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Summary 

Tables resulting from estimations for each individual element must often 

be adjusted. The adjustment with the aid of Lagrange m~ltipliers is in 

genera1 preferred above the application of the socalled RAS method. In 

contrast with the public opinion the Lagrange method appears to consume not 

much more computer time and centra1 memory as the RAS method; for 

pronounced rectangular tables the Lagrange method appears to be far more 

economic. This can be obtained by partitioning the resulting matrix 

equation in such a way that we can get rid of the many zero's. With the 

Lagrange method it is alco possible to adjust the estimations of the row and 

column sums. 

Some special cases of tables to be adjusted are discussed: additional 

constraints (which is important for input-output tables with estimations 

for the sum of the values of products which may be substituted for each 

other), identical corresponding row and column sums, two mutual connected 

tables (for instance so-called make and use matrices needed for compiling 

input-output tables), three-dimensional tables and three-dimensional tables 

with identical corresponding row and column sums (for instance regional 

input-output tables). 
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1. Introduction 

Matrices in which the row and column sums are known quite accurately but 

of which the information about the contents is incomplete or less detailed 

are a regular occurrence. The consequence is a matrix in which the row and 

column sums do not correspond with the information about these sums; such a 

table is inconsistent. 

The situation described above can be encountered in many fields. It is 

very characteristic of sample surveys and surveys which are very sensitive 

to various possible errors. It can also occur in the compilation of 

input-output tables or in the construction of input-output tables from a 

recent version in countries which do not compile them annually. Besides, 

the 'inconsistency' of input-output tables for a future year on the basis 
1 

of one scenario or another should not always be considered as a problem . 

In practice inconsistent tables are usually adjusted to the desired 
2 

sums with the aid of the popular RAS method. Stone used to apply this 

method to adjust old input-output tables to the sums of a new year. He 

justified it by the assumption that technological changes that had occurred 

could be represented in terms of either columns or rows. For the initia1 

compilation of input-output tables or the correction of survey or 

statistica1 errors this reasoning is obviously not valid. In addition, 

more recent research has proven Stone's original justification quite 
3 

unsound . The RAS method multiplies the rows and columns by certain 
factors in an iterative process. Consequently, the relations between the 

respective elements are not usually interrupted al1 that drastically within 

one row or column. 

In addition to the RAS method there is the theoretically much more 

elegant method of adjustment with the aid of Lagrange multipliers. In this 

method, the rows and columns are multiplied by factors in such a way that 

the deviation from the original elements is kept to a minimum. Furthermore, 



the confidence with which the values of the elements are determined can 

also be taken int0 account. On the face of it, therefore, it is very 

surprising that this method is not applied much more widely in practice. 

The reasons behind preference for the RAS method are: 1. it is easy to 

programme; 2. it involves less computer time; 3. it takes up less space in 

the computer's centra1 memory (with the use of Lagrange multipliers, the 

total available centra1 memory capacity is often on the verge of being 

exceeded which leads to drastic increases in the amount of computer time 

needed); 4. in many cases, the results of the two methods turn out to be 

more or less comparable. Ideally, the method with the Lagrange multipliers 

should be opted for in the many cases where 2 and 3 are irrelevant; 

however, it seldom is. 

The present paper demonstrates that the calculation time required for 

Lagrange multipliers can be drastically reduced, so that in nearly al1 

realistic cases, the Lagrange multipliers wil1 require much less centra1 

memory capacity and computer time than the RAS method. The reduction is 

achieved by means of partitioning the system to be solved and subsequently 

transforming it into a symmetrical system of equations. Some aspects of 
4 

this paper were in fact already known to some people , but it had never 
= ,  6 ,  ' got as far as the literature, see e.g. 

This paper also looks int0 the consequences of certain additional 

restraints and elaborates the special case of the additional condition met 

during the compilation of input-output tables: viz. some row sums being 

identical to corresponding column sums. Possible applications of Lagrange 

multipliers in higher dimensional tables are alco examined with an example 

of how the method workc Cor three-dimensional tables. The situation of the 

additional restraint that a certain row cum is identical to the 

corresponding column sum is alco worked out. This situation is 

characteristic of, among other things, the adjustment of regional input- 

output tables to overall national tables. 



2. Lagrange multivliers 

The method is applied in a situation with a matrix with elements a a 
ij ' 

column vector r with desired row sums r and a row vector c' with desired 
i 

column sums c . The following should then apply 
j 

In practice, this requirement is often not fulfilled. 

Let US assume that the relative confidences of elements a are known; i j 
they are represented by g We now look for factors fij so that 

ij ' 

Equation (3) can also be written as 

n m 2 2 / gij = min. 



Restraints ( 4 ) ,  (5), and (6) can be summed up in the minimization of the 

Lagrangian L: 

+ 1 Pj ( c  j - 1 fij a ) = min. 
j =l ij i=l 

The partial derivatives of the Lagrangian with respect to X and p give k 1 
equations (5) and (6) respectively. The partial derivative with respect to 

the unknown factor f results in 
k1 

Therefore 

from which it follows that 

where s is defined as the difference between the existing and the desired 
k 

cum of the elements of the kth row. Similarly, we find 



where d is the difference from the desired column cum. Equations (10) and 
1 

(11) can be combined in matrix notation 

where i is a so-called summation vector of the correct length, consisting 

completely of ones, and the circumflex indicates a diagonal matrix with 
A 

elments of the vector concerned on the diagonal. The diagonal matrices p 
A 

and q comprise the row and column sums respectively of the weight matrix G. 

The rank of the matrix on the right-hand side of (12) is lower than its 

order, so that the matrix is singular. This is easy to understand: the 

diagonal matrices contain information about the compilation of matrix G; 

even if there lacks one row or column the contents of them can be 

determined simply from a linear -combination of the other rows (or columns), 

which indicates linear dependency in G. One consequence of this is that 

there are an infinite number of solutions to (12). We opt for the solution 

whereby the contribution of the first multiplier in (12) to the other 

equations in the system of (12) is zero. This can be done by cancelling the 

first row and column of the matrix in (12) and cancelling the first element 

of both the vector s and the vector X .  (Another row and column could also 

be opted for, e.g. the last ones). 

The system in (12) is the classic form in which the Lagrange multipliers 

are sought to be calculated. Once they have been calculated, they are 



substituted in ( g ) ,  and the desired 'consistent' matrix can be subsequently 

determined with the aid of factors f. . 
=J 

3. Transformation and ~artionine 

As the rank is equal to the sum of the row and column dimensions of the 

matrix to be adjusted minus 1, the system of equations is in danger of 

quickly becoming unmanageably large. Further examination reveals that the 

matrix contains many zeros and has a number of specific features, which can 

be used to an advantage in solving the matrix. 

