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On the asymptotic error of a bivariate normal
approximation with an application to simple random

sampling

Paul Knottnerus

Summary

This paper gives a formula for the limiting error of the central limit the-

orem for the bivariate case. Insight in this type of error simplifies the

proofs of central limit theorems in probability sampling from finite popu-

lations.

Keywords: Central limit theorem; Characteristic function; Error bivariate

normal approximation; Fourier transform; Simple random sampling.

1. Introduction

Among others, Feller (1971, page 538) gives a formula for the approximation er-

ror of the central limit theorem (CLT) for the normalized sum ofN independent

random variables xk. The main aim of this paper is to derive a similar formula

for the approximation error of the CLT when the xk are mutually independent

two-dimensional random vectors. To the author’s best knowledge this kind of

error formulas for multivariate cases are not readily found in the literature.

As expected, the error of a bivariate normal approximation appears to be of

the same small order as that of the univariate normal approximation. These

error formulas are helpful for simplifying proofs of the central limit theorems

in random sampling from finite populations.

The outline of the paper is as follows. Section 2 gives a formula for the CLT

approximation error for the bivariate case when the two elements in xk are

independent. Section 3 derives the error formula for the more complicated case

that the two elements in xk are dependent. Based on the results of section

3, section 4 gives a relatively short proof of one of the central limit theorems

in random sampling from finite populations. For more examples the reader is

referred to Knottnerus (2008). For other CLT proofs in probability sampling,

see Madow (1948), Erdös and Rényi (1959), and Hájek (1960 and 1964).
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2. Bivariate approximation error for two independent variables

2.1 General remarks and notation

Let the xk be independent and identically distributed two-dimensional random

vectors (k = 1, ...,N). Denote their distribution function by F (x) = F (x1, x2)

and the corresponding marginal distribution functions by F1(x1) and F2(x2).

To restrict the notational burden we assume that the elements in xk, say x1k
and x2k, have a zero expectation and a unit variance. In addition, x1k and x2k
might be dependent. However, for our purposes it suffices to assume that they

have a zero correlation. Furthermore, it is assumed that all fourth moments

exist. Let FN(x) denote the joint distribution function of
√
Nx1N and

√
Nx2N ;

F1N (.) and F2N(.) refer to the corresponding marginal distributions. Let Φ(u)

denote the standard normal distribution function and ϕ(u) its derivative. In

the remainder the notation "A ∼ B" is used to indicate that A/B tends to

unity as N →∞.

2.2 Bivariate approximation error for two independent variables

In this subsection we look at the error formula for the particular case that x1k
and x2k are independent so that FN (x) can be written as

FN(x) = FN,ind(x) = F1N(x1)F2N(x2) ∼ Φ(x1)Φ(x2)

Using the error formula mentioned by Feller (1971, page 538) for the univariate

case

FlN(xl) = Φ(xl) + ωlN(xl) + o(1/
√
N) (l = 1, 2)

ωlN(xl) =
µ
(3)
l

6
√
N
(1− x2l )ϕ(xl) (1)

µ
(3)
l = E(x3lk)

it is seen that the approximation error of the bivariate normal distribution now

becomes

F1N (x1)F2N (x2)−Φ(x1)Φ(x2)

= ωN,ind(x) + o(1/
√
N)

ωN,ind(x) = ω1N(x1)Φ(x2) + ω2N(x2)Φ(x1) (2)

When FlN is a lattice distribution (l = 1, 2), (1) is still true provided xl is

a midpoint of the lattice for FlN . Similar results can be derived when the

variances depend on k; see Feller (1971, pages 538-48).

3. Bivariate approximation error for two dependent variables

When x1k and x2k are dependent but uncorrelated, it is convenient to decom-

pose the error of the bivariate normal approximation according to

{FN(x)− FN,ind(x)}+ {FN,ind(x)−Φ(x1)Φ(x2)} = ωN(x) + o(1/
√
N) (3)
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where FN,ind(x) = F1N(x1)F2N(x2) as before and

ωN(x) = ωN,dep(x) + ωN,ind(x) (4)

ωN,dep(x) =
µ2112x1 + µ

12
12x2

2
√
N

exp(−x′x/2)
2π

(5)

ωN,ind(x) is given by (2) and µ
ij
12 = E(x

i
1kx

j
2k).

