponding estimates for the two versions of the innovation-input 

equation. The significance of the estimate for the variable that controls for the presence of 

permanent R&D facilities is much smaller in the dynamic version of the model than in the 

‘static’ equivalent. This should not be surprising, as the dynamic model is aimed at an 

estimation of R&D persistence and this persistence has also been captured in the estimate of the 

lagged R&D intensity.  

The next step is to look at the innovation-output equation. The most striking difference 

between the two versions of the model is the low and insignificant estimate for the R&D 

intensity in the dynamic model and a much higher (and rather significant) estimate in the static 

                                                      
21 It should be remembered that the models use the broadest definition of innovative sales available, i.e. 
the share of new and improved products in total sales. 
22 To give an example: the simple arithmetic average share of new and improved sales in total sales for 
1994 – 1996 (calculated using the 1428 firms of table 4.2a) was about 26%. This is almost equal to the 
corresponding average for 1996–1998 (calculated using the 1618 firms of table 2b). The same regularity 
can be observed after weighting the data (see e.g. Statistics Netherlands 1998, and, Statistics Netherlands, 
2000). 
23 See the summary of their models given in Section 4.2.1. 
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model. By contrast, it can be seen that the impact of performing R&D on a permanent basis is 

small and insignificant in case of the static version but larger and rather significant in the 

dynamic model. Thus, these estimates seem to represent contradictory results. However, there 

are reasons to question this interpretation. One can imagine that the level of R&D-knowledge 

stocks achieved is dependent on the nature of R&D investment. A firm that performs R&D on a 

permanent basis may have fewer difficulties in building up knowledge stocks than firms that 

perform R&D incidentally. Furthermore, one can imagine that the initial level of innovative 

sales has captured the history of R&D investment to the extent that knowledge-stocks were 

productive in terms of innovative sales. In the static model I do not control for the past. 

Therefore, it is not very surprising that ‘performing R&D on a permanent basis’ is a better 

predictor for differences in R&D intensities than for differences in innovative sales. However, 

in the dynamic model, I do control for the past at both sides of the innovation process. 

Nevertheless, I obtained a significant contribution to innovative sales of performing R&D 

permanently. 

Another, and perhaps more interesting, explanation for the estimated differences in returns to 

the current R&D endeavour may be related to the fact that the static model uses many more 

firms. As a result of the non-rivalry of innovation and (non-intended) ‘spill-over’ effects to 

competitors, there are ‘new innovators’ or ‘innovation imitating’ firms that were not observed 

earlier. Such a mixture of ‘old’ and ‘new’ innovators – by definition – can be taken better into 

account in the static model. Furthermore, the emergence of ‘new’ innovators may explain – in 

line with the conjecture of Klette (1996) – why the returns to current R&D endeavour are higher 

in the static innovation model than in the dynamic version of this model. 

All in all, these results make a very strong plea for the importance of performing R&D on a 

permanent basis. They also clarify why we cannot simply rely on R&D intensities alone. 

However, at the time, the results stress that the use of firm-level innovation panel data may not 

capture all the salient features of the innovation process. Anyway, the results presented in Table 

4.3 underline the benefits of using variables that refer to the organisational aspects of innovation 

processes and a firm’s interaction with its technological environment. As to the latter, it can be 

seen that our previous results are confirmed for other explanatory variables: I obtained a similar 

pattern for the impact of the technological opportunity variables “SCIENCE” and “OTHER” in 

the two equations as in Klomp and Van Leeuwen (2001). Again, and in line with the 

‘absorptive-capacity’ hypothesis of Cohen and Levinthal (1989), “SCIENCE” appears to be 

more important for predicting differences in R&D intensities and “OTHER” for predicting 

differences in innovative sales.24 Furthermore, the correspondence with the conclusions of our 

previous research also applies to other results:  

                                                      
24 The decrease in significance for the estimated impact of SCIENCE to innovation investment when 
using a dynamic model can be explained by the fact that the contribution of this variable has already been 
captured in the estimate for the lagged dependent variable.  
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• Conditional on selection, there appears to be a negative relation between firm size and R&D 

intensities (see also Cohen and Klepper, 1996); 

• Large firms do not show a better innovation performance in terms of  innovation output than 

small firms; 

• The implementation of process innovation contributes positively to innovation output (see 

also Bartelsman et al., 1998);  

• Innovation seems to be predominantly a ‘demand-driven’ process (see the estimates for the 

variables that refer to the objectives underlying innovation). 

 
4.5.3 The contribution of innovation to productivity growth      

 
This subsection discusses the estimation results of the revenue-per-employee model 

presented in Table 4.4. In particular, it pays attention to the contribution of innovation to multi-

factor-productivity (MFP) growth. According to the theoretical exposition of Section 4.3, this 

contribution is given by SS )ˆ/ˆ(ˆ ηφγ −= . Therefore, by focusing on innovative sales, the 

measure for the contribution of innovation to productivity growth follows the quality ladder or 

product variety model of Grossman and Helpman (1991). Indeed, looking at our firm-level data, 

it can be observed that many innovations are incremental. It can be verified, that a substantial 

part of the innovating firms have only implemented product improvements. Furthermore, the 

discussion of the estimates of the two versions of the innovation model presented in Table 4.3 

points to the presence of different forces. A rather low persistence of innovativeness (in terms of 

having achieved new and improved sales) can be seen when tracking the innovation 

performance of individual firms over time. On the other hand, a higher return to the current 

R&D endeavour has been estimated if ‘new’ innovators’ or ‘innovation imitating’ firms are 

taken into account. 

Unfortunately, and by construction, data on the innovation-investment history of these ‘new’ 

innovators are not available.25 I have tried to circumvent this problem by using two alternative 

measures for innovation output. The full model was recalculated after redefining innovation 

output as the share of new sales in total sales and then compared the results for the MFP-

contribution to productivity growth of the two measures of innovation output. Furthermore, the 

two definitions of innovativeness were applied to the innovation panel as well as to the 

complete sample (including the firms that were only existent in one wave of CIS). It goes 

without saying that the different models applied yield different estimates for the innovation- 

                                                      
25 This is a consequence of the fact that only the current innovation costs are collected if firms stated to 
have implemented product or process innovation.   
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output variable of the productivity-growth model and that the differences between the averages 

for the innovative output measure chosen should also be taken into account.26  

By doing so, an estimate for the contribution of innovation to MFP growth is obtained that 

lies in between 0.4% and 0.9%. It can be seen from Table 4.4, that these estimates are highest 

for innovation output defined as the share of new sales in total sales. It is also interesting to see  

 
Table 4.4  The results for the revenue-per-employee equation1 

Use of innovative sales  New sales New and improved sales 
     
 Est. T Est. T
     
A) Dynamic model     
Number of firms  510 758 
  

Constant 0.518 0.5 -0.046 -0.0
Physical capital  0.017 1.2 0.006 0.5
Labour  0.076 1.7 0.132 3.3
Material inputs  0.781 10.7 0.761 11.4
Dummy process innovation applied -1.155 -1.7 -0.754 -1.0
Share of innovative sales 0.055 1.7 0.015 1.0
Returns to scale -0.126 -1.5 -0.101 -1.2
Inverse of mark-up 0.896 10.9 0.913 12.3
  
Share of innovative sales in total sales 10.1 27.5 
Contribution of innovation to MFP (%) 0.6 0.4 
  
R2 0.630 0.550 
  
B) Pooled model      
Number of firms  1929 3046  
  
Constant -1.001 -2.1 -0.317 -0.9
Physical capital  0.020 4.1 0.014 3.5
Labour  0.117 10.5 0.142 15.0
Material inputs  0.747 28.1 0.749 36.2
Dummy process innovation applied -0.196 -0.4 -0.245 -0.7
Share of innovative sales in total sales 0.115 6.8 0.030 3.8
Returns to scale -0.116 -3.8 -0.095 -3.9
Inverse of mark-up 0.966 29.0 0.946 38.2
  
Share of innovative sales 8.2 26.4 
Contribution of innovation to MFP (%) 0.9 0.8 
  
R2 0.714 0.683 
  

1All models use annualised growth rates. 
 

that the latter model version yields the best ‘fit’ to the data. For the models that use new sales, 

one can observe a higher precision of the corresponding estimates as well as a higher coefficient 

                                                      
26 If we change the definition of innovation output to cover new sales only, then we can use 510 firms in 
the dynamic model and 1929 firms in the model that uses all available data. 
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of determination (R2) than in the variant that uses a less discriminating definition of innovation 

output, irrespective of specification for the innovation model used. On the basis of these criteria 

– and because it covers many more firms – the model that uses all available data is adopted as 

the preferred model.  

In closing, let us take a look at the other estimates of the revenue model. It can be observed 

that the precision of the production elasticities of the model increases with the sample size used 

and that we have a tendency to decreasing returns to scale. However, this conclusion should be 

interpreted with care as, in general, a rather low (and in some cases insignificant) estimate for 

the production elasticity of ordinary physical capital. The latter result is probably due to the 

approximate measure used for this variable, taking also into account that firm-level data of a 

times series type rather than cross-sectional differences in levels were used.27 Furthermore, it 

should be noted that the estimates control for the importance of process innovation. In general, 

the contribution of process innovation to sales-per-employee growth appears to be insignificant. 

Comparing this result with the estimates of the corresponding variable found in the innovation-

output equation, one has to conclude that process innovation contributes relatively more to 

innovative sales than to non-innovative product lines. A final notable result concerns the 

estimate for the mark-up factor included in the models. Here, the most sensible results are 

observed for the model that uses new sales as the measure of innovativeness and that was 

applied to the panel of innovative firms. This result seems in line with the a priori expectation 

that the underlying market-share model yields the most sensible representation for those firms 

that are continuously engaged in innovation. 

 
4.6 Summary and conclusions 
 

In this paper I have presented the first results of an attempt to assess the importance of 

innovation for inter-firm differences in productivity growth using two similar CIS surveys and - 

after linking these surveys - to the Production surveys for the same firms, using the innovation 

panel to investigate a number of theoretical issues. I have combined recent lines of research in a 

structural modelling approach that allows the contribution of innovation to multi-factor-

productivity (MFP) growth to be interpreted as a ‘demand-shifting effect’. The model rests on 

the basic assumption that innovation is predominantly ‘demand-driven’, and that its contribution 

to productivity growth thus should be measured along the quality ladder or product variety 

model of Grossman and Helpman (1991). The model also accounts for the joint endogeneity of 

R&D investment, innovation output and sales-per-employee growth. Moreover, I have tried to 

control for the interaction between internal and external knowledge bases, the within-firm time 

interdependencies of R&D and innovation output, and the biases in estimation that result from 

endogenous panel attrition or endogenous selection. Two important points concern 1) a 

                                                      
27 See, for example Mairesse (1990) for a detailed account of this phenomenon.  
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comparison of the persistence of R&D investment and innovation output, and 2) a comparison 

of the contribution to MFP growth based on the innovation panel and based on the set of all 

firms.  

The dynamic model used offers an intuitive form of ‘controlling’ for the past innovation 

history, and enables a comparison of the importance of other firm-specific innovation 

characteristics. The results of this model show that innovation persistence is smaller when 

measured from the output side of the innovation process than when judged from R&D 

intensities. This outcome seems to confirm the conjecture of earlier research, that the returns of 

current R&D endeavours become much lower after controlling for the level of innovativeness 

already achieved. This result also points to a (private) rate of depreciation of ‘knowledge’, 

which is much higher than that applied when constructing R&D-capital-stocks in the traditional 

way. Furthermore, and in line with the previous result, I obtained a rather small return to the 

current R&D endeavour for the firms included in the innovation panel. Nevertheless, the 

estimates of the dynamic innovation model underline the importance of being permanently 

active in R&D. Controlling for past innovation inputs as well as innovation output, I obtained a 

significant contribution of performing R&D on a permanent basis to innovation output.  

On the other hand, the returns of the current R&D endeavour are very different if the 

dynamic specification is relaxed, and a restricted and static model is applied to all available CIS 

data. For this restricted model, a more pronounced and rather significant estimate for the returns 

of the most recent R&D investment endeavour has been found. Conditional on the assumption 

that many of the additional firms used in the static model are ‘new innovators’ with relatively 

short innovation histories, this result seems to corroborate the conjecture that the returns to 

R&D are highest for the firms that have low initial knowledge-capital-stocks. 

Finally, to explore the sensitivity of the estimate for the implied contribution of innovation to 

MFP, I performed iterations on the specification for the innovation model and the measures of 

innovation output available. The results of this sensitivity analysis show that, in most cases, 

there is a significant estimate for the contribution of innovation to MFP, which varies between 

0.4% and 0.9%. 
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Appendix 4.1  The basic framework for R&D-productivity models   
 

This appendix summarises two well-known specifications for the production model that have 

been used extensively in the R&D-productivity literature (see e.g. Mairesse and Sassenou, 1991, 

and Griliches, 1999 chapter 4, for an overview). The  model with output (Q) and the inputs 

physical capital (C), labour inputs (L), material inputs (M) and knowledge capital (K) is 

approximated by a Cobb-Douglas function. Denoting the logarithms of variables with lower 

case letters, adding firm subscripts i and omitting time subscripts for the time being, the 

following difference equations are obtained, where the contribution of R&D to output growth is 

represented either by the growth of R&D-capital (or equivalently knowledge-capital) stocks (1a) 

or by the R&D intensities (1b):  

 
iiiiii klmcq 11111 εγβλαμ +Δ+Δ+Δ+Δ+=Δ           (Ia) 

 
iiiiii QRlmcq 22222 )/( ερβλαμ ++Δ+Δ+Δ+=Δ          (Ib) 

 
 
The knowledge-capital stocks (K) underlying (Ia) are constructed using the Perpetual-Inventory 

Method (PIM), usually applied to ordinary capital investment:  

 
ttt RKK +−= −1)1( δ ,             (II) 

  
and assuming no depreciation of knowledge-capital stocks ( δ  = 0).28 

It is well-known that (Ia) yields an estimate (γ ) of the elasticity of output with respect to 

innovation capital stocks, whereas (Ib) yields an estimate ( ρ ) of the (gross) private returns to 

innovation investment or, more specifically, R&D. The relation between these two estimates 

can be expressed as: 

 

K
Q

K
Q γρ =

∂
∂≡ .             (III) 

 
Both specifications have the advantage of providing a control for firm-specific and time-

invariant differences in production levels, but (Ia) can only be estimated if we have firm-level 

time-series data for K. However, the construction of R&D-capital stocks at the firm level can 

                                                      

28 The precise relation between (Ia) and (Ib) is given by 
Q
R

Q
KR

Q
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only be accomplished at the cost of a severe loss of information.29 In the CIS surveys, a much 

larger sample of firms is available. Moreover, the data are of a cross-sectional type and this 

implies that the proposed model should be able to account for the well-known and persistent 

differences in R&D intensities across industries. For this reason we prefer to use specification 

(Ib). 

 
Appendix 4.2  The exogenous variables for the innovation equations 

For the identification of the model it is necessary to assign exogenous variables to the jointly 

endogenous variables. The selection of the exogenous variables has been guided by the 

following considerations. A distinction is made between 1) variables that reflect the objectives 

underlying innovation, the organisational aspects of a firm's innovation process and its 

technological environment, 2) financial variables and 3) predetermined firm-specific variables 

and industry-specific variables that can be considered as exogenously given to the firm. 

The first group of variables refer to the objectives underlying innovation. If the replacement 

of old products or the improvement of the quality of existing products or the extension of 

market shares and product ranges were rated as important, the dummy variable Dpull1 takes on a 

value of one (and zero otherwise), whereas the rating 'very important' is captured by Dpull2. 

Similarly, I constructed two 'cost-push' dummy variables for the objectives 'economising on 

production costs' (labour cost, cost of material inputs and energy) were considered 'important’ 

(Dpush1), or 'very important’ (Dpush2). The variables representing the organisational aspects of the 

innovation process are DR&D (indicating the presence of permanent R&D facilities), Dco-op 

(referring to innovating in partnership), and two continuous variables ‘SCIENCE’ and ‘OTHER’ 

which were derived from a principal components analysis in order to represent the use of 

technological opportunities.  

The relation between the presence of permanent R&D facilities, ‘innovation in partnership’ 

and the two technological opportunity variables (‘SCIENCE’ and ‘OTHER’) can be outlined as 

follows. One may expect a ‘cost-push’ effect on innovation expenditure of the technological 

opportunity factor ‘SCIENCE’ due to the absorptive capacity argument (see e.g. Cohen and 

Levinthal, 1989). A co-operation between R&D firms and research institutes or universities 

requires relatively high internal research skills in order to assimilate the fruits of the co-

operation and to internalise and commercialise the knowledge created during the co-operation. 

Contrary, R&D co-operation with e.g. suppliers, customers and competitors is expected to have 

lower research competence requirements, a smaller impact on the organisation of firms, and 

thus a lower ‘cost-push’ effect on innovation expenditure than the technological opportunity 

                                                      
29 Similar to other countries R&D surveys in the Netherlands have a long tradition. Nevertheless, the 
linking across time of R&D data at the firm-level is severely hampered by changes in the survey design or 
by the difficulty in tracking firms over time as a consequence of  mutations in the sampling frame, e.g. 
due to the merging or the splitting-up of firms.  
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factor ‘SCIENCE’. On the other hand, as mentioned before, informal innovation co-operation 

may affect innovation output more directly. 

The second category of instruments for the modelling of the innovation process consists of 

financial indicators. For many firms the innovation expenditures consist to a large extent of 

investment components, e.g. expenditures on in-house R&D, and/or licenses and patents and 

equipment purchased for the implementation of process innovation. I assume that these 

investment type expenditures are affected by the availability of financial resources and for this 

reason I include in the model two financial variables: the ratio of cash-flow to total sales at the 

start of the observation period (CFt-1) and a dummy variable that refers to the awarding of 

innovation subsidies (Dsubs).  

The final category mentioned above consists of the variables derived from the Production 

surveys and that are assumed to be predetermined or exogenous to the firm. The variables used 

to serve as an instrument for the endogenous inputs into innovation and innovation output are 

(the logarithm of) initial employment (lt-1), the initial market shares of firms (MSt-1) and the 

growth rate of industry sales annual sales ( ItqΔ ), already introduced in the main text of the 

paper. The first variable enables us to test whether the stylized facts of Cohen and Klepper 

(1996) concerning the relation between R&D and size also apply to our data. The two other 

instrumental variables are used to capture differences in initial states of competitiveness and 

exogenously given potentials for sales growth. 
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Appendix 4.3  Results for the Generalised Tobit models 
Variable R&D intensity 1998 Innovation output 1998 
       

Est. SE T Est. SE T

   
Number of firms 758 758  

  
A) Probit part       
       
Constant -0.237 0.213 -1.1 -0.002 0.192 0.0
Size 1996 0.094 0.044 2.1 0.054 0.039 1.4
Market share 1996 -0.006 0.006 -1.0 0.002 0.004 0.5
Own sales growth 1994 - 1996 0.005 0.003 1.9 0.003 0.002 1.4
R&D intensity 1996  0.096 0.010 10.0 0.002 0.015 0.1
Innovation output 1996  0.024 0.019 1.3 -0.031 0.015 -2.0
Industry sales growth 1996 - 1998 0.002 0.007 0.3 -0.003 0.007 -0.5
Cash-flow ratio 1996 -0.001 0.002 -0.4 -0.001 0.002 -0.6
       
B) Tobit part       
   
Constant 1.550 0.594 2.6 -1.357 0.438 -3.1
R&D intensity 1996 0.487 0.011 44.1 0.030 0.044 0.7
Innovation output 1996 0.011 0.058 0.2 0.180 0.034 5.3
Size 1996 -0.169 0.105 -1.6 -0.069 0.082 -0.8
Market share 1996 0.037 0.008 4.4   
Own sales growth 1994 - 1996 0.007 0.006 1.2 -0.003 0.005 -0.7
Industry sales growth 1996 - 1998 0.012 0.016 0.8 -0.002 0.015 -0.1
Subsidies awarded 0.268 0.244 1.1   
Cash-flow ratio 1996 -0.002 0.586 -0.3   
Permanent R&D facilities 0.485 0.266 1.8 0.226 0.120 1.9
Innovation co-operation  0.213 0.193 1.1 0.086 0.116 0.7
Technological opportunity 'Science' 0.199 0.089 2.2 0.035 0.060 0.6
Technological opportunity 'Other' 0.042 0.120 0.3 0.116 0.066 1.8
Demand-pull important -0.121 0.455 -0.3 0.891 0.144 6.2
Demand-pull very important 0.009 0.465 0.0 0.993 0.155 6.4
Technology-push important 0.210 0.172 1.2 0.031 0.125 0.2
Technology-push very important -0.019 0.199 -0.1 -0.064 0.112 -0.6
Process innovation implemented 0.086 0.123 0.7
   

2σ  2.205 0.090 24.5 2.382 0.073 32.6

Tobitρ  -0.763 0.051 -15.0 -0.986 0.073 -13.4
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Chapter 5 

Do ICT spillovers matter? Evidence from Dutch firm-level data* 

Abstract  
 
This paper presents an empirical analysis of the contribution of Information Communication  
Technology (ICT) to labour productivity growth in the 1990s, using an extensive panel of firm-
level data for Dutch market services. We estimate enhanced production function models that 
include ICT spillovers as well as innovation as a component of TFP (growth). Additionally, we 
compare the results of this approach with the growth-accounting approach carried out at the 
firm level. By doing so, we attempt to reconcile the different pieces of empirical evidence 
regarding the contribution of ICT to productivity growth reported in the literature so far. It is 
shown that, after accounting for ICT spillovers, the relatively high estimated elasticities of own 
ICT capital at the firm level are substantially reduced. So, they are more consistent with 
findings for aggregated levels reported in growth-accounting studies. Nevertheless, the latter 
studies do not disentangle the causes of TFP-growth into ultimate causes like productivity 
growth arising from ICT spillovers. Our results underline that the contribution of those 
spillovers in the years of the ICT boom was probably more substantial than the contribution of 
ICT capital deepening. 
 
 
5.1 Introduction    
 

This paper presents an empirical analysis of the contribution of Information Communication 

and Technology (ICT) to labour productivity growth in the 1990s, using an extensive panel of 

firm-level data for Dutch market services.  

One of the most impressive ‘stylised facts’ of the previous decade was the economy wide 

acceleration of ICT investment. This ICT ‘boom’ has given rise to many discussions about the 

potentials of ICT to produce externalities and, more precisely, the role of ICT in the resurgence 

of (labour) productivity growth in the second half of the 1990s in some OECD countries, most 

notably in the US.  

The debate has been mainly fuelled, among others, by the unclear relation between ICT use 

and Total Factor Productivity (TFP) growth.1 While ICT can affect labour productivity growth 

via different channels, growth-accounting studies mainly focus on the contribution of ICT 

capital deepening at the industry level. These studies have documented that ICT investment has 

contributed to labour productivity growth in the US and EU including the Netherlands (see, e.g. 

Jorgenson and Stiroh, 2000, Gordon, 2000, Van Ark et al., 2003 and Van der Wiel, 2001a). 