First of al1 we make use of the fact that the weight matrix G consists 

completely of nonnegative numbers, so that real square roots of its row and 

column sums in p and q exist. We transform the system in (12) as follows: 

Here the square root of the matrix applies to a diagonal matrix co that the 

(reciprocals of) the square roots of the individual diagonal elements have 

to be taken. Elaboration of (13) results in 

where H is defined as 

(14) can also be written as 



As the system in (14) has become independent due'to the cancellation of a 

row and a column, the matrix on the left-hand side of (16) will not 

generally be singular and its inverse will therefore exist. 

The partitioned inverse gives 

( I - H H' )-l - ( I  - H H '  

- H' ( I - H H' )-l I +H' ( I - HH' 

v " S s  

From which follows 

"4 -1 " - %  -1 "-4 d p X = ( I - H H ' )  p S - ( I - H H ' )  H q  

-1 " - t2 " -4 = ( I - H H ' )  ( p  S - H q  d )  (18) 

Having solved system (17) by partitioning it turns out that multipliers p 

can be determined directly from X .  Therefore we only have to solve one 

partition of the system. 



Numerically speaking, the inversion of a matrix is less stable than the 

solution of a system, while it takes costs more computer time. It is 

therefore sensible to rewrite (18) as 

The right-hand side can easily be constructed from the known data; the 

matrix on the left-hand side is symmetrical and posistive-definite. There 

are efficient space-saving algorithms for solving symmetrical matrices. 
8 

Such an algorithm for a positive-definite matrix was found the IMSL 

library . 

4. Nurnerical asoects 

In the RAS method, which is less desirable on theoretica1 grounds, the 

required memory space for vectors and matrix for an n x m -matrix is 

n x m + 2 n + 2 m. If the Lagrange multipliers in (20) are calculated by 
8 

means of the Cholesky decomposition , the required memory space is 
2 2 

% ( n -  1 )  + % ( n - l ) , v e r s u s  ( n + m - 1 )  + 2  ( n + m ) f o r t h e  

classic solution. Obviously it makes sense to choose n C m, by transposing 

the matrix i£ necessary. The factor ( n - 1 ) is due to the fact that not 

al1 n multipliers have to be calculated. 

7 
If we take the matrix in Van der Ploeg's paper as an example, with 

n = 40 and m = 150, the required centra1 memory space according to the RAS 

method, the classic solution and the solution presented here is 6380, 36101 

and 780 addresses respectively. The classic solution scores much lower than 

the RAS method in this area, whereas the method presented here does 

considerably better. 

As far as computer time is concerned, the RAS method involves roughly 

4 k n m elementary calculations, where k is the number of iterations 
3 (usually somewhere around 30). The classic solution takes - ( n + m ) / 3 

3 calculations and the solution presented here - n / 3. For the above 
example, the ratio of the required calculation time is 35 : 100 : 1. The 



method presented here appears to be considerably cheaper, but this is in 

fact a greatly distorted impression as the reading in of the data is not 

taken into account. In the method presented here it may easily be necessary 

to read in the data twice for large matrices, in additon to reading in the 

original matrix, and sometimes the weight matrix will have to be 

transposed, involving two more reading-in and writing-to-disk processes. 

However, the whole matrix would then no longer fit in the centra1 memory so 

that in the RAS method part of the matrix will have to be reread in for 

each iteration, while for the classic solution and the Lagrange-multipliers 

method the situation will in fact be hopeless. Taking int0 account the time 

the computer needs for reading in the data, the new procedure is even 

better than stated above. Only in the case of (nearly) square matrices 

which only just fit in the centra1 memory of the modern large computers 

will the RAS method function better as far as computer time is concerned. 

For a 450 x 450 -matrix, for example, the ratio of the RAS method to the 

improved method is 4 : 5 .  

For a large computer with a centra1 memory of 250 kwords it may be 

assumed that at least 200 kwords are available for the arrays in a small 

program. This means that a matrix whose smallest dimension is less than 630 

can be processed. When the algorithm is applied on a computer with a 

virtual memory it should be verified that the available part of the centra1 

memory is indeed sufficient; if it is not, the required computer time may 

increase dramatically as parts of the system to be solved will keep on 

being read in iteratively from the virtual memory. 

5 .  The weight matrix 

The weight matrix can be compiled in various ways. If the confidence 

intervals for every element of the matrix to be adjusted are known, they 

can be used to compile the weight matrix. If the matrix to be adjusted in 

is based on a relatively small unbiased sample, it often turns out that the 
'> 
L 

squares of the elementen, a , should be taken. 
i j 

It is not unusual for elements with larger values to be estimated more 



accurately in the compilation of input-output tables. This varying 

accurracy could be expressed by chrosin~ the elements themselves as 

weights. As this would lead to an adjustment in the wrong direction in the 

case of negative elements, the absolute values la.. l should be taken. 
1J 

Obviously it is also possible to choose al1 the weights identically. 

Substituting (18) and (19) in (g), we then get: 

which can be called an additive adjustment. Here it is still assumed that 

the row dimension is smaller than the column dimension; if it is the other 

way around, the sum of the differences from the row sums, s is replaced i ' 
in (21) by that of the differences from the column sums, d . It can be 

j 
seen directly from (21) what happens if the sum of the colomn sums and row 

sums is not identical. The matrix is then simply adjusted in in such a way 

that the sum of the column sums is correct. The last row cum is 

disregarded. 

In contrast with the RAS method, in the Lagrange method the sign of the 

elements can change. This is easy to recognise in he special case of (21). 

In practice, with l a. . l  or a 2, this is very rare, however. I£ this is 
I J  i j 

unacceptable, the whole procedure can be carried out again when an opposite 

sign has been established. The weights of the elements concerned should 

then be set at zero (i.e. dclared completely reliable) and certain values 

should be chosen for the elements themselves ( e . g .  they could also be set 

at zero). 

6. Uncertainties in the row and column sums 

In formulating the problem, we have assumed that the row and column sums 

are known with absolute certainty. In practice, this wil1 by no means 

always be the case. It would be just as justifiable to change the row and 

column sums. The most desired solution is a simultaneous adjustment of the 



contents of the matrix and the ultimate row and column sums, and to do this 

in such a way that the respectiv- confidentialiti s are taken int0 account. 

