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On the efficiency of randomized PPS sampling                                                                  

with an application to the Producer Price Index

Paul Knottnerus

Summary: This paper examines the efficiency of the Horvitz-Thompson 

estimator from a systematic probability proportional to size sample drawn 

from a randomly ordered list. Moreover, the efficiency is compared with that 

of an ordinary ratio estimator. The results are demonstrated by means of a 

simulation study with Dutch data on the Producer Price Index. The discussion 

on the efficiency includes a comparison with rejected Poisson sampling. 

Keywords: efficiency, Horvitz-Thompson estimator, optimal allocation, 

Producer Price Index, probability proportional to size, ratio estimator, 

variance, rejective Poisson sampling.

1. Introduction

When the study variable y is more or less proportional to a size variable x, one may 

use the ratio estimator from a simple random sample without replacement (SRS). 

Another widely used estimator in such a situation is the Horvitz-Thompson (HT) 

estimator in combination with a systematic probability proportional to size sample 

from a randomly ordered list, henceforth called randomized PPS sample. 

In recent years several authors paid attention to variance estimation procedures for 

randomized PPS samples. See, among others, Brewer and Donadio (2003), Deville 

(1999), Knottnerus (2003), Kott (1988 and 2005), Rosén (1997) and Stehman and 

Overton (1994). For a comparison between the efficiencies of the ratio estimator and

the randomized PPS estimator, the reader is referred to Foreman and Brewer (1971), 

Cochran (1977) and the references given therein. A drawback of these comparisons 

is that finite populations corrections are ignored. Hartley and Rao (1962) take the 

finite population correction into account, but they only consider cases where the 

sample size n is fixed while the population size N is increasing. Moreover, these 

comparisons don't give insight into the variance change due to randomized PPS 

sampling. Elaborating on the results of Gabler (1984), Qualité (2008) shows that the 

related HT estimator from a rejective Poisson sample of size n is more efficient than 

the Hansen-Hurwitz estimator for a sampling scheme with replacement. However, a 

formula for the efficiency is missing.    

The main aim of this paper is to derive formulas for the efficiency of the randomized 

PPS estimator relative to the ratio estimator. These formulas take into account the 

finite population corrections for an arbitrary sample size n. Besides, to illustrate the 

difference between both estimators, we present a simple formula for the sample size 
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change due to PPS estimator compared to a ratio estimator with the same variance. 

The outline of the paper is as follows. Section 2 describes an alternative expression 

for the variance of the HT estimator based on the sampling autocorrelation 

coefficient. Furthermore, it is shown that the corresponding variance estimator for 

randomized PPS sampling is nonnegative with probability 1. Section 3 presents the 

formulas for the efficiency of the randomized PPS estimator relative to the ratio 

estimator for various data patterns often met in practice. Section 4 describes an 

example with data on the Price Producer Index in The Netherlands in order to 

illustrate the substantial efficiency gain that might be obtained in practice. A 

counterexample is included to show that PPS is not always advantageous. Section 5 

discusses the relationship between rejective Poisson sampling and randomized PPS 

sampling, including the corresponding variance approximations and their 

(in)validity for .∞→n The paper concludes with a summary. 

2.  An alternative variance expression for randomized PPS sampling 

Consider a population U={1,...,N}  and let s be a sample of fixed size n drawn from 

U without replacement according to a given sampling design with first order 

inclusion probabilities πi and second order inclusion probabilities πij  (i,j=1,...,N). 

The HT estimator of the population total, ,iUi YY ∈Σ=  is defined by ./ˆ
iisiHT YY π∈Σ=

Assuming that the πi are proportional to the sizes iX  and that ,1=Σ= ∈ iUi XX  it 

holds that ;ii nX=π  it is also assumed that ./1 nX i ≤  Defining ,/ iii XYZ =  we can 

write Y as a weighted mean of the ,iZ  i.e., .iiUiz ZXY ∈Σ== µ  Likewise, we can 

write the HT or randomized PPS estimator for Y as sPPSHT zYY == ˆˆ  where sz  stands 

for the sample mean of the .iZ

The variance of the randomized PPS estimator equals
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with .iii ππ =  The former is attributed to Horvitz and Thompson (1952) and the 
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For a proof of (3), see Knottnerus (2003, page 103).  Recall that nz /2s  would have 

been the variance if the sample had been drawn with replacement with drawing 

probabilities Xi. 

