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The values in a homogeneous input-ouput table can be seen as a measure 

for the quantities of products involved. This implies that these values lay 

down a specific system of units. This paper demonstrates that the results 

of input-output analysis are invariant for a transformation of the system 

of units. By choosing a special transformation we can derive the Leontief 

price model. The gauge transformation is defined as a transformation in 

which the values of the table elements are gauged according to the addition 

per industry; in the case of added value formation this results in a table 

in current prices. These techniques can be used for forecasting 10-tables. 

The forecast should be made on the basis of the forecast final demand, 

where necessary in combination with restrictions on total production. In 

doing this, the selection vector technique is a useful tool. These 

selection vectors are also important for the calculation of cumulative 

facet costs. By extending the 10-table with price indices for the 

consumption by the households it becomes possible to study the phenomenon 

of inflation. It is demonstrated that in a simple model, the wage-price 

spiral converges. Under certain circumstances, the series expansion of the 

Leontief inverse offers the possiblity of describing how certain economic 

processes are spread out over time. 
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1. Introduction 

When it produces certain commodities (here the term commodities includes 

the combination of goods and services), a company generally uses 

commodities produced by other companies. In addition, these companies als0 

incur so-called primary costs. If we assume that a company wastes nothing, 

the use of commodities is a physical necessity for the realization of 

production. Whether a company actually starts production wil1 depend to a 

great extent on whether they can expect to sell their commodities (in the 

long run) for a sufficient price. This 'sufficient' price is expressed in 

the operating surplus, a component of the company's primary costs. Here we 

argue that primary costs play a part comparable with that of the 

consumption of commodities: the primary costs can be considered as 

(abstract) goods. In this point of view the value of the production is 

determined completely by consumption. 

The consumption of commodities by final and intermediary users and the 

production by companies can be entered in a matrix: the input-output table 

(10-table). However, such a table would take on gigantic proportions if al1 

the commodities were treated separately; in practice, therefore, companies 

and commodities are dealt with on a group-by-group basis in order to 

construct an 10-table with reasonable proportions. However, this does lead 

to co-called heterogeneity problems: the commodities or companies taken 

together are not always comparable with each other. A practica1 solution to 

this problem can be found in expressing the commodities flows in the IO- 

tables in monetary units, although these monetary units can be seen as 

representing physical amounts. In the process of drawing up 10-tables for 
1 

1919 and 1929, Leontief , for example, said: 'Al1 figures indicate 

millions of dollars. In order to obtain the corresponding physical amounts 

of al1 commodities and services, we simply define the unit of physical 

measurement of every particular type of product so as to make it equal to 

that amount of the commodity which can be purchased for one dollar at 

prevailing prices'. 



The continued use of 10-tables in values has meant that the idea of 

physical amounts has become relegated to the background. The ease with 

which very different units can be added together (often through sheer 

necessity) when values are used has been partly to blame for this. This has 

probably also led to the fact that a favourable aspect of an 10-table in 

values (current prices) is often wrongly imposed on other 10-tables. This 

favourable aspect is the equality of column and row totals for each 

industry, which in turn is the consequence of the accountant's demand that 

every company's total expenditure equals its total receipts. 

The property of identical row and column totals measured in values is a 

fine t001 for constructing 10-tables in current prices, though it is not 

prerequisite for the possible applications of the table. The application of 

a table containing elements in physical amounts, for which this condition 

does not hold, since the amounts of the various commodities cannot be added 

together, will usually give the Same results. Here we shall show that the 

results of input-output analysis are invariant for transformation of the 

unit system. We shall cal1 the transformation of an arbitrary system of 

units to a system which does justice to the relative value (in economic 

trafic or in another sense) of the commodities a gauge transformation. 

In the gauge transformation the gauge is the result of the definition of a 

common scale. A table in current prices is the result of a gauging of the 

individual exchange values in economic traffic. 

We shall also demonstrate that the construction of 10-tables in constant 

prices can be seen as a transformation on the system of units of a table in 

current prices. As this is not usually a gauge transformation, a table in 

constant prices need not have identical row and column totals, unless - as 
is quite common at statistica1 bureaus - the deflated value added (or 
operating surplus) is defined as the differnce between deflated production 

and deflated consumption. 