                                                      
* This chapter, co-authored by Henry van der Wiel, was published as CPB Discussion Paper No. 26, CPB 
Netherlands Bureau for Economic Policy Analysis, The Hague, the Netherlands. This research was 
carried out as a part of the ICT and Productivity (ICA) project of CPB Netherlands Bureau for Economic 
Policy Analysis. The project was financed and supervised by the Dutch Ministry of Economic Affairs. I 
would like to thank Piet Donselaar, George Gelauff, Pieter van Winden and Stephan Raes of the Ministry 
of Economic Affairs, Bert Balk of Statistics Netherlands and Fré Huizinga, Richard Nahuis, Theo van de 
Klundert and Henk Kox of CPB Netherlands Bureau for Economic Policy Analysis for valuable 
comments on an earlier draft of this paper. The data analysis reported in this paper was carried out at the 
Center for Research of Economic Microdata (CEREM) of Statistics Netherlands. 
1 TFP growth represents the residual output growth once the direct contribution of changes in the inputs 
(e.g. labour, capital) are accounted for. 
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After controlling for cyclical effects, Gordon (2000) concludes that returns on computer 

investment in the US are close to zero outside of durable manufacturing. This leads him to 

rephrase the famous Solow paradox as follows: ‘how could there be such a low payoff to 

computer investment in most of the (US) economy where computers are located?’ Several 

researchers have put this question to the testing by applying econometric methods to the 

industry-level data underlying their growth-accounting results. Surprisingly or not, these 

econometric studies fail to exhibit a positive impact of ICT on TFP growth (see, e.g. Stiroh, 

2002, and Van der Wiel, 2001a).2 

Nonetheless, it is often suggested that much of the acceleration of TFP growth in the second 

half of the previous decade came from the ICT boom. The econometric evidence based on firm-

level data seems to underline the importance of ICT for boosting (labour) productivity growth. 

In many cases the econometric ICT capital deepening elasticities are much higher than seems to 

be ‘consistent’ with the (still) relatively low ICT cost shares. Moreover, evidence seems to 

support the assumption that the relationship between ICT and TFP is positive. Examples for the 

US (manufacturing and service) firms are well documented in Brynjolfsson and Hitt (1995, 

2000). Similar findings are reported recently for other countries (see, e.g. Hempell, 2002, for 

Germany and Broersma et al., 2002 and Van Leeuwen and Van der Wiel, 2003 for the 

Netherlands). 

Several explanations can be put forward why the output elasticity for ICT exceeds its 

(measured) input share at the firm level. The estimated output elasticity of ICT is well measured 

but not the related inputs due neglecting the role of unmeasured complementary investments 

including adjustment costs. Second, hidden assets play a considerable role in the relationship 

between ICT and productivity like (complementary) innovations, organisational practices and 

firm-specific human capital. Finally, also ICT spillovers could induce a wedge between the 

output elasticity of ICT and its input share. 

Based on this brief overview of studies, we conclude that the effect of ICT on TFP growth is 

ambiguous. It depends on the level of aggregation (i.e. meso versus micro level) and the method 

(i.e. econometrics versus growth accounting) used as well. Therefore, which part of the recovery 

of labour productivity growth is channelled through TFP growth and which part is due to 

‘capital deepening’ remains an ongoing debate. 

This paper elaborates further on this issue for the Netherlands by placing the contribution of 

ICT to TFP on the firm level at the centre of interest. It uses both an econometric production 

function approach and a growth-accounting approach at the firm level. Both approaches are 

                                                      
2 Similar inconclusive results for the relation between ICT and productivity were reported for the US by 
Berndt and Morrison (1995). The failures of econometric methods applied to aggregated data may explain 
why so many studies resorted to growth-accounting methods for analyzing the impact of ICT on 
productivity. 
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applied to an extensive panel data set of firms constructed with the help of accounting data for 

firms belonging to Dutch market services covering the period 1993-1999. 

Using a production function approach, we analyse to what extent ICT spillovers matter. 

Similar to the well-known practice followed for the modelling of R&D spillovers (see, e.g. 

Jacobs et al., 2002), we construct ICT spillover capital stocks at the industry level. 

Subsequently, we include this (proximate) spillover indicator in an econometric production 

function model to capture both the impact of technology spillovers as well as a control for 

simultaneity or omitted variable biases. 

The results of the production function approach will be compared to that of the growth 

accounting method. Likewise, measured TFP is regressed on the same variables as used in the 

production function model. This second approach is also conducted to have a comparable 

method at our disposal as those growth accounting studies at the industry level earlier 

mentioned. 

The plan of the paper is as follows. Section 5.2 discusses the theoretical framework of this 

paper. Starting with a production function framework, it confronts theoretically two ways of 

obtaining TFP-measures: via the growth-accounting approach and by estimating a production 

function. Thereafter, it incorporates ICT technology spillovers and deviations from the perfect-

competition case into the analysis. The next Section describes the firm-level data used in the 

analysis. It gives a precise description of the construction of the balanced panel, the construction 

of data on capital inputs and the linking of innovation data to the balanced panel. Furthermore, it 

presents some summary statistics for several key variables. In Section 5.4, we address some 

econometric issues and explain which estimation method is applied in the empirical part in the 

next Section. Section 5.5 presents the main results of the production function approach and 

compares these results with that of the growth accounting approach at different levels of 

aggregation. Finally, Section 5.6 gives a brief summary and sketches the most important 

conclusions. 

 
5.2 Theoretical framework    
 
5.2.1 Decomposition of labour productivity growth 
 

Following the general tradition, we start with a production function framework that relates 

output to input. The production function is approximated by the Cobb-Douglas specification. In 

logarithmic form this specification reads: 

 
ititititit lkictay 321 γ+γ+γ+=                (1) 

 

where y , ict, k and l are the logarithms of respectively real value added (Y), ICT capital (ICT), 

other capital (K) and labour inputs (L). We use value added as the measure of output as this 
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measure is better comparable across industries than gross output. Subscripts refer to firms (i) 

and years (t). The variable ait in (1) represents the log level of TFP. After taking first-

differences, we can derive the corresponding equation for TFP growth (denoted by dTFP) as: 

 
itititititit dldkdictdydadTFP 321 γ−γ−γ−=≡              (2) 

 
Equation (2) defines dTFP as the growth of output (value added) minus the weighted growth of 

inputs and uses the production function elasticities as weights. Thus, in essence, TFP growth is 

a residual (see box). The elasticities needed to implement TFP growth are not directly available 

and thus have to be estimated in some way. Below we discuss two alternatives: the growth 

accounting decomposition and the (econometric) production function approach. 
____________________________________________________________________________________ 

TFP growth: a measure of our ignorance 
TFP growth in the neoclassical model is assumed to represent exogenous (disembodied) 
technological change. This assumption disregards that growth-accounting TFP is a catch-all 
term. Besides exogenous technological change it also covers the contribution of other 
unspecified inputs, deviations from constant returns to scale and perfect competition and 
measurement error. TFP growth in the growth accounting method is a residual of output growth 
that can not be accounted for by the (quality adjusted) traditional input factors. Here, TFP is a 
proximate cause for economic growth as the growth accounting method does not shed light on 
the ultimate causes of TFP growth. 
________________________________________________________________________________ 

Growth-accounting method 

The growth-accounting method solves the problem of unknown elasticities by adopting the 

following assumptions of the standard neoclassical model: 

• firms do not have market power in output and input markets (the case of perfect competition); 

• the technology is characterised by (global) constant returns to scale (CRS); 

• technical change is Hicks neutral and disembodied. 

 
After using these assumptions, the first order conditions of profit-maximising behaviour, stating 

that marginal costs should be equal to marginal revenue product, imply that the unknown 

elasticities can be set equal to the observable input shares: 
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where{ ga
L

ga
K

ga
ICT sss ,, } are respectively the cost shares of ICT capital, other capital and labour 

inputs, { LKICT www ,, } is a vector of factor prices for the corresponding inputs and p represents 

the endogenously given output price. 

After using the assumption that 1=++ ga
L

ga
K

ga
ICT sss , equation (2) can be rewritten to obtain 

an equation for the decomposition of output growth into TFP growth and capital deepening 

components for ICT capital - and conventional capital inputs respectively: 
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Notice, that the cost shares used in equations (3a) - (3c) are taken relative to total revenue (i.e. 

value added) and not to total costs. It can be verified that ga
itdTFP  in (4a) is consistent with a 

Divisia type index of TFP change (the ratio of a quantity index for one output over the Divisia 

input quantity index) only, if all firms are faced with perfect competition on all markets and if 

the technology of each firms can be described by global constant-returns-to-scale (see Balk, 

2000).3 Under these rather restrictive assumptions, the cost shares relative to value added 

coincide with the shares relative to total costs (TC), where total costs are obtained by adding up 

labour costs and the user costs of ICT and other capital. These assumptions can be made more 

explicit by expressing the growth-accounting cost shares as follows: 
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where μ represents deviations from perfect competition and C

js  denotes the corrected cost share 

for input j. In Section 5.2.4 we will discuss the empirical implementation of TFP corrected for 

deviations from the perfect-competition case in more detail. 

 
 
 
 

                                                      
3 In principle, growth rates of output and inputs are measured by Divisia indices. However, since growth 
rates cannot be observed continuously, they are approximated with the help of Törnqvist weights: 
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Production function method 

Another way to obtain the unknown production elasticities of (1) is by interpreting equation (4a) 

as the functional form of a regression model. Replacing the cost shares with the production 

function estimates obtained after applying some econometric method, then we obtain the 

production function equivalent of (4a) as: 
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where e

itdTFP now represents ‘estimated’ TFP growth based on econometric estimation, i.e. the 

regression residual of (4b). Note, that (4b) is more flexible than (4a) as it does not impose scale 

economies and deviations from perfect competition to be absent. 

 
5.2.2 A closer look at the growth accounting approach 
 

Equation (4a) is the empirical device that underlies the majority of growth-accounting 

studies that were triggered by the ICT-boom of the previous decade. Examples are given in 

Oulton (2001) for the UK, Pilat and Lee (2001) for OECD countries, Van der Wiel (2001a) for 

the Netherlands and Vijselaar and Albers (2002) for the Euro Area.  

From (4a) it is clear that ICT positively contributes to labour productivity growth if the 

growth rate of ICT capital exceeds the growth rate of labour inputs. Consequently, the 

conclusion of growth-accounting studies on industry-level data that ICT investments boost 

labour productivity growth can be well understood as ICT capital (deepening) significantly 

increased at this level of aggregation in the 1990s.  

As ICT is primarily an investment good for firms, firms will substitute ICT for labour or 

other types of capital along a given production function if the prices of ICT become relatively 

cheaper. And they became cheaper than other inputs in the 1990s. So, more and better ICT per 

worker has contributed to higher productivity. However, it is argued that falling ICT prices are 

only one part of the story. ICT also has the potential to generate TFP growth due to externalities 

or excess returns. This implies that the production function of ICT-using industries shifts 

outward. Here, the evidence at the macro and industry level is scarce.  

Growth accounting exercises are, however, principally based on the neoclassical model 

stating that the contribution of ICT to labour productivity is only channelled through capital-

deepening. ICT induces ‘normal’ rate of returns. These exercises leave no room for a direct 

assessment of the ICT impact on TFP growth except for the impact of ICT producing 

industries.4 To do this in the growth accounting practice requires the use of a two-stage 

                                                      
4 In that respect, in the late 1990s, the contribution of the latter to TFP growth was considerably in many 
countries including the Netherlands. 
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approach, thereby testifying that the impact of ICT on TFP can be isolated from capital 

deepening. Although, several at the industry level have done that without conclusive answers, a 

similar approach here is followed at the firm-level by using the measured TFP growth as a 

dependent variable.  

Stiroh (2002) points out that a difference between the estimated ICT output elasticity of (4b) 

and the ICT cost share of (4a) signals a failure of the neoclassical model to account properly for 

the distribution of labour productivity growth across the two sources: ICT capital deepening and 

TFP growth. His argument can be demonstrated by comparing (4a) and (4b). Focussing on ICT 

capital, this yields: 
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This expression shows that a positive ‘wedge’ between the estimated ICT elasticity and the 

ICT cost share )ˆ( 1
ga
ICTs−γ points to a positive correlation between ICT and (‘measured’) TFP. 

Furthermore, such a ‘wedge’ signals an upward bias of measured TFP growth. Notice that this 

interpretation also rests on the assumed unbiasedness of the ICT capital elasticity. Therefore, a 

more neutral position would be: a ‘wedge’ between elasticities and cost shares might mirror two 

things. Firstly, the benefits of ICT for ‘boosting’ productivity growth show up in a different way 

than conjectured by capital deepening. Secondly, this ‘wedge’ might also be the outcome of 

using inappropriate model specifications or estimation methods.  

Stiroh (2002) offers several economic and econometric explanations why (4a) and (4b) are 

able to reveal some of the apparent ‘proximate’ causes behind productivity growth, but at the 

same time (have to) remain silent on other ‘ultimate’ causes underlying ‘true’ productivity 

relationships (e.g. omission of factors like the contribution of ICT related spillovers, innovation 

and scale economies). Economic explanations focus on externalities (spillovers) in particular 

and the econometric ‘reasons’ concern measurement issues, omitted variables, simultaneity or 

reversed causality.  

Contrary to Stiroh (2002), we elaborate on the before mentioned economic and econometric 

issues more explicitly along two lines. First, we address the specification problem by extending 

equation (1) in order to capture the impact of ICT spillovers, deviations from the perfect-

competition case and the impact of other innovations on productivity (growth). Second, we 

apply recently developed estimation methods to the modified model in order to obtain a better 

control for other potential biases concerning its estimation. More details will be discussed in 

Section 5.4. 
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5.2.3 ICT spillovers 
 

The main focus of this paper is whether ICT spillovers matter for TFP growth. This 

subsection discusses its features. There is a lengthy list of literature that emphasizes how ICT 

enables the creation and use of network externalities and spillovers. ICT externalities imply that 

social returns on investment can exceed their private returns because the benefits of computer 

usage increase when ICT is adopted by more users (the direct network effect).  

The increased use of ICT facilitates new organisations of production and sales at the firm 

level as well as economy wide. At the level of individual firms ICT network externalities are 

expected to show up in non-pecuniary rents or production efficiency gains arising from the 

streamlining or upgrading of internal business processes (see, e.g. Black and Lynch, 2000 and 

Bresnahan et al., 2002) or improved business-to-business communications (see, e.g. OECD, 

2003). Furthermore, besides being intrinsically an instance of process innovation itself, ICT 

may also enable innovation in a broader way, by enhancing the creation of new or better 

applications (the indirect spillover effects).  

These typical characteristics of ICT suggest that an increasing use of ICT predominantly 

invokes a shift in the production frontier (at the firm level as well as at higher levels of 

aggregation) rather than a movement along the production frontier as conjectured by the 

neoclassical model (Bartelsman and Hinloopen, 2000). Moreover, following Van Ark (2002), 

network externalities also ‘justify’ why the marginal product revenue of ICT capital can exceed 

the marginal costs of investing in computers. 

So, the potential of ICT to produce production externalities or spillovers simultaneously 

explains: 

• why estimated ICT elasticities obtained from regressions on firm-level data can exceed the 

ICT cost shares used in the growth-accounting practice 

• the other side of the (same) coin: the relatively low contribution of ICT capital deepening to 

the acceleration of labour productivity growth as extensively documented at the industry or 

macro level in growth-accounting studies. 

Furthermore, the fact that the ICT ‘boom’ was an economy wide phenomenon also explains 

some of the problems encountered in regression analysis applied to industry-level data. The 

latter may have something to do with the failure of econometric studies on aggregated time 

series data to identify or disentangle the ICT impact from the contribution of technological 

change in the presence of an economy wide supply shock (e.g. world trade).5 

                                                      
5 The importance of taking into account the ‘trending’ behaviour of ICT has been demonstrated recently 
by O’Mahony and Vecchi (2002). Starting with the application of standard (panel) estimation methods to 
a panel of industry-level data, they could not find any significant impact of ICT on output growth. 
However, the application of an Error-Correction model yielded very substantial evidence for the 
contribution of ICT to output growth. 
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5.2.4 Deviations from the perfect-competition case 
 

As we use TFP (growth) based on growth-accounting at the firm level, another feature of this 

method deserves further attention. In Section 5.2.1 we mentioned the ‘perfect-competition case’ 

as one of the basic assumptions underlying the ‘growth-accounting’ method. Our data consists 

for a large part of firms belonging to the (business) services sector, thereby representing a very 

heterogeneous collection of markets that are mostly characterised by a high degree of product 

differentiation (see also Kox, 2002). This empirical fact makes it hard to justify that all these 

markets are ‘ruled’ by perfect competition. It seems more reasonable to relax this assumption at 

least for the output markets and to allow these markets to deviate from the perfect-competition 

case.  

Griffith (2001) shows that in case of imperfect competition on output markets the usual 

measures of TFP growth are likely to be ‘biased’ and that the direction of the bias depends on 

changes in input ratios. Following Griffith (2001) and Klette (1999), we control for this 

‘competition bias’ by introducing ‘mark-ups’. If a firm has to some extent market power in 

output markets and remains a price taker in input markets, then the perfect-competition price (p) 

in (3a) - (3c) should be replaced by marginal revenue product (r) given by: 
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where tε  is the price elasticity of demand. Perfect competition on output markets corresponds 

with −∞→ε t  or, equivalently, 1=μ . In this paper we allow for deviations from ‘perfect 

competition’ on output markets by expressing that the equality of prices and marginal cost is 

broken down at the market level: 
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We define a market (indexed by m) as a group of firms belonging to the same 3-digit level of 

NACE. In the empirical application we approximate the ‘mark-up’ over variable cost with the 

ratio of prices over average total costs. This has been achieved by using the data on output 

(value added in current prices) and total costs (the sum of labour, ICT and other capital costs). 

Thus, we use: 
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to obtain a modified set of expressions for the cost shares to be used in the TFP calculations. For 

input j this modification yields: 
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indicating that the ‘measured’ cost share of input j relative to value added ( j

itŝ  ) can be 

considered as a ‘disturbed’ estimate of the preferred Divisia input weights ( j
its  ). Stated 

otherwise, TFP as calculated on the basis of unadjusted cost shares does not represent ‘true’ 

technological TFP in case of imperfect competition on output markets. 

 
Possible impact of competition on TFP growth 

Using 1>μmt  we can show how a TFP ‘competition-bias’ emerges if output markets deviate 

from ‘perfect-competition’ and if the technology can be described by global constant-returns-to 

scale in all inputs. Starting from: 
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where ga

itTFP  denotes TFP according to (standard) ‘growth-accounting’ and cga
itTFP represents 

its equivalent corrected for the possible competition bias. Furthermore, equation (6b) serves as a 

starting point for assessing the competition bias of measured TFP growth, as the differencing of 

(6b) yields: 
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with Törnqvist weights given by: 
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Equation (7a) shows that the direction of the bias of ‘measured’ TFP growth is indeterminate in 

general. However, taking into account the impressive record of ICT investment in the previous 
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decade, it is likely that ‘measured’ TFP growth underestimated ‘true’ TFP growth in the period 

under consideration.  

Wrapping up and putting the pieces together, ICT spillovers and deviations from perfect 

competition lead to two opposing effects on measured TFP growth using the growth accounting: 

• ICT spillovers could imply an upward bias of measured TFP growth; 

• If markets are non-perfect this could result into an underestimated TFP growth. 

Which effect is stronger, is up to empirics. 

 
5.3 Data    
 
5.3.1 The construction of panel data 
 

In the empirical part of this paper we will use a balanced panel consisting of firm-level data 

for firms belonging to the Dutch service sector. The panel covers the period 1994–1998 and is 

constructed after linking the detailed accounting data collected in the yearly Production Surveys 

of Statistics Netherlands over time.  

The accounting data cover, among others, the following key variables: gross output, total 

turnover, employment in full time equivalents (from 1995 onwards) and employed persons6, 

intermediate inputs, wage costs (including social security charges), investments, depreciation 

costs and before-tax profits. The data enable the construction of value added as the measure of 

output.7 In order to consider real outputs and inputs in our analyses, we use detailed price 

indices from the National Accounts to construct value added in constant (1995) prices at lower 

levels of aggregation.  

The panel contains interesting features, but is not completely perfect. Regular issues of 

sampling, covering, missing variables are at stake. One of the missing variables is that at the 

level of the firm no prices are available. Likewise, the average size of firms in the balanced 

panel is considerably higher than actually measured for the total population of firms. The Dutch 

service sector consists of many small firms and, due to the sampling design, many of them are 

only occasionally covered in the Production Survey. The sampling probability increases with 

firm size and firms that have twenty or more persons employed are sampled every year, in 

principle. Nevertheless these larger firms may also disappear in the course of time because of 

bankruptcy, merging with other firms etc. Despite these complications, due to a unique firm 

identifier one can easily construct panel data linking the yearly surveys over time. 

 
 

                                                      
6 We use persons employed as the measure of labour inputs because this variable is available in all years. 
7 As mentioned in section 2, we could also opt for gross output (or total sales) as the measure of output, 
but we have chosen not to do so. The reason for this is that many firms belong to wholesale and retail 
trade. For these branches the data on intermediate inputs consist for a very large part of purchases on 
trading goods and this make these data incomparable with the intermediate inputs of other branches. 
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5.3.2 The construction of capital inputs 
 

Both approaches of Section 5.2 require data on capital stocks. Unfortunately, and common 

for studies using firm-level data, capital stock data are not readily available and have to be 

constructed in some way. In this paper, we exploit the interesting feature of the Production 

Survey that investment data is collected simultaneously with the (other) accounting data.8 Thus, 

we have available a consistent set of investment data at the firm level for those firms that are 

present in every year. This paper distinguishes two types of capital inputs: ICT and other 

capital. We used the data to construct real expenditures on ICT - and total investment 

expenditures at the firm-level. For total investment we used National Account price indices at 

the industry level and for ICT investment we applied the hedonic ICT price index for Germany 

calculated by Schreyer (2002) to deflate the nominal investment data. The hedonic deflator is 

used because it better represents the sharp decrease of ICT prices in the previous decade than 

the corresponding National Accounts price index for computers.  

After this, we constructed capital stocks only if we had available at least five consecutive 

observations on investment in constant prices. Capital stocks for ICT and total capital inputs 

(including ICT) were constructed by using the perpetual inventory method and assuming 

constant geometric depreciation ( kδ  ) for capital of type k. Accordingly, the capital stock ktK of 

type k in period t reads: 

 
11)1( −− +δ−= ktitkkt IKK .             (8a) 

 
Estimates for the unknown initial levels of the stocks of (9a) were obtained by using the 

approach of Hall and Mairesse (1995): 
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in which kg represents the pre-sample growth rate of real investment for type k, and 1kI  is real 

investment in the base year.  

The implementation of (9a) and (9b) requires a number of assumptions concerning the pre-

sample growth of investment and their depreciation. Estimates for kg were taken from industry 

                                                      
8 If investment data would have been collected in a separate survey, then the linking of the two surveys 
would reduce the size of the panel substantially as differences in sampling designs or response rates may 
complicate the matching. Moreover, as it is now based on one single survey, probably the data are more 
consistent. 
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time series and for the depreciation schedule we used values that are close to the parameters 

underlying the construction of capital stock at the industry level followed by earlier CPB 

research (van der Wiel, 2001a). The assumed values for kg and kδ  are summarised in Table 5.1.  

 
Table 5.1 Pre-sample growth of investment (g) and depreciation rates (δ) 
 Pre-sample growth Depreciation 

 Total investment ICT Total investment ICT

     

Wholesale trade 6.0 25.0 6.5 25.0 

Retail trade 6.0 27.5 6.5 25.0 

Other services 7.5 20.0 6.5 25.0 

 

Another complication concerning the implementation of (9b) refers to 1kI . Contrary to the 

observable patterns for industry-level data, investment behaviour at the firm level is more 

erratic. Stated otherwise, investments appear to differ markedly between firms over time. 