The sampling autocorrelation coefficient zr in (4) is a generalization of the more 

familiar intraclass correlation coefficient ρ in systematic sampling with equal 

probabilities; see, for instance, Cochran (1977, pages 209 and 240) and Särndal et al. 

(1992, page 79). Furthermore, note that zr  is a fixed population parameter. The 

phrase sampling autocorrelation is used because zr  refers to the autocorrelation 

between two randomly chosen observations, say zs1 and zs2, from s.  Consequently, 

the value of zr  depends on the sampling design. For instance, for [SRS] sampling 

with[out] replacement 0=zr )].1/(1[ --= Nzr

Although for randomized PPS sampling exact expressions for the πij  are available, 

these calculations might be cumbersome when N is large. For an exact expression, 

see Connor (1966) and for a modification Hidiroglou and Gray (1980). Here we use 

an approximation proposed by Knottnerus (2003, page 197) 
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According to the author these ijKp  satisfy the second-order restrictions for the ijp
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Furthermore, (5) is correct for SRS sampling while for n=2 the ijKp  coincide with 

the ijBDp  from the special designs proposed by Brewer (1963a) and Durbin (1967) 

for PPS samples of n=2. In addition, the ijKp  in (5) can be written in factorized form 

as proposed by Brewer and Donadio (2003). That is, 
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An implication of approximation (5) is that )1(/ -nnijKp  does not depend on n. 

Hence, the corresponding approximation of zr  doesn’t depend on n, provided that 

iXn /1<  (i=1,...,N). This would also occur when we had used the approximation 

proposed by Hartley and Rao (1962) for randomized PPS sampling



6

)}2(3

)(21{)1(
3

22

iUixjix

jijixjijiijHR

XXX

XXXXXXXXnn

∈Σ−−+−

+++−++−=

µµ

µπ
(6)

Obviously, )1(/ −nnijHRπ  doesn’t depend on n. At the time Hartley and Rao 

assumed that n=O(1) for .∞→N  Following Thompson and Wu (2008), it is now 

believed that  approximation (6) is valid when n/ N=o(1) for .∞→N  In section 5

we address this issue in more detail. For the meaning of -,-,- pOoO  and -po

symbols, see Knottnerus (2003, pages 140-1).

The approach proposed here is somewhat different from Knottnerus (2003). In order 

to get convenient expressions, rewrite (5) as
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Substituting (7) into (4), we obtain a new, simple approximation for zρ
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In the second line use is made of  ∑∑ =
ji jijji iij vmvm

,,
 when jiij mm =  and in the 

last line that .0)(∑ ∈ =−
Uj jj YZX In the following theorem it is shown that under 

some mild regularity conditions (8) can be further simplified. The symbols xµ  and 

2
xσ  in the theorem are used in analogy with zµ  and 2

zσ  in (3). 

Theorem 1.  Suppose that there is a constant c such that cXVx </  and ,/ cxx <µσ

where X  and 2
xV  stand for the population mean and variance of x, respectively. 

Furthermore, suppose that )1(/)( OYZ zi =− σ as .∞→N  Then zρ  from (8) can be 

written for ∞→N  as 
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Proof.   Because ,/1 NX =  it follows from the above assumptions that the weighted 

mean  )]([ 222 XVNX xix +=Σ=µ  is of order 1/N and hence, )./1( NOx =σ  Also, 
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Using these results in combination with a Taylor series expansion of 1)21( −− iX  in 

(8), we obtain (9). This concludes the proof. 