Forecasting 10-tables with the aid of a scenario will also be looked 

into. The gauge is put aside here too so that the demand for identical row 

and column totals no longer applies. However, if al1 the necessary 

information (or relevant estimates) is thought to be available, it is 



possible to construct a gauge transformation. As accurate estimates of 

price trends are not usually possible, the application of such a gauge 

transformation will lead to a rigid determination of price effects of 

technological changes or certain assumed price changes (e.g. of raw 

materials or primary cost categories). We cal1 this a rigid determination, 

because other more flexible effects on the prices as for instance the 

flexible market mechanism are not taken int0 account. 

An often used form of input-output analysis is the determination of the 

so-called facet requirements and cumulative facet costs. In the 10-table a 

facet may sometimes take the form of pseudo industry with its own input 

structure. In the determination of cumulative facet costs in particular 

this will lead to problems; problems easily solved with the aid of 

selection vectors. This is explained with the aid of an example from energy 

analysis . 

Finally, we examine the application of 10-tables in determining expected 

inflation and the occurrence of time lags. To determine inflation as a 

consequence of initia1 price rises, the 10-table is extended with relations 

other than the usual production-consumption links. These new relations 

behave as (pseudo) industries. Time lags, e.g. those related to inflation, 

can be determined by using the series expansion in the Leontief inverse. 

As the lags between every pair of industries may differ, the 10-table 

should be modified in a simple way to be able to represent these pair-by- 

pair delays. 

2. The 10-table 

Consumption of commodities by various companies and the purchase of 

commodities by final expenditure categories can be entered in a matrix; 

this gives us a so-called commodities x companies table. In the Same way, 

the-production of commodities by various companies can als0 be described in 

a matrix: we then get a companies x commodities table. For any national 

economy on a realistic scale, such tables are unmanageably large. One 

obvious solution towards manageable proportions is to approach companies 



and commodities as groups, taking companies that show a strong similarity 

together to form an industry; for the commodities a slightly different 

solution is usually opted for. First of al1 commodities of a similar form 

are divided according to the group of companies (industry) that produce 

them; then the various commodities produced by the Same industry are taken 

together. In this way we get a matrix with production and consumption by 

industries: a so-called industries x industries table. This is the most 

common form of 10-table. 

In the first two tables mentioned (commodities x companies and companies 

x commodities) the commodity flows can be entered in a natura1 way in 

physical amounts. This does not pose any problems for the combination of 

companies int0 industries. Combining various sorts of commodities, however, 

does pose problems. Every sort of commodity has a different dimension. The 

amount of commodities must be recorded in a unit corresponding to the 

dimension concerned; e.g. kg of commodity 1, kg of commodity 2, litre of 

commodity 3, pieces of commodity 4 etc. which correspond respectively with 

the dimensions weight of commodity 1, weight of commodity 2, volume of 

commodity 3, numbers of commodity 4 etc. Combining commodities with 

different units is in principle impossible. This is usually solved by 

taking not the physical amounts of the commodities concerned, but their 

value in economic traffic. The idea behind this is that the various 

commodities as produced by a certain industry have initiated a consumption 

that is identical as far as relative composition is concerned. According to 

this train of thought, the price of the products of a certain industry 

shows that the product represents a package of consumed commodities plus a 

factor added by that industry group itself. The value of the product is 

thus usually greater than the value of the consumption. In the way outlined 

above a so-called industries x industries table was constructed; for, the 

consumed commodities are combined to groups of commodities produced by one 

and the Same industry. 

The above-mentioned 10-table is an idealization of the practica1 

possibilities. It is an ideal homogeneous table: for every part of 

production by an industry expressed in monetary units there is a 

corresponding (intermediary or final) consumption, equal as far as relative 



composition is concerned (in monetary units). Reality is very different: 

many companies manufacture a wide range of products, each entailing a 

differently composed consumption. There are alco identical products 

produced by different companies that are assigned to different industries. 

