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On asymptotic distributions in random sampling
from finite populations

Paul Knottnerus

Summary

Existing proofs of central limit theorems in random sampling from finite

populations are quite lengthy. The present paper shows how the proof

for this kind of theorem in random sampling can be simplified by using

the central limit theorem for independent, random vectors. Furthermore,

use is made of the relationship between sampling without replacement and

Poisson sampling given the condition that the sample size is n. The the-

orems deal with both equal and unequal probability sampling. In the latter

case an approximation formula for the variance emerges as by-product

from the central limit theorem without using second order inclusion prob-

abilities.

Keywords: Central limit theorem; Error normal approximation; Simple

random sampling; Unequal probability sampling; Variance estimation.

1. Introduction

Proofs of the central limit theorem for equal probability sampling from a finite

population can be found in Madow (1948), Erdös and Renyi (1959), and Hájek

(1960). For rejective Poisson sampling with varying probabilities a proof can

be found in Hájek (1964). All proofs are technically difficult to demonstrate

and omitted in most texts. Often simulations are used for demonstration; see

Bellhouse (2001).

The main aim of this paper is to provide less intricate proofs for the central

limit theorems in probability sampling from finite populations. Proofs in this

paper are based on a generalization of the central limit theorem for a sequence

of mutually independent two-dimensional random variables.

The outline of the paper is as follows. Section 2 examines the asymptotic beha-

viour of estimators in simple random sampling. Section 3 examines the asymp-

totic behaviour of estimators in unequal probability sampling. Unlike Hájek

(1964) the author doesn’t use (approximate) second order inclusion probabilit-

ies.
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2. Asymptotic distributions in simple random sampling

Consider a population U of N numbers U = {y1, . . . , yN}. Suppose that as
N →∞ the population mean Y N and the population variance σ2Ny converge to

Y and σ2y, respectively. Let ys denote the sample mean from a simple random

sample of fixed size n (= fNN) without replacement (SRS). The sampling

fraction fN is such that |fN − f | < 1/N where f is a fixed number (0 < f < 1).

Next, define for the Poisson sampling design with equal probabilities the fol-

lowing unbiased estimators for the population mean Y N and n

Ŷ PO =
1

N

N∑

k=1

ak
yk
fN

ns =
N∑

k=1

ak,

where the ak are independent and identically distributed random variables.

That is,

ak =

{
1 if the sample includes element k

0 otherwise

with P (ak = 1) = fN (k = 1, . . . ,N).

In addition, define the random two-dimensional vector xk and the matrix Σk
by

xk =

(
x1k

x2k

)
= ak

(
yk
fN

1

)

Σk = fN(1− fN )




y2k
f2N

yk
fN

yk
fN

1


 ,

respectively. Σk is the covariance matrix of xk. Other useful definitions and

formulas in this context are

xN =
1

N

N∑

k=1

xk =

(
Ŷ PO

ns/N

)

E(xN) =

(
Y N
fN

)

Σ = lim
N→∞

ΣN = lim
N→∞

1

N

N∑

k=1

Σk

= (1− f)




(σ2y+Y
2
)

f Y

Y f




Denote the typical element ij of Σ by σij and that of Σ
−1
by σij (1 ≤ i, j ≤ 2).

Applying the central limit theorem for vectors to the mutually independent xk
yields the following theorem.

4



Theorem 1. As N → ∞ the distribution of
√
N{xN − E(xN)} tends to the

bivariate normal distribution with zero expectation and covariance matrix Σ,

provided that the data satisfy the Lindeberg condition.

For the Lindeberg condition, see Hájek (1964, page 1500) and Feller (1971,

pages 262-3). Also note that the Lindeberg conditions for one dimension carry

over to two-dimensional vectors due to the Cramér-Wold device; see Basu (2004,

page 149).

In order to apply Theorem 1 to the problem of the limiting distribution of ys,

define for an arbitrary constant u0

P0 = P (ys ≤ Y N + u0h1)

h21 =

∣∣Σ
∣∣

Nσ22
(=

1

Nσ11
= (1− f)

σ2y
n
)

h22 =
σ22
N

(=
f(1− f)
N

)

ϕ(u) =
1√
2π
exp(−1

2
u2)

Φ(u) =

∫ u

−∞
ϕ(x)dx

ψ(x;Σ) =
exp(−x′Σ−1x/2)

2π |Σ|1/2

where in the last line x = (x1, x2)′ and Σ =cov(x). Recall from statistics theory

that 1/σ11 is the conditional variance of x1 given x2. Furthermore, define λN
by λN = µ3N/σ

3
N and λ by λ = λ∞ where, given N, σ2N and µ3N stand

for the variance and the third central moment of x2k, respectively. Note that

λN = λN (fN ).