Substituting (9) into (3), we get an alternative expression  for the variance
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We conclude this section with a couple of remarks. 

1. Approximation (9) also follows directly from substituting the very simple 

approximation jiijAP XXnn )1( −=π  into (4). However, direct use of  ijAPπ  in (1) or 

(2) for the SRS case with  NXX ji /1==  may lead surprisingly to errors of more

than 100% for populations with ;2
yVY = see Knottnerus (2003, pages 274-6). 

Hence, (1) and (2) might be more sensitive to errors in the ijπ  than (3) and (4). 

2. In order to estimate (3), denote the sample variance of  the iZ  by .2
zs  Noting that 
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and using (3), it can be shown that )1/(2
zzs ρ−  is an unbiased estimator for .2

zσ

When zρ  is small, the term )1( zρ−  can be neglected. 

3. The parameter zρ  from (8) can be estimated in practice by
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Hence, substituting 2
zs  and 9

ˆ
zρ  into (3) leads to a nonnegative variance estimator 

for HTŶ  with probability 1. This also holds for 8
ˆ

zρ  when all ).1/(1 +≤ nX i

5. Formula (3) for the variance is under a number of assumptions a convenient point 

of departure for deriving allocation formulas when a sample is to be drawn from a 

stratified population with PPS-samples within each stratum. For further details, see 

Appendix A. 

3. Efficiency of the randomized PPS estimator

3.1 Efficicency formulas

Because X=1, the ratio estimator from an SRS sample for the population total Y

becomes

∑
∑

∈

∈==
si i

si ii

s

s
R X

ZX

x

y
Ŷ

The commonly used approximation for its variance is
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See Cochran (1977). From (3) and (11) it can be seen that the efficiency of PPSŶ

compared to that of RŶ  can be written as 
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Since 1/ =RPEff  for ),1/(1 −−= Nzρ  this means that PPS sampling is to be 

preferred when ).1/(1 −−< Nzρ

To get more insight into the magnitude of zρ suppose that the data pattern of the iY

can be described by

iii XY εµ +=             (i=1,…,N). (14)

with 0)( =ii XE ε and .)( 22 δσε iii XXE =  Consequently, for the iZ  we have 

ii uZ += µ  with 0)( =ii XuE and .)( 222 −= δσ iii XXuE  According to Kott 
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(1988), δ often lies between 1 and 2. However, unlike Kott we don’t assume that the 

disturbances are uncorrelated. See also Brewer (1963b). In fact, the only point of 

interest in (9) is the pattern of the terms 2)( YZi −  irrespective of the underlying 

autocorrelation structure of the data.

Assuming that N is sufficiently large, we can replace Y as well as the numerator and 

denominator in (9) by their model expectations. This yields 

1−
∈

∈

Σ
Σ

−= δ

δ

ρ
iUi

iUi
z

X

X
(15)

In the next subsections we look at different situations. 

3.2 Efficiency of PPSŶ  when δδδδ=2

For 2=δ (15) gives 2
iUiz X∈Σ−=ρ  which can also be written as    

)1(
1 2

xz CV
N

+−=ρ (16)

because 

)1(
1 22222

xx
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i CVXXVX
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where NX /1=  and xCV  stands for the coefficient of variation of the .iX

Substituting (16) into (13) gives 
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RP CVnN

CVnN
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Hence, for 2=δ  the efficiency of the randomized PPS sample is high when the 

variability among the iX  is high. When ,0=xCV randomized  PPS sampling 

amounts to SRS sampling and obviously, 1/ =RPEff  where we ignored the factor 

./)1( NN +

In order to demonstrate the efficiency gain of randomized  PPS sampling for 2=δ
in a somewhat different way, it is useful to notice that substituting 

)1( 2
xPPS CVnn +=  into (11) leads to the same outcome as (3) and (9) with PPSn

instead of n. Hence, when ,5.1=xCV randomized PPS sampling with sample size 

PPSn =100  is as efficient as the ratio estimator from a  SRS sample of size 

.325=SRSn  More generally, it follows from (13) that a ratio estimator from an SRS 

sample of size nSRS is as efficient as a PPS sample of size nPPS  if 

11 −++−= zPPSSRS Nnn ρ
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In section 5 it is shown this relationship is also applicable when )(Non ≠  as 

∞→N  provided that according to (14) the iZ  and iX  are uncorrelated. 