The proof of (4) consists of three steps. The first step starts with the introduc-

tion of a function G(x) = G(x1, x2). Let G(x) be such that [F (x)−G(x)]→ 0

as x → ±∞, where F is an arbitrary two-dimensional distribution function.

Furthermore, we assume that there exists an m so that

|G(x)−G(z)| ≤ m ‖x− z‖+ o(1/
√
N) (6)

for every pair of vectors x, z ∈ R2. If G depends on N , a possible rest term

should be o(1/
√
N). This is somewhat different from the (one-dimensional) case

described by Feller (1971) where G has a bounded derivative and is independent

of N . Now we prove that for the difference between F (x) and G(x) it holds

that for all T > 0

η ≤ 3ηT +
96m

πT
+ o(1/

√
N) (7)

where

η = sup |∆(x)|

∆(x) = F (x)−G(x)

ηT = sup
∣∣T∆(z)

∣∣

T∆(z) =

∞∞∫ ∫

−∞−∞

∆(z − x)vT (x)dx (8)

vT (x) =
[1− cos(Tx1)] [1− cos(Tx2)]

π2T 2x21x
2
2

The characteristic function of vT (x), say ξT (t) = ξ1T (t1)ξ2T (t2), is zero for

max(|t1| , |t2|) ≥ T ; see Feller (1971, pages 503 and 536). Assume that at

x = x0 it holds that |∆(x0)| = η. We may assume that ∆(x0) = η. Since F

does not decrease, it follows from (6) that

∆(x0 + s) ≥ η − (s1 + s2)m+ o(1/
√
N) (s > 0)

Define h = η/3m and z0 = x0 + d where d = (h, h)
′
. Since

∆(x0 + d) ≥ η − 2hm+ o(1/
√
N)

= η/3 + o(1/
√
N)

we have for −d ≤ x ≤ d

∆(z0 − x) ≥
η

3
+mx1 +mx2 + o(1/

√
N) (9)
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Furthermore, for max(|x1| , |x2|) ≥ h it holds that∆(z0−x) ≥ −η while the cor-
responding mass contributed by vT (x) to the domain with max(|x1| , |x2|) ≥ h
is smaller than 2P (|x1| ≥ h; vT ) ≤ 8/πTh. Hence, we obtain for the convolution
integral in (8) at z = z0

ηT ≥ T∆(z0) ≥
η

3
(1− 8

πTh
)− η

8

πTh
+ o(1/

√
N)

=
η

3
− 32m

πT
+ o(1/

√
N)

from which (7) follows. Note that the contribution of the linear part in (9) to

(8) is zero for reasons of symmetry.

In the second step it is shown that

ηT ≤
1

(2π)2
∫∫ T

−T

∣∣∣∣
χ(t)− ϑ(t)

t1t2

∣∣∣∣ dt (10)

where χ(t) and ϑ(t) are the Fourier-Stieltjes transforms of F andG, respectively.

In analogy with the convolution T∆ = VT #∆ define

TF = VT # F

TG = VT #G

The Fourier-Stieltjes transforms of these convolutions are χ(t)ξT (t) and ϑ(t)ξT (t),

respectively. Hence, by the Fourier inversion theorem, the difference between

the density T f and its counterpart from G becomes

T f − T g =
1

(2π)2
∫∫ T

−T exp(−it
′x){χ(t)− ϑ(t)}ξT (t)dt

Integrating with respect to x1 and x2, we obtain

T∆(x) =
1

(2π)2
∫∫ T

−T exp(−it
′x)

χ(t)− ϑ(t)

−t1t2
ξT (t)dt (11)

from which (10) follows. It is assumed here that the integrand in (11) is a

continuous function in the domain of integration. Later this assumption should

be verified; see the comments below (15). Moreover, similar to the left-hand

side the right-hand side of (11) tends to zero under this assumption as x →
±∞ because of the Riemann-Lebesgue Lemma; see Feller (1971, page 513).