The following theorem specifies the error of the approximation of the lattice

distribution of x2N by the normal distribution.

Theorem 2. For a midpoint x of the lattice distribution F2N of
√
N{x2N −

E(x2N)}/σN it holds that as N →∞

F2N(x;λN)−Φ(x) = ω2N(x;λ) + o(1/
√
N) (1)

where

ω2N(x;λ) =
λ

6
√
N
(1− x2)ϕ(x) (2)

Proof. For the lattice distribution F2N it holds that for a midpoint x of the

lattice

F2N(x;λN)−Φ(x) = ω2N(x;λN) + o(1/
√
N) (3)

For a proof, see Feller (1971, page 540). Note that Feller assumes that λN = λ.

However, since λN = λ{1 + o(1)} the proof keeps valid when λ is replaced
by λN . Moreover, since the derivatives of λN and ω2N as functions of fN are

continuous at the point f and |fN − f | < 1/N, it holds that

|λN − λ| = O(1/N)
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|ω2N(x;λN)− ω2N(x;λ)| = O(1/N)

from which (1) follows. This concludes the proof.

Expression (2) for the error ω2N(x) is based on a more refined Taylor approx-

imation of the corresponding characteristic function χ2(t/σN
√
N) resulting in

χN2rf (t/σN
√
N) ∼ (1 + λN(it)

3

6
√
N
) exp(−t2/2)

instead of exp(−t2/2). In addition, if F2N is not a lattice distribution (3) is

true for all x. Similar results can be derived for two-dimensional random vectors

or when the x2k have different variances for a given N ; see Feller (1971, pages

521-548). Now the following theorem on the asymptotic behaviour of ys can be

proved. The notation "A ∼ B" is used to indicate that A/B tends to unity as

N →∞.

Theorem 3. As N → ∞ it holds under the Lindeberg condition that P0 ∼
Φ(u0).

Proof. Denote Y N+u0h1 bym0. It follows from the equivalence of SRS sampling

and Poisson sampling conditional on a given n or fN that

P0 = P (x1N ≤ m0 |x2N = fN )

=
P (x1N ≤m0 ∧ x2N = fN)

P{x2N = fN}
(4)

First we look at the relatively simple denominator of (4). Applying Theorem 1

yields

P {x2N = fN} = P{x2N ≤ (n+ 1/2)/N}− P{x2N ≤ (n− 1/2)/N}

= Φ(
1/2

Nh2
)−Φ(−1/2

Nh2
) + ω2N (

1/2

Nh2
)− ω2N (

−1/2
Nh2

) + o(
1√
N
) (5)

where the error ω2N(x) of the standard normal approximation at a midpoint x

is given by (2). Since

(1− x2){ϕ(x)− ϕ(−x)} = o(1)

as x → 0, the total error in (5) is o(1/
√
N) and hence, using the first-order

Taylor expansion Φ(x) = Φ(0) + xϕ(0) +O(x2),

P {x2N = fN} =
1

Nh2
ϕ(0) + o(

1√
N
) (6)

Likewise, using Theorem 1 we get for the numerator of (4)

P (x1N ≤ m0 ∧ x2N = fN) =
∫ u0h1
−∞

∫ 1/2N
−1/2N ψ(x;Σ/N)dx+ o(

1√
N
) (7)

Next, transform x according to z = Tx with

T =

(
1 − β
0 1

)
,
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where β = σ12/σ22 = Y /f. Since |T | = 1 and TΣT ′/N=diag(h21, h
2
2), (7) can

be rewritten as

∫ u0h1−βz2
−∞

∫ 1/2N
−1/2N ψ(z;TΣT

′/N)dz + o(
1√
N
)

=
∫ 1/2N
−1/2N

{
∫ u0h1−βz2
−∞

ϕ( z1h1 )ϕ(
z2
h2
)

h1h2
dz1

}
dz2 + o(

1√
N
)

=
1

N
Φ

(
u0h1 − 0
h1

)
ϕ(0)

h2
+ o(

1√
N
) (8)

Dividing (8) by (6) yields P0 ∼ Φ(u0) as N →∞. This concludes the proof.

The following corollary is a slightly different version of Theorem 3.