3.3 Efficiency of PPSŶ  when δδδδ=1 

Another special case is .1=δ  From (15) it follows that Nz /1−=ρ when .1=δ

Subsequently, it follows from (13) that )(1 1
/

−+= NOEff RP as ∞→N irrespective 

of the value of .xCV  Furthermore, it can be shown that RPEff /  is an increasing 

function of .δ For a formal proof, see Lemma 1. Hence, for 1<δ  the randomized 

PPS estimator is less efficient than the ratio estimator and for 1>δ  the randomized 

PPS estimator is more efficient than the ratio estimator.  

Lemma 1. Let RPEff /  and zρ  be defined by (13) and (15), respectively. Then 

RPEff /  is a monotonically increasing function of δ.

Proof.  Write zρ  from (15) as a weighted mean of the (negative) iX
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increasing in .δ Hence, the weight of the larger iX  is increasing compared to that 

of jX  when δ  is increasing. This means that )(δµ x  is increasing and zρ  is 

decreasing in .δ  Since RPEff /  is a decreasing function of zρ  as can be seen from 

(13), RPEff /  is increasing in δ. This concludes the proof. 

3.4 An alternative structure among the disturbances

A third and last data pattern we look at in this section is the case where the variance 

of the disturbances in (14) is of the form 
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For 0=ϕ  we obtain simply ./1 Nz −=ρ  Hence, for 0=ϕ  PPS sampling is as 

efficient as the ordinary ratio estimator from SRS sampling. Along the same lines as

in the proof of Lemma 1 it can be shown that  zρ  is decreasing in ϕ  while RPEff /

is increasing in .ϕ  Hence, for this case the randomized PPS estimator is always 

more efficient than the ratio estimator. 

4. An application to the Producer Price Index 

The Producer Price Index (PPI) in The Netherlands is based on about 2500 

commodity price indexes organized by type of product. The price index for a 

specific commodity can be written as

∑ ∈
=

Ui iiZXY

where iZ  is the price change for that commodity of establishment i relative to the 

basic period while iX  stands for the (relative) turnover of that commodity of 

establishment i in the basic period ).1( =Σ iX

In the example given here we examine the price changes of 70 establishments for the 

commodity Basic Metal in December of 2005 relative to December of 2004; see 

Table 1. For these data we compare the variance of the ratio estimator from an SRS 

sample with the variance of the HT estimator from a randomized PPS sample. For 

both samples n=9. Applying (11) to these data gives .101)ˆvar( =RY  If the sample 

had been drawn with replacement the variance would have been 116. Applying (3) 

and (8) for a randomized PPS sample gives .9.29)ˆvar( , =γPPSY  This outcome takes γ

into account and lies close to the result 2.29)( =sim
PPSV  from a simulation experiment 

consisting of 80,000 randomized PPS samples of size n=9 from the set of 70 

establishments. Hence, .5.3/ =RPEff Because formula (11) for )ˆvar( RY  is only 

asymptotically valid, we also carried out simulations for evaluating the mean square 

error (MSE) of RŶ resulting in .108)( =sim
RMSE  This confirms the conjecture that 

(11) gives an underestimation of the true variance; see Cochran (1977). Hence, for 

moderate samples the true value of RPEff /  might be somewhat higher than (13) 

suggests. In addition, the bias of 0.7 found in the simulations was in this case rather 

small compared to the variance. 