Also, an identical product can even be produced in entirely different ways 

from one company to another, resulting in pronounced differences in the 

consumption by such industries. These heterogeneity problems would lead to 

insurmountable problems in a table with physical amounts; when monetary 

units are used, the problems are hardly noticed. 

A practica1 starting point for many input-output studies is an 10-table 

containing monetary units. Such a table is usually 'polluted' with a 

certain degree of heterogeneity. In spite of this, it can be considered as 

isomorphous with a table containing amounts, in which the observed amounts 

have a (hidden) heterogeneity 'interference'. Here, each monetary unit of 

product of a certain industry represents an equal combination in physical 

quantities of products. Al1 the products are now recorded in the same unit; 

but the dimensions, and to a certain extent the units as well, are still 

different. The different dimensions in such a table are value of comrnodity 

1, value of commodity 2 etc. The isomorphism with the dimensions in the 

case of registration in physical amounts is evident. 

Further on we shall see that the equality of the units is the consequence 

of a gauge transformation. Although this equality sometimes leads to very 

useful conclusions, it can also be confusing, in the same way that 

expressing the speed and the weight of a car in energy units is confusing: 

speed leads to kinetic energy, weight can be seen as the equivalent of mass 

which - according to the relativity theory - is identical to energy. Such a 
system could be very valuable in theoretica1 physics, but not in everyday 

life. A similar problem occurs in input-output analysis: the value flows 

can supply very useful information, but if we want to analyse production 

processes in their physical relations, we must keep the idea of their 

representing physical flows in our mind. 



3. Invariance 

The structure of the relevant part of the 10-table is given by figure 1. 

The submatrix of intermediary consumption is square shaped as we start out 

Figure 1. The structure of the input-output table. 

A = intermediary consumption; 

y = final demand; 

t = total production (t' = total consumption); 

v' = primary input; 

f' = facet input. 

from an industries x industries table. We imagine the final demand and 

primary costs as a column and a row vector respectively; the further 

division is a complication which is not relevant here. For a table in 

current prices, the row totals t equal the corresponding column totals t'. 

Any facet (e.g. energy consumption) that is related to the econornic 

behaviour by intermediary and final consumers can be recorded in a vector. 

Such a vector can be seen as an 'appendix' to the 10-table, more or less 



comparable with the primary costs; the natura1 place for this type of 

quantities is in a row under the 10-table. A facet is thus a sort of input 

(even in the case of air pollutants) which usually brings along its own 

system of units and is not usually expressed in values. Chapter 5 wil1 show 

that after a co-called gauge transformation, here a facet in an 10-table 

can play an identical role as the primary costs. The invariance 

characteristic to be derived below, by the way, still applies if we replace 

the row vector f' by a matrix F consisting of several (components of) 

facets (each with its own unit). 

From the quantities in the 10-table of figure 1, we can now determine the 

various coefficients: 

intermediary input coefficients: A = A ;-l (1) 

- 
v' = v' t A - 1 

primary input coefficients: ( 2 )  

facet input coefficients: 

A 

where t stands for a diagonal matrix with the elements of the corresponding 
h 

column vector t on the diagonal element of the row of t. 

The matrix of cumulative intermediary input coefficients (the wellknown 

Leontief inverse) is then given by 

With the aid of this, the cumulative facet input coefficients can be 

de termined 

and thus also the facet requirements f' (i.e. the required cumulative 
Y 

contribution of the facet) corresponding with the total final demand y 



This equation is the basis for the standard 10-analysis. 

As we are not committed to a special choice for the facet, we could take 

the vector of the primary costs, or part of it such as value added, instead 

of f. The following chapter, which goes int0 prices, wil1 make use of this 

aspect. 

