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On the asymptotic error of a bivariate normal
approximation with an application to simple random
sampling

Paul Knottnerus

Summary

This paper gives a formula for the limiting error of the central limit the-
orem for the bivariate case. Insight in this type of error simplifies the
proofs of central limit theorems in probability sampling from finite popu-

lations.

Keywords: Central limit theorem; Characteristic function; Error bivariate

normal approximation; Fourier transform; Simple random sampling.

1. Introduction

Among others, Feller (1971, page 538) gives a formula for the approximation er-
ror of the central limit theorem (CLT) for the normalized sum of N independent
random variables x;. The main aim of this paper is to derive a similar formula
for the approximation error of the CLT when the z; are mutually independent
two-dimensional random vectors. To the author’s best knowledge this kind of
error formulas for multivariate cases are not readily found in the literature.
As expected, the error of a bivariate normal approximation appears to be of
the same small order as that of the univariate normal approximation. These
error formulas are helpful for simplifying proofs of the central limit theorems

in random sampling from finite populations.

The outline of the paper is as follows. Section 2 gives a formula for the CLT
approximation error for the bivariate case when the two elements in xj are
independent. Section 3 derives the error formula for the more complicated case
that the two elements in x; are dependent. Based on the results of section
3, section 4 gives a relatively short proof of one of the central limit theorems
in random sampling from finite populations. For more examples the reader is
referred to Knottnerus (2008). For other CLT proofs in probability sampling,
see Madow (1948), Erdos and Rényi (1959), and H4jek (1960 and 1964).



2. Bivariate approximation error for two independent variables

2.1 General remarks and notation

Let the x; be independent and identically distributed two-dimensional random
vectors (k = 1,..., N). Denote their distribution function by F(x) = F(z1, z2)
and the corresponding marginal distribution functions by Fi(x;) and Fa(z2).
To restrict the notational burden we assume that the elements in xx, say xix
and x9x, have a zero expectation and a unit variance. In addition, x1; and xo
might be dependent. However, for our purposes it suffices to assume that they
have a zero correlation. Furthermore, it is assumed that all fourth moments
exist. Let Fy(x) denote the joint distribution function of V/NZ1y and vV N7 N
Fin(.) and Fyn(.) refer to the corresponding marginal distributions. Let ®(u)
denote the standard normal distribution function and ¢(u) its derivative. In
the remainder the notation "A ~ B" is used to indicate that A/B tends to

unity as N — oo.

2.2 Bivariate approrimation error for two independent variables
In this subsection we look at the error formula for the particular case that xqy

and z9 are independent so that F(z) can be written as

Fy(z) = FNina(7) = Fin(21)Fan(22) ~ ®(21)P(22)

Using the error formula mentioned by Feller (1971, page 538) for the univariate

case

Fin(m) = ®(x)+wn(m)+o(l/VN)  (1=1,2)
(3)
win(a) = 6%(1—3312)80@1) (1)

W = B(a,)

it is seen that the approximation error of the bivariate normal distribution now

becomes
FIN(JJI)FQN(.TQ) — q)(l‘l)q)(l‘g)
= wy,ina(@) +o(1/VN)
WNind(z) = win(®1)P(z2) + won(v2)P(21) (2)

When Fjy is a lattice distribution (I = 1,2), (1) is still true provided z; is
a midpoint of the lattice for Fjn. Similar results can be derived when the

variances depend on k; see Feller (1971, pages 538-48).

3. Bivariate approximation error for two dependent variables

When z1; and x9 are dependent but uncorrelated, it is convenient to decom-

pose the error of the bivariate normal approximation according to

{Fn(@) = Fynd(@)} + {Fn,ina(2) — 2(21)@(22)} = wn(z) +o(1/VN)  (3)



where Fiy ina(x) = Fin(z1)Fan(x2) as before and

wN(Z) = WNdep(®) + WN,ina(z) (4)
23o1 + pitwg exp(—2'z/2
WNdep(r) = H2 ;\/NMH : (27r = ©)

WN,ind(x) is given by (2) and ,quQ = E(lekx;k)

The proof of (4) consists of three steps. The first step starts with the introduc-
tion of a function G(z) = G(z1,x2). Let G(z) be such that [F(z) — G(z)]— 0
as ¢ — to0o0, where F' is an arbitrary two-dimensional distribution function.