Furthermore, it is noteworthy that the simpler formula (9) for zρ in combination 

with (3) gives .7.30)ˆvar( =PPSY  This is almost the same result as that from (8)

although N=70 is not very large. With replacement the PPS variance would have 

been 43.8, almost 50% more. For 24=EAZTn  formula (11) gives about the same 

outcome as (3) with .9=PPSn  Hence, the sample sizes differ a factor 2.7 which is 

more or less in line with the factor 1.3)1( 2 =+ xCV  as we have seen in section 3
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Table 1.  Price changes )( iZ  and sizes )( iX  of 70 establishments 

i price change turnover i price change turnover

1 -18,4% 0,0608 36 34,8% 0,0427

2 -16,0% 0,0784 37 13,1% 0,0121

3 3,3% 0,0762 38 31,7% 0,0351

4 12,5% 0,0100 39 -24,8% 0,0074

5 0,0% 0,0029 40 55,3% 0,0009

6 8,3% 0,0006 41 40,5% 0,0066

7 -39,0% 0,0182 42 34,6% 0,0022

8 -25,1% 0,0020 43 1,7% 0,0001

9 1,1% 0,0040 44 0,0% 0,0039

10 4,4% 0,0066 45 3,9% 0,0304

11 -4,9% 0,0039 46 25,4% 0,0209

12 -8,9% 0,0070 47 25,6% 0,0062

13 -7,0% 0,0148 48 0,0% 0,0033

14 -15,0% 0,0108 49 -0,3% 0,0019

15 -10,7% 0,0087 50 66,6% 0,0346

16 -9,0% 0,1079 51 0,0% 0,0039

17 -11,3% 0,0247 52 -2,9% 0,0007

18 10,6% 0,0024 53 15,8% 0,0011

19 -23,2% 0,0001 54 0,0% 0,0026

20 -25,4% 0,0001 55 0,0% 0,0018

21 -80,7% 0,0002 56 11,6% 0,0057

22 13,4% 0,0005 57 0,0% 0,0042

23 -42,5% 0,0010 58 0,0% 0,0236

24 -34,8% 0,0014 59 -1,5% 0,0015

25 -30,0% 0,0126 60 0,0% 0,0003

26 8,0% 0,0530 61 11,7% 0,0067

27 0,0% 0,0208 62 0,0% 0,0012

28 2,1% 0,0119 63 0,8% 0,0040

29 11,3% 0,0208 64 2,0% 0,0009

30 0,7% 0,0322 65 2,3% 0,0018

31 9,5% 0,0447 66 4,7% 0,0026

32 11,5% 0,0018 67 0,9% 0,0064

33 5,8% 0,0174 68 -1,0% 0,0309

34 -6,9% 0,0197 69 -0,5% 0,0005

35 0,0% 0,0124 70 0,0% 0,0006
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This should not be surprising since the price changes and their variability hardly 

depend on the sizes of the company. For instance, a double log regression 

iii vXYZ ++=− ln)ln( 2 βα (17)

results in the estimate 07.0ˆ =β  for the data in Table 1. This corresponds with 

07.2ˆ =δ  for the disturbances in (14) which explains the superiority of randomized

PPS sampling for this type of data pattern. Also for other commodities δ̂  often was 

about 2; see Enthoven (2007).   

We conclude this section with a small example in order to show that randomized

PPS is not always better than the ratio estimator. Although the data in Table 2 for a 

population of five units are artificial, a data pattern like this may occur in financial 

branches where very small financial companies may grow very fast with respect to 

certain financial variables. This high variability among growth rates of small 

companies results in a low value for δ. For an SRS sample with n=2 from the five 

units in Table 2 the variance of the ratio estimator is 211 according to (11); 

simulations give .323)( =sim
RMSE This is much less than the variance of 557 found 

in a simulation consisting of 80,000 randomized PPS samples of size n=2. Formula 

(3) in combination with (8) gives the same outcome of 557. This would also be the 

correct variance if the randomized PPS sample had been drawn according to Brewer 

(1963a) or Durbin (1967). Combination of (3) and (9) gives a slightly different value 

556. Regression (17) with the data from Table 2 yields 0.3ˆ −=β  and hence, 

.0.1ˆ −=δ  In addition, the ordinary direct estimator syN  from an SRS sample has a 

variance of 356 which is even better here than randomized PPS sampling. Hence, for 

this type of data pattern the ratio estimator is the best option. Recall that the ratio 

estimator has a smaller variance than syN  when XYb 2/>  where b is the slope of a 

regression from iY  on iX  and a constant (i=1,…,N). So the data )( iii ZXY =  in 

Table 2 certainly don't exhibit a flat trend.