Combining (7) and (10) gives

|F (x)−G(x)| ≤
∫∫ T

−T

∣∣∣∣
χ(t)− ϑ(t)

t1t2

∣∣∣∣ dt+
96m

πT
+ o(

1√
N
) (12)

In the third step we prove (5) or, equivalently,

FN (x)− FN,ind(x)− ωN,dep(x) = o(1/
√
N) (13)

Since

FN,ind(x)− FN,ind(z) = Φ(x1)Φ(x2)−Φ(z1)Φ(z2)
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+ωN,ind(x)− ωN,ind(z) + o(1/
√
N)

where all first-order derivatives on the right-hand side are bounded, there exists

an m so that

|FN,ind(x)− FN,ind(z)| ≤
m

2
‖x− z‖+ o(1/

√
N)

for every pair of vectors x, z ∈ R2. Hence, G(x) = FN,ind(x) + ωN,dep(x) satis-

fies condition (6). Furthermore, let γN(t) denote the Fourier transform of the

second-order derivative ∂2ωN,dep(x)/∂x1∂x2. That is,

γN(t) =

∞∞∫ ∫

−∞−∞

exp(it′x)
∂2ωN,dep(x)

∂x1∂x2
dx

=
t1t2β(t)√

N
exp(−t′t/2) (14)

β(t) =
i3(µ2112t1 + µ

12
12t2)

2

For a proof of (14), see the end of this section.

In order to prove (13), choose T = a
√
N where a is so large that 96m < επa; ε

is an arbitrary positive number. According to (12) we now have to show that

∫ ∫

|t1|,|t2|<a
√
N

∣∣∣∣∣
χN(t/

√
N)− χNind(t/

√
N)− γN(t)

t1t2

∣∣∣∣∣ dt+
ε√
N
= o(

1√
N
) (15)

where χind(t) is the characteristic function of Find(x) = F1(x1)F2(x2). Note

that the power series of the difference (χN−χNind) consists of terms tk1tl2 (k, l ≥ 1
and k + l ≥ 3). Hence, the integrand is a continuous function at t1 = 0 and at
t2 = 0 so that no problem of convergence arises. Using the triangle inequality,

we obtain an upper bound for the integral in (15)

∫ ∫

|t1|,|t2|<a
√
N

∣∣∣∣χNind(
t√
N
)

∣∣∣∣

∣∣∣∣∣
exp{Nθ(t/

√
N)}− 1− t1t2β(t)/

√
N

t1t2

∣∣∣∣∣ dt (16)

+

∫ ∫

|t1|,|t2|<a
√
N

∣∣∣∣χNind(
t√
N
)− exp(−t′t/2)

∣∣∣∣
∣∣∣∣
β(t)√
N

∣∣∣∣ dt (17)

where

θ(t) = logχ(t)− logχind(t)

Now partitioning the domain of integration in (16) and (17) into subdomain 1

with max(|t1| , |t2|) > δ
√
N (0 < δ < a) and subdomain 2 with max(|t1| , |t2|) ≤

δ
√
N, it can be shown in analogy with the univariate case in Feller (1971, page

539-41) that the contributions from subdomain 1 to integrals (16) and (17) tend

to zero faster than any power of 1/N for any δ ∈ (0, a). For instance, under the
assumption that F2 is not a lattice distribution max{|χ2(t2)|} is strictly less
than 1 for δ < t2 < a. Hence, χNind (= χN1 χ

N
2 ) tends to zero faster than any
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power of 1/N. When F2 is a lattice distribution, the whole analysis should be

based on F#N and F#2N defined by

F#N (x) =
1

d2N

d2N/2∫

−d2N/2

FN(x1, x2 − y)dy

F#2N(x2) =
1

d2N

d2N/2∫

−d2N/2

F2N (x2 − y)dy,

respectively, where d2N is the span of the lattice for F2N . By construction, it

holds for a midpoint x2 of the lattice that F
#
2N (x2) = F2N(x2) and F

#
N (x1, x2) =

FN(x1,x2). For a proof that for δ ≤ t2 ≤ a the corresponding characteristic

function χ#2N(t2) tends to zero faster than any power of 1/N, see Feller (1971,

pages 540-1).