Equation (6) must be independent of the measuring standards and thus alco 

of the system of units used in the 10-table. In principle, every row in the 

10-table represents a separate kind of quantity; this means that every row 

has its own dimension, so that al1 the elements in a row must be written in 

the same unit, which suits the dimension concerned. Due to their different 

dimensions, elements of different rows are described with the aid of 

different units. The independence of (6) of the system of units in 

combination with the separate unit for every row implies that (6) must be 

invariant for a change of unit for each row separately. Such a change of 

the system of units can be described as a premultiplication by a diagonal 
A A 

matrix r, where r is non-singular. From this it follows that (6) must be 

invariant under a simultaneous transformation of A ,  y and t by 
A 

premultiplication by a nonsingular diagonal matrix r: 

(by calling the transformed quantities A r, yr, and t respectively, the 
r 

result of the simultaneous transformation has exactly the same mathematica1 

form as the original expression). This can easily be proven under the 
A q A A h 

assumption that the inverse matrices r-' and t-l exist, i .e. both r and t 
A 

should be non-singular. The matrix t is non-singular if al1 elements of the 
A 

vector t are non-zero, while r was chosen to be nonsingular. So the proof 



below is valid for the case that the 10-table contains no industries with 

zero production. 

Proof: 

4. Prices 

1 
In one of his earlier studies, Leontief had already posed that his IO- 

tables containing values could be considered as tables with comparable 

physical amounts. This was founded on the assumption of absolute 

homogeneity: every unit value of the production recorded on one and the 

same row represents the Same amount of an identical product. In practice 

this absolute homogeneity is obviously not relaized; the heterogeneity 

introduced need not necessarily be a fundamental error in the table, but 

can be seen as a form of interference. 

A table in current prices has the following 'favourable' characteristic: 
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the corresponding row and column totals are identical: 

where i stands 

have the value 

which can als0 

for the co-called summation vector of which al1 the elements 
^-l 

one. From (8b) we get by postmultiplication by t 

be written in the form that we wil1 cal1 the unit theorem 

The interpretation of (10a) is that every unit value can be conceived as 

a cumulation of primary costs. 

Equation (10a) can be rewritten in a more complicated manner 

A 

where j equals the summation vector i (co j equals the unit matrix I). 

This more complicated way of writing (lOa), where a different symbol is 

used for the identical vectors i and j, means that (lob) is similar to (6). 

The vector of the value added which is present in the 10-table has now 

taken on the character of a facet. This means that for (lob) the Same 

invariance characteristics apply: the expression in (lob) is invariant 

under a simultaneous premultiplication of A, t and j with any non-singular 
A 

diagonal matrix r : 



We were free to choose any non-singular diagonal matrix r in (11) co this 
A 

relation must still als0 hold if we choose a special non-singular r. If we 
A 

choose r in such a way that it represents the relative prices at time 7 in 

relation to time 0: 

where p? is prices at time T and p those at time 0. Here the identity o 
(lob) applies for time 0.  From 11 it then follows: 

where the indices refer to quantities valued in prices at time O or 7 .  From 

the result of (13) it directly follows that 

The expression in (14) therefore supplies the reciprocals of the price 

indices. By way of the invariance characteristics of the Leontief inverse, 
2 

the classic Leontief price model is again derived. 

With the aid of (14) it is in principle possible to convert the primary 



pr ices  found fo r  time r to  primary costs  i n  pr ices  of a  base year O (time r 

can be e i t h e r  before or  a f t e r  time 0) i n  a id  of an 10- table  i n  constant 

p r ices .  This w i l l  then lead t o  a  t ab le  i n  which the column t o t a l s  equal the 

corresponding row t o t a l s  (see e . g .  next chapter) .  However, it i s  very 

doubtful whether we can c a l l  t h i s  a  def la t ion  of the primary cos t s .  I f  the 

primary cos t s  a r e  composed of one component, which can be def la ted e a s i l y ,  

such a s  labour, then (14) w i l l  indeed give the r i gh t  de f l a to r .  I f  the  

primary cos t s  a r e  b u i l t  up of several  eas i ly  def la ted components, (14) w i l l  

give the r i gh t  def la to rs  too (then the vector v  i s  the r e s u l t  of the 

summation of the  components of a  matrix V of primary cos t s ;  every element 

of v  now has i t s  o m  def la to r  a s  it i s  b u i l t  up of a  combination of 

components which each have t h e i r  own d e f l a t o r ) .  The def la to r  i s  only 

cor rec t  i f  a l 1  p r i ce  changes a r e  a  consequence of a  p r ice  change of the 

primary cos t s .  This means t ha t  the consurnption amounts of both intermediary 

goods and the primary costs  remain the Same for  each un i t  of product; i n  

other words, the production s t ruc ture  does not respond t o  p r ice  changes. 