Furthermore, we assume that there exists an m so that
|G(z) = G(2)| < m |l = 2|| + o(1/VN) (6)

for every pair of vectors x,z € R%. If G depends on N, a possible rest term
should be o(1/v/N). This is somewhat different from the (one-dimensional) case
described by Feller (1971) where G has a bounded derivative and is independent
of N. Now we prove that for the difference between F'(z) and G(z) it holds
that for all 7> 0

1< 3nr+ o+ o(1/V) (7)
where
n = sup|A(z)]
A(x) = F(z)—G(x)
ny = sup|TA(2)]

TA(z) = 77 Az — x)vp(z)dx (8)

—00—00

[1 —cos(Tx1)] [1 — cos(T'za)]
2124272

The characteristic function of vr(x), say &p(t) = &170(t1)Ear(t2), is zero for
max(|t1],|ta]) > T; see Feller (1971, pages 503 and 536). Assume that at
x = xo it holds that |A(zg)| = 7. We may assume that A(zg) = 7. Since F

does not decrease, it follows from (6) that
Azo+5) >n—(s1+s9)m+o(1/VN) (s> 0)
Define h = 17/3m and zy = ¢ + d where d = (h, h)". Since

Alzg+d) > n—2hm+o(1/VN)
= n/3+0(1/VN)

we have for —d <z <d

3

A(zg — ) > = + mx1 + mag + o(1/V'N) (9)
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Furthermore, for max(|z1|, |ze|) > h it holds that A(zp—x) > —n while the cor-
responding mass contributed by vr(z) to the domain with max(|z1|, |z2|) > h
is smaller than 2P(|z1| > h;vr) < 8/7Th. Hence, we obtain for the convolution
integral in (8) at z = 29
8 8
> TA(z) > 2(1 - ——) — n— 4 o(1
N2 (20) > 3 (1= =) = 1= + 0(1/VN)

= g—?):—m—l—o(l/\/_)

from which (7) follows. Note that the contribution of the linear part in (9) to

(8) is zero for reasons of symmetry.

In the second step it is shown that

Ny < 27.(2[/‘

—tltf(t) ‘ dt (10)

where x(t) and ¥(t) are the Fourier-Stieltjes transforms of F' and G, respectively.
In analogy with the convolution A = V7 x A define

TP = VpxF
TG = VT * G
The Fourier-Stieltjes transforms of these convolutions are x ()£ (t) and 9(¢)&(2),

respectively. Hence, by the Fourier inversion theorem, the difference between

the density 7' f and its counterpart from G becomes

1 .
=g = g [ (=i @) (1) 90 ber (D
Integrating with respect to x1 and x2, we obtain

x(t) = 9(t)

Lty (1)

TA(z) = # ffTT exp(—it'r)

from which (10) follows. It is assumed here that the integrand in (11) is a
continuous function in the domain of integration. Later this assumption should
be verified; see the comments below (15). Moreover, similar to the left-hand
side the right-hand side of (11) tends to zero under this assumption as x —
+oo because of the Riemann-Lebesgue Lemma; see Feller (1971, page 513).
Combining (7) and (10) gives

F(z) = G(a)| < [f1;

ﬂ()‘dt+96m+o(

1
T m) (12)

In the third step we prove (5) or, equivalently,
Fy(z) = Fyina(x) — wndep(x) = o(1/VN) (13)
Since

Fnind(x) — Fnina(2) = ®(x1)P(z2) — P(21)P(22)



FWN ind(T) — Wnina(z) + 0(1/V/N)

where all first-order derivatives on the right-hand side are bounded, there exists

an m so that
m
|FNind(%) — Fnina(2)| < 5 |z — 2| + o(1/VN)

for every pair of vectors z,z € R?. Hence, G(x) = FN ina(T) + Wi dep(T) satis-
fies condition (6). Furthermore, let v, (t) denote the Fourier transform of the

second-order derivative 02wy gep(x)/011022. That is,

_ deep( )
ya(t) = // exp(it'z) 0,00 dx

—00—00

= tth\/%(t) exp(—t't/2) (14)
B(t) (M12t12+ :u12t2)

For a proof of (14), see the end of this section.