Table 2.  Growth rates of assets )( iZ  and sizes )( iX  of 5 establishments 

i growth rate Size

1 200% 0,0455

2 33% 0,1364

3 75% 0,1818

4 33% 0,2727

5 62% 0,3636
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5. Relationship with rejective Poisson sampling

A related sampling design is a Poisson sample with inclusion probabilities ii nX=π
given the condition that the sample size is n. Often one calls this design rejective 

Poisson sampling. For this design Hájek (1964, page 1520) has shown that the 

variance of the corresponding estimator nPOŶ  for Y can be approximated by                                                   

xUi ii

iii

Ui ii

Ui
iiinPO

nXd

dX

ZY

YZnXX
n

Y

µπ
πα

α

−=−=
−=

=

−−=

∑

∑

∑

∈

∈

∈

1)1(

/)1(

(18)))(1(
1

)ˆvar(

*

2*

provided that .∞→nd Hájek used for the derivation of (18) the following 

approximation for the ijπ

)/1()1(

)1)(1(
12

dXnXXXnn

nd

nXnX
XXn

jiji

ji

jiijH

−−≈






 −−

−=π
(19)

For the sake of convenience, we have dropped some asymptotically irrelevant terms 

in the last line in order to derive a simple formula for the corresponding zHρ  for 

rejective sampling; see Theorem 3. The main difference between (18) and (10) is 

that Y is replaced by Y*. Consequently, when the iZ  and iX  were generated 

independently, (10) and (18) are asymptotically equivalent. More generally, the 

following theorem states that under some mild regularity conditions (10) and (18) 

are asymptotically equivalent for ∞→Nn,  irrespective of the data pattern of the Zi

provided that n/N=o(1). 

Theorem 2.  Let ∆
(

 denote the relative difference between (18) and (10). Then  

nnd

rn

Y

YY

z

z

z

xxz

PPS

PPSnPO

9

9

9

22

)1(1})1(1{
)(

)ˆvar(

)ˆvar()ˆvar(

ρ
ρ

ρ
σ

−+
−

−+
=

−
=∆

(
(20)

where 9zρ  is given by (9) and xzr  is defined by  

∑
∈








 −







 −=
Ui z

zi

x

xi
ixz

ZX
Xr

σ
µ

σ
µ

Furthermore, suppose that ),1(/ OXVx = ),1(/ Oxx =µσ and there is a constant c

such that 0/9 <−< Nczρ  and 0})1(1{ 9 >>−+ cnd zρ  as ., ∞→nN  Also assume 
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that there exists an 0>α  such that )/1(/ αNONn =  as .∞→N  Then for 

∞→nN ,

(21))()(
)1(

)()(

1

9

12

−−

−−

+=
−

∆

+=∆

nONO
n

nONO

z

α

α

ρ

(

(

Comment. The meaning of (21) is that under the given assumptions the 

approximation error in (10)  for rejective Poisson sampling is much smaller than the 

variance reduction due the non-replacement feature as ∞→nN ,  and 

)./1(/ αNONn =

Proof. Since ,*
iiUi ZY α∈Σ=  we have

2*2*2
)()()( YYYZYZ

Ui
ii

Ui
ii −=−−− ∑∑

∈∈
αα (22)