The solution to this problem is completely analogous with the formulation 

of the problem in chapter 2. The matrix to be adjusted should be 

concatenated with the row and column sums, while assigning a negative sign 

to these sums. The new matrix to be adjusted in therefore has dimensions 

( n + 1 ) x ( m + 1 ) .  After the adjusting process, the row and column 

sums of the original n x m part of the matrix are meant to correspond with 

the row and column added. This implies that the new objective functions, r 

and c respectively, are vectors with only zeros. 

7. Additional restraints 

It is quite usual for extr a inform .ation about parts of th ie matrix t 

adjusted to be available. Mostly, this information wil1 relate to the sum 

of some specific elements of the table. (An example of such a situation is 

found in the construction of an I0 table with rough etimations for products 
9 

which can be substituted for each other). Morrison and Thumann approached 

this problem by introducing a new set of Lagrange multipliers v .  The 

resulting system is also suitable for computer-technica1 simplification. 

Suppose that the above-mentioned table A with elements a has v 
i j 

additional restraints. These additional restraints state that for v sets U 
h 

with pairs of numbers (i,j), the cum of the elements a. with (i,j) E Uh 
l i  

is given by s. This implies that restraints ( 3 ) ,  (4) and (5) should be 

extended by the following restraint 

which leads to the following Lagrangian 



The partial derivative with respect to f now gives k1 

where fkl ,h equals one when (k,l) is an element of the set U and zero h ' 
in al1 other cases. The equation now to be solved is 

Substitution of this in ( 4 ) ,  (5) and (22) results in a system of 

simultaneous equations: 

( * -  1 + + 1 uh gil = dl 
i=l h-l 



The above equations can also be expressed in matrix notation. This gives 

a matrix equation where the matrix M to be inverted is composed of 

3 x 3 = 9 submatrices 

-1 
The inverse, too, N = M , can be considerd as being composed of 9 

submatrices 

For submatrices N we now find the following expressions 
i j 



In the set equations of (31) occur three matrix inverses, viz: 8, n, and 
- 1 

M33 
. The dimensions of the matrices to be inverted depend on the 



dimensions of the submatrices on the diagonal of (29). The structure of the 

submatrices to be inverted also depends on the form of these submatrices. 

Both the form and the dimensions of the submatrices in (29) are determined 

by equations (26) - (28). Equations (26) and (27) give diagonal submatrices 
which themselves are diagonal matrices. The diagonal submatrix following 

from (28) can take on any form, but usually turns out to be a sparse 

matrix, and often even a diagonal matrix. 

The rearrangement of equations (26) - (28) in a suitable order, may yield 
a matrix equation that is suited for the partitioned solution, as in (31), 

to be carried out optimally by a computer. When al1 three diagonal 

are themselves diagonal matrices, Mj3 will obviously also be a diagonal 
- 1 submatrices matrix, while the matrices iY and n-' can in principle be 

completely filled. In that case the order of (26) - (28) should be chosen 
in such a way that the dimensions of M become maximum, while the order of 

3 3 
the other two equations is usually irrelevant. Therefore, if v > m we 
choose the order (28). (26), (27). This situation will be most common in 

practice; the order of the last two is based on the consideration that this 

will link up with the terms derived in the preceding chapters for problems 

without additional restraints. 

There is one exception to the above mentioned order preferences: if the 

two largest diagonal submatrices both comprise more elements than the 

centra1 memory of the computer can cope with, the order (26), (27), (28) or 

(26), (28), (27) may sometimes be preferable. In this situation M and M23 
- 1 32 

are often sparse matrices, which can mean that n becomes also a sparse 

matrix. The inverse of n-' can then be determined with the aid of special 
1 o 

algorithms for sparse matrices , or sometimes even by making use of the 
- 1 specific structure of n . Which of the two orders is preferable then 

of depends on the structure of the submatrix n-' which can be obtained. 

When at least one element a the matrix to be adjusted is subjected to 
k1 

more than one additional restraint, this will result in a diagonal 

submatrix that is no longer a diagonal matrix but often still symmetrical. 

If the number of elements in this submatrix is such that there is enough 

space in the cenral memory to invert an (non)symmetrical matrix with that 

number of elements, the order (28), (26), (27) is preferable. If there is 



not enough space, the Same considerations apply as in the case of the 

diagonal matrices where the orders (26), (27), (28) or (26), (28), (27) are 

preferable. 

In practice, usually v < m, while there is enough space in the centra1 
memory for the inversion of the v x v -matrix. Taking the above 

considerations int0 account, the system should be solved in the order 

(28), (26), (27). This leads to the following matrix equation: 

Here the definition of P, Z and G is the Same as in (12). The dimensions 

of submatrices X and Y are v x n and v x m respectively and can be filled 

completely. In most cases however, they wil1 be sparse. The element (k,h) 

of X contains the sum of the weights belonging to the kth column of A in as 

far as pairs of numbers (k,j) are part of the set U Submatrix Y is 
h ' 

composed in analogy with X. Submatrix Z contains the cum of the weights of 

the elements with indices that are part of the subset U on the diagonal 
h 

element (h,h). If no pair (i,j) is part of more than one subset U then 
A h ' 

Z is a diagonal matrix z. If some pairs (i,j) do occur in more than one 

subset, then submatrix Z als0 contains off-diagonal elements. Off-diagonal 

elements (k,l) in Z contain the cum of the weights belonging to the 

pairs of numbers which are part of both subset U and U 
k 1 ' 

-1 Just as in (13), we can construct a transformation matrix r 

This can be used to transform (32) 



which can also be written as 

M < = a  

This equation can be solved by inverting matrix M  

The form of N is given in (31). If the submatrices of (35) are substituted 

for submatrices M in (31), we then find for %, G, n and A: 
i j 



The terms for n and A are also found in (18) and (19); these can be put to 
good use in developing an algorithm. From (37) and (31) the transformed 

multipliers E can now be determined: 
1 

Instead of solving system (35) we need only solve the following system for 

where 



and 

= J  - E a)21 - 
F @31 

- 1 
= J - F F f -  ( E - F H ' )  ( I - H H ' )  ( E f - H F ' )  

The multipliers can be determined analogously 
2 

just as ( 3 



Solving the symmetrical system of equations in (32) (assuming that J is a 

symmetrical submatrix), which is of the order ( n + m + v - 1 ) ,  now comes 

down to solving the symmetrical system in (40) which is of the order v. 

However, in order to determine matrix H in (40), which is of the order v, 

it is necessary first of al1 t- determine the symmetrical matrix Q, which 

requires a matrix inversion of the order ( n - 1 ) .  Part of the 

significance of this partitioning lies in the fact that in many cases the 

system, including the required inversions, can be solved without the 

virtual memory room having to be used. This means that a problem which was 

initially too large to be solved at reasonable computer costs can be 

reduced to more acceptable proportions. 