In order to prove (13), choose T' = av/N where a is so large that 96m < ema; €

is an arbitrary positive number. According to (12) we now have to show that

// N(t/VN) = xina(t/VN) =y (2) 2 1

dt +
|t1 |,‘t2|<a\/ﬁ

) (15)

tits VN o VN

where x;,q4(t) is the characteristic function of Fj,4(z) = Fi(z1)Fa(z2). Note
that the power series of the difference (x™ — ¥ ;) consists of terms t§t}, (k,1 > 1
and k + 1 > 3). Hence, the integrand is a continuous function at ¢t; = 0 and at
to = 0 so that no problem of convergence arises. Using the triangle inequality,

we obtain an upper bound for the integral in (15)

/ / ey \/tN ) exp{Ne(t/\/N>}t;21—tmﬁ(t)/ﬁ i (16)
|t1Ht2|<a\/_

// Ny T)—exp tt/2HB ‘dt (17)
It1],]t2]<avN

where
0(t) = log x(t) — log Xna(t)

Now partitioning the domain of integration in (16) and (17) into subdomain 1
with max(|t1], |t2]) > 6v/N (0 < 6 < a) and subdomain 2 with max(|t1], [ta]) <
§v/N, it can be shown in analogy with the univariate case in Feller (1971, page
539-41) that the contributions from subdomain 1 to integrals (16) and (17) tend
to zero faster than any power of 1/N for any § € (0, a). For instance, under the
assumption that F5 is not a lattice distribution max{|xy(t2)|} is strictly less

than 1 for § < t < a. Hence, Y, (= xVx&) tends to zero faster than any



power of 1/N. When F, is a lattice distribution, the whole analysis should be
based on F ;\% and Fﬁv defined by

, don /2

Fi\%(ﬂf) = don / Fn(z1,22 —y)dy
—dan /2
don /2

i) = - / Fyn(zz — y)dy,
—dgN/Q

respectively, where dopn is the span of the lattice for F5y. By construction, it
holds for a midpoint x5 of the lattice that Fj]év(l‘g) = Fyn(x2) and F]\ié (x1,x2) =
Fn(x1,22). For a proof that for 6 < ty < a the corresponding characteristic
function X;&N(tg) tends to zero faster than any power of 1/N, see Feller (1971,

pages 540-1).

Now we examine the contribution to integral (16) from subdomain 2. Let D{g()
denote @71%(.)/0t]dtk. Tt holds that 0(0) = 0, DXA(0) = DY%6(0) = 0 for all
k > 1, Di36(0) = 0 while D?0(0) = 3u23 and D1360(0) = i3ul3. Using a
third-order Taylor expansion, it is seen that
B + it

o) )

< e(|tite| + |tat3]) (18)

for |t1], |t2] < d when ¢ is sufficiently small. In fact, we used a first-order Taylor
expansion of the related power series of h(t) = {exp(6) — 1}/t1ta with h(0) =0,
and the fact that 6 ~ titoh. This explains the absence of the terms ¢} and t3
on the right-hand side of (18). In addition, § is chosen so small that for t't < ¢

0(t)] < i (19)

mts0)] < o (20)

Multiplying (18)-(20) throughout by N and replacing t by t/v/N, it follows
from the inequality mentioned by Feller (1971, page 534)

lexp(a) — 1 = B| < (Ja — 8] + 6| /2) exp{max(|al, |8])} (21)

that the integrand in (16) in subdomain 2 is smaller than

X%d(t/\/ﬁ)‘ <5(|t1\|/%|t2|) + |t1t2|2{]€(t)} )exp(t/t/4) (22)

S(lta] + It2]) | [tatal {B())2
VN N >

provided ¢ is sufficiently small. Since ¢ is arbitrary, the contribution to (16)
from subdomain 2 is o(1/v/N). Note that in the last inequality we used that

for N — oo

< exp(-t't/8) (

~ exp(—t't/2) < exp(—3t't/8). (23)

()|



Likewise, the contribution to integral (17) from subdomain 2 is o(1/v/N) be-

cause the integrand in (17) can be written as

WtV 1Bl
exp(—tt/2) VN exp(t't/2) ~

provided that ¢ is small enough. For the last inequality we used that there
exists a § so that for t't < ¢