Now we examine the contribution to integral (16) from subdomain 2. LetDjk12(.)

denote ∂j+k(.)/∂tj1∂t
k
2. It holds that θ(0) = 0, Dk012θ(0) = D0k12θ(0) = 0 for all

k ≥ 1, D1112θ(0) = 0 while D2112θ(0) = i3µ2112 and D
12
12θ(0) = i3µ1212. Using a

third-order Taylor expansion, it is seen that
∣∣∣∣θ(t)−

i3(µ2112t
2
1t2 + µ

12
12t1t

2
2)

2

∣∣∣∣ ≤ ε(
∣∣t21t2

∣∣+
∣∣t1t22

∣∣) (18)

for |t1| , |t2| < δ when δ is sufficiently small. In fact, we used a first-order Taylor

expansion of the related power series of h(t) = {exp(θ)−1}/t1t2 with h(0) = 0,
and the fact that θ ≈ t1t2h. This explains the absence of the terms t31 and t32
on the right-hand side of (18). In addition, δ is chosen so small that for t′t < δ

|θ(t)| ≤ t′t

4
(19)

|t1t2β(t)| ≤ t′t

4
(20)

Multiplying (18)-(20) throughout by N and replacing t by t/
√
N, it follows

from the inequality mentioned by Feller (1971, page 534)

|exp(α)− 1− β| ≤ (|α− β|+
∣∣β2
∣∣ /2) exp{max(|α| , |β|)} (21)

that the integrand in (16) in subdomain 2 is smaller than

∣∣∣χNind(t/
√
N)
∣∣∣
(
ε(|t1|+ |t2|)√

N
+
|t1t2| {β(t)}2

2N

)
exp(t′t/4) (22)

≤ exp(−t′t/8)
(
ε(|t1|+ |t2|)√

N
+
|t1t2| {β(t)}2

2N

)

provided δ is sufficiently small. Since ε is arbitrary, the contribution to (16)

from subdomain 2 is o(1/
√
N). Note that in the last inequality we used that

for N →∞ ∣∣∣∣χNind(
t√
N
)

∣∣∣∣ ∼ exp(−t′t/2) ≤ exp(−3t′t/8). (23)
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Likewise, the contribution to integral (17) from subdomain 2 is o(1/
√
N) be-

cause the integrand in (17) can be written as
∣∣∣∣∣
χNind(t/

√
N)

exp(−t′t/2) − 1
∣∣∣∣∣

|β(t)|√
N exp(t′t/2)

≤ exp(−t′t/4)εt
′t

2

|β(t)|√
N

provided that δ is small enough. For the last inequality we used that there

exists a δ so that for t′t < δ
∣∣∣∣∣
χNind(t/

√
N)

exp(−t′t/2) − 1
∣∣∣∣∣ ≤

εt′t

2
exp(t′t/4) (24)

In order to prove this, define ε0 = min(ε, 1/4) and

ψ(t) = logχind(t) + t
′t/2

Since ψ(0) = 0, Dk012ψ(0) = D
0k
12ψ(0) = 0 (k = 1, 2) and D

11
12ψ(t) = 0 for any t,

we obtain for t′t < δ, using a second-order Taylor expansion, |ψ(t)| ≤ ε0t
′t/2

provided that δ is small enough. Now applying (21) with α = Nψ(t/
√
N) and

β = 0 we obtain (24). Since (16) and (17) are o(1/
√
N), we have proved (5),

(13), and (15).

We conclude this section with a proof of (14). Let I2 denote the two-dimensional

identity matrix. Recall from statistics theory that exp(−t′t/2) is the character-
istic function of the bivariate normal distribution N(0, I2). That is,

∫∫∞
−∞ h(t, x)dx = exp(−t′t/2) (25)

h(t, x) = exp(it′x)
exp(−x′x/2)

2π

Premultiplying both sides of (25) by −i3 and taking the derivative of both sides
with respect to t2, we obtain

−
∫∫∞

−∞ x2h(t, x)dx = i
3t2 exp(−t′t/2) (26)

Now taking on both sides the derivative ∂2(.)/∂2t1 yields

∫∫∞
−∞ x

2
1x2h(t, x)dx = −i3(t2 − t21t2) exp(−t′t/2) (27)