In practice, it may occur that there are so many additonal restraints v 

that the order of matrix H is too great to solve the corresponding system 

within the centra1 memory. As mentioned above, either (26), (27), (28) or 

(26). (28), (27) should be preferred to the case worked out above for 

(281, (26), (27). 

For the first alternative, (26), (27), (28), instead of (35), a permuted 

form of it has to be solved 



The s o l u t i o n  t o  t h i s  system obviously leads  t o  the  Same r e s u l t s  a s  i n  

(40) - (44) ,  t h i s  so lu t ion  can be w r i t t e n  i n  another form, however: 

and 

a p = a2 - va na + va na F. .J-'- a, - E' J-I  a l 

where 

- 1 
Q ~ = ( I - F # J  F ) - '  

and 

- 1 
v a = H - E ' J  F 

Having solved (46) ,  t1 and t3  can be computed 

- 1 - - na ( va' t 2  - &3 + F' J al ) 



The second alternative, ( 2 6 ) ,  ( 2 8 ) ,  ( 2 7 ) ,  gives the following solution 

which can also be written as 

And 5 and can subsequently be computed 1 3 

In the first alternative order we are confronted with the calculation of 
- 1 b 

inverses J and na, in the second only with n . These matrices are usually 
symmetrical and often sparse. It is sometimes possible to calculate the 



inverses directly from the special form. Otherwise the algorithms for 

inversion specially aimed at sparse matrices can be used. The NAG 
1 1  

library , for example, includes Paige and Saunders' algorithm, which 

makes use of the co-called Lanczas process. 

8. Tdentical row and column sums 

In compiling some tables, input-output tables for example, special 

situations sometimes arise: in addition to estimates about the contents, 

(independent) estimates are available for the column and row sus, and 

furthermore a number of column sums are required to be identical to row 

sums with Same number. This is a special case of the additional restraints 

described in the previous chapter. 

These assumed additional restraints can be described by 

In this case, this is the analogue of (22). The row and column sums are 

thus put in the nth row and the mth column with a negative sign (see 

chapter 6). In consequence, vectors r and c consist entirely of zeros. This 

leads to the following Lagrangian 

- i vh ( fhm k - fnh a* ) = min. 
h=l 

For the partial derivatives we find 



where 6 is the well-known Kronecker delta and q is somewhat similar to 
i j i j 

Heaviside's step function: i I j qij = l; i > j =+ 
'ij 

= O. Having set 

the partial derivatives equal to zero, we get the following equation 

Substituting (62) in ( 4 ) ,  (5) and (58) gives 

Equations (65a), (65b) and (65c) are the analogues of (26), (27) and (28) 

respectively. In (65), the Kronecker deltas with index h are always zero 

since h < n 5 m; for the Same reason the 7-functions with index h are 

always one. 

With the aid of (65a), submatrix X can be inserted in (32): 

= O, al1 other (i,j) 1 

and (65b) gives the composition of submatrix Y: 



A 

Here, mat r ix  Z i n  ( 3 2 )  is  reduced t o  a diagonal  matr ix z ;  t h e  elements of z 

are given by 

and subvector  u i s  given by 

Figure 1 shows where the  nonzero elements i n  equat ion (32 ) '  and t h e r e f o r e  

a l s o  i n  ( 3 5 ) ,  can be found. 

1. The pattern of equation M = 0< 
n-l=& m=8. v=3 

<EI 227261 

I n  chap te r  7 we switched t o  so lv ing  t h e  smal le r  system (40) i n s t e a d  of  

t h e  l a r g e  system (35 ) .  Matrix C i n  ( 4 0 )  can be determined wi th  t h e  a i d  of 



(41); but i2 must be known. In this case 

where n is therefore a symmetrical matrix. The order of n is greater than 
that of E but considerable smaller than that of M. Here, the order of n is 
therefore more or less normative for the required computer capacity. 

9. Two different matrices with identical corresponding row and column sums 

In the compilation of input-output tables according to the SNA 
12 

guidelines , two matrices, the make and use matrices, are compiled. 

These two matrices bear some relation to each other: 1. some of the 

corresponding row sums are identical; 2. some of the corresponding column 

sums are identical; 3. the total-genera1 is identical for both matrices. If 

these two matrices are considered as submatrices of a super matrix, the 

situation can be considered as a special case of the additional restraints 

in chapter 7. 

We have an nl x ml -matrix A with elemants a 
1 ijl1 of which elements 

a and a are the negative values of the column and row sums 
"ijl iml l 
respectively of the other elements. Analogously, we also have an 

n2 X m2 -matrix A with elements a 
2 ij2' 

These matrices must have the first 

v row sums and the first v column sums in common. The additional 
r C 

restraints can therefore be formulated as 

Figure 2 gives a schematic illustration of the composition of the super 

matrix. The Lagrangian for this case can be compiled from expressions ( 3 ) ,  

(49), (59) and (70): 



2. Schematical representation of the supermatrix 
n,=& rn.=9. n,=8. m,=ll. v.=3, v,=5 

ces 2 2 7 2 6 2  

Here, multiplier v makes sure that the total-genera1 of both subtables is 
12 

equal . 



This leads to the following partial derivatives: 

a L 
- =  

2 
( fklx - ) aklx ' gklx - 'kx aklx - 'lx %lx 

+ 
afklx 

- Y 
k1 ( aklx 'lm, 'x1 - %lx 'lm, 'x2 ) %, + 

- v12 ( arlx 'kn, 'lm, 6x1 - %lx 'kn, 'lm, &x2 ) + 

- Y 
13 ( aklx 'kn, 'x1 - %lx 6kn2 'x2 ) %vc 

which give the following equation 

+ Y - 6 'kx + 'lx ki ( 'lm1 'x1 lm, 'x2 ) 'Ikv, 
+ 

+ Y 12 ( 'kn, 'lm, 6x1 - 6 kn, &lm, 'x2 1 

+ v 13 ( 'kn, 'x1 - 'kn, 'x2 ) 'lvc ( 'klx - l ) %lx (73) 

Substitution of (73) in (49) and (5) give the following equations to be 

solved 

% 
+ Y 'kx "jx ki ( 'jm, 'xi - &jrn2 'x2 ) 'h, + 

j =l 

+ Y 12 ('kn, 'jm, 'x1 - 6 kn, 'x2 1 + 

+ Y j 3 ( 'kn, 'x1 - 6in2 'x2 ) "vc gkjx = 'kx 

+ Y 12 ( 'in, 61ml 'x1 - 6 in, 'lm, 'x2 ) + 

Equation (73) should subsequently be substituted in (70). As v is r 
smaller than n, or n, and as v is smaller than ml or m,, the products of 