Therefore, the initial capital stock estimates may be too dependent on the probability of having 

invested in the first year. We circumvent this problem by replacing 1kI with the average (real) 

investment observed in 1994–1998, thereby reducing the influence of firm-specific investment 

cycles. This approach has been followed for total investment expenditure but not for ICT, for 

reason that the observed rates of ICT investment were less likely to be dominated by cyclical  

 
Table 5.2 Summary statistics for ICT and total capital inputs for services 
 1994 1998 

Share  of ICT in total capital stock (in prices of 1995) 
Services 1.6 3.3 

     Wholesale trade 2.6 5.7 

     Retail trade 0.8 1.7 

     Business services  1.6 3.4 

     Other services 0.9 1.0 

   

Growth of capital stocks, 1994 – 1998a 

ICT capital  25.5 

Total capital   4.5 
a Annualised growth for total services calculated on the bases of raised totals 
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fluctuations in the period under consideration.9 

Table 5.2 reports some summary statistics concerning the construction of capital inputs for 

the panel data used in the econometric part of this paper. The balanced panel consists of 7828 

services firms for which capital stock data could be constructed and that passed through other 

data cleansing rules.10 In terms of output (value added in 1996) the balanced panel represents 

nearly 45% of all firms in the service sector (see Van Leeuwen and Van der Wiel, 2003a, for 

more details on the construction of the panel). This relatively low coverage ratio is mainly due 

to the fact that the smallest firms have low inclusion probabilities and, thus, were not surveyed 

consecutively. However, their contribution to aggregate capital stocks appears to be smaller. In 

fact, after using the sample weights to obtain results for the whole population, the (weighted) 

growth rates for capital inputs are similar to those found at the industry level.11 The table also 

shows that, although doubled in a short period, the shares of ICT in total capital stocks were still 

rather small among industries in 1998. 

A related complication of the growth-accounting approach is that cost shares of capital 

inputs have to be constructed. With two inputs (labour and capital) this is easy as the share of 

capital inputs is the complement of the share of labour relative to value added. However, with 

two capital inputs, the allocation of non-labour income to ICT and other capital is less 

straightforward. The usual procedure is to distribute total capital income (value added minus the 

wage bill) across the two types of capital proportional to their user costs. 

 
5.3.3 Approximating ICT spillovers 
 

In spite of the attention given to ICT spillovers in explaining the value of ICT, their explicit 

modelling is still in its infancy. The reason for this is obvious. It is hard to imagine how ICT 

spillovers should be modelled taking into account that ICT has no limits by definition.  

As discussed, ICT can generate social returns beyond the private returns flowing to the firms 

using ICT. These spillovers may show up in different ways. Usually one distinguishes between 

rent spillovers and technology spillovers. Rent spillovers refer to a situation where the volume 

of inputs related to the use of ICT capital are higher than measured, due to the fact that real 

                                                      
9 For some firms the share of ICT investment in the first year appeared to be zero and since the 
econometric specification is in logarithms this raises an additional problem. Omitting these firms may 
lead to an overestimation of the ICT contribution to output and productivity growth. For this reason we 
did not exclude these firms but instead we assumed that actual ICT investment was not zero but rounded 
to zero by the respondents. Accordingly, we imputed for these cases the minimum of ICT investment 
observed for the sample. 
10Besides applying a selection rule concerning the requirement of consecutive investment data, we also 
applied a data cleansing to reject firms with negative values for their value added. However, we did not 
apply any censoring or trimming of the data to remove firms with extreme values for value added per 
employee or productivity growth.  
11The growth rates presented in table 2 are of the same order of magnitude as reported in Van der Wiel 
(2001a), if one takes into account that the latter study did not use hedonic ICT deflators. 
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prices are lower than actual prices. This definition can be extended to include the use of non-

priced inputs related to ICT use. In this view ICT spillovers enter TFP as an instance of 

measurement error (see Jacobs et al., 2002). Technology spillovers are linked to the effect that 

ICT can make it easier to spread new knowledge and absorb it. ICT can induce technological 

and non-technological innovations.  

The fact that ICT is a general purpose technology makes it difficult to implement the 

theoretical construct of ICT spillovers empirically. In this paper, we assume that ICT mainly 

generates technology spillovers which show up in better organisational practices within and 

outside of a firm, thereby enhancing the productivity performance of the firm. One can argue 

that it makes sense to account for the increased use of ICT outside of the firm as this makes the 

existing ICT capital stock of a firm more productive. 

This output-orientation of ICT spillovers fits reasonably well into the ‘primal’ representation 

of technology that underlies the production function framework presented in Section 5.2.1. 

Similar to Mun and Nadiri (2002) and Jacobs et al. (2002), we implement ICT technology 

spillovers in the model by constructing an indicator for ICT spillover capital. We do so by 

subtracting a firm’s own ICT capital stock from the industry aggregate. Thus approximate ICT 

spillover capital for firm i belonging to industry I in year t is obtained as: 

 

.
)(

,1
∑

≠=
=

SN

ijj
jtit ICTSICT             

 
By extending the approaches with this exogenous variable we assume that ICT spillovers affect 

the location and the structure of the production frontier bounding the relationship between own 

inputs and output. Therefore, the extended approaches aim at providing a better characterisation 

of production possibilities than would be the case if spillovers were excluded (see Kumbhakar 

and Knox Lovel, 2000).  

It goes without saying that this measure is only an approximation for the ICT adoption 

outside of the firm. In that respect, data on inter-industry dependencies are probably more 

suitable for the analysis of ICT spillovers. One could, however, argue that ICT spillovers 

predominantly materialise on the firm level. Thus, firm-level data may not be such a bad 

starting point for assessing their importance. 

 
5.3.4 Linking innovation data 
 

As differences in innovativeness seem to be a natural candidate for explaining differences in 

firm performance, we determine which part of the balanced panel was innovative during 1994–

1998. This has been achieved by linking the two available waves of the Dutch Community 

Innovation Survey (CIS) to the balanced panel: CIS 2 covering the period 1994–1996 and CIS 
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2.5, covering 1996–1998.12 This innovation panel consists of 1451 firms and includes firms that 

were covered in both waves of CIS.  

The linking of CIS data to the accounting data described above is straightforward in 

principle, as the innovation surveys and the production surveys use a similar unit of observation 

and have the same unique identifier. Nevertheless, some shortcomings of CIS complicate an 

analysis of the links between innovation and firm performance in market services (see Van der 

Wiel, 2001b). In CIS, small firms are even more under represented and this survey also 

disregards just started firms. As small and starting firms are considered as an important source 

of (increasing) innovativeness, the low coverage of these firms in CIS could underestimate the 

importance of innovation in market services. Despite these shortcomings, CIS-data remain 

imperative for assessing the role of innovation in explaining differences in productivity 

(growth). 

 
5.3.5 Productivity performance of Dutch market services 
 

Table 5.3 presents some evidence on productivity measures and inputs for both the complete 

panels. For the complete panel, the table shows that labour productivity growth for Dutch 

market services was moderate on average, with annualised growth close to 1.5% in 1994-1998. 

 
Table 5.3  Summary statistics for Dutch market services 
     
 Complete panel (N = 7828) Innovation panel (N = 1451) 
     
 mean stdev mean stdev 
 % % % % 
Growth rate of a     
    ICT capital 19.8 38.1 29.3 29.2 
    Other capital  4.3 3.5 4.0 3.2 
    Employed persons 3.0 12.3 3.3 13.1 
    Value added per employee 1.5 12.4 2.5 12.3 
    TFP growth-accounting 0.7 12.0 1.8 12.1 
    TFP ‘corrected’ growth accounting 0.9 12.3 2.1 13.3 
     
Levels     
   Employment 1994  93.9 677.7 181.3 656.0 
   Employment 1998 111.2 821.5 206.6 753.2 
   Value added per employee 1994b 38.1 67.9 41.4 29.5 
   Value added per employee 1998b 43.3 69.4 51.3 63.2 
a Annualised (not weighted) growth rates calculated over the period 1994–1998. 
b Weighted levels in constant (1995) prices x 1000 Euro. 
 
We also listed statistics for TFP growth based on two growth accounting measures. The first one 

uses formula (6a) to calculate TFP based on the standard traditional assumption. The second 

TFP measure uses the same formula, except that the shares are corrected for ‘imperfect 

competition’ with the help of the market-specific mark-ups. Thus, we use: 

                                                      
12 Prior to the third wave of the big and harmonised European CIS (CIS 3) Statistics Netherlands has 
carried out an intervening survey, called Cis 2.5.  



 125

 

it
mt

k
it

mt

ict
it

it
mt

k
it

it
mt

ict
it

it
cga

it l
ss

k
s

ict
s

yTFP )
ˆ
ˆ

ˆ
ˆ

1(
ˆ
ˆ

ˆ
ˆ

μ
−

μ
−−

μ
−

μ
−=            (9) 

 
to calculate ‘corrected’ growth-accounting TFP ( cga

itTFP ). 

Table 5.3 shows that the contribution of TFP to labour productivity growth varies between 

47% and 60% for the two considered measures of TFP based on the complete panel. 

Furthermore, and in line with the discussion in the previous Section, it is shown that TFP 

growth increases when deviations from ‘perfect competition’ are taking into account. 

Nevertheless, the difference between the ‘mark-up’ corrected measure of TFP growth and the 

traditionally measured contribution of TFP growth appears not to be very substantial. 

Although the difference between the traditional measure of TFP growth and the corrected 

TFP growth appears to be not very exiting, the measures of the mark-up are considerably greater 

than one (see Table 5.4). Moreover, the average ‘mark-ups’ for services as a whole rose from 

about 1.23 in 1994 to about 1.27 in 1998. 

 
Table 5.4  Mark-up results in market services, 1994 and 1998 
 1994 1998 

   
Complete panel 1.228 1.269 

Innovation panel 1.238 1.272 

 

If we compare the results between the balanced panel and the innovation panel in Table 5.3, the 

most striking difference is that the latter consists of a collection of firms that had a remarkably 

better productivity performance in terms of labour productivity and TFP than their counterparts 

(the firms not covered in CIS). For the innovation panel average labour productivity in 1998 

was nearly 20% higher than for the complete panel. Furthermore, labour productivity growth 

was also substantially higher for the innovation panel than the comparable figure for the 

complete panel (2.5% versus 1.5%). Notice further that productivity growth and firm size seem 

to be correlated as the ‘average firm’ in the innovation panel is larger than in the complete 

panel. Furthermore, the better productivity performance of the innovation panel appears to arise 

mainly from a higher contribution of TFP growth and irrespective of the measure of TFP growth 

used.13 

 
 
 
 

                                                      
13 Again, we obtain the result that correcting for a possible competition bias results in a higher TFP 
growth than in ‘standard’ growth-accounting. 



 126

5.4 Econometric issues    
 
5.4.1 Introduction 
 

This Section discusses several econometric issues concerning the estimation of both 

approaches (i.e. the production function approach and the growth accounting approach). Before 

adding the stochastic assumptions to the models, we first have to be clear about the specification 

of the TFP component. Therefore, Section 5.4.2 comments on issues such as the spillover 

indicator, innovation, the initial ICT-intensity and unobserved firm characteristics. Section 5.4.3 

discusses the econometric estimation method. 

 
5.4.2 Specifying TFP 
 

As mentioned before, our primary interest in this paper concerns the role of ICT production 

externalities in explaining differences in productivity (growth). Therefore, a first and quite 

natural step is to ‘purify’ TFP by using the proximate ICT spillover indicator given by equation 

(5) of Section 5.2.3.  

Although possibly important, ICT externalities may only be one of the many sources of 

productivity differences between firms. A notorious problem often encountered when estimating 

production function parameters concerns the role of unobserved firm characteristics. To give an 

example: one can imagine that firms differ in the skill structure employed as a consequence of 

ICT usage. If these differences (which typically are positively correlated with size) cannot be 

taken into account explicitly, then one can expect a correlation between this ‘unobservable’ and 

the included explanatory variables. Other examples of unobserved firm characteristics are 

differences in the (pre-existing) vintage structure of capital inputs or the quality of management.  

The usual way to control for these unobserved firm characteristics is to adopt an error 

component structure. In the empirical application we extend the commonly applied error 

component model by including additional ‘controls’ for firm-specific initial conditions that can 

be implemented which firm-specific observed variables. For each firm we determine its 

(relative) ICT intensity at the beginning of the period and we use this ICT intensity dummy as a 

control for the continuous ICT variables that are correlated with initial stocks.14  

Similarly, we control for an innovation impact on TFP if the model is applied to the 

innovation panel. We recall that we label a firm ‘innovative’ if it has applied at least one type of 

innovation in the period under consideration. Thus, we use an innovation dummy variable to 

capture the contribution of innovation to TFP. We are forced to the use such a qualitative 

variable due to the lack of continuous and more informative variables in CIS for market 

                                                      
14 The ICT intensity dummy variable has been constructed as follows. For each NACE 3-digit we 
determined the median score of the share of ICT capital in the total capital stock for 1994. Thereafter we 
assigned a value of one to the ICT dummy if the firms’ score was above the corresponding median value. 
This firm is labelled as ICT intensive. Low ICT-intensive firms are the reference group. 
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services. A more precise account for innovation is not possible, because the data do not contain 

information on innovation output for most of the firms that implemented technological 

innovations. Furthermore, data on innovation costs incurred are not available for the many firms 

that implemented non-technological innovation only. 

 
Summing up, this leads to the following specification for TFP in (1): 
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In (10) I

itsict  is the logarithm of ICT spillover capital and iα  a firm-specific fixed effect that 

may be freely correlated with all other variables of the estimating equation. The third term on 

the right-hand side of (10) represents the contribution of disembodied technical progress, which 

is assumed to vary between industries. The following common breakdown of market services is 

used for the constructing the industry dummy variables of (10):  

• Wholesale trade (reference industry, trade and repair of cars excluded, NACE-code 51); 

• Retail trade (trade and repair of cars excluded, NACE-code 52); 

• Business services (NACE-code 71-74); 

• Wholesale -, retail trade and repair of cars (NACE-code 501-505); 

• Other business services (NACE-code 55, 90). 
 
Furthermore, ICTiD , and InnoiD , are dummy variables that are included to capture the contribution 

of initial conditions concerning a firm’s ICT intensity and the contribution of innovation to TFP, 

and itν  represents the remaining transitory and idiosyncratic differences in productivity. Putting 

the pieces together for both approaches, after inserting (10) in (1) for the production function 

approach, it follows that:15 
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and for the growth-accounting approach  
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15 Equation (10) is the most extended specification of TFP and can be applied to the innovation panel 
only. If we use the complete panel than the innovation dummy variables are not included in the model. 



 128

in which cga
itTFP is calculated according equation (8).16 

The estimation of the (enhanced) production function approach (11a) aims at minimising the 

risk of simultaneity or omitted variables bias for the traditional inputs in order to obtain better 

estimates for TFP (growth). Estimating specification 11b tests the potential ultimate sources 

using the measured (growth-accounting) TFP.  

A similar approach as applied in the growth accounting approach could be followed for the 

production function approach by using the residual e
itdTFP  obtained after applying OLS to (4b) 

as the starting point. However, viewed from an econometric perspective, this route is not 

preferable if there are reasons to assume that the TFP component of labour productivity growth 

is related to ICT too. Then, the estimates of (4b) may suffer from an estimation bias. In 

particular, the latter reason might explain why studies on the firm level obtained higher ICT 

elasticities than seems to be consistent in view of the (still) relatively low cost shares of ICT.   

A comparison of the results of model (11a) with or without ICT spillovers enables us to 

judge whether the estimates of ICT capital stock elasticities are ‘hiding’ an ICT impact on TFP 

(growth). Finally, estimating (11a) and (11b) as well also provide a benchmark for TFP-

regressions carried out in growth-accounting studies at the industry level. These studies show up 

to be inconclusive with respect to the contribution of ICT to TFP growth (see, e.g. Van der 

Wiel, 2001a, and Stiroh, 2002). 

 
5.4.3 Estimation methods 

 
In equations (11a) and (11b) we have included firm-specific fixed effects as separate 

parameters which only vary between firms. These parameters can be eliminated by estimating 

the models in growth rates. For production function (11a) this yields: 
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whereas for the growth-accounting approach (11b) we use: 
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However, this transition from the cross-sectional dimension to the time series dimension of the 

data may not solve all problems. Reversed causality and measurement errors may still cloud 

results. If productivity shocks are anticipated before factor demands are determined, than 

                                                      
16 We add a tilde to the parameters of the TFP model in order to make a distinction between the 
parameters of the production function model and the TFP model. 
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changes in productivity shocks ( itνΔ ) remain correlated with the right-hand side variables of 

the equations and this may bias estimates upwards. On the other hand, we have to face the 

consequences that measurement problems may be exacerbated when estimating the model in 

first-differences, thereby giving rise to a downward estimation bias which may completely 

offset the positive ‘causality’ estimation bias. Indeed, with the data at hand and the method 

chosen for constructing capital inputs, errors-in-variables are very likely cause of correlations 

between itνΔ and the capital inputs. 

SYS-GMM provides an optimal way to combine the orthogonality conditions (see box and, 

particularly formula (13a) and (13b)). In the empirical application we will apply this method by 

using the full set of conditions given by (13a). From (13b) we use the conditions that cover all 

valid instruments for the level equation pertaining to 1998. Thus, when estimating production 

function parameters, the system uses equation (12a) for 1996, 1997 and 1998 and equation (11a)  

for 1998.17   

_____________________________________________________________________________ 
The SYS-GMM estimator 

The usual way to account for a possible correlation between the error of the models (12a) or 
(12b) and the explanatory variables is to use the GMM estimator (see for example Mairesse and 
Hall, 1996). This generalised instrumental-variables estimator uses the following orthogonality 
conditionsa 

 
0][ , =ν −stiit XE Δ for t = 3, …. , T and 2 1−≤≤ ts .        (13a) 

 
These conditions exploit the lagged explanatory variables of the level equation (11a) as 
instrumental variables after the equation has been differenced to eliminate the unobserved fixed 
effects. However, the resulting first-difference estimator often appeared to give unsatisfactory 
results (see, e.g. Blundell and Bond, 1998a). Typical examples for the production function 
framework showed that capital elasticities were implausibly low and often insignificant when 
using GMM estimation. These problems are related to the weak correlation that can exist 
between growth rates of the inputs and the lagged levels of these variables. For instance, since 
capital stocks within firms are highly persistent over time, one may expect that the correlation 
between the current growth rate and lagged level of the capital stock is close to zero (see 
Hempell, 2002, for an illustration). 
Blundell and Bond (1998b) showed that the performance of GMM estimators can be improved 
considerably by exploiting the so-called SYS-GMM estimator of Arellano and Bover (1995). 
This estimation strategy uses both the equations in first-differences (e.g. (12a), instrumented 
with ‘levels’) and the equations in levels (e.g. (11a), instrumented with ‘first differences’) 
simultaneously, thereby imposing cross-equations constraints for the parameters of interest. This 
is achieved by extending the set of orthogonality conditions with  
 

0][ 1, =ν −tiit XE Δ  for t = 3, ... , T.                         (13b)  
 
and by stacking (13a) and (13b) to obtain a system. 
a The vector X collects the explanatory variables of equation (11a). 
_____________________________________________________________________________ 
                                                      
17 Using only the level equation in 1998 is sufficient if the method is applied to balanced panel data (see 
Arellano and Bover, 1995). In this case ),...,( 19971995 XX ΔΔ  are valid instruments. 
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5.5 Results    
 

5.5.1 Results of production function approach18 
 
We begin the presentation of the estimates by first looking at the econometric estimates for the 

production function approach using a traditional Cobb-Douglas specification. To obtain a link 

with other studies based on firm-level data (e.g. Brynjolffson and Hitt, 1995) we first used (11a) 

and (12a) without taking into account the contribution of innovation and the impact of initial 

ICT adoption on TFP. 

 
Table 5.5.1 SYS-GMM results for the production function approach for service firmsa 
 Complete panel Innovation panel 

 A B C D 

N 7828 7828 1451 1451 
     

ICT capital ( 1γ ) 0.077 0.029 0.046 0.025 

   (0.006) (0.007) (0.011) (0.009) 

Other capital ( 2γ ) 0.122 0.144 0.119 0.177 

 (0.024) (0.046) (0.058) (0.051) 

Labour ( 3γ ) 1.034 0.964 0.545 0.543 

 (0.044) (0.042) (0.079) (0.066) 

ICT spillover capital ( 4γ ) X 0.079 X  0.131 

  (0.035)  (0.049) 

ICT intensity  ( 1β ) X 0.034 X 0.037 

  (0.046)  (0.055) 

Innovation ( 2β ) X X 0.289 0.273 

     (0.051) (0.048) 

Scale parameterb [0.233] [0.137] [-0.290] [[-0.254] 

 (0.022) (0.031) (0.078) (0.071) 

R2 0.81 0.85 0.74 0.75 
a The dependent variable is value added in constant prices (1995). All regressions control for first - and 
second order correlation in the error term of the models. Robust standard errors of the estimates are 
presented in parenthesis. 
Column A refers to production function approach without ICT spillovers and the (initial) ICT intensity 
and innovation impact on the TFP level. Column B includes ICT spillovers and the ICT intensity dummy 
in the baseline model. Column C is the same model as A but now applied on the innovation panel and 
column D extends model C by also including the impact of innovation conditions on TFP levels. 
b The scale parameter is derived afterwards with the help of the estimated elasticities of ICT capital, other 
capital and labour. 
 

                                                      
18 The presentation of estimates will be restricted to the results of the SYS-GMM estimation method. The 
appendix compares this method with standard GMM and discusses the validity of the additional moment 
restrictions employed. This comparison shows that SYS-GMM yields more reasonable values for the 
estimated capital elasticities with higher precision. 
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Column (A) of Table 5.5.1 presents the results for the production function approach without 

spillovers and initial ICT conditions using the complete panel, covering all firms in the Dutch 

market service sector. The table shows that all estimates (including the capital elasticities) are 

significantly different from zero. The outcome for the ICT capital stock elasticity is close to 

0.08. Estimates of a comparable magnitude were also reported by Brynjolffson and Hitt (1995) 

and Hempell et al. (2002).  

This result reaffirms that the ICT impact on output growth (and labour productivity growth) 

can be identified reasonably well when using firm-level data. The relatively high estimate for 

the ICT capital stock elasticity underlines the importance of ICT capital deepening for labour 

productivity growth. Taking into account the growth rate of ICT capital stock per employee (see 

Table 5.3), the point estimate would even imply that (on average) all productivity growth came 

from ICT capital deepening.  

The next phase in our analysis is to specify and break down the TFP variables, consisting of 

ICT spillovers, the initial conditions concerning the initial ICT intensity and innovativeness. We 

do this in three steps and the results of these steps are reported in Table 5.5.1 under column B to 

D respectively. Again, and to enhance a better comparison, we start with the data of the 

complete panel. Therefore, we will not account for an innovation impact on TFP levels at this 

stage.  

Column (B) of Table 5.5.1 summarises the results for the full model (11a) and (12a) with 

ICT spillovers and the initial conditions concerning the initial ICT intensity included. The most 

striking result is that when ICT spillovers are taken into account more explicitly, the elasticity 

estimate of own ICT capital stocks is lowered substantially. As the estimate of ICT spillover 

capital is significant, this illustrates that a considerable part of the ICT impact on labour 

productivity growth is probably channelled through TFP. As a consequence, we obtain an 

estimate for ICT capital which is close to the average ICT cost share. This suggests that 

controlling for the possibility of simultaneity arising from the correlation between own ICT 

capital stocks and the (firstly omitted ICT spillover stocks) makes much sense. Furthermore, 

firms that were relatively ICT intensive in 1994, appear to have higher TFP levels in 1998 than 

ICT extensive firms, although this effect is not statistically significant.  

The next two steps aim at controlling for productivity differences that are related to 

innovativeness and ICT spillovers. Being innovative can be such a condition, and for this reason 

we re-estimated the enhanced production function for the firms of the innovation panel. We 

recall, that average size for this selection of firms was larger than (average) size observed for 

the complete panel. Furthermore, as also shown in Section 5.3.4, their productivity performance 

appeared to be slightly better than the average outcome for all firms. In view of these 

differences one could also expect quite different results for the production function estimates. 
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 Columns (C) and (D) in Table 5.5.1 show the estimation results for the innovation panel. A 

comparison with the estimates for the complete panel (columns (A) and (B)) reveal that the 

differences are minor, except for labour inputs. Again, the ‘own’ ICT capital stock elasticity 

appears to be lower after the ICT spillover indicator has been included and the elasticity 

estimate for ICT spillover capital remains significant, even after controlling for an innovation 

impact on TFP. 