The problem i s ,  however, t ha t  trends i n  time do not only e n t a i l  p r ice  

trends but a lco trends i n  amounts of primary cos t s .  With the  a id  of (14) ,  

these amount trends can be traced only i n  combination with the p r ice  

trends.  

I f  we study primary costs  more c losely ,  we f ind  components such as  

imports, depreciat ion and labour cos t s ,  i n  which the concept of p r ice  poses 

no great  problems. There a re  a lco components such as  other  income, taxes ,  

subsidies (including labour costs  and, sometimes, deprecia t ions ,  we c a l l  

a l 1  these components together i n  shor t  value added), f o r  which the concept 

of p r i ce  is  not so  c l ea r .  By means of a  specia l  t r i c k  these l a s t  

' in tangible '  components can be given a  physical form which can i n  t u rn  be 

assigned a  p r ice  (here we give an i l l u s t r a t i o n  without claiming t h a t  t h i s  

i s  the r i gh t  way of def la t ing) .  Suppose it became mandatory t o  pay taxes o r  

t r ans f e r  other income i n  none other than gold bul l ion.  A t  t h a t  moment the  

in tangible  components turn  i n t0  tangible ones with 'weight i n  gold' a s  

t h e i r  dimension. I t  w i l l  be obvious t ha t  i n  t h i s  way a  (primary) input i n  

gold is  required which ce r ta in ly  does have a  p r ice  tag .  I t s  p r ice  can,  j u s t  

l i k e  other  p r ices ,  f luc tua te  i n  time; i n  constructing an 10- table  i n  

constant p r ices  the  value added must then a l so  be def la ted .  The value added 



does not distinguish itself from other inputs of industry groups in this. 

By deflating the (components of the) value added by a fixed factor, the 

column totals in a table in constant prices will no longer equal the 

corresponding row totals. 

In the 10-table a price change is manifested as a multiplication by a 

factor ior each (homogeneous) row. This means that the switch from one 

sort of prices to another is equivalent to a change in the system of 

units in relation to the physical amounts. The method which is sometimes 

applied in deflating 10-tables (constructing 10-tables in constant 

prices), altering the value added for each industry group separately, 

implies that the value added of the individual industries are seen as 

incomparable quantities. 

There are al1 sorts of practica1 objections against the abovementioned 

method. For an actual deflation, for example, a more suitable deflator than 

gold should be chosen. As in practice the consumer price index is often 

used as a measure for the devaluation of money, this might be a good 

candidate ior a deflator. But other price indices too (e.g. those for 

genera1 consumption or capita1 goods) are worth considering. Choosing an 

index as a deflator means that something implicit is stated about the way 

income is spent, while this has nothing to do with the production process. 

This introduction of an income expenditure element in the description of 

the production structure is seen by statistica1 offices as an fundamental 

objection for the deflation of the operating surplus (or value added). For 

certain analytica1 applications, it obviously need not be an objection and 

may even give extra insight. 

In consequence of this fundamental objection, many statistica1 bureaus 

have decided to define the operating surplus in a table with constant 

prices in the Same way as in a table with current prices: i.e. as the 

difference between the values of total production and total consumption by 

an industry. This is not a deflation in the above sense, however; in 

practice, it is sometimes called double deflation. 

If the operating surplus is deflated directly, profits will be shown in 



profits and losses in losses. If the operating surplus is defined as the 

difference between production and consumption (double deflation) this need 

not necessarily be so: a positive balance in current prices may turn int0 a 

negative balance in constant prices. Such a development is often indicative 

of more e£ficient production, but this may alco sometimes be teh reflection 

of exogenous imposed prices. Generally speaking, the development in time of 

the operating surplus defined as the difference between production and 

consumption of one certain year indicates how the terms of trade for the 

various industries change. The possible switch switch from profit to locs 

is adrawback for many analytica1 applications of 10-tables. 