Adding (26) and (27) gives

∫∫∞
−∞(x

2
1x2 − x2)h(t, x)dx = i3t21t2 exp(−t′t/2) (28)

Likewise,
∫∫∞

−∞(x
2
2x1 − x1)h(t, x)dx = i3t22t1 exp(−t′t/2) (29)

Multiplying (28) by µ2112 and (29) by µ
12
12 and adding the results, we obtain (14)

with on the left-hand side the Fourier transform of 2
√
ND1112ωN,dep(x).
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4. An application to simple random sampling

Consider a population U of N numbers U = {y1, . . . , yN}. Suppose that as
N → ∞ the population mean Y N and the population variance σ2Ny converge

to Y and σ2y > 0, respectively. Let ys denote the sample mean from a simple

random sample of nonrandom size n (= fNN) without replacement (SRS). The

sampling fraction fN is such that |fN − f | < 1/N where f is a fixed number

(0 < f < 1).

Next, define for the Poisson sampling design with equal probabilities the fol-

lowing unbiased estimators for the population mean Y N and n

Ŷ PO =
1

N

N∑

k=1

ak
yk
fN

ns =
N∑

k=1

ak,

where the ak are independent and identically distributed random variables.

That is,

ak =

{
1 if the sample includes element k

0 otherwise

with P (ak = 1) = fN (k = 1, . . . ,N).

In addition, define the two-dimensional random vector xk and the matrix Σk
by

xk =

(
x1k

x2k

)
= ak

(
yk
fN

1

)

Σk = fN(1− fN )




y2k
f2N

yk
fN

yk
fN

1


 ,

respectively. Σk is the covariance matrix of xk. Other useful definitions and

formulas in this context are

xN =
1

N

N∑

k=1

xk =

(
Ŷ PO

ns/N

)

E(xN) =

(
Y N
fN

)

Σ = lim
N→∞

ΣN = lim
N→∞

1

N

N∑

k=1

Σk

= (1− f)




(σ2y+Y
2
)

f Y

Y f




Denote the typical element ij of Σ by σij, that of Σ−1 by σij, and that of ΣN
of by σNij (1 ≤ i, j ≤ 2). Applying the central limit theorem for vectors to the

mutually independent xk yields the following theorem.

10



Theorem 1. As N → ∞ the distribution of
√
N{xN − E(xN)} tends to the

bivariate normal distribution with zero expectation and covariance matrix Σ,

provided that the data satisfy the Lindeberg condition.

For the Lindeberg condition, see Hájek (1964, page 1500) and Feller (1971,

pages 262-3). Also note that the Lindeberg conditions for one dimension carry

over to two-dimensional vectors due to the Cramér-Wold device; see Basu (2004,

page 149).

In order to apply Theorem 1 to the problem of the limiting distribution of ys,

define for an arbitrary constant u0

PN0 = P (ys ≤ Y N + u0hN1)

h2N1 =

∣∣ΣN
∣∣

NσN22
(=

1

Nσ11N
= (1− fN )

σ2Ny
n
)

h2N2 =
σN22
N

(=
fN (1− fN)

N
)

ψ(x;Σ) =
exp(−x′Σ−1x/2)

2π |Σ|1/2

where in the last line x = (x1, x2)
′ and Σ =cov(x). Likewise, h21 and h

2
2 are

based on the elements in Σ. Recall from statistics theory that 1/σ11 is the

conditional variance of x1 given x2. Furthermore, define λN by λN = µ
(3)
N /σ

3
N

and λ by λ = λ∞ where, given N, σ2N and µ(3)N stand for the variance and the

third central moment of x2k, respectively. Note that x2k = ak,λN = λN (fN )

and λ = λ(f). Let σ2 denote f(1− f).

The following theorem specifies the error of the approximation of the lattice

distribution of x2N by the normal distribution.