A notable difference between the complete panel and innovation panel concerns the scale 

parameter. According to the corresponding estimate, the null-hypothesis of CRS is rejected 

convincingly in favour of increasing-returns-to-scale for the complete panel. In contrast, the 

lower elasticity of labour inputs causes that the CRS-hypothesis is rejected in favour of 

decreasing-returns-to scale when using the innovation panel. This asymmetric result reflects the 

importance of scale economies for boosting labour productivity growth in the services sector 

(see Kox, 2002). Moreover, it suggests the existence of optimal scale sizes in the service sector 

(see Kox et al., 2003).   

Another notable result concerns the contribution of innovation to TFP. The remarkably better 

productivity performance of innovative firms reported in Section 5.3.4 clearly shows up in the 

estimates for the contribution of innovation to TFP. According to the estimates presented in 

columns (C) and (D) of Table 5.5.1, the TFP level of innovative firms was about 28% higher 

than TFP for non-innovating firms. 

 
5.5.2 Results of growth accounting approach 
 

In this Section we discuss the results for the growth accounting approach that use the 

corrected TFP as the dependent variable. Using (11b) and (12b) we can directly assess the 

contribution of ICT to TFP (growth) derived from the two-stage approach underlying the 

growth-accounting practice.  

As discussed, this exercise resembles the econometric attempts to find an ICT impact on TFP 

of growth-accounting studies. Doing so, we attain a comparable benchmark with earlier studies 

at higher levels of aggregation. Two differences should be kept in mind. First, here we first 

constructed an adjusted TFP measure (free from competition biases) and, thereafter, applied the 

SYS-GMM method to explain simultaneously differences in TFP levels and TFP growth. 

Second, our attempt is conducted at the level of the firm. Evidence from industry level studies 

cannot be used unconditionally to extrapolate the spillover effects on lower levels of 

aggregation and vice versa.  

Table 5.5.2 presents the results of this second approach. First we look at the outcome for the 

complete panel by comparing the first column of Table 5.5.2 with column (B) of Table 5.5.1. 

The most striking result is that the estimate for the own ICT capital stock elasticity of Table 

5.5.2 is very close to the spillover elasticity of Table 5.5.1. The (very) significant elasticity of 
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own ICT capital reflects the ICT impact on measured TFP in growth accounting practices as 

predicted by Stiroh (2002). On the other hand, the ICT spillover elasticity for the complete 

panel appears to be minor and also insignificant. These results suggest that the impact of own 

ICT investment shows up in different ways than in Table 5.5.1 as a consequence of the two-

stage approach adopted in the growth accounting practice. With this we mean that the valuation 

of ICT capital used for the construction of TFP disregards the value of production externalities 

that are related to the complementarity of own ICT use and the ICT adoption outside of a firm. 

Similarly, we find a very significant TFP elasticity of labour inputs in Table 5.5.2. This estimate 

is significantly positive, pointing to a sizable and positive scale effect on TFP, and this reflects 

the other side of the same coin as presented by the significant scale parameter of Table 5.5.1. 

 
Table 5.5.2 SYS-GMM results for the growth accounting approach for service firmsa 

 Complete panel Innovation panel 

   

N 7828 1451 
   

ICT capital ( 1γ ) 0.070 0.021 

 (0.009) (0.014) 

Other capital ( 2γ ) -0.189 -0.212 

 (0.054) (0.122) 

Labour ( 3γ ) 0.306 0.142 

(0.052) (0.119) 

ICT spillover capital ( 4γ ) 0.005 0.097 

 (0.040) (0.067) 

ICT intensity  ( 1β ) 0.007 0.253 

 (0.057) (0.114) 

Innovation ( 2β ) X 0.703 

   (0.106) 

   

R2 0.65 0.72 
a The dependent variable TFP is calculated with the help of (8), thus the model uses TFP after accounting 
for the ‘competition bias’. Otherwise, note a of Table 5.5.1 also applies to this table. 
 

The last column of Table 5.5.2 presents the estimates for the TFP model for the innovation 

panel. Again, ICT appears to contribute to TFP growth, but in this model the impact of ICT 

spillovers is more sizable than the elasticity estimate of own ICT capital stocks. Moreover, and 

similar to column (D) of Table 5.5.1, we find a very significant innovation impact on TFP. This 

latter result reaffirms the importance of innovation for explaining differences in TFP. However, 

the difference between column D of Table 5.5.1 and the result of the last column of Table 5.5.2, 

should be interpreted with care, as the estimate of Table 5.5.2 has been obtained in a two-stage 
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approach, thereby neglecting a possible correlation between innovation and other inputs. The 

two-stage approach also leads to strange results for the impact on TFP of initial ICT adoption (a 

significantly negative estimate for the innovation panel) and for other capital (a negative 

contribution for both samples).  

Summing up: the evidence of Tables 5.5.1 and 5.5.2 seems to underline that ICT spillovers 

are an important source of TFP growth. Taken on the whole, and focussing on ICT, our finding 

also corroborates the ‘growth-accounting’ studies that showed a relatively small – but positive – 

contribution of ICT capital deepening to labour productivity growth for ICT using industries. 

Notice however, that this result has been obtained in this study after taking into account ICT 

spillovers more explicitly.  

Viewed from an econometric angle, the production function approach yields more significant 

and plausible results than the growth accounting approach. It has been found that taking into 

account differences in levels and growth rates simultaneously, seems to pay off in terms of more 

reasonable and more precise estimates of the capital deepening parameters. 

 
5.5.3 Decomposing labour productivity growth 
 

In this Section, we compare the decomposition of labour productivity growth following from 

the econometric approach with the growth-accounting calculations. In more detail, we compare 

TFP growth derived from the traditional’ growth-accounting calculations with ‘growth-

accounting’ TFP growth after the correction for deviations from ‘perfect competition’, and also 

the ‘direct’ calculations of TFP growth obtained from regression analysis of the production 

function approach. Using the econometric elasticity estimates of ICT and other capital and their 

geometric averages growth rates derived TFP growth in a similar way as is applied in the 

‘growth accounting’ practice. Doing so, we achieve that the productivity effects of ICT 

externalities, scale economies and innovation are attributed to TFP (growth). 

Table 5.5.3 shows that, after controlling for ICT externalities via the ICT spillover indicator 

employed, the contribution of ICT capital deepening according to the econometric approach is 

very similar to the results of the growth-accounting when using the complete panel. For this data 

set ICT capital deepening shows up to be twice as important for labour productivity growth than 

was other capital deepening.19 This conclusion also applies to the selection of innovative firms 

(the firms that stated to have implemented innovations during the whole period considered). For 

both samples, we obtained a contribution of ICT capital deepening to labour productivity 

growth which seems to be rather robust taking into account the two rather different samples.  

The most striking result is that the contribution of ICT capital deepening to labour 

                                                      
19 We recall that the decomposition of labour productivity growth for the two ‘growth-accounting‘ 
variants presented in table 5.5.2 remains based on the (possibly invalid) assumption of constant returns to 
scale. Hereafter, we will return to this subject. 
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productivity growth varies between 30% and 35% and that most of the contribution of ICT is 

channelled via ICT spillovers. The latter result came already apparent from the estimates of 

Tables 5.5.1 and 5.5.2. In Table 5.5.3 this is shown more explicitly: the contribution of ICT 

spillovers to TFP and labour productivity growth varies between 1.5% for all firms and 2.7% for 

innovators. Especially, the latter seems to be at odd. However, this relatively large contribution 

is fairly consistent with findings of Munn and Nadiri (2002). They analyse the importance of 

ICT rent spillovers at the industry-level model with the help of inter-industry commodity flows 

to analyse the impact of forward and backward linkages of ICT adoption in a cost function 

framework. In their study they find an elasticity of total costs with respect to ICT spillovers 

which varied between 2% and 3% for UK market services.  

 
Table 5.5.3 Decomposition of labour productivity growth using firm-level data 1994-1998a 

 ‘Growth-accounting‘ ‘Production function‘ 

 Traditional TFP TFP corrected for 
‘competition bias’ 

 

   
 Annualised growth (%)  
    

Complete panel (N = 7828) 1.5 1.5 1.5 
Contribution of:    
      ICT capital deepening 0.5 0.4 0.5 

      Other capital deepening 0.3 0.2 0.2 
      TFP growth 0.7 0.9 0.8 

      Of which: ICT spillovers NA NA 1.5 

                       Economies of scale NA NA 0.4 

                       Rest NA NA -1.1 
    
Innovation panel (N = 1451) 2.6 2.6 2.6 

Contribution of:    

      ICT capital deepening 1.0 0.7 0.8 

      Other capital deepening -0.3 -0.4 0.0 

      TFP growth 1.9 2.3 1.8 

      Of which: ICT spillovers NA NA 2.7 

                       Economies of scale NA NA -0.6 

                       Rest NA NA -0.3 
a Contributions calculated on the basis of geometric averages; NA = not applicable. 

 

Table 5.5.3 also sheds some light on the importance of scale economies in market services. 

The result for the scale parameters of Table 5.5.1 shows up in a contribution of 0.4 % (about 

25% of labour productivity growth) if we use the most extended sample. However, for the 

selection of innovators we have a negative contribution of diseconomies of scale to labour 

productivity growth of the same order of magnitude. As innovating and size are positively 
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correlated, this suggests the existence of a trade off between innovation and scale economies. As 

an analysis of this trade off is beyond the scope of this research, this result opens opportunities 

for further research. 

 
5.6 Conclusions and further research issues 
 

This paper presents an in-depth analysis of the ICT contribution to labour productivity 

growth in Dutch ICT using industries at the firm level covering the period 1993-1999. It 

disentangles the impact of ICT on productivity labour productivity growth into a capital 

deepening effect and a spillover effect by using an ICT-spillover indicator. Additionally, the 

impact of innovation is accounted for in an innovation panel.  

The paper primarily focusses on the impact of ICT usage in Dutch market services. We 

constructed a balanced panel of firm-level data pertaining to the Dutch service sector in order to 

investigate the importance for boosting productivity growth of own investment in ICT in a 

period that was characterised by an economy wide acceleration of ICT investment. It is shown 

that the boosting of ICT investment at the firm level in response to an economy wide supply 

shock raises difficulties for the assessment of the contribution of own ICT to the contribution of 

labour productivity growth.  

By using a production function approach, we have found that ICT spillovers can be an 

important source of TFP growth in ICT-using industries and that controlling for ICT spillovers 

lowers the elasticities of ICT capital. A further decomposition of TFP growth shows that the 

ICT spillovers as well as scale economies were probably important sources of labour 

productivity growth in the period considered. Our results suggest that neglecting ICT spillovers 

at the firm level entails the risk of an inappropriate allocation of ICT impacts across ‘capital 

deepening’ and TFP. This conclusion is reaffirmed if we control for the possibility of an 

innovation bias in the estimates (that is by re-estimating the models for the innovation panel) 

and after allowing for deviations from the ‘perfect-competition’ case.  

Our results indicate that, after controlling for ICT externalities via an approximate ICT 

spillover indicator, the contribution of ICT capital deepening according to the production 

function approach is very similar to the results of the growth-accounting practice. Nevertheless,  

the latter approach is not able to disentangle the causes of TFP-growth into ultimate causes like 

productivity growth arising from ICT spillovers. On average about one third of labour 

productivity growth in Dutch market services can be attributed to own ICT capital deepening. 

However, this contribution appears to be less important than the more indirect contribution of 

ICT spillovers to productivity growth. 

We conclude by mentioning two topics for further research. First, in this paper we have tried 

to account for the importance of deviations from perfect competition, innovation and economies 

of scale for the explanation of differences in productivity growth. Each of these determinants is 
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capable of explaining (some of the) differences in productivity performance. However, they 

may not be independent causes. Ample research suggests that innovation and size are positively 

correlated. However, the relation between innovation and competition is less clear. Future CPB 

research will try to shed more light on the relation between competition, innovation and 

productivity. 

The second topic for further research concerns the ICT spillover indicator. Here, we have 

made an attempt to construct and quantify the effect of ICT spillovers at the firm level for the 

Netherlands and the results seem to be very promising. As far as we know, this is a novelty at 

this level of aggregation. However, two comments should be considered. First, due to a lack of 

data availability, the applied spillover indicator is only an approximation. Further research is 

needed whether an extension of the approximation is achievable and to check whether the 

presented firm-level results are robust on higher levels of aggregation. Second, besides the main 

topics of this contribution, ICT and innovation, human capital is an important source of labour 

productivity. Investments in education and training lead to the accumulation of knowledge and 

skills. Therefore, an increase of human capital positively affects labour productivity growth. As 

human capital, ICT and innovation are strongly interrelated, neglecting one of these productivity 

determinants could lead up to an overestimation of the effect of the included determinants in a 

regression. Unfortunately, Statistics Netherlands hardly collects any measure of human capital 

at the firm level. 
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Appendix 5.1 Validity of SYS-GMM model 

Short introduction 

Here, we test the validity of using the SYS-GMM-model in this paper. In the GMM method the 

first differenced equations of the model are ‘instrumented’ with the help of (lagged) levels of 

the explanatory variables. The extended GMM-method (i.e. SYS-GMM also uses the level 

equations of the model and use first differences of the same explanatory variables as the 

instrumental variables. This extension of the traditional GMM method aims at exploiting also 

the information contained in the cross-sectional differences of levels of the variables included in 

the model.  
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In both cases the GMM-method exploits the panel data structure by making use of the 

additional moment restrictions that become feasible in the course of time. Contrary to the 

standard IV-estimator, GMM-methods allow the projections on the instruments to be different 

for every year. In principle, this yields better predictions for the endogenous explanatory 

variables in finite samples and hence smaller standard errors for the estimated coefficients. 

However, in spite of this advantage, the inclusion of longer lags of explanatory variables as 

additional instrumental variables may not yield additional efficiency gains (more precise 

estimates) by definition when the additional instruments are highly correlated with the 

instrumental variables already included.20 

 
Testing for the validity of additional moment restrictions 

The usual way to investigate the validity of (additional) moment restrictions is by using the 

Sargan/Hansen test. In the sequel we will employ the so-called ‘incremental’ version of this 

testing procedure. Under the null hypothesis that all additional moment restrictions hold, the 

‘incremental Sargan’ test statistics is chi-squared distributed with degrees of freedom (DF) 

equal to the number of the additional moment restrictions employed.21 This testing procedure 

has been applied to the production function models estimated for the innovation panel (columns 

C and D of Table 5.5.1 of the main text). The results are summarised in Table 5A. 

The baseline model (A), labelled GMM(-2), uses lag two and earlier levels of the explanatory 

variables as instrumental variables. This specification allows for simultaneity of the three capital 

stocks (own ICT capital, own stocks of other capital inputs and ICT spillover capital) at the 

beginning of each period by dropping the instrumental variables contained in 1−tX .  

Next, we re-estimated this model after including 1−tX as additional instrumental variables 

(see entry B of Table 5A). It can be seen that the ‘incremental Sargan’ test rejects the validity of 

the additional set of instrumental variables.22 With the exception of the estimate of labour inputs 

the estimated coefficients of the two models appear to be very similar, as are there standard 

errors. The low estimate for labour inputs signals that the measurement-error bias seems to 

exceed the counteracting simultaneity bias when also (invalidity) using ‘lag one’ instruments. 

                                                      
20 In Mairesse and Hall (1996) it is shown that GMM methods still (can) perform better than the standard 
IV method in this case, because of the different sets of instrumental variables applied for different 
equations and not because of using more instrumental variables as such. 
21 If we have k parameters to estimate and use J1 (J1 > k) moment restrictions, then the standard Sargan 
test procedure checks the validity of the J1 – k over identifying moment restrictions. In the baseline 
model, GMM(-2), the null hypothesis of the validity of the J1 – k over identifying restrictions is not 
rejected. The ‘incremental’ Sargan test compares the Sargan statistics for a baseline model with the 
results for the same model that uses J2 – k moment restrictions, where J2 > J1. 
22 Because we have available a relatively large data set, we adopted a significance level of 0.01. 
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Table 5A Results of using different instrumental variables; innovation panel (N = 1451) 

 Estimate SEE 

A) GMM(-2)   
     ICT capital -0.008 0.012 

     Other capital 0.189 0.123 

     Labour 0.467 0.069 

     ICT spillover capital 0.125 0.047 

   

B) GMM(-1)   
     ICT capital 0.005 0.010 

     Other capital 0.198 0.102 

     Labour 0.329 0.056 

     ICT spillover capital 0.100 0.043 

     Incremental Sargan (B – A) 29.2  

     Degrees of freedom 12  

     Chi2 (0.01) 26.2  

   

C) SYS-GMM(-2,-2)   
     ICT capital 0.017 0.011 

     Other capital 0.182 0.085 

     Labour 0.542 0.068 

     ICT spillover capital 0.139 0.050 

     Impact ICT initial ICT-intensity on productivity 0.050 0.073 

     Impact innovation on productivity 0.286 0.065 

     Incremental Sargan (C – A) 14.9  

     Degrees of freedom 6  

     Chi2 (0.01) 16.8  

   

D) SYS-GMM(-2,-1)   
     ICT capital 0.025 0.009 

     Other capital 0.177 0.051 

     Labour 0.543 0.066 

     ICT spillover capital 0.131 0.049 

     Impact ICT initial ICT-intensity on productivity 0.037 0.055 

     Impact innovation on productivity 0.273 0.048 

     Incremental Sargan (D – C) 5.1  

     Degrees of freedom 3  

     Chi2 (0.01) 11.3  
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The next step is to compare the results of the GMM- and the SYS-GMM estimator. This is 

achieved by extending the GMM(-2) model towards a model (SYS-GMM(-2,-2)) that also 

accounts for the cross-sectional differences in levels, thereby using a comparable instrumental 

variable setting as in the baseline model GMM(-2).23 The results of this exercise are given in 

entry (C) of Table 5A. Looking at the estimates, it can be verified that also using the cross-

sectional differences in levels (in addition to the cross-sectional differences in growth rates), 

yields more plausible estimates for the parameters of interest. Furthermore, the use of additional 

moment restrictions cannot be rejected at the chosen significance level for the ‘incremental 

Sargan’ test.  

The last entry of Table 5A builds on model (C) by extending the set of instrumental variables 

to include 1−tXΔ  in addition to 2−tXΔ as instrumental variables. This extension yields the 

reference model as presented in the main text of the paper. For this variant (labelled model (D)) 

we arrive at the conclusion that including 1−tXΔ  in addition to 2−tXΔ and earlier growth rates 

makes sense as the precision of all estimates improves considerably due to the use of the 

additional instrumental variables concerned. Furthermore, the ‘incremental Sargan’ test 

statistics validates the use of 1−tXΔ  as additional instrumental variables.  

To sum up, applying the SYS-GMM method seems to pays off in terms of more precise 

estimates for the parameters of interest. This can be understood as consecutive growth rates 

show much lower correlations than consecutive level variables in the standard GMM method.24 

                                                      
23The similarity of SYS-GMM (-2,-2) and GMM(-2) estimates refers to the inclusion of 2−tXΔ and earlier 
growth rates in the SYS-GMM method.  
24 We recall that in our implementation we only use the level-equation for 1998. This allows us to use 
different (lagged) growth rates as instrumental variables. 
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Chapter 6 

ICT and productivity* 

Abstract 

This chapter investigates the relative importance of different channels through which 
information and communication technology (ICT) may have boosted labour productivity growth 
for the Netherlands at different levels of aggregation. Using Dutch firm-level data for the period 
1994-1998, it shows that ICT and other types of innovation have the potential to remain 
important sources of productivity growth, especially if we account for ICT spillovers and the 
interaction between ICT and innovation. Indeed, the rebound of Total Factor Productivity in the 
second half of the previous decade seems to be related to the boom of investment in ICT. 

 
6.1 Introduction  

 
One of the most impressive stylised facts of the previous decade was the economy-wide 

acceleration of ICT investment. At the end of the 1990s, when economic growth was at its 

height, many people, including some economists (see, e.g., Kelly, 1997), believed that ICT had 

drastically changed the economy. ICT had altered the way in which markets operate. Economic 

growth and productivity growth would be permanently high, the business cycle would be gone 

forever, and ICT would simply banish inflation. They baptised it as the New Economy, with 

ICT as the backbone. 

Indeed, some evidence was there, but not all signs were convincing. US economic growth 

accelerated in the second half of the 1990s. Its inflation remained modest, even at low rates of 

unemployment. The explanation was mostly an ICT story. Due to rapid technology 

improvements in production, the US ICT-producing manufacturing sector experienced huge 

productivity gains in the course of the last decade. However, there was little, if any, evidence on 

productivity of significant spillover effects from the use of ICT to the entire economy. 

Once we set foot into the 21st century, it seemed that enthusiasm for ICT suddenly started to 

wane. The sales of ICT products began to falter, due to the saturation of PC markets and 

disappearance of the Y2K bonus, among other reasons. The business cycle was still alive. 

Economic growth started to dwindle all over the world. Main economic regions ended up in a 

cyclical downturn and inflation picked up. Even in the US, the long period of exceptional 

expansion (temporarily) came to an abrupt halt. In the period 2001-2002, growth rates of US 

GDP were much lower than experienced in the second half of the 1990s. 

Although enthusiasm for ICT has reduced, one of the big puzzles about ICT still is to explain 

why firms and countries differ so widely in their ability to make productive use of the potentials 

entailed in these new technologies. While there exists broad evidence that the diffusion of ICT  

                                                      
* This chapter, co-authored by Henry van der Wiel, appeared as Chapter 6 of ‘Fostering Productivity: 
Patterns, Determinants and Policy Implications’, Contributions to Economic Analysis, no. 263, 2004, 
Elsevier Publishers, Amsterdam. 
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has led to substantial increases in labour productivity throughout the US economy, results for 

European countries are rather mixed (Colecchia and Schreyer, 2001; Van Ark, 2001; Van der 

Wiel, 2001). Similarly, the adoption of ICT and its applications vary largely between firms 

within the same industry (see, e.g., Bertschek and Fryges, 2002; Van Leeuwen and Van der 

Wiel, 2003a). 

This chapter focuses on the importance of ICT for the Netherlands at different levels of 

aggregation. The main question to be addressed is whether the predicted benefits of ICT have 

occurred after all for the Netherlands. Looking backwards to the 1980s and 1990s, productivity 

growth in the Netherlands seems to be on the way down in an historical and international 

perspective. Although Dutch productivity level was almost on par with that of the US in the mid 

1990s, Dutch productivity growth performance could not match the considerable US 

productivity gains since then (McGuckin et al., 2001).  

Using the growth accounting framework, we first analyse through which channels ICT might 

have affected Dutch productivity growth at the industry level. Next, to gain deeper insights into 

the relationship between ICT and productivity, we move beyond the aggregated figures and look 

at lower levels of aggregation. We, therefore, make use of extensive panels of firm-level data 

consisting of firms belonging to the Dutch services sector; the productivity performance of parts 

of the Dutch market services has been disappointing in an international and historical 

perspective (Van der Wiel, 2001). Moreover, those micro data enable us to analyse two related 

topics: innovational complementarities and the existence of spillover effects.  

The chapter is organised as follows. In the following part, we set out the theoretical 

background, empirical models and describe the data sources for both the aggregated and firm-

level data. In Section 6.3 we present the empirical evidence of the role of ICT and innovation 

for productivity for the Netherlands as a whole and for the main industries. Section 6.4 

discusses the results for the firm-level data. Section 6.5 compares the results of both aggregation 

levels. Section 6.6 concludes with some final remarks. 

 
6.2  ICT and productivity: theoretical background, empirical models and data 
 
6.2.1 Theoretical background 
 

Based on its various uses, ICT has been compared to other great innovations in the past such 

as the invention of the steam engine or electricity. These inventions are designated as general 

purpose technologies (GPT) since they are suited to be adopted by a wide range of industries 

and thereby to unfold a sustained impact on the economy. Moreover, GPT entail a varied 

potential for technological improvements and a broad scope for innovation complementarities in 

the ICT producing industries. The innovation of the microprocessor, on which ICT is crucially 

based, has initiated a series of further innovations such as the development of mainframes, 

personal computers and electronic networks. This development led to continued productivity 
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gains within the ICT producing industries. Moreover, and maybe most importantly, ICT has 

also opened a variety of innovation potentials in a variety of sectors outside the ICT producing 

industries. For example, the use of ICT enables firms to restructure their organisational 

structures (such as flattening hierarchies and delegation of responsibilities), to re-engineer 

business processes (such as introducing just-in-time management or engaging in e-commerce) 

and to develop completely new products (e.g. software and consultancies). 