C 



the Kronecker deltas in (72) are zero. The substitution therefore leads to 

*k1 gkm, l - 'k2 gkm2 2 f 'ml l gkml l - 'm22 gkm22 + 

+ Y 
k1 ( gkmll 'gkm22 ) = a  km22 - a kmll (k s v,) (76a) 

n gnlli - 'n22 f 'li gnlli - '12 gn212 + 

+ V 
13 ( gnlll + gn212 ) = a  

- a (k r v,) (76c) 
n212 nlll 

Of the above equations, (74) leads to n = nl + n2 equations, (75) to 
m = ml + m2 equations and (76) to v = v + v equations. In most cases, 

r C 

n < v < m so that a solution to this simultaneous system must be sought in 

an analogy with the matrix equation (53) so that the special structure can 

be used for calculating n. We then get 

The elements of (77) are defined as follows. G and G2 are the weight 
1 

matrices belonging to A and A respectively; the dimensions are thus 1 2 A A 

nl x m, and n2 x m2 respectively. Diagonal matrices p and p are the 1 2 A A 

respective row sums of the weight matrices G and G while both ql and q 
1 2 ' 2 

contain the corresponding column sums. 



A 

From (76a)  it follows that elements z of zl are given by 
lkk 

A 

Matrix z consists of only one element, 2 =2111 
whose value follows from 

(76b) 

A 

The elements of z follow from (76c) 
3 

Matrices X are sparse matrices with a special structure. Matrices X 
i j i1 

contain only nonzero elements diagonally from the top left-hand corner: 

Matrices X are in fact vectors; only the bottom element is nonzero 
i2 

Matrices X contain only nonzero elements on the bottom row 
i3 

Matrices Y are also sparse matrices, the forms of which are comparable 
i j 

with those in Xij. From (76) we find that 



The elements of subvectors ~1 on the right-hand side of (77) follow 

from ( 76 ) :  

Figure 3 is a schematic representaion of equation (77) .  The composition 

of equation (77) is comparable with that of equation ( 53 ) ;  this is also 

obvious from the rough similarity between figures 1 and 2. We can solve 

system (77) by the Same methods used for system (53) .  This means that we 

should carry out the Same steps as (53) - (60). This reduces the system of 
equations to a number of multiplications, an inverse of the order 

( vr + V + 1 ) and the solution of a considerably reduced system of the 
C 

order ( n - 1 ) .  By employing the knowledge about which parts of the 

submatrices are zero by definition, the number of steps can be greatly 

reduced. In addition, the calculation of the term n can be simplified. 

Just as in chapter 8, here n has the Same form as in ( 57 ) ,  but here J is 

a identity matrix. 



3. The Pattern of equation (77): the dimensions are mentioned on the left-hand side 
n -1=5. m =9. n+ m.=ll. v =3. V =5 



It is relatively easy to see from figure 3 that a number of products of 

submatrices in (82) result in zero-matrices, so that (82) can also be 

written as 



The elements of the submatrices can be determined by combining equations 

(82), (53), (80) and (78), +ich results in: 

As the bottom right-hand submatrix of (83) is a diagonal matrix, its 

inverse can be easily calculated. In order to calculate íì we now only have 

to invert the symmetrical top left-hand matrix of ( 8 3 ) .  The calculation of 

n therefore requires only the inversion of a symmetrical matrix of the 
order ( v + l ) .  r 

This chapter has demonstrated how the original system of equations, which 

is of the order ( n, +n2 + v + 1 + v + ml + mz ) ,  can be reduced to a 
r C 

symmetrical system of the order ( n, + n, ) .  To show just how important 

this is, let US take a not unrealistically large example. Say 

nl = n, = 300, ml = m, = 2500, vr = 250 and v - 2350. The original system 
C 

then contains 7700 equations with just as many unknowns; such a system is 

hardly manageable, even by today's super computers. Having applied the 

methods described here, al1 that remains to be solved is a symmetrical 

system of the order nl + n, = 600; such a system may be considered large, 

but it can be solved within a reasonable time by a modern mainframe 

computer. 



Three-dimensional tables differ from two-dimensional ones in that the 

edges are planes instead of lines. When the row and column sums of a two- 

dimensional table are known, three planes with the row and column sums 

concerned wil1 constitute a set of constraints. These three planes can, 

with a negative sign, be stuck on to the three dimensional table. The 

missing ribs can be filled with sums of the planes at right angles to the 

rib (with unchanged sign); the missing corner is filled with the total- 

genera1 of the whole table (again with the opposite sign). In this extended 

table, the sum of the elements in a bar at right angles to an edge should 

equal nul. In practice it often turns out that this requirement is not met. 

With the aid of Lagrange multipliers, factors f can be determined in 
i, i2 i, 

such a way that after multiplying the corresponding elements of the table 

by these factors (a three-dimensional Hadamar product ) ,  a new, 'minimally 

changed' table is created which does meet the requirements concerned. 

For an ( m, x mz x m3 ) table A with elements a ' , factors f 
i, i2 i, i, i2 i, 

should be calculated in such a way that 

The Lagrangian now takes the following form 



The only difference with (7) is that there are now 3 sets of Lagrange 

multipliers. The further caculations are completely analogous. 

and therefore 

Substituting (88) in (85) we get the simultaneous system of equations (89) 

These equations can be transformed into a matrix equation 



4. Matrix Wand the construction of vector.\. 
The first row and column of W have been removed to adjust the order of W to its rank 
m,=5. M+. m,=3 

where vector X is composed of subvectors X1, A 2  and A 3 .  Figure 4 shows 

where the nonzero elements of matrix W can be found. 

We can consider matrix W as a 3 x 3 -matrix with submatrices W as 

elements. Each of these submatrices can in turn be considered as being 



built up of 1, x 1, sub- submatrices. For el 

As matrix W is symmetrical, the whole matrix is determined by (91). To 

solve equation (90) the method in chapter 7 from equation (53) onwards can 

again be used. For the elements of the transformation diagonal matrix we 

choose 

r = w  
% 

j j llhh j j llhh 

and construct 



and 

and 

respectively. The system now to be solved is 

of which the form is comparable with (36). The diagonal of M consists only 

of ones. 

As stated in chapter 7, calculations can be reduced by choosing an order 

in which the largest submatrix after partitioning is inverted first, 

followed by the next largest. To link up with the equations in chapter 7, 

the largest matrix must therefore be placed at the bottom right; this has 

already been done in figure 4. Indices kl, k2 and k3 of g must be 
klk2k3 

chosen in such an order that ml r m2 1 m3. 