Furthermore, (10) can be written as 

∑∑
∈∈

−+−=
Ui

ii
Ui

iiPPS YZX
n

YZ
n

d
Y 222

)(
1

)()ˆvar( α

Hence, the difference between (10) and (18), denoted by ,∆ can be written as

nn

YYd

YZX
nn

YYd

zz

Ui
ii

2
9

2*

22
2*

)(

)(
1)(

σρ
−−=

−+−=∆ ∑
∈ (23)

Moreover,                            

(24)

))((

)(}/)1(1{
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d
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ZXX
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ZdnXX
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Ui zixii
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∑

∈

∈

∈

Substituting (24) into (23) and dividing the result by (10) gives (20). Next, in 

analogy with the proof of Theorem 1 it follows that )./1( NOx =σ  Consequently, 

)()/( 22222 ασ −== NONnOn x  so that )()( 12 −− +=∆ nONO α(
 as ;, ∞→nN  note

that )( 1
9

−= nOzρ  because 9zρ  can be seen as a weighted mean of the (negative) iX
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and ./1 nX i ≤  In addition, (21) follows from (20) because according to the above 

assumption .2/)1( 9 Nncn z >−− ρ  This concludes the proof. 

Apart from the estimation by means of (10), the variance in (18) can be estimated 

directly by 

)1(

)1(ˆ

)ˆ)(1(
)1(

1
)ˆr(âv

*

2*
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∈

∈
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Y

YZnX
nn

Y

π
π

See Hájek (1964, page 1520) and Berger (2004). The following theorem shows how 

the variance of  nPOŶ  can be written in the form of (3).

Theorem 3. For ,, ∞→Nn ,0>> cd and under the assumptions of Theorem 1, 

(18) is asymptotically equivalent with

(25))
1

(

})1(1{)ˆvar(

2

22

9

2
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d

nr
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nY

xxz
zzH
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zHnPO
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−+=
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Proof.  Denote )( ziZ µ−  by iz  and )( xiX µ−  by .ix  Substituting (19) into (4) and 

ignoring the asymptotically irrelevant terms in ijHπ  we get in analogy with (24)
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Note that in the last line we used )1(/ Oz zi =σ  and ).1(OnX i = This concludes the 

proof. 

Following Brewer and Donadio (2003, page 190), randomized PPS sampling can be 

seen as a high entropy design; see also Rosén (1997) and Berger (1998). This means 

that approximation (18) can be used for randomized PPS sampling as well provided 

that .∞→nd Moreover, Theorem 2 reconfirms that for randomized PPS sampling 
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(10) can be used for large n provided that ).0()(/ >= − ααNONn In addition, if  

),1(/ oNn ≠  (10) can still be used when the iZ  and iX  have a zero covariance as 

can be seen from (25). Furthermore, when )1(/ oNn ≠  and ,0≠xzr  it follows from 

Theorem 2 that formula (13) for the efficiency of the randomized PPS estimator 

relative to that of the ratio estimator should be modified as follows  

)1)(1(

)(

9

9*
/ ∆−+

−−= (
z

z
RP n

nN
Eff

ρ
ρ

as ∞→n  and .0>> cd According to Theorem 2 this modification of (13) is 

necessary as compensation for its underestimation by %100∆
(

 when  

)1(/ oNn ≠ and .0≠xzr

Furthermore, it should be noted that for Nni /=π  (i=1,…,N) the actual inclusion 

probabilities niPOπ for rejective sampling are equal to the original .iπ In contrast, 

for Nni /≠π  the actual niPOπ need not be equal to ii nX=π  when n is small. 

Therefore, (18) is not to be recommended for a PPS variance approximation when n

is small. For instance, for the data in Table 2 (18) gives as variance 494 with n=2. 

This is an underestimation of about 10%. However, for ∞→nd it is pointed out by 

Hájek (1964, page 1517) that niPOi ππ /  tends to unity uniformly in i. 