As a GPT, ICT can therefore have wide-ranging productivity effects. ICT can increase 

labour productivity growth through three well-known mechanisms. First, the rapid increase of 

technological progress in the ICT-producing industries can make a large contribution to growth 

if these industries expand much more rapidly than other sectors − even if the ICT sector is 

relatively small (see OECD, 2001). Second, ICT can stimulate labour productivity through the 

use of ICT in the production process. Product and process innovations and lower prices for ICT 

goods and services make the use of ICT as a production factor more attractive. This leads to 

higher capital intensity per working person (also known as capital deepening), which in turn 

stimulates labour productivity. There is also a third route, but this route has been heavily 

debated. Through technology spillovers and network effects, the use of ICT can lead to higher 

Total Factor Productivity (TFP) growth as well.1 ICT spillovers emerge when social returns on 

investment exceed their private returns − a case that seems to be rather relevant for investment 

in ICT because the benefits of computer usage increase when more users adopt ICT. New ICT 

applications in combination with organisational changes could ensure greater business 

efficiency and reduce X-inefficiency. Through good co-ordination, savings could be made on 

transaction costs in all the links in the production chain. ICT can also contribute to the 

innovative ability of businesses. Furthermore, network externalities enhance the benefits of the 

investor in a particular technology as the number of users of compatible products or 

technologies expands (standardisation benefit). 

The ‘ICT boom’ has given rise to many discussions about the potential of ICT to yield 

production externalities and the role of ICT in the resurgence of productivity in the US in the 

second half of the previous decade (see, e.g., Jorgenson and Stiroh, 2000; Gordon, 2000). The 

debate has been fuelled by, among others, the unclear empirical relation between ICT use and 

TFP growth.  

There are primarily two positions. Either this rebound of TFP growth is due to technological 

progress in the ICT-producing sector itself or it is (also) caused by efficiency gains or spillover 

effects in ICT-using sectors. The proponents of the former position emphasise that the ICT 

revolution is a pure neoclassical story of relative price declines and input substitution. More ICT  

                                                      
1 TFP growth arises if the output increases without additional inputs. 
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capital per worker enhances labour productivity in the ICT-using industries but not their TFP 

growth. Proponents of the other position assume that ICT differs from other inputs because of 

network externalities and spillovers. Those characteristics induce TFP growth. Although the 

views still differ slightly, a consensus among economists has emerged that both the production 

and use of ICT have contributed considerably to the resurgence of US productivity in the second 

half of the 1990s. 

In addition to externalities, another feature of ICT is its relationship with innovation. Several 

studies have argued that the use of ICT requires a variety of complementary innovation efforts 

in order to reap the potentials of productivity gains entailed by it (Bresnahan and Greenstein, 

1996; Bresnahan et al., 2002; Hempell, 2002). Although a variety of anecdotal evidence exists 

and case studies point to the crucial role of innovations for a successful implementation of ICT 

(Brynjolfsson and Hitt, 2000), empirical studies of the topic are scarce. ICT adoption is 

generally most advanced in the service sector (OECD 2000a). Moreover, business-related 

services have been the most important driver of economic growth in industrialised countries 

(OECD, 2000b). Despite this key role of services, most of the empirical literature analysing the 

productivity impacts of ICT at the firm level has concentrated on manufacturing. Although 

developments in manufacturing are not totally disregarded, we explicitly focus the empirical 

analysis of this chapter on market services.  

 
6.2.2 Empirical models 
 

The main question analysed in this chapter is whether ICT did affect labour productivity 

growth in the Netherlands. As it is still subject to debate, we also investigate the relative 

importance of different channels through which ICT can boost labour productivity growth. In 

that respect, the role of complementary innovations and spillovers will be examined. Regarding 

the former, the hypothesis is that firms that launch new products, adopt new processes or adjust 

their organisational structure can reap higher benefits from ICT investment than firms that 

refrain from such complementary efforts. This implies that the marginal product of ICT is 

higher in innovative firms as compared to the rest of businesses. The existence of ICT spillovers 

should at least show up in higher TFP growth. 

In order to test these hypotheses empirically, we start with a production function framework 

with two types of capital, i.e. ICT capital and non-ICT capital (henceforth entitled as other 

capital): 

 
itieICTKALY itititit

ε+ηβββ= 321                                      (1)                              
      
with Yit denoting value added of firm (or industry) i in period t, L it labour input, ICTit the 

amount of ICT capital and Kit represents other capital. ηi captures unobserved determinants of 

the productivity of firm/industry i and εit represents independently and normally distributed 
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shocks. To analyse growth rates, we transform equation (1) into a linear model by taking 

logarithms. Simple rearranging then yields the basic empirical model: 

 

itiititit ictkly ε+η+β+β+β+α= 321                                                                        (2) 

 
where small letters denote the corresponding logarithms. 

The elasticities needed to measure the impact of ICT and other sources on labour 

productivity growth are not directly available and thus have to be estimated in some way. This 

paper uses two methods:  

• growth accounting method  

• econometric approach.  

In essence, these both methods are related because they are based on the same theoretical 

framework as described in equation (2).  

The growth accounting method solves the problem of unknown elasticities by assuming that 

these can be set equal to the observable input shares. In the econometric type of work, the 

elasticities are obtained after applying some econometric method. Due to data availability, we 

apply the growth accounting method at the aggregated level (Section 6.3) and the econometric 

approach at the firm level (Section6.4). 

With detailed Dutch firm-level data at hand, we are also able to take into account the effect 

of spillovers and innovation complementarities. In that case, equation (2) is augmented with 

additional variables.2 We estimated the production function simultaneously in levels, and first 

differences by using SYS-GMM (see the Appendix 6.1). This econometric method also 

accounts for firm-specific unobservable effects as well as for measurement errors and causality 

biases.  

 
6.2.3 Data 
 

This research uses two main sources: CPB’s sectoral growth accounting database and firm-

level data of Statistics Netherlands. CPB’s database includes data on Dutch industries supplied 

by and collected by Statistics Netherlands, and in particular data from the National Accounts. It 

covers the period 1948 up to the present.3 The latter source is an extensive set of firm-level data 

consisting of firms belonging to the Dutch service and manufacturing sector. This data set 

covers the period 1994-1998 and is constructed after linking the detailed accounting data 

collected in the yearly Production Surveys of Statistics Netherlands.  

Data on capital inputs were not directly available in the second sources. We therefore 

constructed stocks of ICT and other capital by using the Perpetual Inventory Method and 

investment data. For the empirical analysis of the impact of innovation, firm-level data from the 

                                                      
2 More details on the empirical models and on data can be found in the appendix. 
3 More on this growth-accounting database can be found in Van der Wiel (2001). 



 148

Community Innovation Survey (CIS) are employed. These data can be linked to the accounting 

firm-level data. 

Similar to the well-known practice followed for the modelling of R&D spillovers (see, e.g., 

Jacobs et al., 2002), we construct ICT spillover capital stocks at the industry level and use these 

(proximate) spillover indicators to capture the impact of production externalities. This has been 

achieved by subtracting a firm’s own ICT capital stock from the industry aggregate. Thus, 

(untransformed) approximate ICT spillover capital for firm i belonging to service industry S is 

obtained as:4 
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The model implicitly assumes that ICT spillovers are of a technical nature, affecting the 

location and structure of the production frontier. It goes without saying that this measure cannot 

be more than an approximation of the ICT adoption outside of the individual firm. As measuring 

ICT spillovers at the firm level is still in its infancy, our indicator is a first attempt to quantify 

spillovers of this type. The appropriateness of the adopted spillover indicator depends on the 

relative importance of intra-industry linkages. The market service sector consists of many trade 

firms. Therefore, taking also into account the importance of business-to-business 

communications for trade firms, the assumptions underlying the construction of our 

approximate ICT spillover indicator seem not to be at odds. Moreover, and contrary to industry-

level data, it is impossible to account properly for inter-industry links at the level of the firm. In 

defence of the argument that data on inter-industry dependencies are more suitable for the 

analysis of ICT spillovers, one could argue that ICT spillovers predominantly materialise on the 

firm level. Thus firm-level data may not be such a bad starting point for assessing their 

importance. 

 
6.3  Empirical evidence on aggregated levels 
 

To analyse whether beneficial effects of ICT have already occurred within the Dutch 

economy on an aggregated level, this chapter divides the market sector into three sectors: ICT 

sector, ICT-intensive industries and other industries.5 After a period of structural slowdown, 

                                                      
4 S is defined as the row in the regularly published Input/Output-table of Statistics Netherlands. 
5 The ICT sector includes electronic equipment, telecom and computer services. ICT-intensive industries 
includes banking, finance and insurance, business services (except computer services), wholesale and 
retail trade, paper (products), printing and publishing industry, and metal industry (except electronic 
equipment). Other industries consist of agriculture, food, textile, wood, chemicals, oil, distribution of 
electricity, water and gas, construction and transport. 
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labour productivity growth for the market sector recovered slightly at the end of the 1990s (see 

Figure 6.1).6 The acceleration seems to be related to the production and use of ICT. Despite its 

small size in the Dutch economy, the productivity performance of the ICT sector accounted for 

a substantial share in the rebound of labour productivity growth of the Dutch market sector. 

Strong productivity growth in the ICT sector is partly due to increased efficiency in the 

production of ICT products, particularly ICT-producing services. 

 
Figure 6.1 Contribution of industries to labour productivity growth of Dutch market  
                   sector (in %-points), 1980–2000. 
 

 

Users of ICT, represented by ICT-intensive industries, also seem to benefit from the 

opportunities it presents and contributed substantially to the productivity acceleration in the 

market sector. Labour productivity growth rates accelerated markedly in ICT-intensive 

industries in the late 1990s. Using the growth accounting method, it can be seen that this 

acceleration in labour productivity growth in the ICT sector and ICT intensive industries can not 

be attributed to an increase of ICT capital deepening (see Table 6.1). It was faster TFP growth 

that accompanied the increase. The higher TFP growth in ICT-intensive industries could be 

related to ICT, but may also stem from developments in the economy that are independent of 

ICT. This issue will be addressed in the next section. Finally, it can be seen that the other 

industries in the Netherlands documented a slowdown of productivity growth in the second half 

of the 1990s.  

                                                      
6 Notice that productivity growth was absent in the period 2001–2002.  
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Table 6.1 Decomposition of Dutch labour productivity growth, 1991–2000 
 Market sector ICT sector ICT-intensive 

industries 
Other industries 

 1991-
1995 

1996-
2000 

1991-
1995 

1996-
2000 

1991-
1995 

1996-
2000 

1991-
1995 

1996-
2000 

 
Annualised growth rates in % 

Labour productivity 1.3 1.6 3.9 4.7 0.2 1.4 2.7 1.0
    
Contribution of:    
    
1) ICT capital 0.3 0.4 2.1 1.0 0.3 0.3 0.1 0.2

2) Other capital 0.4 0.0 0.4 −0.2 0.5 0.2 0.6 0.1

3) TFP 0.5 1.2 1.4 3.9 -0.6 1.0 1.9 0.7

Source: Van der Wiel (2001) 

 
6.3.1 An international comparison 
 

Towards the end of the 1990s, it became clear that the macroeconomic productivity 

performance of the US was remarkably better than that of other regions in the world, such as 

Europe. In fact, labour productivity growth accelerated in the US, whereas Europe’s labour 

productivity growth remained on a track of slower growth. In a European perspective, the Dutch 

productivity growth slowdown is not at odds and seems to reflect a commonly downward trend. 

Nevertheless, during the 1990s, the annual growth of productivity in the Netherlands is on 

average much lower than that of the EU as a whole.7 

To some extent, the productivity growth difference between the US and Europe, and in 

particular the Netherlands, comes from the lower direct contribution of ICT-capital services in 

the EU (see Table 6.2). This is due to lower investments in ICT.  

 
Table 6.2 Decomposition of labour productivity growth for the market sector: an  
                 international perspective, 1991–2000 
 US  Euro area Netherlands 

 1991-1995 1996-2000 1991-1995 1996-1999 1991-1995 1996-2000 
Annualised growth rates in % 

Labour productivity  1.5 2.6 2.4 1.3 1.3 1.6
   
Contribution of:   
1) ICT capital 0.6 1.1 0.3 0.4 0.3 0.4
2) Other capital 0.1 0.1 0.8 0.3 0.4 0.0
3) TFP 0.9 1.5 1.4 0.6 0.5 1.2
Source: US: Stiroh (2002); Euro area: ECB (2002); Netherlands: Van der Wiel (2001) 

 

                                                      
7 This is certainly the case if it concerns figures for the whole economy.  
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However, the gap in TFP growth rates in the second half of the 1990s seems to drive the 

difference in the labour productivity performance between the US and Europe. TFP growth 

seems to be very sluggish in Europe in contrast to the US where TFP accelerated due to a 

stronger contribution by the ICT-producing industries and ICT-using industries. As the ICT-

producing industries are relatively small in both regions, differences in their productivity 

performance cannot be the main explanation for the gap in TFP growth at an aggregated level. 

Figure 6.2 provides evidence that the major difference is caused by the ICT-using services. 

Besides the divergence in the ICT-producing industries, the better productivity performance of 

the US in the second half of the 1990s stems completely from ICT-using services as in other 

industries, either ICT-using manufacturing industries or non-ICT using industries, the US 

performance is worse. 

In that respect, for the Netherlands, it is very informative to look at ICT-using services at 

lower levels of aggregation in more detail; this will be done in the next section. It seems to be 

that most of the Dutch manufacturing industries perform well in an international perspective. 

 

Figure 6.2 Labour productivity growth performance of selected sectors; an international  
                  comparison, 1995–-2001 
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6.4  Empirical evidence at the firm level for market services8 
 

This section focuses on the relationship between ICT and productivity at the firm level using 

extensive panels of firm-level data consisting of firms belonging to the Dutch market services 

sector. The availability of micro-data provides the opportunity of gaining deeper insights of this 

relationship. One of the main findings of this type of research has been the large differential in 

the levels and the rates of growth of productivity across firms within the same industry (see e.g. 

Foster et al., 2001). There is, however, no single explanation for this differential but a whole 

range of reasons. 

For both panels, Table 6.3 presents some descriptive measures for the key variables used in this 

section. The table clearly confirms the impressive ICT boom in the course of the previous 

decade. For the complete panel, we obtain an annualised growth of ICT of approximately 20%. 

This outcome corresponds with growth figures derived from industry level data for the 

Netherlands (Van der Wiel, 2001).  

 
Table 6.3 Growth rates of productivity and inputs into production for two panels; market   
                 services  a 

 ICT intensive ICT extensive All 
    

Complete panel     
   Number of firms          3847            3981           7828 
   Labour productivity                 1.4                  1.6                  1.5 
   ICT capital                 4.0                35.2                19.8 
   Other capital                 4.4                  4.2                  4.3 
   Labour                  1.9                  4.0                  3.0 
    
    
Innovation panel     
   Number of firms            645             806           1451 
   Labour productivity                2.4                 2.5                 2.5 
   ICT capital                8.8               45.7               29.3 
   Other capital                3.8                 4.2                 4.0 
   Labour                 2.0                 4.3                 3.3 

    
a Annualised growth 1994 - 1998. 
 

Firms that were relatively ICT extensive at the beginning of the period show the highest growth 

rates.9 Nonetheless, the ICT extensive firms (on average) had a lower level of ICT intensity at 

the end of the period than was observed at the beginning of the period for their ICT-intensive 

counterparts. This result suggests that many firms still have potential to improve their 

productivity by catching up their ICT endeavour.  

 

                                                      
8 Here, we mainly present the results for market services in graphical form, econometric details and the 
results for manufacturing can be found in Van Leeuwen and Van der Wiel (2003a).  
9 Firms are labeled ICT intensive if their share of ICT capital in total capital inputs in 1994 was above the 
median score calculated for the corresponding sector (3-digit NACE). 
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6.4.1 ICT, innovation and productivity10 
 

The descriptive results seem to indicate that innovators had a relatively better productivity 

performance than the average of firms in the complete panel (respectively 2.5% and 1.5% on an 

annual basis). The hypothesis is that this outcome is related to relatively high ICT use. This 

hypothesis was tested by analysing the contribution of ICT and innovation to labour 

productivity (growth) in a production function framework. Here we use a graphical presentation 

of this analysis. We will discuss the following: 1) results regarding the direct contribution of 

ICT to productivity growth, 2) results regarding the contribution of innovation to TFP, and 

3) the relation between TFP, innovation and initial ICT intensities. 

 
Figure 6.3 Decomposition of labour productivity growth (=ΔY/L) at the firm level for  
                   market services, 1994–1998 
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We begin by looking at the decomposition of labour productivity growth. Figure 6.3 

summarises the results for both panels. The most striking result is that almost all productivity 

growth in Dutch market services came from ICT capital deepening (labelled ICT). This is due to 

the high ICT elasticity in combination with high growth rates of ICT capital per worker. The 

estimate for the ICT elasticity is close to 0.08, a comparable magnitude as those reported by 

Brynjolffson and Hitt (1995) and Hempell et al. (2002). Moreover, the estimate is about twice as 

high as the corresponding ICT cost share. Another notable outcome is that TFP growth was  

                                                      
10 Here, we look at whether ICT induces more innovation. However, it can be questioned that the reversed 
causality is at stake: innovation stimulates or demands more ICT. SYS-GMM tries to correct for this 
causality problem. 



 154

negative for the complete panel.  

Despite similarities with other studies, we will argue that the estimated coefficients of ICT 

capital for the Netherlands are likely to be biased upward. A possible reason is that no account 

has been taken of ICT spillovers. The next section will address this issue. As innovation may 

also be related to ICT use, the neglect of differences in innovativeness may be another reason 

for suspecting biases of the direct contribution of ICT to productivity (growth). Indeed, using 

the innovation panel, TFP growth turns out to be positive, and ICT capital deepening a less 

important source of labour productivity growth. The firms belonging to the innovation panel 

clearly showed higher growth rates of labour productivity and TFP growth in 1994–1998 than 

their counterparts.  

Being innovative is an important potential source of TFP differentials. Figure 6.4 presents 

further evidence on this. The figure compares the (average) productivity levels of firms that 

were innovative or not. Non-innovating firms are the reference group in this comparison. We 

compare their estimated TFP level in 1998 with the corresponding figures for three types of 

innovating firms. First, we compare the reference group with the firms that applied 

technological innovations once (i.e. either in 1994–1996 or in 1996–1998). These firms are 

labelled ‘TI once’. Subsequently, we estimated (average) TFP for the firms that applied 

technological innovations in both periods (labelled ‘TI twice’).  

 
Figure 6.4  Relation between innovation and TFP, 1994–1998 
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Note: TI once are firms that applied technological innovations either in 1994–1996 or in 1996–1998; TI 
twice are firms that applied technological innovations in both periods; TI and NTI twice are firms that 
implemented technological as well as non-technological innovations in both periods.  
 

Finally, we compared the TFP levels of the latter group with the corresponding figures for 

the firms that implemented technological as well as non-technological innovations (labelled ‘TI 

and NTI twice’).  
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The results summarised in Figure 6.4 suggest that innovation seems to pay off, especially 

when firms are involved more ‘permanently’ in technological innovation. It can be verified that 

the TFP difference in 1998 for the firms that implemented innovations in all years was (on 

average) almost twice as high as the outcome for firms that were only innovative in 1994–1996 

or 1996–-1998. Figure 6.3 also indicates that the combination of technological and non-

technological innovation ca–n raise TFP further, thereby yielding increasing returns of 

innovation to TFP. However, this result should be interpreted with care, as we do not have 

available a very long history of innovativeness for each firm.  

 
Figure 6.5 TFP-growth differences between ICT-intensive and ICT-extensive services   
                   firms, 1994–1998 
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Note: TI is technological innovation; NTI is non-technological innovation. 

 
Finally, we also analysed the link between ICT and innovation in relation to productivity 

growth by comparing ICT-intensive and ICT-extensive firms (see Figure 6.5). We assume that 

firms must reach a certain level of ICT adoption in order to be able to capture the fruits of their 

innovation efforts. Taken on the whole, Figure 6.5 seems to confirm this assertion. The figure 

presents the (average) TFP growth differential (in percentage points) in the period 1994-1998 of 

ICT-intensive firms compared to their ICT-extensive counterparts. For all types of innovation, 

we observe a positive impact of being relatively more ICT intensive at the beginning. In terms 

of technological innovation, the figure also underlines the importance of being innovative more 

permanently. Summing up and cutting through the various pieces of empirical evidence: our 

results indicate that ICT may enhance innovation and that the incremental impact on 

productivity arising from the positive link between innovation and ICT is more substantial if 

firms have reached a more substantial level of ICT adoption. 
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6.4.2 ICT and productivity: do spillovers matter? 
 

According to the industry-level results based on the growth accounting method, the increased 

use of ICT was accompanied by an acceleration of the TFP component of Dutch labour 

productivity growth. In contrast, so far, the evidence based on firm-level data underline the 

importance of ICT capital deepening. Therefore, which part of labour productivity growth is 

channelled through TFP growth and which part is due to capital deepening remains open to 

debate. 

Here, we explicitly explore the existence of ICT spillovers for the Netherlands at the firm 

level. By including an ICT spillover indicator, the production function is augmented to test this 

hypothesis. As far as we know, this is a novelty at this level of aggregation.11 

 
Figure 6.6 Contribution to labour productivity growth of ICT capital deepening (CD):  
                   Dutch market services 1994-–998 
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Figure 6.6 compares the contribution of ICT capital deepening (labelled ‘CD’) to labour 

productivity growth for the model with or without spillovers. As discussed above, the relatively 

high estimate for the ICT elasticity suggests excess rates of returns and raises some doubt about 

whether this result is biased due to the omission of complementary costs and spillover effects. 

The available data only allow addressing the latter issue. Indeed, Figure 6.6 clearly illustrates 

that if ICT spillovers are taken into account more explicitly, the contribution of ICT capital 

deepening is lowered substantially.12 It becomes more comparable to the results found on the 

                                                      
11 As discussed, measuring ICT spillovers at the firm level is still in its infancy. Our indicator is in that 
respect only a first approximation. Further research is definitely needed whether it is possible to improve 
this indicator at the firm level. 
12 For the sake of completeness, the coefficient of the ICT spillover is statistically significant. 
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industry and macro level: on average, about one-third of labour productivity growth can be 

attributed to own-ICT-capital deepening.  

Based on the model with spillovers, Figure 6.7 presents the results of the breakdown of TFP 

growth in ICT spillover, economies of scale and a rest component of unspecified sources for the 

Dutch market services. The contribution of ICT spillovers to TFP growth is approximately 

1.5%. This result seems to be extraordinary high as it leads to a negative rest component. On the 

other hand, this high contribution is fairly consistent with the outcome of the Mun and Nadiri 

(2002) study, which analysed the importance of ICT rent spillovers at the industry level with the 

help of inter-industry commodity flows. Their study found an elasticity of total costs with 

respect to ICT spillovers that varied between 2% and 3% for market services.  

In spite of this, two caveats are worth mentioning when interpreting the decomposition of 

TFP growth of Figure 6.7. First, the contribution of ICT spillovers to TFP growth is calculated 

as the mean of firm-level spillover effects. As many firms in our sample are relatively small (but 

have the same weight as the largest firms), this may explain part of the unexpected high average 

contribution of ICT spillovers to TFP growth reported here. Second, our measure of ICT 

spillover capital may be too crude as it overemphasises the importance of intra-industry linkages 

and ignores other economic linkages. If the latter linkages were equally important, then this 

would imply that ICT spillover capital was underestimated and that the (estimated) contribution 

of ICT spillovers to TFP growth could be overestimated. 