Xha(t/VN)

exp(—t't/2)

't
1< % exp(t't/4) (24)

In order to prove this, define g = min(e, 1/4) and

Y(t) = log Xjna(t) +1't/2

Since 1(0) = 0, D91 (0) = D% (0) = 0 (k = 1,2) and Dy (t) = 0 for any ¢,
we obtain for t't < ¢, using a second-order Taylor expansion, [¢(t)| < eot't/2
provided that ¢ is small enough. Now applying (21) with o = N4 (t/+/N) and
8 = 0 we obtain (24). Since (16) and (17) are o(1/v/N), we have proved (5),
(13), and (15).

We conclude this section with a proof of (14). Let Iz denote the two-dimensional
identity matrix. Recall from statistics theory that exp(—t't/2) is the character-

istic function of the bivariate normal distribution N (0, I2). That is,

[[Z h(t,x)de = exp(—t't/2) (25)
exp(—a'z/2)

h(t,z) = exp(it'z) 5
™

Premultiplying both sides of (25) by —i% and taking the derivative of both sides

with respect to to, we obtain
— [, xoh(t,z)dx = %ty exp(—t't/2) (26)
Now taking on both sides the derivative 9%(.)/9%t; yields
[, aizah(t, x)de = —i3(ty — t1ts) exp(—t't/2) (27)
Adding (26) and (27) gives
[ (@3ze — 22)h(t, x)dx = Ptits exp(—t't/2) (28)

Likewise,
ffiooo(x%xl — x1)h(t,z)dx = i3t3t; exp(—t't/2) (29)

Multiplying (28) by 23 and (29) by ui3 and adding the results, we obtain (14)
with on the left-hand side the Fourier transform of 2v/NDwn gep ().



4. An application to simple random sampling

Consider a population U of N numbers U = {y1,...,yn}. Suppose that as
N — oo the population mean Y and the population variance O'?Vy converge
to Y and O'Z > 0, respectively. Let 7, denote the sample mean from a simple
random sample of nonrandom size n (= fyN) without replacement (SRS). The
sampling fraction fy is such that |fy — f| < 1/N where f is a fixed number
(0< f<1).

Next, define for the Poisson sampling design with equal probabilities the fol-

lowing unbiased estimators for the population mean Yy and n
= k
Yro = Y
N ; In
N
o= ) a,
k=1

where the ap are independent and identically distributed random variables.

That is,
{ 1 if the sample includes element &
Qjp —

0 otherwise
with P(ay =1) = fy (k=1,...,N).

In addition, define the two-dimensional random vector z; and the matrix X

by
Yk
T2k 1

2

I

S o= fnQ—fy) | X ]
w1
N

respectively. X is the covariance matrix of xp. Other useful definitions and

formulas in this context are

k=1
YN
E(x =

(Tn) (fN)

_ 1 X
B Jm Ty = i g
(02+?2) —
Yy - 7 Y
= (1-1) S

Y f

Denote the typical element ij of X by o;;, that of X! by ¢, and that of SN
of by oni; (1 <14,7 < 2). Applying the central limit theorem for vectors to the

mutually independent xj, yields the following theorem.

10



Theorem 1. As N — oo the distribution of vV N{Zy — E(ZTy)} tends to the
bivariate normal distribution with zero expectation and covariance matrix X,

provided that the data satisfy the Lindeberg condition.

For the Lindeberg condition, see Héjek (1964, page 1500) and Feller (1971,
pages 262-3). Also note that the Lindeberg conditions for one dimension carry
over to two-dimensional vectors due to the Cramér-Wold device; see Basu (2004,

page 149).

In order to apply Theorem 1 to the problem of the limiting distribution of ¥4,

define for an arbitrary constant wug

Pno = P, <Yn +uohni)

EN{ 1 oy
hi, = ‘ = =(1— Ny
N1 NENQQ NE}\} ( fN) n )
R, = N2 (= fN))
exp(—2'S71x/2)
Y(r;X) =
(z:2) 2 |x| M2

where in the last line z = (z1,72)" and ¥ =cov(x). Likewise, h? and h3 are
based on the elements in 3. Recall from statistics theory that 1/o!l is the
conditional variance of x1 given xs. Furthermore, define Ay by Ay = ,ug\?;) / a?’v
and A by A = Ao, where, given N, 0% and ug\?;) stand for the variance and the
third central moment of zo, respectively. Note that zor = ag, Ay = An(fn)

and A = A\(f). Let 02 denote f(1 — f).