The partitioned solution to (96) was given in (31) and (53) - (60), be it 
that here matrix J is a unit matrix I. The original system, which was of 

the order ( ml x m2 + ml x mJ + m2x ma ) ,  has now been replaced by an 

inverse of the matrix n which is of the order ( m2 x m3 ) .  Although the 

orders of the problems have been reduced enormously, the new orders may 

still involve an insurmountable amount of calculation. Another view of n 
shows, however, that the problem can be further. reduced quite simply: 



- 1 
Due to the special form o£ F (see figure 4 j ,  íì turns out to take the form 

- 1 
of a block-diagonal matrix in the three-dimensional case. The matrix n 
consists of m, square matrices of the order ms. Elements 

5. The pattern of both matrix R 
and its inverse 52 -' 
m,=5. m,=3 

cbz 2 2 7 2 6 5  

- 1 
Figure 5 shows the form of matrix n . Due to its special form, the form of 
the inverse n is identical. To calculate n we can 'suf£ice' by determining 

-1 
the ml inverses of the m3 x m3 -submatrices n 

11 ' 



Eventually, only a system similar to the one in (55) remains to be 

solved. In this case it is a system of the order ( m, x m, ) .  

By way of example of a three-dimensional table, let US take a labour 

table with 79 occupational categories, 29 demographic characteristics and a 

regional classification into 12 areas. This results in a 80 x 30 x 13 

-table. Apart from various matrix multiplications, the main calculation 

work consists of the determination of 80 inverses of symmetrical 13 x 13 

-matrices and the solution to a system with a symmetrical 390 x 390 

-matrix. If the regional classification is increased from 12 to 44 areas, 

the table should be overturned to an 80 x 45 x 30 -table. Now 80 

symmetrical matrices of 30 x 30 have to be inverted and a system containing 

a symmetrical matrix of 1350 x 1350 be solved. 

Neglecting the computer I0 operations, the method using the Lagrange 

multipliers wil1 generally take many times the caculation time necessary 

for the RAS method. The calculation time with the Lagrange multipliers is 

dominated by the largest matrix to be inverted, which has dimensions 

ml x m2; the number of operations (multiplications, additions, equations) 

3 
is then approximately i ( m2 x m, ) + i m, For the RAS method. the 

number of operations is approxiamtely 3 i ml m, m,, where i is the number 

of iteration steps. Only when m, >> m23 do the Lagrange multipliers take 
less computation time than the RAS method, if 6 i m, > This situation 

occurs with very long flat tables ('shelves'). For that matter, the method 

with the Lagrange multipliers may offer advantages sooner if modern-day 

computers are used for the processing. In situations where not al1 the 

elements of the table fit int0 the centra1 memory simultaneously, part of 

the data have to be read in three times for each iteration in the RAS 

method. If the symmetrical system of the order ( m, x m, ) does fit into 

the centra1 memory, computer use can be cut back drastically due to the 

much lower number of I0 operations. So, if we do not neglect the I0 

operations, the Lagrange multipliers method may also be more advatageous 

than the RAS method with respect to computer use. 

Another advantage of Lagrange multipliers is that uncertainties in the 

calculations of the various elements can be taken int0 account, whereby 
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uncertainties are also permitted in the row and column sums. 

11. Identical row and column sums in three-dimensional tables 

We have already seen in chapter 8 that in compiling input-output tables 

there is often the requirement that a number of column sums should equal 

the row sums when the row an column numbers are the Same. In the case of 

regional input-output tables, this requirement is valid for every region, 

while the cum of al1 the regions of a certain cel1 must result in the 

national totals concerned. What we then get, therefore, is a three- 

dimensional table with in one direction (perpendicular to the planes of the 

regional tables) column sums identical to the row totals for a certain 

plane . 

The situation described above leads to an extra restraint to those 

formulated in (85) 

This means that a term has to be added to Lagrangian L in (86); the new 

Lagrangian L now becomes 

r = ~ -  1 - f a I" Yhi3 ( fhm2 i, %m2 i, mlhi, mlhi, 
) = min. (100) 

h=l i3=l 

The partial derivative now becomes 

Equation (101) can be substituted in (85) and (go), resulting in a system 

of equations 



+ X 2  + X 3  + Y  - 
(Xik3+ s:, k,' G 1 h -  vhk3 ) gmlhk3 

- 
('i2k3 hk3 hm, hk3 ) &m2k3 

This system can also be written in the form of (90). It now proves 

convenient to construct vector X from X', v, X2 and X3 successively. Here, 

therefore, matrix W is a 4 x 4 -matrix of submatrices W. . If we combine 
~ l j 2  

the second and third rows (and therefore als0 the second and third 

columns), the solution by means of partitioning is similar to that of 

3 x 3 submatrices. The indices of jl and j, are numbered 1, 2l, 22, 3 

accordingly. The composition of matrix W is identical to that in equation 

(91) in chapter 10 for corresponding indices jl and j2 where index 22 

here corresponds with 2 in (91). The elements of submatrices W and 
Z1j2 

W 
j1Z1 

now remain to be determined. In view of the symmetry, only the 

elements of the top triangle of W are given by (103) 



The position of the nonzero elements in W are shown schematically in figure 

6. 

The further calculation is completely analogous with (92) - (96). By 
partitioning matrix M int0 4 x 3 submatrices, the solution as presented in 

(31) and (54) - (60) can once again be used. As opposed to chapter 10, J is 
not a unit matrix here. Here, system (96) is of the order 

( m, x m3 + V X m3 + m, x m, + m, X m3 ) .  Via the partitioning process we 

are now confronted with the calculation of the inverse of a matrix of the 

order ( v x m, + m, x m3 ) ,  from which the solution of a system of the 

order m, x m3 will result. In many cases, modern-day computers will hardly 

be able to cope with the calculation of n, which requires an inverse of 
the order ( v x m3 + m, x m3 ) .  However, once again partitioning can 

greatly simplify this process. 



6. Matrix Wand the construction of vector .t 
The first row and column of W have been removed to adjust the order of W to its rank 
m,=5. m*. m ~ 3 ,  v=2 



If we write 0'' in (31) in the partitioned form, we find 

For the sake of simplicity we shall write this as 

- 1 
Figure 7 shows the form of n . 

7. The pattem of matrix R -' 
m,=5. m,=3. v=2 



Elements B 
221, 12hlh, of 8 are identical to elements w mentioned in 

11 bhlh2 
(98). For the other elements of 8 .  