The deflation method described above including the 'deflation' of the 

value added can alco be used the other way around. Starting out from a 

certain production structure and knowledge of changes that are to occur 

therein, a new price system can be calculated for a future point in time. 

For this change in production structure, a change in the amount of created 

value added is seen as a component of the change in production structure. 

In this way, changes are introduced in the various price relations rigidly 

and systematically. The systematical method excludes the important market 

mechanism. However, it can alco be assumed that there is prior knowledge 

about the effects of the flexible market mechanism, and that these effects 

are included implicitly by means of the formation of value added in the 

change of the 'amount' of value added. 

In constructing an 10-table according to a certain scenario for economic 

developments, starting out from a table in either constant or current 

prices, the elements can be simply multiplied by the factors by which the 

inputs - measured in amounts - are expected to change. With this table new 
shadow prices are calculated according to the Leontief price model. With 

the aid of this, the 10-table can be assembled in values. The latter table 

represents the relations of the values between the various cells as 

expected for the production structure concerned. The values that can really 

be expected are calculated by multiplying al1 the elements in the table, 

but this time by the Same factor for al1 the elements. In a certain sense, 

this last factor represents the genera1 inflation of money. A similar 

factor wil1 be encountered, by the way, if the table with values is 
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converted from one currency to another. 

5. Gauee transformation 

Suppose we have an 10-table in some system of units; we can single out 

variables A and t. In addition a certain facet f is given as a multiple of 

a certain appropriate unit. From the invariance of (7) it follows that we 

can determine the cumulative contribution s of the facet f in the total 

output t. 

We now call the simultaneous transformation of A and t (and where 
A 

applicable y) by premultiplication by the diagonal matrix s the gauge 

transformation. We call this a gauge transformation because the following 

now applies: 

A A 

A - 1 -1 A - 1 
f ' s  + i i s t  A s  - i i  

The system of units has changed to such an extent that the unit theorem is 

again applicable. 





the row totals. From equation (16) it follows directly that the left hand 

side of (17) equals s. For the first line of the right hand side we find 

From (17) it can be derived that the result of two gauge transformations 

in succession is identical to one direct gauge transformation. For, 

according to (17) following the first gauge transformation the vector with 

the new row totals equals s, co that for the second gauge transformation, 

where r replaces s in (15), t should be replaced by s. Now the following 

applies : 

The expression in (15) has the Same form as (7). This implies that (15) 

is invariant under premultiplication of A and t by a diagonal matrix, and 

thus invariant under the gauge transformation. This means that in the case 

of two successive gauge transformations on the basis of the Same facet f, 

the vector r equals s, thus reducing the second gauge transformation to a 

premultiplication by the unit matrix. 

An example of gauge transformation which reduces to an identity is the 

gauge of a table in current prices for the phenomenon of the formation of 

value added. In this case (15) turns int0 



and with the aid of (10a) we now find 

The usual 10-table in current prices now turns out to have been gauged for 

the formation of value added. 

In addition to gauging to the formation of value added, facets like 

energy consumption, labour input or environmental pollution could be used 

for gauging. An 10-table obtained in this way with the intermediary 

matrix A 
f: 

portrays the 'flows' of the facet. The matrix A is identical to A, the v 
index v is in recognition of the fact that in the usual 10-table 'flows' of 

formed value added are visualized. Analogously with value added, the direct 

contribution of a facet could be called energy added, labour added or 

environmental pollution added respectively. These tables could be used for, 
3 

among other things, the information theory of Theil , if one wanted to 

study the information content of an 10-table in relation to a certain 

facet. 

6. Complete Leontief inverse 

In gauging the intermediary part of an 10-table to a certain facet, the 

intermediary part is expressed in the Same units as the facet concerned. 