Theorem 2. For a midpoint x of the lattice distribution F2N of
√
N{x2N −

E(x2N)} it holds that as N →∞

F2N(x;σN ,λN)−Φ(
x

σ
) = ω2N (

x

σ
;λ) + o(1/

√
N), (30)

where

ω2N(x;λ) =
λ

6
√
N
(1− x2)ϕ(x). (31)

Proof. For the lattice distribution F2N it holds that for a midpoint x of the

lattice

F2N(x;σN ,λN)−Φ(
x

σN
) = ω2N(

x

σN
;λN) + o(1/

√
N). (32)

For a proof, see Feller (1971, page 540). Note that Feller assumes that λN = λ

and σN = σ. However, his arguments are still valid when λ and σ2 depend on

N. Furthermore, since the derivatives of λN ,σN and ω2N as functions of fN are

continuous at the point f and |fN − f | < 1/N, it holds that

|λN − λ| = O(1/N)
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|σN − σ| = O(1/N)∣∣∣∣ω2N(
x

σN
;λN)− ω2N(

x

σ
;λ)

∣∣∣∣ = O(1/N),

from which (30) follows. This concludes the proof.

In addition, if F2N were not a lattice distribution, (32) would be true for all x.

Now the following theorem on the asymptotic behaviour of ys can be proved.

Theorem 3. Under the Lindeberg condition it holds that as N →∞

PN0 ∼ Φ(u0) (33)

Proof. Denote Y N + u0hN1 by mN0. It follows from the equivalence of SRS

sampling and Poisson sampling conditional on a given n or fN that

PN0 = P (x1N ≤ mN0 |x2N = fN )

=
P (x1N ≤mN0 ∧ x2N = fN)

P{x2N = fN}
(34)

First we look at the relatively simple denominator of (34). Applying Theorem

1 yields

P {x2N = fN} = P{x2N ≤ (n+ 1/2)/N}− P{x2N ≤ (n− 1/2)/N}

= Φ(
1/2

Nh2
)−Φ(

−1/2
Nh2

) + ω2N(
1/2

Nh2
;λ)− ω2N(

−1/2
Nh2

;λ) + o(
1√
N
) (35)

where the error ω2N (x;λ) of the standard normal approximation at a midpoint

x is given by (31). Since

(1− x2){ϕ(x)− ϕ(−x)} = 0

the total error in (35) is o(1/
√
N) and hence, using the first-order Taylor ex-

pansion Φ(x) = Φ(0) + xϕ(0) +O(x2), (35) can be written as

P {x2N = fN} =
1

Nh2
ϕ(0) + o(

1√
N
) (36)

In order to apply the results of section 3 to the numerator of (34), define the

vector zN by zN = TN{xN −E(xN)} with

TN =

(
1 − βN

0 1

)
,

where βN = σN12/σN22 = Y N/fN . The numerator of (34) can now be written

in terms of zN as

P (z1N ≤ u0hN1 − βNz2N ∧ |z2N | ≤ 1/2N)

Assuming that βN > 0, an upper bound for the numerator is given by

P (z1N ≤ u0hN1 + βN/2N ∧ |z2N | ≤ 1/2N)
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Using E(zN ) = 0,

ΓN ≡ cov(zN) = TNΣNT ′N/N = diag(h2N1, h
2
N2)

and applying Theorem 1 with ΓN instead of Σ, it is seen that the upper bound

is equal to

∫ u0hN1+βN/2N
−∞

∫ 1/2N
−1/2N

ϕ( z1hN1 )ϕ(
z2
hN2

)

hN1hN2
dz1dz2 + δN + o(

1√
N
)

= Φ(u0 +
βN/2

NhN1
)
ϕ(0)

NhN2
+ o(

1√
N
)

= Φ(u0)
ϕ(0)

NhN2
+ o(

1√
N
) (37)

δN = ω∗N(u0 +
βN/2

NhN1
,
1/2

NhN2
)− ω∗N (u0 +

βN/2

NhN1
,
−1/2
NhN2

)

where ω∗N(x) is based on (4) with a minor adjustment for the mutually different

variances of the z1k. Note that
√
NδN = o(1) as N → ∞ and hence, δN =

o(1/
√
N). A sufficient condition for this is that the fourth moments exist; see

Feller (1971, page 547-8). Since result (37) is also true for the corresponding

lower bound, it is true for the numerator of (34). Combining (34), (36) and

(37) gives (33). This concludes the proof.
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