61111 12hlh2 
= O 11 12 

= 
8111 1 h,h, &h1h2 - glm2h, glrn2h2 gm, lh, gml lh2 

'121, 12h1h2 = O l # l V 1, < m, (106) 

- - 
*l21 1 h,h2 glrn2h, %m2h2 

- - - 
'121 mlhlh2 g m, lh, g mllh2 

To get matrix íl we must invert n-'. For this we find 

There are two inverses in (107). Inverse 8 
- 1 

2 2 
must be computed from the 

block diagonal matrix and thereby becomes a block diagonal matrix itself. 

The inverse of the block diagonal matrix can be computed by inverting each 

ml symmetrical block with dimensions m3 x m3 separately. The other inverse 

that has to be computed in (107) is a completely filled symmetrical matrix 

with dimensions ( v x m3 ) x ( v x m3 ) .  

Here, too, the described method requires much more calulating time than 

the RAS method. However, it does have three advantages: 1. The adjustment 

takes p k - E  while the uncertainties with which the cells are calculated are 

taken int0 account; 2. uncertainties are permitted in the row and column 

sums; 3. for pairs of row and column sums that are required to be 

identical, two independent (different) estimates with different 

uncertainties can be given. The required number of operaations is 
3 3 

approximately [ ( m2 x m, )3 + ( v x ml ) + m, m, ] / 6. 



In the preceding chapters we have seen how to adjust two and three- 

dimensional tables to row and column sums, whether or not estimated with 

uncertainties, whereby additional rstraints can also occur. We may now 

wonder whether higher-dimensional tables can also be dealt with in this 

way. The method generally requires the calculation of sets of multipliers. 

The space in which these sets are defined (a hyper-plane) have one 

dimension less than the space of the set of cells in the table. This means 

that for a four-dimensional table, three-dimensional sets of multipliers 

wil1 have to be determined. A table of any realistic proportions would thus 

require the computation of an unrealistically large number of multipliers; 

for this reason, we shall not developt a method for such a case here. 

For the three-dimensional tables we assumed that the cum across one 

dimension was given by the table for every element of a side plane. It 

would of course be possible that instead of this, for one or more side 

planes the table gives the sum across two dimensions for every element of 

one rib. The method can be worked out for each of the three possible 

situations (one rib and two planes, two ribs and one plane, three ribs). 

Obviously this also applies for higher-dimensional tables with sums across 

the hyper-ribs; this is, however, only meaningful if the sought set of 

multipliers has a maximum two dimensions. Such situations are al1 so 

specific that they should only be worked out when they occur. 



Conclusion 

For the adjustment of two-dimensional tables the Lagrange method is by 

far preferred above the usually applied RAS method. Besides the advantage 

of the possibility to take int0 account the confidence intervals of the 

individual elements the Lagrange method is in genera1 far more economic in 

the need for computer capacity. 

For three-dimensional tables the Lagrange method will in genera1 demand 

more computing time than the RAS method. However, in the case of long thin 

tables ("shelves") the opposite may be the case. Nevertheless, the 

application of the Lagrange method is still sometimes preferred if there 

exist additional constraints. 

The adjustment of higher-dimensional tables with the aid of Lagrange 

multipliers will in genera1 require too much computing time for present day 

computers. Exceptions may be found for very smal1 higer-dimensional tables. 
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Available National Accounts Occasional Papers 

Fl ?xibility in the system of lational Accounts, Eck, R. van, 
C.N. Gorter and H.K. van Tuinen (1983) 
This paper sets out some of the main ideas of what gradually 
developed int0 the Dutch view on the fourth revision of the SNA. In 
particular it focuses on the validit and even desirability of the 
inclusion of a number of carefuìly cKosen aiternative definitions 
the "Blue Book" and the organization of a flexible s stem starting 
from a core that is easier to understand than the 1961; SNA. 

The unobserved economy and the National Accounts in the Netherlands, 
a sensitivity analysis, Broesterhuizen, G.A.A.M. (1983) 
This paper studies the influence of fraud on macro-economic 
statistics, especially GDP. The term "fraud" is used as meaning 
unreporting or underreporting income (e.g. to the tax authoritres). 
The conclusion of the analysis of rowth figures is that a bias in 
the growth of GDP of more than 0.5% is very unlikely. 

Secondary activities and the National Accounts: Aspects of the Dutch 
measuremént practice and its effects on the unoffikial economy, 
Eck. R. van (1985) 
In the process of'estimatin national product and other variables in 
the National Accounts a numier of methods is used to obtain initia1 
estimates for each economic activit . These methods are described 
and for each method various possibifities for distortion are 
considered. 

Comparability of input-out ut tables in time, Al, P.G. and 
G.A.A.M. Broesterhuizen (1685) 
In this paper it is argued that the comparability in time of 
statistics, and in ut-output tables in particular, can be filled in 
in various ways. &e wa In which it is filled depends on the 
structure and object o$ the statistics concerned. In this respect 
it is important to differentiate between coordinated input-output 
tables, in which groups of units (industries) are divided int0 
rows and columns, and anal tical input-output tables, in which the 
rows and coiunms refer to Komogeneous activities. 

The use of chain indices for deflatin the National Accounts, Al, 
P.G., B.M. Balk, S. de Boer and G.P. %en Bakker (1985) 
This paper is devoted to the problem of deflatin National Accounts 
and input-output tables. This problem is approacffed from the 
theoretical as wel1 as from the practica1 srde. Althou h the 
theoretical argument favors the use of chained vartia-k indices, 
the current practice of compilating National Accounts restricts to 
using chained Paasche and Laspeyres indices. Various possible 
objections to the use of chained indices are discussed and rejected. 

Revision of the system of National Accounts: the case for 
flexibility, Bochove, C.A. van and H.K. van Tuinen (1985) 
This paper examines the purposes of the SNA and concludes that they 
frequent1 conflict with one another. Consequently, the structure of 
the SNA sgould be made more flexible. This can be achieved b means 
of a system of a enerai purpose core supplemented with s ecTai modules. 
This core is a fufl-fledged detailed system of National Rccounts 
with a greater institutionai content than the present SNA and a more 
elaborate description of the economy at the meso-level. The modules 
are more analytíc and reflect special purposes and specific 
theoretical views. It is argued that future revisions wil1 concentrate 
on the modules and that the core is more durable than systems like 
present SNA. 

Integration of input-out ut tables and sector accounts; a possible 
soiution, BOS, C. v.d. ($985) 
In this aper, the establishment-enterprise or company problem is 
tackled gy taking the institutional sectors to which the establishments 
belong int0 account during the construction of input-output 
tables. The extra burden on the construction of input-output tables 
resulting from this approach is examined for the Dutch situation. An 
adapted sectoring of institutional units is proposed for the 
construction of input-output tables. The proposed approach contains 
perspectives on further specification of the institutional sectors, 
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households and non-financial enterprises and quasi-corporate 
enterprises. 