 

Figure 6.7 Decomposition of Total Factor Productivity (TFP) growth: Dutch market  
                   services, 1994–1998 
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Therefore, although our results show that ICT spillovers do matter as a source of TFP growth, 

further research is needed to investigate the sensitivity of our results with respect to the chosen 

definition of ICT spillovers and the link between firm-level and aggregate TFP growth. 
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Finally, the result for the scale parameter shows up in a contribution of 0.4% (about 25% of 

labour productivity growth) and emphasises the importance of scale economies in market 

services (see Kox et al., 2003). 

 
6.5 Do firm-level results match with aggregated results? 
 

This section compares the results from the econometric approach with the growth accounting 

calculations for the Netherlands. In so doing, we attempt to reconcile the different pieces of 

empirical evidence in the international literature regarding the contribution of ICT to 

productivity growth and the importance of the different channels.  

In spite of the unprecedented growth of ICT capital per employee, the direct contribution of 

ICT to labour productivity remained rather modest in the previous decade, according to growth 

accounting studies focussed at the industry or macro level (see, e.g., Stiroh, 2002; Van der Wiel, 

2001). With TFP growth accelerating at the same time, this result suggests that the impact of 

ICT was channelled mainly through TFP. In contrast, using econometric techniques, the 

evidence based on firm-level data underlines the importance of ICT capital deepening, as in 

many cases the econometric ICT elasticities turned out to be much higher than seems to be 

consistent with the (still) relatively low ICT cost shares (see, e.g., Brynjolfsson and Hitt, 2000; 

Van Leeuwen and Van der Wiel, 2003b). 

As discussed in Section 6.2, in essence, these two strands of research are related because 

they are based on the same theoretical production function framework. Nonetheless, differences 

occur and could be due to different kind of methods, omission of variables, and/or aggregation 

problems. The analysis for the Netherlands presented above suggests that the neglect of 

spillovers in the econometric approach may explain the discrepancy between different levels of 

aggregation. 

Table 6.4 shows that, after controlling for ICT externalities via the ICT spillover indicator 

employed, the contribution of ICT capital deepening of both methods are very similar. 

Nevertheless, our econometric results provide additional insights by demonstrating that the 

contribution of ICT spillovers to Dutch productivity growth in the years of the ICT boom was 

substantial. 

Finally, comparing the outcomes of micro and macro studies is still in its infancy. As 

Bartelsman and Doms (2000) formulated “Greater attention should be paid to the aggregate 

implications of the findings from micro data and to micro-implications of findings at the 

aggregate level”. 
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Table 6.4  Decomposition of labour productivity growth using firm-level data, market  
                  services 1994–1998 
 Growth accounting Econometrics 

Annualised growth (%)   

Complete panel (N= 7828) 1.5 1.5 

Contribution of:    

        ICT-capital deepening 0.5 0.5 

       Other capital deepening 0.3 0.2 

       TFP growth  0.7 0.8 

 

 
6.6 Conclusions 
 

The main findings of this chapter may be summarised as follows. Labour productivity 

growth in the Dutch market sector slightly accelerated in the second half of the 1990s, due to the 

performance of ICT-producing and ICT-intensive industries. In contrast, labour productivity 

growth further slowed down in less ICT-intensive industries. Based on the growth accounting 

method, it can be shown that the increases in the ICT sector and ICT-intensive industries were 

mainly accompanied by faster TFP growth. Although both sectors experienced positive growth 

effects of ICT through capital deepening, those effects were small. To what extent the rebound 

of TFP growth in the second half of the previous decade was related to the boom of investment 

in ICT remains open to debate in the growth accounting method.  

Therefore, by including ICT spillovers explicitly in a production function model and using 

an extensive panel of firm-level data for Dutch industries, we attempt to assess which part of 

labour productivity growth is (indirectly) channelled through TFP growth by ICT. Additionally, 

this study analyses the importance of innovation for productivity and takes into account that 

innovation and ICT use can be complementary. 

The firm-level results point to a sizable direct contribution of ICT to Dutch labour 

productivity growth. However, this contribution is likely to be biased upwards if leaving out 

other sources of productivity that are correlated with ICT use. It is shown that the (direct) 

contribution of ICT capital deepening to labour productivity growth is lower but still significant 

if ICT spillovers are taken into account. 

In so doing, we were also able to reconcile the different pieces of empirical evidence in the 

literature regarding the contribution of ICT to productivity growth at different levels of 

aggregation. For the Netherlands, it is shown that, after accounting for ICT spillovers, the 

results on firm-level data are more in line with those reported in growth accounting studies on 

higher levels of aggregation. Nevertheless, our econometric results provide deeper insights than 

the growth accounting studies by demonstrating that the contribution of ICT spillovers to 

productivity growth in the years of the ICT boom was substantial. 
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We also found support for the assumption that ICT enhances the innovation performance of 

firms, thereby contributing to labour productivity growth in a more indirect way. Moreover, it is 

illustrated that the contribution of ICT capital deepening is raised when firms combine ICT use 

and technological innovations on a more permanent basis.  

Looking forward, taking into account projected slower growth rates of labour supply, Dutch 

labour productivity growth must increase in the coming years in order to prevent a substantial 

decline in GDP growth. This study shows that ICT still has the potential to induce higher 

productivity growth rates in the Netherlands across the economy. In particular, less ICT-

intensive industries and firms could improve their productivity if they catch up with 

developments seen elsewhere.  

Here, we have made an attempt to construct and quantify the effect of ICT spillovers at the 

firm level for the Netherlands and the results seem to be very promising. As far as we know, this 

is a novelty at this level of aggregation. However, two comments should be considered. First, 

due to a lack of data availability, the applied spillover indicator is only an approximation. 

Further research is needed as to whether an extension of the approximation is achievable and to 

check whether the presented firm-level results are robust on higher levels of aggregation. 

Second, besides the main topics of this contribution − ICT and innovation − human capital is an 

important source of labour productivity. Investments in education and training lead to the 

accumulation of knowledge and skills. Therefore, an increase of human capital positively affects 

labour productivity growth. As human capital, ICT and innovation are strongly interrelated, 

neglecting one of these productivity determinants could lead up to an overestimation of the 

effect of the included determinants in a regression. Unfortunately, Statistics Netherlands hardly 

collect any measure of human capital at the firm level.  
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Appendix 6.1 Estimation methods, econometric models and data 

 
This appendix is structured as follows. We start with a short explanation of the SYS-GMM 

estimation method and subsequently we provide more details about the enhanced production 

function model and about the construction of two panel data sets. 

 
SYS-GMM estimation method 

In this study we use heterogenous firm-level data to investigate the relation between ICT use, 

innovation and productivity. It is well-known that the tremendous heterogeneity in performance 

records at the firm-level can also be attributed to unobservable firm-specific effects. Ignoring 

these effects may bias OLS estimates severely. The usual approach to circumvent this problem 

is to eliminate the firm specific parameters by transforming the model into growth rates and 

then use the GMM method of estimation. Arellano and Bover (1995) and Blundell and Bond 

(1998) showed that this method may fail in case of weak instruments due to a lack of sufficient 

correlation between explanatory variables and instruments. To overcome this problem they 

introduced the method of SYS-GMM. This is a generalised instrumental variables method that 

uses both the equations in levels and growth rates to account for various sources of estimation 

biases like measurement errors, reversed causality or endogeneity of explanatory variables. This 

method has been applied in this study.  

 
The enhanced production function model 

To estimate the contribution of ICT and innovation to productivity, we used the following 

labour productivity equation derived from a Cobb-Douglas specification. In logarithmic form, 

this specification reads:  

 
)()()()()( 54321 ititiititititiititiitititit lkElklictPlictElictly −β+−β+−β+−β+−β=−

                              
                      (4) 
                 itiiiitititi PEllkP ε+γ+γ+α+β+−β+ 2176 )( ,                                                      

 
with y value added per employee (in constant prices), ict denote ICT capital stock (in constant 

prices), k is stock of other capital (in constant prices), l is number of employed persons. The 
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equation uses two dummies to assess the effect of different innovation activities: E = 1 for 

innovations applied in 1994–1996 or 1996–1998; P = 1 if firms applied innovations in 1994–

1996 as well as 1996–1998. Subscripts i and t in equation (4) refer to firms and time 

respectively, iα represents the contribution to productivity of unobserved firm-specific 

variables, and itε is an independent and identically distributed disturbance term.  

Equation (4) enables us to compare the relative importance of capital deepening and TFP, as 

well as the contribution of innovation to TFP. The coefficients 1β , 2β and 3β  measure the direct 

contribution of ICT, including the interaction of innovation on ICT capital deepening. TFP in 

(4) is represented by iiiit PIl 217 γ+γ+α+β . Furthermore, the coefficients 1γ  and 2γ  measure 

the contribution of innovation to TFP, which can be estimated only for the innovation panel. We 

re-estimated the model for different definitions of innovativeness, in order to obtain a better 

understanding of the importance of various types of innovation. Subsequently, we used the 

model estimates to assess the relative importance for labour productivity of (ICT) capital 

deepening and the contribution of innovation to TFP. This assessment was carried out for two 

samples: the firms that were relatively ICT intensive and the firms that were relatively ICT 

extensive at the beginning of the period.  

To disentangle the effect of ICT on labour productivity into a contribution of capital 

deepening and TFP, we used the following equation derived from a Cobb-Douglas specification. 

In logarithmic form, this specification reads as follows:  

 
itiiitititititititit Isictllklictly ε+α+γ+γ+γ−γ−+−γ+−γ=− 432121 )1()()(        (5)        

 
where sict represents stock of ICT spillover capital (in constant prices), and I is a dummy 

variable that captures the productivity differences related to initial ICT intensities (ICT-

extensive firms are the reference group).  

 
Two panels 

For the econometric analysis, we used accounting firm-level data collected in the yearly 

Production Surveys of Statistics Netherlands. We constructed two (balanced) panels − complete 

panel and innovation panel – covering the period 1993–1999. The complete panel consists of 

7828 market services firms (i.e. wholesale and retail trade, business services) and 2558 

manufacturing containing only those firms for which consecutive data on capital inputs were 

available for at least five years. Linking the complete panel to the two waves of the innovation 
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survey (CIS 2, covering 1994–1996, and CIS 2.5, covering 1996–1998), we created the 

innovation panel.13 This panel includes 1091 manufacturing firms and 1451 services firms. 

The innovation panel enables us to determine which firms were innovative or not. Moreover, the 

Dutch CIS makes a distinction between technological and non-technological innovation. 

Technological innovation is defined as the introduction of new or improved products (product 

innovation) or means of production (process innovation). Non-technological innovations are 

changes in strategy, marketing, organisation and management. 

                                                      
13 Due to selectivity, the innovation panel contains relatively few small- and medium-sized firms. In the regression 
analysis we control for possible selectivity bias. 
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Chapter 7 
 
Market structure, productivity and scale in European business 
services* 

Abstract 

Labour productivity in business-services industry tends to lag behind the rest of the economy. 
The present chapter investigates whether or not labour productivity in European business 
services is affected by unexploited economies of scale. Moreover, it analyses whether the 
incidence of scale sub-optimality is related to characteristics of the market or to national 
regulation characteristics. The econometric analysis is based on a production function model in 
combination with a distance-to-the-frontier model. A main result is that we find evidence for the 
existence of increasing returns to scale in business services firms. Throughout the EU, firms 
with less than 20 persons have significantly lower average level of labour productivity than the 
rest of the business-services industry. We find two explanatory factors for the level of scale 
inefficiency. The first is the level of policy-caused firm-entry costs; higher start-up costs for new 
firms go along with more scale inefficiency for business-services firms. Secondly, we find 
evidence that business-services markets tend to be segmented by firm size: firms tend to compete 
predominantly with firms in their own size segment of the markets. Scale-related inefficiencies 
may to some extent be compensated by more competition within a firm's own size segment. If a 
firm operates in a more “crowded” segment this has a significant and positive impact on its 
labour productivity. We derive some policy implications from our findings. 
 
7.1 Introduction  
 

During the past 15 years, business-services industry in most OECD countries has been 

among the industries with the highest growth pace. This held for its production, but even more 

for its employment growth. Labour productivity in business-services industry tends to lag 

behind the rest of the economy. This is reason for policy concern, because business-services 

industry nowadays has become a large part of OECD economies, and it is a major supplier of 

inputs to other industries. Low productivity in a large economic sector may negatively affect 

macroeconomic growth in a direct way. One of the findings of a large Dutch research project on 

the causes of the sluggish productivity growth in business services was that scale sub-optimality 

may be a source of the poor productivity performance in business services.1 The then available 

statistical evidence suggested that the overwhelming majority of firms in this industry operates 

at a scale where potential scale economies are left unexploited.  

The present paper investigates this hypothesis more profoundly by analyzing the scale 

impacts on productivity in the business services in an internationally comparative context. More 

specifically, we investigate econometrically the following questions: 

• is productivity in European business services affected by unexploited economies of 

 scale?  If this is the case, 

                                                      
* A slightly revised version of this chapter, co-authored by Henk Kox and Henry van der Wiel, was 
published as Chapter 11 in ‘Business Services in European Economic Growth’, 2007, Palgrave McMillan 
Publishers, New York, US. 
1 Van der Wiel (2001; 1999) and Kox (2004, 2002). 
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• is the incidence of scale sub-optimality related to characteristics of the market or to 

 national regulation characteristics? 

The research with regard to these questions will be done mainly based on Eurostat 

NewCronos data. Section 7.1 presents some descriptive statistics for the business services for 

the 11 EU-countries. Section 7.2 of the paper sketches the analytical framework. After a brief 

data description in Section 7.3, Section 7.4 presents the empirical results with regard to the 

hypotheses. Section 7.5 summarizes the overall conclusions. 

 
Figure 7.1 Average firm size in business services and the share of small firms                              
                  (<10 employed persons) in total value added, 11 EU-countries, 1999 
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Note: NACE K72 + K74. Firms with less than 1 employed person are not included. Calculated from 
Eurostat NewCronos data (Firm demography, Business services by size class). Data for the Netherlands 
were compiled from Dutch production census data, using the New Cronos classification of size classes. 
 
7.2 Stylized facts 
 

The business-services industry consists of a wide range of branches such as accountants, 

market research, economic consultancy, and industrial cleaning. Large differences in features 

are related to, among others, differences in labour intensity, capital intensity, knowledge 

intensity and product differentiation. The products of the business-services industry are mostly 

high value added products due to the large knowledge intensity of this industry. Business- 

services industry compared with other industries employs relatively many high-educated 

employees and employers. In order to limit the amount of sectoral heterogeneity, we focus on 

the labour-intensive part of the business-services industry.2  

                                                      
2 We particularly focus on computer-related services (NACE K 72) and Other Business Services (NACE 
K74). We exclude two capital-intensive branches: real estate (NACE K70) and equipment rental (NACE 
K71). We have also left out the data for contract-research establishments (NACE K73), since this sub-
sector appeared to include data for university institutes where education is an unobserved side-product. 
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At first glance, there are a number of similarities across the EU-countries with respect to 

some key statistics. Here, we mention two of them. First, business services in most EU-

countries is typically a small-firm business with the average number of employed persons well 

below ten persons (see Figure 7.1). The figure however also shows that the share of firms with 

less than ten employed persons ranges between 17 and 57 per cent of total value added. This 

indicates that there can be large differences between countries in the firm size-distribution.  

A second similarity across most EU countries is that average labour productivity level may 

differ considerably between size classes of firms. Figure 7.2 depicts the average labour 

productivity for all business services per size class and per country. In the left panel we see that 

six out of eleven countries display a clear hump-shape (inverted U) relation between the 

productivity level and firm size. The right panel shows that in two countries (Ireland, Sweden) 

there is a monotone productivity increase by size class, and in three countries (UK, France, and 

Denmark) the relation between labour productivity and scale does not show a clear pattern. 

Overall, the graphs suggest that scale effects could play a role in the productivity performance 

of firms. The hump-shape curvature hints at the existence of an optimal firm size. In the rest of 

the chapter we will further investigate the nature and causes of the different productivity 

performance by size class. 

 
Figure 7.2  Relative labour productivity performance by size class in business  
                    services, 11 EU countries, 1999 
 

 

Note: Relative labour productivity by size class (size class with 50-99 employees is benchmark) for all 
sub-sectors. Labour productivity is measured as value added (in 1000 Euros) per employed person. 
Legend for firm-size classes, based on employed persons per firm: a) 1-4; b) 5-9; c) 10-19; d) 20-49; e) 
50-99; f) 100-249; g) 250-499; h) 500-999; and i) over 1000 employed persons 
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7.3 Explanatory models 
 
In this section, we describe the explanatory models that will be tested to locate scale effects 

in business services, and their main assumptions. Our basic framework is a translog production 

function. First, we discuss the specification of our basic model. Scale effects are here considered 

only from a technological perspective. Next, we widen the perspective of the translog function 

by augmenting it with variables that control for market-specific factors and country-specific 

policy factors. Finally, we introduce the main characteristics of a distance-to-frontier model. We 

apply the generalised stochastic frontier approach of Kumbhakar et al. (1991) that 

simultaneously explains X-inefficiencies and input intensities from market-specific and country-

specific characteristics.  

a) Basic production function (PF) model 
 

The presence of scale effects means that an output increase (ΔOUT) is not only a function of 

increased inputs (ΔIN) but also from the already achieved level of inputs (IN): 

 
);( ININfOUT ΔΔ =                            (1)            

 
The effect of the marginal unit of inputs on output growth is variable with the already 

attained level of inputs. If the long-run average-cost function of a firm in an industry displays a 

U-shape, then the production elasticity of at least one input must be variable. The occurrence of 

variable or "local" scale effects can for instance occur when there are discontinuities in the 

technology options, lower efficiency incentives (bureaucracy), or less facilities for internal 

labour division. It implies that some firm sizes allow more efficiency than other sizes.  

To take into account variable input elasticities, we employ the so-called translog production 

function in which the expansion of one or more inputs may have a non-linear effect on the 

output level.3 The translog specification explicitly checks for variable scale effects and the 

presence of size-class specific complementarity between inputs. The presence of variable scale 

effects is detected separately by adding a quadratic term for each input.4 In a logarithmic 

specification the basic translog production function for a firm's value added reads: 

 
)ln(ln)(ln)(lnlnlnln 12
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21 LKLKLKY y ×+++++= βββββα                  (2) 

 
in which Y is value added, K is physical capital inputs, and L represents labour inputs. The 

parameters β1 and β2 reflect the linear effects of more input use on value added. The parameters 

                                                      
3 Cf. Christensen et al. (1971); Fuss et al. (1978); Greene (1993); Kim (1992) and Ray (1998). 
4 This is done by introducing a second-order Taylor expansion and parametrising for the quadratic effects 
of input use. With two inputs, capital (K) and labour (L), the partial derivatives of output with respect to 
both inputs are evaluated around the sample mean. 
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β11 and β22 reflect the non-linear effects for both basic inputs. Interaction parameter β12 

represents local level interactions between the individual inputs.5 The interaction parameter 

becomes significant if the output elasticity of a particular input depends on the level of the other 

input (input complementarity). As an example for the business-services sector, we may think of 

the positive labour productivity effects that come within reach after a fixed-capital investment in 

a local PC network. The constant αy is a catch-up term for the impact of non-observed variables 

on output, frequently interpreted as the level of ”multi-factor productivity”. In the basic 

specification we add sector and country dummies that account for unobserved sector-specific 

and country-specific fixed effects. 

Measuring economies of scale. With regard to scale effects on production, three meaningful 
outcomes for the model described by equation (2) can be distinguished. When there are no scale 
effects (constant returns to scale) we will find that β1 + β2 = 1, i.e. the output increase is equal to 
the increment of combined inputs. There may also be identical scale effects − either diminishing 
or increasing − for all firm-size classes. That is the case when we find the combination of β1 + 
β2 ≠ 1 with β11 = β22 = β12 = 0 (no variable scale and input-interaction effects). Finally, if 
significant non-zero values are found for β11, β22 and/or β12 it means that differentiated scale 
effects occur for specific size classes of firms.6 
 
b) Augmented PF-model 
 

In the basic translog specification, it is assumed that the shape of the production function and 

therefore the scale effects are identical everywhere: for all firms in all sub-sectors of business 

services in all EU-countries. This is a simplification as there may be other factors that play a 

role in specific sub-sectors and in specific countries. We therefore augment our basic translog 

PF-model with variables that control for market structure and country-specific policy factors. 

We distinguish three market-specific factors that may influence the relation between scale 

and productivity: market segmentation, market concentration, and the degree of product 

homogeneity. We subsequently discuss each of these factors. 

Market segmentation implies that not all firms in a sub-sector are direct competitors of each 

other. The existence of market segmentation has potential repercussions for the competitive 

incentives to remove scale-related inefficiencies. There are some suggestions in the literature 

that business-services markets may be segmented (at least partly) along firm-size characteristics, 

and that this is to some extent related to reputation effects.7 We use a simple procedure to 

control for the possible impact of firm-size related market segmentation on productivity. 

                                                      
5 The cross derivatives in (2) are assumed to be symmetric: βij = βji for i ≠ j.  Note that by imposing zero 
restrictions on each of the coefficients βij (i,j = 1,2) the translog production function reduces to a standard 
Cobb-Douglas production function. 
6 The type of scale economies that prevail can  be measured by adding up the derivative of output with 
respect to the inputs of capital, respectively labour. 
7 See O’ Farrell and Moffat, 1991; CSES 2001; Kox, 2002. 
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Suppose size-related market segmentation is present. In that case, the firm's input choices that 

govern productivity performance will be geared more towards competition in its own size 

segment than towards competition with firms in other size-segments of the market. As the 

measure of competition we take the average firm's market share; this is the inverse of the 

number of firms (NOF) in a relevant market. When segmentation by size class is present, the 

number of competitors in the firm’s own size-class (SEGM) will have a stronger impact on the 

firm's productivity performance than the number of competitors in the rest of the sector's size 

classes (SR). For size class s (s=1,...,S), sector j (j=1,..,J) and country k (k=1,..,N) the 

normalized indicators for intra-segment competition intensity and extra-segment competition 

intensity are:8 

 
( )sjkjksjk NOFSEGM γln= and { })(ln sjkjkjksjk NOFNOFSR −= γ          (3a) 
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The segmentation hypothesis can be tested straightforwardly by adding both variables to the 

production function model. If α1 and α2 are respectively the impact parameters of, respectively, 

SEGMsjk and SRsjk in the augmented production-function model, the interpretation of the results 

must be as follows. If all firms in the sub-sector compete with each other, regardless of size 

segment, the parameter α1 will either be zero or be roughly equal to the parameter α2. If, 

however, market segmentation by size class is important, then we will find: |α1| > |α2| > 0. 

Given the possibility that one of both parameters could directly pick up scale inefficiencies, we 

apply the segmentation test in an absolute formulation.9  

Market concentration is a second market characteristic that we want to control for. High 

concentration implies that imperfect competition prevails in a market, with less pressure on 

firms to remove scale-related X-inefficiencies, even if markets are not segmented. Fabiani et al. 

(2005) and ECB Task Force (2006) find that European non-trade services firms review and 

change prices less often than in other industries, indicating the presence of mark-up pricing and 

imperfect competition. With a higher competition intensity, firms have less opportunities for 

mark-up pricing, and firm size will be more directly related to their cost and labour productivity 

                                                      
8 Since we want to apply the model to cross-section data for different sub-sectors and countries, the 
normalisation factor γjk is necessary to remove the impacts on the total number of firms per sub-sector 
that come from relative country size and relative sector size (within a country). Normalisation makes both 
indicators comparable across countries and markets. 
9 The test can also be put in a strong form, i.e. α1 > α2 > 0, but this fails in case of opposite signs. In the 
case of excessive entry, the average firm's market share could become smaller than minimal efficient 
scale, thus depressing the size segment's average productivity and producing a negative sign for one of 
both parameters.  
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levels. We want to control for this possibly disturbing effect on our results. We use (the 

logarithm of) the Hirschmann-Herfindahl index (HHI) as a measure of market concentration. It 

does not measure competition intensity as such, but it may indicate markets with weak 

incentives for eradicating scale-related inefficiencies.10 A high degree of market concentration is 

expected to cause a lower efficiency pressure. Hence, we expect a negative sign for the 

estimated HHI parameter.  