This suggests that in principle there is no difference between the facet 

used for gauging and the intermediary part of the 10-table. The Same sort 



of thing applies for final demand, which is expressed in the Same units as 

intermediary consumption and primary costs respectively. In view of the 

similarity between the units of the various submatrices of the 10-table, 

the next obvious step is to determine the Leontief inverse for the complete 

10-table, in other words a matrix in which al1 the components of the 10- 

table occur. However, this does require a certain rearrangement of the 

submatrices; we construct the complete 10-table as follows: 

Submatrices A, P, Y and Y stand for intermediary consumption, primary 
A P 

costs, final demand for commodities and final demand which is also primary 

costs respectively. Here the introduction of zero matrices is necessary as 

the traditional (space-saving) arrangement in the 10-table suggests a 

direct mutual dependency between final demand and primary costs. The IO- 

table is not usually square shaped; matrix C is by definition square 

shaped. 

For matrix C we get the input coefficients C by dividing the columns by 
the corresponding row totals; the columns of final demand are divided by 

the corresponding column totals as the corresponding row totals equal zero 

(the original division is not permitted here). The Leontief inverse now 

becomes 

On the first row we find the cumulative input coefficients (Leontief 

inverse) and the cumulative consumption in aid of the final demand. On the 

second row we find the cumulative primary cost coefficients and the 

cumulative primary costs in aid of final demand. In the components of the 



complete Leontief inverse, we therefore recognise various terms familiar 

from input-output analysis. The usual Leontief inverse occurs four times 

and functions here as a sort of cumulation operator. The primary costs can 

al1 be found on their own (second) row; the final demand can only be found 

in its own (last) column. The fact that primary costs are indeed 'primary' 

is evident from the emptiness of the 'column of primary costs'; apart from 

the unit matrix on the corresponding row (which therefore refers to 

itself), primary costs have no 'inputs'. Analogously, final demand 

contributes nothing to other submatrices as it only occurs in the last 

column; it is indeed final. 

In composing the complete 10-table we took the components of the 

traditional 10-table for granted as our starting point. This traditional 

10-table is gauged to the formation of value added or in the above form to 

primary costs. In the previous chapter, we saw that a gauging to a 

completely different facet is very wel1 possible. In that case, this facet 

takes the place of the primary costs. This equality between value added and 

other facets suggests the inclusion of those facets in a row of the matrix 

P (therefore alco Y p ) .  The gauging has then taken place to a component or 

combination of components (recorded in the Same unit) of P. In (23) we then 

wil1 find the facet requirements by final demand in the second row of the 

last column. 

If more than one facet is included simultaneously in P, no (indirect) 

dependency between the various facets turns out to exist. This is 

immediately evident from the form of (23). Due to the lack of dependency 

between the various facets, a common gauge is in genera1 impossible: the 

gauge matrix becomes singular. 

The construction of the C matrix in (22) means the fundamental difference 

between the primary and the intermediary part is cancelled. This leads to 

the conclusion that gauging could alco take place to a certain row in the 

intermediary part, i.e. to an industry. The result would then be a table in 

which the 'flows' of a certain product are made visible. This may be 

interesting if the industry concerned is a bottleneck in the economy; e.g. 

due to capacity or enviromental-technica1 reasons. Electricity production 



would be an interesting industry for such a 'flow' table. 

It is relatively easy to obtain earlier derived expressions with the aid 

of the Leontief inverse. The unit theorem, for example, in (10a) can be 

obtained by 

where j is a vector comprising ones on the rows of the primary costs and 

otherwise zeros. Vector i is obviously longer here than in (10a). 

7. Forecasting 10-tables 

Studies are regularly encountered in which an 10-table for a future point 

in time is estimated as follows. First of al1 the total production and, 

where applicable, the components of final demand, per industry is 

estimated. The intermediary consumption per industry is calculated with the 

aid of total production, taking int0 account expected technological 

developments. Then an estimate is made of the price trends and this is 

applied to the elements of the table. Finally, it turns out that the column 

totals do not equal the corresponding row totals and these differences are 

cancelled with the aid of the co-called RAS method. 