KA/08 A note on Dutch National Accounting data 1900-1984, Bochove, C.A. 
van (1985) 
This note grovides a brief survey of Dutch national accounting data 
for 1900-1 84, concentrating on national income. It indicates where 
these data can be found and what the major Aiscontinuities are. The 
note concludes that estimates of the level of national income may 
contain inaccuracies; that its growth rate is measured accurately 
for the period since 1948; and that the real income growth rate 
series for 1900-1984 may contain a systematic bias. 

NA/09 The structure of the next SNA: review of the basic options, Bochove, 
C.A. van and A.M. Bloem (1985) 
There are two basic issues with respect to the structure of t p  nex: 
version the UN System of National Accounts. The first is its size : 
reviewing this issue, it can be concluded that the next SNA must be 
'large ' in the sense of containin an integrated meso-economic 
stat~stical system. It is essentiaf that the next SNA contains an 
institutional system without the im utations and attributions that 
pollute present SNA. This can be acgieved by distinguishing, in the 
centra1 system of the next SNA, a core (the institutional system), a 
standard module for non-market production and a standard module 
describing attributed income and consumption of the household 
sector. 

NA/10 Dual sectoring in National Accounts, Al, P.G. (1985) 
The economic process consists of various sub-processes, each 
requiring its own characteristic classification when described from a 
statistica1 point of view. In doing this, the interfaces linking the 
sub-systems describing the individual processes must be charted in 
order to reflect the relations existing within the overall process. 
In this paper, this issue is examined with the s ecial refernce to 
dual sectoring in systems of National Accounts. eollowing a 
conceptual explanation of dual sectoring, an outline is given of a 
statistica1 system with complete dual sectoring in which the 
linkages are also defined and worked out. It is shown that the SNA 1968 
is incomplete and obscure with respect to the links between the two 
sub-processes. 

NA/11 Backward and forward linkages with an a plication to the Dutch agro- 
industrial complex, Harthoorn, R. (19851 
Some industries induce production in ot er industries. An elegant 
method is developed for calculating forward and backward linka es 
avoiding double counting. For 1981 these methods have been appfied 
to determine the influence of Dutch agriculture in the Dutch economy 
in terms of value added and labour force. 

NA/12 Production chains, Harthoorn, R. (1986) 
This pa er introduces the notion of production cains as a measure 
of the Eierarchy of industries in the production process. Production 
chains are sequences of transformation of products by successive 
industries. It is possible to calculate forward transformations as 
wel1 as backward ones. 

NA/13 The simultaneous compilation of current rice and deflated input- 
output tables, Boer, S. de and G.A.A.M. groesterhuizen (1986) 
This pa er discusses a number of aspects of the procedure according 
to wh& in ut-out ut tables are compiled in the Netherlands. A few 
years ago tgis metgod underwent an essential revision. The most 
significant improvement means that during the entire statistica1 
process from the processsing and anal SIS of the basic data up to 
and inciuding the phase of balancin tKe tables, data in current prices 
and deflated data are obtained simuftaneously and in consistency 
with each other. Data in current prices first used to be compiled and 
data in constant prices and changes in volume and prices used to be 
estimated only afterwards. With the new method the opportunity for 
the analysis of the interrelations between various klnds of data, and 
thus better estimates is used. 

NA/14 A proposal for the s optic structure of the next SNA, Al, P.G. and 
C.A. van Bochove (19g) 



Features of the hidden economy in the Netherlands, Eck, R. van and 
B. Kazemier (1986) 
This pa er presents curve results on the size and s~ructure of the 
hidden Eabour marker in tKe Netherlands. 

Uncoverin hidden income distributions: the Dutch approach, Bochove, 
C.A. van $1987) 

Main national accounting series 1900-1986, Bochove, C.A. van and 
T.A. Huitker (1987) 
The main national accountin series for the Netherlands, 1900-1986, 
are provided, along with a 6rief explanation. 

The Dutch economy, 1921-1939 and 1969-1985. A comparison based on 
revised macro-economic data for the interwar period, Bakker, G.P. den, 
T.A. Huitker and C.A. van Bochove (1987) 

Constant wealth national income: accounting for war damage with an 
a plication to the Netherlands,1940-1945,Bochove. C.A. van and 8 van Sorge (1987) 
The micro-meso-macro linkage for business in an SNA-compatible 
system of economic statistics, Bochove, C.A. van (1987) 

Micro-macro link for g o v e m e n t ,  Bloem, A.M. (1987) 
This paper describes the way the link between the statistics on 
overnment finance and national accounts is provided for in the 
Butch government finance statistics. 

Some extensions of the static open Leontief model, Harthoorn, R. 
(1987) 
fie results of input-output analysis are invariant for a 
transformation of the system of units. Such transformation can be 
used to derive the Leontief rice model, for forecasting input- 
output tables and for the caLiation of cumulative factor costs. 
Finall the series expansion of the Leontief inverse is used to 
descri 4: e how certain economic processes are spread out over time. 
Compilation of household sector accounts in the Netherlands 
National Accounts, Laan, P. van der (1987) 
This a er provides a concise description of tne way in which 
housegoPd sector accounts are compiled within the Netherlands 
National Accounts. Special attentron is paid to differences 
with the recommendatrons in the United Nations System of 
National Accounts (SNA). 

On the adjustment of tables with Lagrange multipliers, Harthoorn, R. 
and J. van Dalen (1987) 
An efficient variant of the Lagrange method is given, which uses no 
more computer time and centra1 memory then the widely used RAS 
method. Also some special cases are discussed: the adjustment of row 
sums and column sums, additional restraints, mutual connections 
between tables and three dimensional tables. 

Re uests for copies of National Accounts Occasional Papers should be 
adzressed to : CBS, National Accounts Department 

P.O. Box 959 
2270 AZ Voorburg 
The Ne therlands 


	ON THE ADJUSTMENT OF TABLES WITH LAGRANGE MULTIPLIERS
	Summary
	Contents
	1. Introduction
	2. Lagrange multipliers 
	3. Transformation and partioning
	4. Numerical aspects
	5. The weight matrix 
	6. Uncertainties in the row and column sums
	7. Additional restraints
	8. Identical row and column sums 
	9. Two different matrices with identical corresponding row and column sums
	10. Three-dimensional tables
	11. Identical row and column sums in three-dimensional tables
	12. Higher-dimensional tables
	Conclusion
	Literature
	Available National Accounts Occasional Papers