Finally, the degree of product differentiation is a final market characteristic that we want to 

take into account. Descriptive data for business-services industry in the EU show that some sub-

sectors have a high degree of product differentiation. Product differentiation may affect the 

input mix and the internal organization of firms. In case of product differentiation, labour-

saving and internal division of labour according to the Babbage principle (spreading costs of 

overhead and management labour over more workers) may get more difficult, thus affecting 

productivity. Product specialisation in business services could have two opposite effects on 

productivity. The required higher overall qualification level of employees may benefit labour 

productivity in some elements of the production process. Conversely, the lack of task 

standardization, specialization and production routines may negatively affect productivity.11 

A priori, it is not obvious which of both productivity effects is dominant. To isolate the 

potential impact of product differentiation on productivity, we add sub-sector dummies to take 

account of product differentiation and other unobserved factors that vary by sub-sector. 

Apart from market characteristics, the augmented production-function model also accounts 

for country-specific differences in product-market regulation. Regulation of product markets by 

national governments could possibly explain part of the variation in business services 

productivity across the EU-countries. Stricter regulations are found to go along with more mark-

up pricing in services (ECB Task Force, 2006); hence, with strict regulations there will be fewer 

incentives to remove scale-related inefficiencies. Also research by Scarpetta et al. (2002) and 

Schiantarelli (2005) supports the expectation that the incidence of scale inefficiencies may be a 

function of the regulation type and the relative regulation intensity in countries. We explicitly 

control for two types of national policy indicators:12  

• intensity of product-market regulation, relative to other countries (PMR). We expect 

this variable to correlate negatively with productivity.  

                                                      
10 The use of more preferable indicators of competition-intensity like the relative profit measure (cf. 
Boone 2000) or average price-cost margins is problematic in our case because price and cost data are 
difficult to obtain for European business services.  
11 If branches with a high degree of product differentiation on average have higher-qualified employees 
this might also mean that part of their jobs consists of elements for which they are over-qualified. It may 
thus have a negative impact on cost efficiency.  
12 It turned out that other available indicators such as the national restrictions on foreign direct investment 
strongly correlate with other explanatory variables. 
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• entry costs for new firms (EC). A high entry hurdle diminishes the competitive pressure 

that newcomers in the market exert on incumbent firms. We expect a negative effect on 

average firm productivity. 

 
With the addition of market-specific and country-specific regulation factors to equation (2), we 

arrive at the augmented translog PF-model. Since we focus on labour productivity, the equation 

is further reformulated so that labour productivity is indeed the dependent variable: 
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All β-parameters refer to technological parameters, whereas the α-parameters refer to the 

control variables of the augmented model. SEGM and SR are the indicators for within-segment 

competition respectively competition with other segments, while HHI denotes the market 

concentration. Both are specific for sub-sector and country. Furthermore, two indicators refer to 

country-specific policy regulations: product market regulation (PMR) and Entry costs (EC). 

Vector D contains sub-sector dummies that account for unobserved sector-specific fixed effects. 

Finally, λL is the regression constant, and μ is the error term of the regression. An important 

element of the (augmented) PF-model is that the error term μ is thought to contain only white 

noise.13  

 
c) Distance-to-the-frontier model 
 

The production function models assume a representative “average” firm with a more or less 

homogenous input mix. Here we take up the issue of heterogeneity by applying a distance-to-

frontier approach. If data on input prices were available, it would be possible to follow the 

‘dual’ approach of Balk (1998) and Balk and Van Leeuwen (1999), which enables a distinction 

between technical inefficiency (a certain level of output could be attained with less inputs of 

given price) and allocative inefficiency (costs could be reduced by better taking into account the 

prices of different inputs). However, data on prices are not available. Therefore, we have chosen 

to adopt the ‘primal’ (production function) approach to frontier modelling. The distance-to-

frontier model does two things. It identifies a technological efficiency frontier per sector (“best 

practice”).14 All individual observations can thus be defined as deviations from the frontier. The 

model at the same time explains from market-structure variables and regulation characteristics 

                                                      
13 The errors are assumed to be i.i.d. normally distributed around mean zero, μ~ ),0( 2

μσN , i.e. they can 
have positive or negative values.  
14 Technically, the efficiency frontier is the set of all minimum input combinations needed to produce a 
particular output level. The efficiency frontier is equal to a theoretical production function that identifies 
all output-maximising (or input-minimising) combinations of inputs and output. 
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why some or even most firms are not on the efficiency frontier. The individual productivity 

distance to the frontier firm (X-inefficiency) becomes the independent variable. We use the 

generalised stochastic frontier (GSF) model, an adapted version of the method developed by 

Kumbhakar et al. (1991). The GSF takes into account that both X-inefficiencies and input 

choices depend on market-specific and country-specific characteristics. The first part of our 

GSF-model is again a standard translog productivity equation:  
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The vector B collects the sector-, country- and size-class dummies that act as control variables 

for the technology parameters. The error term ε is important for further analysis in the GSF- 

model, since it is thought to contain a deterministic component (τ), which represents the part of 

the X-inefficiencies that can be explained from market and regulation characteristics. Apart 

from that, a white noise component (ω) is present, so that ω+τ=ε .15 The efficiency frontier 

is defined as those observations without deterministic X-inefficiencies, so that the distribution 

of τ is truncated at zero (condition 0≤τ ). The second equation of the GSF- model explains the 

X-inefficiencies in terms a vector Z that contains the market and regulation variables: 

 
),'(~with 2

τσγτθγτ ZNZ +′=                          (6) 

 
Equation (6) expresses that X-inefficiencies are drawings from a truncated normal 

distribution with expectation .ˆˆ Zγτ ′= This specification implies that X-efficiencies are 

deviations from their mean determined by the vector Z.16 The market and regulation variables in 

Z are the same as those used in the augmented PF-model. The parameters of the two equations 

of the GSF model, (5) and (6), are to be estimated simultaneously. Note that, because the last 

equation explains inefficiencies, the signs of the estimates for the explanatory variables of (6) 

must be interpreted in an opposite way (negatively) to find the impact on labour productivity. 

The three explanatory models that have been developed in this section are related to each 

other. They can be considered as stages in diminishing abstraction: the first model (PF) explains 

possible scale effects only from technological input choices. The second model (augmented PF) 

allows for the possibility that market characteristics and country-specific regulatory 

characteristics can affect productivity, and hence can be a source of scale effects. Both models 

                                                      
15 The white noise component in the error term (ω) is again assumed to be i.i.d. normally distributed 
around mean zero: ),0(~ 2

ωσω N . Moreover, τ and ω are assumed to be independent. i.e. .0),( =ωτE  
16 In a companion paper we show the derivation of the likelihood function for the GSF model (Kox et al. 
2007).  
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basically assume homogeneity of all firms, i.e. some representative firm. This homogeneity 

assumption is dropped in the GSF -model, by identifying a production frontier and explaining 

the individual firm's deviation to this frontier in terms of market characteristics and country-

specific regulatory characteristics. The three models are tested subsequently. 

 
7.4 Data 
 

In order to test our explanatory models empirically we use national production census data 

for business-services firms, made available through the Eurostat NewCronos database Firm 

demography, Business services by size class (data retrieval august 2005). The data are for 11 EU 

member states and cover some 1.9 million individual firms, split up by sub-sector and by 

country, with the reference year 1999.17 The data are aggregated by size class of firms, but since 

the number of firms by size class is given, we can infer data for the average firm by size class, 

by sub-sector and country. The aggregation level of the NewCronos data does not allow us to 

deal with firm-level heterogeneity, but we may calculate scale effects for the average firm in 

each size class in each sub-sector of the business-services industry. 

Firm size is measured by the number of employed persons per firm, a measure that includes 

the entrepreneur. Nine different size classes are distinguished ranging from small firms with one 

to four employees to very large firms with more than 1000 employees. The available data allow 

a cross-section regression for 11 EU-countries: Austria, Belgium, Denmark, France, Ireland, 

Italy, the Netherlands, Portugal, Spain, Sweden, and the United Kingdom. The total number of 

observations is about 760, from up to 12 different sub-sectors of NACE 72 (computer-related 

services) and NACE 74 (Other business services).  

Labour input is measured as the number of employed persons. The amount of depreciation is 

used as an indicator for capital input. For market concentration, we use a modified version of 

the HHI.18 For the variable PMR (intensity product-market regulation) we use the OECD’s 

economy-wide indicator for the relative intensity of competition regulation in reference year 

1998 (Nicoletti et al. 2000). A high value of the PMR indicates a relatively regulated national 

economy. Data for variable EC (policy-caused, country-specific costs for setting up a new firm) 

are derived from a World Bank dataset (Djankov et al. 2002). A high value of the indicator 

refers to a large amount of entry costs. 

                                                      
17 Lacking data for the Netherlands have been compiled directly from Dutch production census data, 
ensuring compatibility by the use of the NewCronos aggregation method.  
18 In order to avoid multi-collinearity with the SR variable, we have calculated the HHI as the logarithm 
of summed squares of all size-class shares in a sub-sector’s total value added.  
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Table 7.1  Estimation results for basic and augmented PF-model based on pooled  
                  regression in business services (all sub-sectors, 11 EU-countries, reference year         
                  1999)  

 Basic PF-model Augmented PF-model 
 Parameter  Estimate c T a  Estimate c     T a

Technology variables      
Fixed capital  β1 0.51 5.5*** 0.35 3.0***
Labour input  β2 0.63 5.9*** 0.60 4.3***
Local scale effects, capital-based β11 − 0.09 −3.9*** − 0.09 −3.8***
Local scale effects, labour-based β22 − 0.05    −1.7* − 0.08     −2.5**  
Local scale effects, capital-labour 
interaction β12 0.06 2.4*** 0.09 3.7***

Size-class dummies      
1-4 employed persons    0.13       1.0 
5-9 employed persons    0.02       0.2 
10-19 employed persons    0.03       0.4 
20-49 employed persons    0.06       1.0 
50-99 employed persons    0.01       0.2 
250-499 employed persons    0.05       0.8 
500-999 employed persons    −0.12     −1.3 
>1000 employed persons    −0.09     −1.0 

Market-characteristics      
Within-segment competition (SEGMsjk) α1   −0.06    −3.1***
Competition with non-segment firms 
(SRjk) 

α2   0.08      3.6***

Market concentration, (HHI)  α3   −0.15    −3.6***
National policy regulation      
Product-market regulation (PMR) α4   0.06 1.7* 
Entry costs (EC) α5   −0.54    −4.6***

Sector dummies b)  Yes  Yes  
Country dummies b)  Yes  No  
Other regression statistics      
Regression constant αy , λL 3.15     8.5*** 4.49      7.5***
Number of observations  713  713  
Adjusted R2  0.63  0.61  
Log likelihood  − 176.69  −216.6  

Notes: a) Asterisks denote the confidence interval (two-tailed) of the estimates: *** at 1% level, ** at 5% 
level, and * at 10% level.  b) The size reference group is size class 100-249 employed persons, the 
reference sector is sub-sector NACE K744, and the reference country is Ireland. c) The use of size-class 
averages (based on different numbers of firm observations) could create a bias if we used Ordinary Least 
Squares estimation. To prevent this we apply the Weighted Least Square method with Heteroskedasticity-
consistent standard errors. 
 

7.5 Empirical results 
 
We subsequently present the estimation results for the explanatory models, starting with the 

results for the two PF-models. The dependent variable is in all cases the logarithm of the 

productivity level (value added per employed person).  

Table 7.1 presents the results of both the basic and the augmented PF-model applied on the 

pooled dataset for all 11 EU-countries and all available sub-sectors. The results for the basic PF-
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model suggest that there are increasing returns to scale in the EU-business-services industry. 

From the magnitude of the technology variables in combination with the levels of capital and 

labour inputs (not shown) it can be inferred that there are positive scale economies. Since β11, 

β22 and β12 are significantly different from zero, we must conclude that these positive scale 

effects are “local”, i.e. they only occur in some size classes.  

We would expect these local effects to pop up in the augmented PF-model where we add 

dummies for individual size classes as well as variables for market characteristics and country-

specific regulation characteristics. However, the estimation outcomes show that none of the size 

dummies is statistically significant. This suggests that neither small nor very large firms operate 

on a less-efficient production frontier scale. A small average market share for firms within a size 

segment (variable SEGM) has a significantly negative impact on labour productivity, but overall 

this effect is dominated by a larger positive productivity impact of competition with firms in 

other size segments (variable SR). Because of the relative size of both effects, the market 

segmentation hypothesis is rejected in the augmented PF-model: the condition |α1| > |α2| is not 

fulfilled. The estimated coefficients of the market concentration (HHI) and policy-caused entry 

costs (EC) have the expected negative sign and are statistically highly significant. The PMR 

variable is significant at the 10 per cent confidence level, but it has not the expected sign. The 

positive sign suggests that strict regulation in a country strengthens labour productivity 

performance. This is at odds with most of the literature, and we do not have a good explanation 

for this result. The indicator for the intensity of product-market regulation in a country could be 

too broad to be meaningfully used for explaining the differences in productivity level of the 

business-services industry.  

Both of the preceding models illustrate that capital intensity (parameter β1) matters for the 

labour productivity level in business services. The coefficient for capital is, however, much 

smaller in the augmented PF-model. The ‘local effect’ parameter β11 indicates that capital 

intensity has decreasing returns to scale in some size classes.  

 
Results for the GSF-model 

The basic PF-model and its augmented variant pay no attention to the possibility that firms 

are heterogeneous in their input mix, and that not all of them operate on the efficiency frontier. 

The results of the GSF-model indicate that it is important to take firm heterogeneity and X-

inefficiencies on board. The model simultaneously explains X-inefficiencies and input 

intensities from market-structure variables and regulation characteristics. Table 7.2 presents the 

results for this model.  
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Table 7.2  Estimation results for GSF-model based on pooled regression in business  
                  services (all sub-sectors, 11 EU-countries, reference year 1999) 
 Parameter  Estimate c    T a

Production frontier equation    
Technology variables    
Fixed capital  Β1 0.42               6.3***
Labour input Β2 0.67               7.3***
Local scale effects, capital-based Β11 − 0.08             −3.7***
Local scale effects, labour-based Β22 − 0.05           −2.0** 
Local scale effects, capital-labour interaction Β12 0.06               2.8***

Size-class dummies    
1-4 employed persons  −0.36             −5.2***
5-9 employed persons  −0.32             −4.5***
10-19 employed persons  −0.21             −3.0***
20-49 employed persons  −0.03       −0.4 
50-99 employed persons  −0.01       −0.1 
250-499 employed persons  −0.01       −0.1 
500-999 employed persons  −0.04      −0.4 
>1000 employed persons  0.03         0.3 

Sector dummiesb)  Yes  
Country dummiesb)  Yes  

X-inefficiencies equation    
Market-characteristics    
Within-segment competition (SEGMsjk) Α1 −0.31         −1.8* 
Competition with non-segment firms (SRsjk) Α2 0.15         0.9 
Market concentration (HHI)  Α3 −0.03       −0.2 
National policy regulation    
Product-market regulation (OECD) Α4 0.06         0.3 
Entry costs (OECD) Α5 1.88           1.7* 

Size-class dummies b)  Yes  

Other regression statistics    
Regression constant λL 3.67             13.0***
Number of observations  713  
Log likelihood  − 112.13  

Notes: a) Asterisks denote the confidence interval (two-tailed) of the estimates: *** at 1% level, ** at 5% 
level, and * at 10% level. b) The size reference group is size class 100-249 employed persons, the 
reference sector is sub-sector NACE K744, and the reference country is Ireland. c) Both equations of the 
GSF model have been estimated simultaneously. 
 

From the estimated technology parameters and the input levels (not shown) we may 

conclude that business-services industry is characterised by increasing returns to scale, once we 

control for the possibility of X-inefficiencies. Particularly, the linear parameters for capital 

inputs (β1) and labour inputs (β2) are substantially larger in the GSF-model than in the 

augmented PF-model. The parameters for the non-linear input effect (β11, β22 and β12) are 

significantly different from zero, indicating that there are “local” scale effects, specific for some 

size classes. The estimates for the size-class dummies, now allows us to identify the locus of 

these local scale effects. Small firms, up to a size of 20 employed persons, experience 
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considerable productivity disadvantages compared to the reference size class (100-249 

employed persons). The findings suggest that firms operate on different production frontiers. 

Recall, that Figure 7.2 already suggested that such a pattern prevails for a considerable part of 

European business-services industry.  

However, the GSF results do not fully confirm the hump-shape pattern in the size-

productivity relation (left panel Figure 7.2). The estimates for the largest size classes turn out 

not to be significantly different from zero. A possibly explanation is that larger firms can, on 

average, compensate a relatively lower labour productivity by a more efficient use of capital 

inputs. Scale-related productivity effects only occur up to a threshold firm size. A number of 20 

employed persons appears to be the minimum efficient firm size in European business services. 

Beyond a size of 20 employed persons further firm growth on average yields no more 

significant productivity advantages, if we control for capital input. The reasons for this 

minimum firm size can be related to internal labour division (in the spirit of Adam Smith’s pin 

factory), human capital specialisation, spreading fixed capital costs, routine development, and 

the Babbage principle (possibilities for spreading managerial and other overhead costs). Further 

research would be necessary to assess which of these factors forms the binding constraint that 

defines the minimum efficient scale in business services. 

While scale-related inefficiencies are primarily found at firm sizes smaller than 20 employed 

persons, X-inefficiencies related to sub-optimal input choices may also occur at larger firm 

sizes. The τ-equation of the GSF-model identifies the market characteristics and regulatory 

environments that tend to be correlated with X-inefficiencies. Size-related market segmentation 

could be an important characteristic in business-services markets. The market segmentation test 

|α1| > |α2| is satisfied.19 The estimated parameter is significant at the 10 per cent confidence 

level; hence the issue warrants further research.  

There is a remarkable difference with Table 7.1. Now that X-inefficiencies are taken into 

account, the estimated parameter for intra-segment competition (SEGM) has a larger value and a 

different sign. More intra-segment competition has a negative impact on inefficiencies, and 

hence a positive impact on labour productivity. Being in a ”crowded” size segment of the 

market could therefore to some extent compensate any scale-related inefficiencies. Consistent 

with this is the finding that a high level of policy-caused start-up costs for new firms (EC) 

works out positively on the incidence of X-inefficiencies, and hence negatively on the labour 

productivity performance. A final result is that, on average, market concentration (HHI) and the 

intensity of competition-related regulation (PMR) are not significant factors for explaining the 

incidence of X-inefficiencies. 

 
                                                      
19 The estimated parameter for α1 is significant at the 10 per cent confidence level (2-tailed), while α2 is 
not statistically significant. 
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7.6 Conclusions and some policy implications 
 
We find clear indications for the existence of increasing returns to scale in business-services 

firms. The scale effects are not the same for all size classes. Throughout the EU, firms with less 

than 20 persons have significantly lower average labour productivity levels than the rest of the 

business-services industry. The size of 20 employed persons can be regarded as the minimum-

efficient scale in European business services. Beyond that size there are no significant impacts 

of scale on labour productivity performance. 

Likely explanatory candidates for the presence of the minimum-efficient scale size in 

business services are traditional drawbacks of small scale known from the literature, such as 

having less efficient division of labour, and having less opportunities for spreading fixed 

managerial costs, overhead costs, fixed human-capital costs, and fixed-capital costs. Further 

research could establish the reasons for the presence of the minimum-efficient scale size. Apart 

from scale-related inefficiencies, we find evidence that X-inefficiencies related to input choices 

may occur in all size classes. Estimation results for the generalised stochastic frontier model 

(GSF) indicate that X-inefficiencies caused by sub-optimal input choices are affected by market 

characteristics and the regulatory environment of firms. In particular we find that business-

services markets may be segmented by size class of firms. This means that firms from different 

size classes on average only have weak competition with firms in other size classes. Small firms 

hardly compete with large firms and vice versa. They possibly serve different market segments, 

have different clients and also different types of products. 

A final result is that more intra-segment competition works out positively on labour 

productivity of the firms in that size class. Being in a “crowded” size segment of the market 

could thus to some extent compensate scale-related inefficiencies. For instance, the relatively 

intense “neck-and-neck” competition among small firms may to some extent both compensate 

their scale-related inefficiencies, for instance, by reducing their non-scale inefficiencies 

including suboptimal input choice. Consistent with this is the finding that a high level of policy-

caused start-up costs for new firms negatively affects the labour productivity performance. 

Higher entry barriers may weaken the stimulus for incumbent firms to be efficient. 

Our results are based on cross-section analysis for one year, but we think the results warrant 

a more comprehensive research programme on scale-effects in European business services, 

using data on more years (panel data) and real micro-level data instead of size-class averages. In 

fact such research is already long overdue, if we take into account that business services is one 

of the largest sectors in the European economy with an employment share of about 11 per cent, 

a value-added share of about 12 per cent in the European Union, and a 54 per cent share in EU 

employment growth between 1979 and 2001.  

Although we cannot discuss policy implications at length, there are several links between the 

productivity agenda in business services and government policies in EU countries. Government 
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policies have leaned strongly towards promoting market entry by new entrepreneurs, rather than 

paying attention to existing scale inefficiencies. The idea was that more entry is good for 

competition is probably right. Entry by new business-services firm constituted was a major 

factor major in total EU employment growth during the 1990s. This was (partly) the result of 

government policies. For the future, further thought must be given to such policies before 

continuing on the same track. When market segmentation is indeed as important as we think it 

might be, new entrants will mostly compete with each other, i.e. with the other small and 

’young’ firms.20 Like with lobsters that try to escape the box in which they are, their mutual 

competition means that no one gets out. They may remain operating at a relatively inefficient 

firm size. 

Maybe a new balance has to be struck between ‘upscaling’ in order to remove scale 

inefficiencies and ensuring a constant influx of new entrepreneurs. The question is whether the 

markets themselves will solve this issue, or whether the governments have a role to assist the 

market forces. With segmented markets − both within and between countries− competition may 

not automatically lead to more scale-efficient production sizes. Many national and EU policy 

programmes nowadays play at least lip service to lowering administrative burdens for firms. 

Perhaps especially the firms below 20 employed persons should get a light administrative 

burden from government regulation. This will make it easier for firms to grow beyond the 

present small-firm business model. In addition, the opening of markets for intra-EU competition 

may yield more incentives for ‘upscaling’ of business-services firms. 
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Samenvatting (Summary in Dutch) 
 

Innovatie en bedrijfsprestaties. Een verzameling van microdata studies  

 
Dit proefschrift omvat een vijftal onderzoeken naar het belang van innovatie voor 

bedrijfsprestaties en één onderzoek waarin schaaleffecten in de bedrijfstak commerciële 

dienstverlening centraal staan. Met uitzondering van het laatste hoofdstuk werden de analyses 

uitgevoerd op bedrijfsgegevens die het CBS verzamelt voor het maken van statistieken. Een 

voordeel van het gebruik van dergelijke data is dat de gegevens betrekking hebben op de echte 

actoren in de economie en niet op uitkomsten voor bedrijfstakken of zelfs de gehele economie 

(zogenaamde macrodata).  

Hoewel het belang van innoveren algemeen wordt erkend, bestaat er nog veel 

onduidelijkheid wat innoveren nu betekent voor – bijvoorbeeld – de ontwikkeling van de 

winstgevendheid of de productiviteit van bedrijven. De Nederlandse beleidsagenda is nog steeds 

sterk gericht op het verbeteren van de productiviteitsgroei in Nederland. Omdat er grenzen zijn 

aan de groei van de arbeidsinzet (o.a. als gevolg van demografische trends) wordt 

arbeidsproductiviteitsgroei in de toekomst steeds belangrijker voor het in stand houden van 

economische groei. 