Corollary 1. Let u1 and u2 be two arbitrary constants (u1 < u2). Define

P12 = P (Y N + u1h1 ≤ ys ≤ Y N + u2h1). Then under the Lindeberg condition
it holds that as N →∞

P12 ∼ Φ(u2)−Φ(u1)

Comment. Although this corollary follows from Theorem 3, it should be noted

that a direct proof is as follows. By (6) and (7),

P12 =

∫ u2h1
u1h1

∫ 1/2N
−1/2N ψ(x;Σ/N)dx+ o(1/

√
N)

ϕ(0)/Nh2 + o(1/
√
N)

Because in the domain of integration x1 = O(1/
√
N) and x2 = O(1/N), x2 can

be set equal to zero without affecting the order of the error in the numerator.

In fact, the change of the integrand thus introduced is of order
√
N ; note

that
∣∣Σ/N

∣∣−1/2 = O(N). Hence, the corresponding change of the numerator

is of order 1/N. Setting x2 = 0 in the integrand and using Nσ11 = 1/h21 and∣∣Σ/N
∣∣1/2 = h1h2, we obtain

P12 ∼
1
N

∫ u2h1
u1h1

exp(−x21/2h21)dx1
2πh1h2ϕ(0)/Nh2

= Φ(u2)−Φ(u1)

This concludes the proof.

3. Asymptotic distributions in rejective Poisson sampling

Consider now Hájek’s rejective Poisson sampling design. His estimator for the

population mean, say Ŷ Haj , is defined as Ŷ PO given the condition that ns = n

where

Ŷ PO =
1

N

N∑

k=1

ak
yk
πk

ns =
N∑

k=1

ak.
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The πk stand for the first order inclusion probabilities and satisfy
∑N
k=1 πk = n.

For further details, see Hájek (1964).

In analogy with the previous section xk and ΣN become

xk = ak

(
yk
πk

1

)

ΣN =
1

N

N∑

k=1

πk(1− πk)




y2k
π2k

yk
πk

yk
πk

1


 .

Suppose that the matrix ΣN converges to the invertible matrix Σ as N → ∞.
Furthermore, define PHaj by

PHaj = P (Ŷ Haj ≤ m0)

m0 = Y N + u0h1

h21 =

∣∣Σ
∣∣

Nσ22
(=

1

Nσ11
),

The following theorem generalizes Theorem 3 for unequal inclusion probabilit-

ies.

Theorem 4. As N →∞ it holds under the Lindeberg condition that PHaj ∼
Φ(u0). When N is sufficiently large, h21 can be approximated by

h21N =
1

N2

N∑

k=1

πk(1− πk)(
yk
πk
− µy∗)2

µy∗ =

∑N
k=1(1− πk)yk∑N
k=1 πk(1− πk)

.

Proof. The normality part of the proof runs along the same lines as that of

Theorem 3

PHaj = P (x1N ≤ m0 |x2N = fN)

=
P{x1N ≤ m0 ∧ x2N = fN}

P (Nx2N = n)

∼ Φ

(
m0 − Y N

h1

)
= Φ (u0)

In order to show that h21 can be approximated by h
2
1N given in the theorem,

note that

h21 =

∣∣Σ
∣∣

Nσ22
∼

∣∣ΣN
∣∣

NσN,22
(9)

Define

γ =
N∑

k=1

πk(1− πk)

αk = πk(1− πk)/γ.
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Furthermore, we have

∣∣ΣN
∣∣ =

γ2

N2
{Σαk

y2k
π2k
− (Σαk

yk
πk
)2}

=
γ2

N2

N∑

k=1

αk

(
yk
πk
−Σαk

yk
πk

)2
(10)

NσN,22 = γ, (11)

Now it follows from (9)-(11) that

h21 ∼
∣∣ΣN

∣∣
NσN,22

=
1

N2

N∑

k=1

πk(1− πk)
(
yk
πk
− µy∗

)2
= h21N .

This concludes the proof.

It is noteworthy that approximation h21N in Theorem 3 is equivalent to variance

approximation (8.10) of Hájek (1964). His derivation is based on an approx-

imation of the second order inclusion probabilities πkl leading to some tedious

algebra. Also note that the actual inclusion probabilities, say π∗k, for con-

ditional Poisson sampling need not be equal to the πk corresponding to the

unconditional Poisson sampling design. As pointed out by Hájek (1964), only

asymptotically it holds that π∗k/πk → 1 as γ →∞. This is a maybe somewhat
counterintuitive difference with equal probability sampling described in Section

2 where π∗k = πk = fN (k=1,...,N).
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