The following theorem specifies the error of the approximation of the lattice

distribution of ZToy by the normal distribution.

Theorem 2. For a midpoint x of the lattice distribution Foy of VN {Tan —
E(Ton)} it holds that as N — oo

Fan(@ion, Av) = 2(5) = wan (7:4) +o(1/VR), (30)
where \
wan(@:3) = = (1 = 2*)p(w) (31)

6V N
Proof. For the lattice distribution Foy it holds that for a midpoint x of the

lattice
Fon (208, Ay) — B(——) = wan (—; Ay) + o(1/VN). (32)
ON ON

For a proof, see Feller (1971, page 540). Note that Feller assumes that Ay = A
and oy = o. However, his arguments are still valid when \ and o2 depend on
N. Furthermore, since the derivatives of Ay, on and won as functions of fy are
continuous at the point f and |fy — f| < 1/N, it holds that

Ay - Al = O(1/N)

11



lox —o| = O(1/N)
Z0| = O(1/N),

x

A — L,
w2N(0N, N) —wan (=
from which (30) follows. This concludes the proof.

In addition, if Foy were not a lattice distribution, (32) would be true for all z.

Now the following theorem on the asymptotic behaviour of 7, can be proved.
Theorem 3. Under the Lindeberg condition it holds that as N — oo

PNO ~ ‘I)(UQ) (33)

Proof. Denote Y § + ughn1 by mno. It follows from the equivalence of SRS

sampling and Poisson sampling conditional on a given n or fy that

Pno = P(@in < mno|Tan = fN)
_ P(@iny <mno ATan = fN) (34)
P{Zaon = fn}

First we look at the relatively simple denominator of (34). Applying Theorem
1 yields
P{Zon = fn} = P{ZTaon < (n+1/2)/N} — P{ZTony < (n—1/2)/N}

1/2 —1/2 1/2 ~1/2. |
Nhg)_(p( Nhg) N_}mv)\)_w2N(N—h2a)\)+O(ﬁ) (35)

where the error won (; A) of the standard normal approximation at a midpoint

= P( + wan (

x is given by (31). Since

(1 —2"){p(z) —p(-2)} =0

the total error in (35) is o(1/v/N) and hence, using the first-order Taylor ex-
pansion ®(x) = ®(0) + xp(0) + O(z?), (35) can be written as

P {Tan = i} = ——9(0) + of

1
Nig ﬁ) (36)

In order to apply the results of section 3 to the numerator of (34), define the
vector Zy by Zy = In{Zn — E(Tn)} with

(1 =By
TN_(O 1)’

where By = on12/0N22 = Y n/fn. The numerator of (34) can now be written

in terms of Zy as
P(Zin < uohnt — BnZan A [Zan| < 1/2N)
Assuming that S > 0, an upper bound for the numerator is given by

P(Ziny < uohnt + By /2N A|Zan| < 1/2N)

12



Using F(zZn) =0,
Ty = cov(zy) = TNENTN/N = diag(h, hi)

and applying Theorem 1 with I'y instead of ¥, it is seen that the upper bound

is equal to
uohn1+8x/2N (1/2N Pl e(7g) 1
f_OooNl N f71/2N WdZIdZQ + N +0(ﬁ)
Bn/2, ¢(0) 1
= P(up + +o0
0+ Ny Ny TN
¢(0) 1
= & + 37
(UO)N}ZNQ O(W) ( )
_ Bn/2 1/2 " Bn/2 —1/2
on = wy(uo+ Ny NhNg) wiy (uo + Nt Nhiva

where w} () is based on (4) with a minor adjustment for the mutually different
variances of the z1;. Note that vNéy = o(1) as N — oo and hence, oy =
o(1/+v/N). A sufficient condition for this is that the fourth moments exist; see
Feller (1971, page 547-8). Since result (37) is also true for the corresponding
lower bound, it is true for the numerator of (34). Combining (34), (36) and
(37) gives (33). This concludes the proof.
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