Uit macro-economische cijfers blijkt dat de productiviteitsgroei in Nederland in het 

afgelopen decennium is achtergebleven bij de Amerikaanse groeicijfers. Dit roept de vraag op 

of deze groeiachterstand te maken heeft met een relatief geringe innovatiekracht van het 

Nederlandse bedrijfsleven. Dat moge ook blijken uit het feit dat in verschillende macro-

economische analyses de relatief lage intensiteit van de toepassing van informatie en 

communicatie technologie (ICT) in Nederland als een belangrijke oorzaak van de 

achterblijvende productiviteitsgroei wordt gezien.  

Het hoeft geen betoog dat ICT in de achterliggende jaren tot een steeds belangrijker 

technologie is geworden. Bekende voorbeelden zijn de opkomst van internet en mobiele 

telefonie. In essentie is ICT een vorm van innovatie die belichaamd is in (het gebruik van) 

computers. In het jargon van economen: ICT is een vorm van in fysiek kapitaal belichaamde 

technologische vooruitgang. Voor de oorsprong van die vooruitgang moeten we verder 

teruggaan in de tijd en wel naar de jaren dat de microprocessor technologie door het bedrijf Intel 

werd ontwikkeld. De oorsprong van de aan ICT gerelateerde technologische vooruitgang ligt 

dus in essentie bij onderzoek en ontwikkeling (R&D) van ICT producerende bedrijven.  

Bedrijven gebruiken ICT op uiteenlopende wijze. Dat gebruik begint bij het aanschaffen van 

(of het investeren in) computers en software. Investeren in computers en bedieningssoftware is 

echter geen voldoende voorwaarde voor het realiseren van productiviteitsgroei. Om ICT goed te 

laten functioneren moeten vaak complementaire kosten worden gemaakt voor zogenaamde niet-

technologische innovaties. Veranderingen in bedrijfsorganisaties gericht op het uitbaten van de 
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voordelen van het werken in (bedrijfsinterne) netwerken zijn hiervan een voorbeeld. De potentie 

om zowel interne als externe netwerkeffecten te genereren maakt dat computers als een speciaal 

type kapitaal kunnen  worden bezien.  

Het voorafgaande illustreert hoe de R&D van ICT producenten heeft geleid tot 

technologische innovaties in de vorm van nieuwe producten en productietechnieken die op hun 

beurt weer nieuwe innovaties (zowel technologisch als niet technologisch) kunnen genereren. 

Ook de introductie van internet is een voorbeeld van een dergelijk cumulatief innovatieproces, 

want zonder computertechnologie zou er geen internet of zelfs emailverkeer bestaan.  

Het inzicht dat technologische vooruitgang ‘maakbaar’ is heeft geleid tot een nieuwe 

theoretische stroming in de economie, de zogenaamde endogene groeitheorie. De endogene 

groeitheorie beziet innovatie in brede zin als een belangrijk vliegwiel om economieën op een 

hoger groeipad te brengen. In hoofdstuk 1 bespreek ik de link tussen het onderwerp van dit 

proefschrift en de endogene groeitheorie. Uit die bespreking blijkt dat een veelbelovende tak 

van de endogene groeitheorie wordt gevormd door die stroming waarin de inzichten van 

Industriële Organisatie (IO) literatuur zijn geïntegreerd met het doel de endogene groeitheorie 

een betere theoretische onderbouwing en ook een hoger realiteitsgehalte te geven. Door het 

expliciet onderkennen van de wisselwerking tussen innovatie en concurrentie (marktwerking) en 

de rol van innovatie voor het vergroten van de kans op overleven of groeien wordt deze variant 

van de endogene groeitheorie ook wel aangeduid als de ‘Schumpeteriaanse’ endogene 

groeitheorie.  

In essentie is de macroproductiviteitsgroei de resultante van een voortdurend proces van 

aanpassing aan ‘best-practice’ productietechnieken en de voortdurende strijd om marktaandelen 

tussen bedrijven. Bedrijven innoveren om sterker in de markt te staan, hetzij door het 

ontwikkelen van nieuwe producten of door het implementeren van slimmere (meer efficiënte) 

productiemethoden. Dit proces worden ‘aangestuurd’ door zowel in eigen beheer ontwikkelde 

innovaties als het imiteren of perfectioneren van innovaties die door andere bedrijven zijn 

ontwikkeld. Verder komt een deel van de macroproductiviteitsgroei voort uit het feit dat minder 

productieve bedrijven in de strijd om ‘survival of the fittest’ verdwijnen en plaats maken voor 

nieuwe en mogelijk productievere bedrijven. Achter de macrogroei gaat dus een zeer heterogeen 

proces van herverdelen van marktaandelen en productiemiddelen over bedrijven schuil. Dit 

verklaart waarom de belangstelling voor microdata voor het analyseren van de determinanten 

van productiviteitsgroei tegenwoordig zo groot is.  

Het onderzoek dat in dit proefschrift wordt gepresenteerd maakt een veelvuldig gebruik van 

gegevens uit de Community Innovation Surveys (CIS). Deze databron geeft een uitgebreidere 

beschrijving van het innovatieproces dan de traditionele R&D enquêtes, die zich meer beperken 

tot het meten van de R&D uitgaven van bedrijven. In hoofdstukken 2 tot en met 4 wordt 

empirisch onderzoek gepresenteerd dat in belangrijke mate gebaseerd is op het gebruik van de 
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microdata uit CIS. Die data worden ook gebruikt bij het onderzoek van hoofdstukken 5 en 6, 

maar spelen daar een minder prominente rol vanwege de nadruk op ICT als mogelijke drijvende 

kracht achter de productiviteitsgroei van bedrijven. De volgorde waarin verschillende 

onderzoeken in dit proefschrift zijn gepresenteerd hangt dan ook samen met het feit dat 

innovatie in de traditionele zin wordt opgevat als investeren in R&D en het gegeven dat ICT een 

relatief jonge technologie betreft.  

Hoofdstukken 2 tot en met 4 onderscheiden zich ook van eerder onderzoek op het punt van 

de econometrische modellering. Van oudsher werd voor de modellering gebruik gemaakt van 

een model met slechts één vergelijking voor het beschrijven van het verband tussen R&D en 

productiviteitsgroei. In economenjargon wordt dit de productiefunctie aanpak genoemd. In de 

productiefunctie representeert R&D als het ware een aparte productiefactor met een eigen 

bijdrage aan de productiviteitsgroei naast de bijdragen van traditionele productiefactoren als 

arbeid, fysiek kapitaal (bijvoorbeeld machines en gebouwen) en intermediair verbruik 

(bijvoorbeeld energie of grondstoffen). De schatting van de coëfficiënt van de R&D variabele 

geeft dan informatie over de bijdrage van R&D aan de groei van de zogenaamde Totale Factor 

Productiviteit (TFP): de groei van de productie gecorrigeerd voor de verandering van de inzet 

van de andere genoemde productiefactoren. 

Dit basismodel voor het kwantificeren van de bijdrage aan de productiviteitsgroei van 

innovatievariabelen is terug te vinden in de verschillende hoofdstukken van dit proefschrift. De 

uitbreiding ten opzichte van de empirische literatuur betreft het expliciet modelleren van 

innovatie als een afzonderlijk productieproces waarin R&D een input is voor de productie van 

nieuwe of verbeterde producten of productiemethoden, die op hun beurt weer bijdragen aan de 

TFP groei. In de econometrie staat deze aanpak bekend als ‘structureel modelleren’. In 

hoofdstukken 2 tot en met 4 wordt deze aanpak gevolgd om de bijdrage van R&D aan de 

productiviteitsgroei als het ware te ontbinden in twee stappen, die elk beschreven worden in 

aparte modelvergelijkingen. De eerste vergelijking onderzoekt het verband tussen R&D 

investeringen (of de totale innovatiekosten) en innovatieve output in de vorm van nieuwe of 

verbeterde producten. De tweede vergelijking is de hiervoor genoemde productiefunctie waarin 

R&D investeringen zijn vervangen door de innovatie output variabele uit de eerste vergelijking. 

Door beide vergelijking simultaan te schatten ontstaat een beter inzicht in de causale relatie 

tussen, bijvoorbeeld, investeren in R&D en productiviteitsgroei. Kort samengevat weerspiegelt 

dit model de idee dat niet elke Euro die in innovatie wordt geïnvesteerd ook werkelijk tot 

innovatiesucces leidt en dat de bijdrage van innovatie aan de productiviteitsgroei gemeten moet 

worden aan die innovatie-inspanningen welke wel succesvol zijn gebleken. Bovendien kan er in 

deze aanpak ook getoetst worden of andere factoren dan innovatiekosten van belang zijn voor 

het verklaren van verschillen in innovatieve output, bijvoorbeeld het belang van samenwerking 

op innovatiegebied of het gebruik van informatiebronnen bij innoveren.  
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De introductie van de hiervoor besproken innovatie productiefunctie als hulpmiddel voor het 

analyseren van het relatieve belang van de verschillende factoren die bij innoveren een rol 

kunnen spelen is terug te voeren op het werk van de bekende Amerikaanse econoom Griliches. 

De eerste empirische toepassing van zijn innovatie productiefunctie vinden we in onderzoek van 

Crépon, Duguet en Mairesse (CDM, 1998). Hoofdstukken 2 tot met 4 van dit proefschrift 

volgen de structurele aanpak van het CDM model, met dien verstande dat een aantal 

modificaties zijn aangebracht.  

Hoofdstuk 2 combineert het basisprincipe van het CDM model met het klassieke ‘Chain-

Link’ innovatiemodel van Kline en Rosenberg uit 1986 door het introduceren van een extra 

vergelijking voor de verklaring van verschillen in innovatiekosten tussen bedrijven en het 

introduceren van een terugkoppeling van bedrijfsprestaties naar innovatiekosten. Door deze 

modificaties kan niet alleen worden onderzocht of meer innovatie ook werkelijk leidt tot hogere 

omzetgroei maar tevens of hogere omzetten bedrijven ook prikkelen om meer te investeren in 

innovatie. Daarnaast is onderzocht of verschillen in innovatiekracht zich ook vertalen naar 

verschillen in werkgelegenheidsgroei. De resultaten van dit onderzoek wijzen o.a. op het 

bestaan van een significant positief verband tussen innovatieve output en omzetgroei en op een 

positief terugkoppelingseffect van omzetgroei naar innoveren. Anderzijds kon er geen positief 

innovatie-effect op de werkgelegenheid worden aangetoond.  

Als we omzetgroei en werkgelegenheidsgroei aan elkaar relateren, geeft dit een eerste ruwe 

indicatie van (verschillen in) de productiviteitsgroei. De toevoeging ‘ruw’ verwijst hier naar het 

feit dat bij deze berekening geen rekening wordt gehouden met de bijdrage aan de groei van 

andere productiefactoren. Hoofdstuk 3 volgt een directere aanpak voor het verklaren van 

verschillen in productiviteitsgroei door het gebruik van betere productiviteitsmaatstaven. Verder 

richt dit hoofdstuk zich ook meer op de interpretatie van innovatie gedreven 

productiviteitsgroei. Als R&D investeringen of andere innovatiekosten daadwerkelijk leiden tot 

het creëren van nieuwe of verbeterde producten, dan leidt dit mogelijk tot een versterking van 

hun positie op afzetmarkten. Bij de verklaring van de productiviteitsgroei ontstaat dan het 

probleem dat de gemiddelde prijsontwikkelingen niet representatief zijn voor innoverende 

bedrijven. De innovatiebijdrage aan de productiviteitsgroei is dan niet een uitsluitend een reëel 

(volume) effect maar omvat dan mogelijk tevens een prijseffect omdat, afhankelijk van de mate 

van concurrentie, bedrijven voor nieuwe of kwalitatief betere producten aan afnemers een 

hogere prijs in rekening kunnen brengen. Dit aan marktwerking gerelateerde 

productiviteitseffect is in het model geïncorporeerd door het opnemen van een 

concurrentieparameter. De uitkomsten leiden tot een verwerping van de hypothese dat 

innoverende bedrijven opereren op markten met volledige concurrentie. De TFP groei van 

bedrijven hangt dus samen met de mate waarin bedrijven zich via productdifferentiatie 

onderscheiden van concurrenten. Verder blijkt dat dit effect sterker is als de omzet (bruto 
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productie) als maatstaf voor de productie wordt gebruikt in plaats van de toegevoegde waarde 

(netto productie). 

Hoofdstuk 4 presenteert een eerste poging tot ‘dynamisering’ van het CDM model. Door het 

opnemen van vertraagde innovatievariabelen is onderzocht of de mate van innovatie in een 

bepaalde periode samenhangt met de innovatie-inspanning in voorafgaande jaren. Het 

identificeren van dynamiek in innovatiegedrag is een moeilijk probleem en stelt hoge eisen aan 

de data. In hoofdstuk 4 is gebruik gemaakt van twee opeenvolgende innovatie-enquêtes, zodat 

het aantal waarnemingen in de tijdsdimensie op voorhand beperkt was tot twee. Bovendien 

ontstaan er gaten in de data omdat deze verzameld zijn via steekproeven. Informatieverlies kan 

echter ook gerelateerd zijn aan mogelijkheid dat bedrijven niet continue innoveren (het 

probleem van endogene selectie). Beide vormen van bedrijvenuitval kunnen tot gevolg hebben 

dat schattingsresultaten behept zijn met vertekeningen ten gevolge van selectiviteit. Die 

vertekening is gecorrigeerd door in het empirisch model   selectievergelijkingen  op te nemen. 

De belangrijkste conclusie van dit onderzoek is dat de persistentie van innoveren gemeten aan 

de outputkant van het innovatieproces kleiner is dan de persistentie gemeten aan de inputkant 

(innovatiekosten of R&D investeringen). Deze uitkomst is goed te duiden daar innovatiekosten 

voor een belangrijk deel bestaan uit een vaste component in de vorm van arbeidskosten (voor 

R&D personeel) terwijl, anderzijds, bedrijven er blijkbaar niet in slagen (of met goede redenen 

niet ervoor kiezen) om elk jaar weer nieuwe of kwalitatief betere producten op de markt te 

brengen.  

Hoofdstukken 5 en 6 onderscheiden zich van de daaraan voorafgaande hoofdstukken in de 

zin dat innoveren betrokken wordt op investeren in ICT middelen. Wat ICT doet voor de 

productiviteitsgroei van bedrijven is nog steeds een belangrijk onderwerp van onderzoek. 

Diverse analyses kiezen daarbij de groeiboekhouding als uitgangspunt. Groeiboekhouden is de 

standaardmethode van macro-economen om langs ‘boekhoudkundige’ weg de bijdragen van 

verschillende productiefactoren aan de economische groei in kaart te brengen. Deze methodiek 

wordt meestal toegepast op macrodata. Door ICT als een aparte productiefactor op te nemen 

onderzoekt men of meer ICT kapitaal per werknemer ook werkelijk leidt tot een toename van de 

arbeidsproductiviteit (de bijdrage van ICT kapitaalverdieping). In veel gevallen blijkt dit zo te 

zijn. Een uitkomst die op zich goed te begrijpen is als we rekening houden met de enorme groei 

van ICT investeringen in de afgelopen jaren. De dubbele groeicijfers die voor ICT investeringen 

in statistieken worden gerapporteerd vinden we nu eenmaal niet voor de arbeidsinzet. De 

bijdrage aan de productiviteitsgroei van kapitaalverdieping blijkt nog groter te zijn als dezelfde 

vraag wordt onderzocht op microdata en gebruik wordt gemaakt van een econometrisch model. 

Econometrische schattingen laten een belangrijk hoger productiviteitseffect van investeren in 

ICT zien dan de uitkomsten van groeiboekhouding.  
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Hoewel de micro en de macro aanpak in kwalitatieve zin dus tot dezelfde conclusies komen 

blijft een belangrijke vraag onbeantwoord. De uitdaging ligt immers niet bij het vaststellen van 

de bijdrage aan de economische groei van ICT kapitaalverdieping maar bij de vraag wat ICT nu 

doet voor de TFP groei (de productiviteitsgroei die overblijft nadat de bijdragen van 

kapitaalverdieping aan de productiviteitsgroei zijn verdisconteerd). Het onderzoek in hoofdstuk 

5 gaat in op deze vraag door de boekhoudkundige aanpak te confronteren met de 

econometrische aanpak op data voor bedrijven uit de commerciële dienstverlening (inclusief 

groot- en detailhandel). Kort samengevat komt de gevolgde werkwijze erop neer dat de 

econometrische specificatie wordt uitgebreid met variabelen die, enerzijds, niet in de 

groeiboekhouding voorkomen, maar, anderzijds, mogelijk wel relevant zijn voor het verklaren 

van verschillen in TFP groei tussen bedrijven.  

De mogelijkheid dat aan ICT gerelateerde (externe) netwerkeffecten bijdragen aan de 

verklaring van verschillen in TFP groei is onderzocht door het opnemen van een ‘ICT spillover’ 

indicator in het econometrisch model. Deze variabele representeert de veranderingen in het ICT 

gebruik van de omgeving van een bedrijf. De achterliggende gedachte is dat eigen investeringen 

in ICT meer productiviteitswinsten genereren als andere bedrijven ook meer investeren in ICT 

middelen. Verder werd het model opnieuw doorgerekend voor bedrijven waarvan bekend was 

of zij al dan niet innovaties hadden doorgevoerd. Voor die bedrijven kon dus ook worden 

onderzocht of innoverende bedrijven een hogere TFP groei realiseerden dan niet-innoverende 

bedrijven als verschillen in (ICT) kapitaalverdieping zijn verdisconteerd.  

Dit onderzoek bevestigt opnieuw dat innovatie belangrijk is voor TFP groei. Daarnaast toont 

het onderzoek aan dat ‘ICT spillovers’ een belangrijke verklaring geven voor de eerder 

genoemde verschillen in productiviteitseffecten van (ICT) kapitaalverdieping tussen de 

econometrische aanpak en de groeiboekhouding. Want als er rekening wordt gehouden met aan 

ICT gerelateerde externe effecten, dan leiden beide aanpakken tot nagenoeg dezelfde 

uitkomsten. Bovendien indiceert dit resultaat dat aan ICT gerelateerde (externe) netwerkeffecten 

een potentiële bron voor TFP groei zijn. De maatschappelijke baten van investeren in ICT 

kunnen dus aanzienlijk groter zijn dan het private rendement van individuele bedrijven. 

Hoofdstuk 6 vergelijkt de bijdrage van ICT aan de productiviteitsgroei voor verschillende 

aggregatieniveaus van de data (macro en micro) en vult de analyse van hoofdstuk 5 aan door te 

kijken naar wat de wisselwerking tussen ICT en innovatie doet voor de productiviteitsgroei van 

bedrijven. Dat laatste is een lastig onderwerp omdat het niet eenvoudig is om te ‘meten’ hoe 

bedrijven ICT middelen gebruiken. In essentie geven data over ICT investeringen op dit punt 

immers weinig tot geen informatie, en dat terwijl ICT nu juist een technologie is die voor veel 

doelen kan worden ingezet.  

Zoals aan het begin van deze samenvatting is uitgelegd, is ICT niet alleen een vorm van in 

computers belichaamde innovatie maar ook een zogenaamde ‘enabler’ van innovatie. 
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Investeringen in ICT middelen kunnen dus onderdeel zijn van een breder innovatieproces, 

bijvoorbeeld een proces dat mikt op het verbeteren van de informatiestromen binnen een bedrijf. 

Om die reden mag worden aangenomen dat ICT investeringen gepaard kunnen gaan met – of 

juist voortkomen uit – organisatorische veranderingen. Hiermede betreden we het terrein van de 

zogenaamde ‘niet-technologische’ innovaties. Ook hier geldt dat ‘meting’ verre van eenvoudig 

is. Desondanks is wel bekend of bedrijven niet-technologische innovaties hebben doorgevoerd 

(o.a. gemeten in de CIS). Die informatie is gebruikt om te onderzoeken of de combinatie van 

meer investeren in ICT en het doorvoeren van niet-technologische innovaties additionele 

productiviteitswinsten genereert en of deze winsten groter zijn dan bij technologische innovaties 

in de vorm van productvernieuwing.  

De uitkomsten indiceren dat ook ‘niet-technologisch’ innoveren leidt tot een hogere TFP 

groei. Verschillen tussen beide vormen van innoveren treden pas op als we kijken naar de 

persistentie van innoveren. Dan blijkt dat voor bedrijven die in opeenvolgende jaren 

productvernieuwing toepassen een belangrijk hogere TFP groei is gemeten dan voor meer 

incidenteel innoverende bedrijven, een uitkomst welke correspondeert met het Schumpeter II 

model van cumulatieve kennisaccumulatie. Anderzijds, maakt het bij ‘niet-technologische 

innovaties’ blijkbaar niet uit of deze continue of slechts af en toe plaatsvinden. Samen 

suggereren deze uitkomsten dat productinnovatie uiteindelijk toch de belangrijkste determinant 

van de productiviteitsgroei is. 

Het laatste hoofdstuk richt zich niet op innovatie maar is desondanks niet minder interessant 

omdat het ingaat op een actueel onderwerp met belangrijke beleidsimplicaties. Het hoofdstuk 

bespreekt onderzoek rond twee aan elkaar gerelateerde vragen: 1) in welke mate zijn er 

schaalvoordelen te behalen bij de productie van diensten en 2) zijn institutionele factoren in de 

vorm van marktregulering en toetredingsbarrières een belemmering voor het doorgroeien van 

bedrijven en dus ook voor het behalen van schaalvoordelen? De aanleiding tot deze 

probleemstelling is dat de relatief lage productiviteit(sgroei) in de dienstensector bij een 

toenemende afhankelijkheid van die sector een potentiële bedreiging vormt voor de 

productiviteitsontwikkeling in andere bedrijfstakken en dus ook voor de 

macroproductiviteitsgroei.  

Om die probleemstelling te kunnen onderzoeken is er gebruik gemaakt van internationale 

bedrijfsgegevens. De internationale dimensie in de data maakt het mogelijk om te kijken naar de 

rol van verschillen in marktregulering en toetredingsbarrières tussen landen. Voorbeelden zijn 

verschillen in de kosten die gemaakt moeten worden voor het opstarten van een bedrijf, 

onduidelijke en overbodige regelgeving ten aanzien van toelatingseisen voor vestiging op 

buitenlandse markten of zelfs expliciete handels- en investeringsbeperkingen. Hoewel bepaalde 

structuurkenmerken (veel kleine bedrijven die opereren op lokale markten) anders doen 

vermoeden wordt marktwerking ook voor de zakelijke dienstverlening naar verwachting in de 
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toekomst steeds belangrijker. Die trend hangt samen met technologische ontwikkelingen 

waardoor steeds meer vormen van dienstverlening zich lenen voor uitbesteding aan buitenlandse 

bedrijven. Een voorbeeld is de toenemende uitbesteding van ICT gerelateerde diensten naar 

India. 

De belangrijkste conclusie van dit onderzoek is dat er in de zakelijke diensten aanzienlijke 

schaalvoordelen zijn te behalen. De uitkomsten indiceren dat bedrijven met 20 of minder 

werknemers een duidelijk lagere productiviteit kennen dan grotere bedrijven en dat de via 

econometrische methoden bepaalde technische efficiëntie het laagst is voor de kleinste 

bedrijven. De lage technische efficiëntie van de kleinste bedrijven blijkt o.a. verband te houden 

met toetredingsbarrières. Het onderzoek laat zien dat hogere toetredingskosten een belemmering 

vormen voor de toetreding van nieuwe bedrijven, waardoor kleine bedrijven minder geprikkeld 

worden om meer efficiënt te werken.  

George van Leeuwen
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