An approximation for the ijπ  that can be used for small and large n is the following 

combination of (5) and (19) 













−
−−

−−
−=

d

XnX

XX

XX
XXnn ji

ji

ji
jiijK )21)(21(

1
)1(mod γ

π (26)

The corresponding expression for zρ  becomes in analogy with the proof of 

Theorem 3 

)( 24222
28mod ∑

∈
−−=

Ui
iizxxz

z
zzK zXr

d

n σσ
σ

ρρ (27)

Use of (26) in the two examples given in section 4 leads to more or less the same 

variances, i.e., 30.2 and 564, respectively.  

In order to give some more insight into the difference between (10) and (18), we 

conclude this section with a counterexample that (10), including approximations (5) 

and (6) for the ,ijπ need not be valid when ).1(/ oNn ≠  Consider a population U

consisting of two strata U1 and U2 with means 1Y  and ,2Y  respectively. Both stratum 

sizes are N/2. Let s be a randomized PPS sample of size n=3N/4 from the whole 

population U. Let the Xi be such that 
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Obviously, stratum 1 doesn’t contribute to the variance. The selected elements in s

from U2 constitute an ordinary SRS sample of size N/4. Hence, in this case the 

correct variance formula for PPSŶ  is 

24/
)

2

1
1(

2
)ˆvar(

2
2

2
2

2
yy

PPS

NS

N

SN
Y =-






=

However, approximation (10) gives now an entirely different outcome unless 

;3/22 YY =  note that .2/3 2
* YNY =  In contrast, (18) gives the correct outcome apart 

from a factor ./)2( NN - Also, (26) and (27) lead to an asymptotically correct 

answer. For instance, assuming that 22 YY i =  for all i, modzKnr  converges to the 

correct value -1 as ¥®N  which value corresponds with a zero variance. Note that 

in this case with *
2 YZ i = use of (22) and (24) yields 

nYZdnYYddrn iUi izxxz /)(/)(/)( 22*2 -=-= ∑ Î ass

6. Summary 

This paper compares the efficiency of the HT estimator PPSŶ  from a PPS sample 

with the efficiency of the classical ratio estimator RŶ  from an SRS sample. It is 

assumed that for all elements of the population the size variable x is known. When 

the data patterns of the variables x and )/( xyz = are such that the parameter 

),1/(1 --< Nzr it can be shown that PPSŶ  is more efficient than RŶ as .¥®N

Under model (14) with dse iii XXE 22 )( =  it holds that )1/(1 --< Nzr when .1>d

According to Kott (1988) d  often lies between 1 and 2. Hence, for this type of data

pattern PPSŶ  is to be preferred. Moreover, it emerges that for 2=d  the relative 

efficiency of PPS sampling compared to that of the ratio estimator is increasing 

when xCV  is increasing. In addition, RŶ  is to be preferred for data patterns with 

.1<d  These findings are demonstrated by means of a simulation study with two 

different data sets. 

The above results hold when ¥®N  and )1(/ oNn =  or when ¥®nN ,  and iX

and iZ  are uncorrelated. In case iX  and iZ  are correlated, the relative efficiency of 

PPS sampling is increasing when their squared correlation 2
xzr  is increasing provided 

¥®nN ,  and ).1(/ oNn ¹
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Appendix A.  Optimal stratum allocation in randomized PPS sampling

Suppose that Y is a sum of H stratum totals

∑
=

=
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When randomized PPS sampling is used in all strata, the variance of STPPSY ,
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In the last line it is assumed that .1/)1( »- hh nn Under the assumption that the iZ

and iX  are uncorrelated, the approximations of hr  proposed so far are

(asymptotically) independent of .hn  Hence, the allocation problem reduces to

∑
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Assuming that the optimal hn  obey hih Xn /1<  (i=1, …, Nh)  the optimal allocation 

for randomized PPS sampling is in analogy with the Neyman allocation equal to 
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When the differences between the hr  are small or when their absolute values are 

small, they can be ignored. 

In addition, note that a price index Y of H commodities can be written as 
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with .1=Σ hhW Along the same lines it can be shown that the optimal allocation 

becomes 

.
1

n
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W
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h hh
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