The method outlined above contains three independent estimates (total 

production, technological changes anf price trends) and a smoothing method 

(RAS method). The first two estimates are inevitable, the estimate of the 

price trend can be avoided to a large extent while the RAS method is 

completely superfluous. The latter is particularly important as the 

production structure, which has been estimated carefully on basis of the 

best information available, is changed relatively randomly; this change 

bears no relation at al1 to the factual production relations to be 

expec ted. 

A more accurate procedure would be: 

1. First of al1 estimate the final demand or the volume of total 



production, for each industry in constant prices. 

2 .  Estimate the consequences of technological changes on the input 

coefficients in constant prices. 

3. From these two, calculate intermediary consumption in constant prices. 

4. Calculate the relative prices (shadow prices) according to the Leontief 

price model. 

In this way we get the 'best' estimate of an 10-table in mutually 

comparable prices. The row totals and the column totals are identical due 

to the gauge transformation involved in calculating shadow prices, thus a 

smoothing method like the RAS method becomes superfluous. 

The first step is the estimation of final demand or total production 

volume in constant prices. These are two separate matters. For an important 

part of production it can be said that the volume, taking int0 account a 

certain import volume, is determined by final demand. The cumulative 

intermediary demand obviously links the various industries. However, part 

of the production volume is not determined by final demand but by a maximum 

production capacity in certain industries (the difference between domestic 

demand and supply is then covered by imports). Such a maximum could be 

imagined to be the consequence of a shortage of land, raw materials or 

(skilled) labour, the introduction of government or EEC measures to limit 

(over)production or reduce enviromental pollution or of the maximum 

capacities of certain plants which are usually changed with steps of 

complete units. We should therefore make two estimates: one of total 
4 

production in a limited number of industries and one of the final demand 

for the other industries (we shall not go int0 the problems created by 

making final demand dependent on price elasticity here; this problem often 

leads to iterative processes). 

The second step entails the estimation of technological change. This 

means that the volume trends in intermediary consumption and primary costs 

are applied as factors to the intermediary and primary input coefficients 

in constant prices respectively. It should be mentioned in this respect 

that price changes (mainly of raw materials) dominated by market factors 

instead of by changes in production costs can be approached in the Same way 

as technological changes in primary costs from a calculation-technica1 



point of view 

With these two estimates, we have done our 'best' to define the whole 

system. The only thing left is to determine the missing figures. To this 
5 

end we can make use of the selection vector technique . 

We define the selection vector o as follows 

and the residual vector p by 

p - i - o  ( 2 6 )  

The set U then contains the ordinals of the industries for which total 

production is fixed (indeed, for convenience's sake we cal1 U the set of 

the industries concerned). 

The total production tu in prices of the base year O by industries o 
indicated by set U is part of the total production t o ' 

Obvious ly 

also applies. 



The direct intermediary consumption, from the industries which do not 

belong to U, which is related to tg is given by o 

The total production t leads to a consumption from the industries o 
outside U. By way of the Leontief inverse we can calculate this cumulative 

consumption. However, in doing this we must exclude the commodities flows 

via U. Although a unit of output of the industries in the set U has a 

cumulative consumption itself, this consumption is only a component of the 

same total production precisely for which we are trying to calculate the 

cumulative consumption. The same goes for the cumulative consumption from 

the other industries behind the cumulative consurnption of products from 

industries in U. To avoid double counting of this consumption, we must 
a 

exclude these flows. The cumulative intermediary consumption t ( t: ) from o 
U is indicated to be a function of the total industries outside set 

production tu by which o 

This is of course also 

it is induced, and 

that part of total 

is therefore given by 

(30) 

production tP that is induced by o 
the total production ta 0 ' 

In addition to the term found above, there is another contribution to the 

total production tP vir. the production tP ( ) which is connected with o ' o 
final demand for products from the industries outside U. So 

For the first term 

applies. If we substitute (30) and ( 3 2 )  in (31), we get 



for the total production by industries outside U. From (27) we then find 

the following for the total production t o 

If we now multiply the input coefficient by total production, we get the 

intermediary part of the 10-table we are looking for in prices of the base 

year 

The corresponding vector of final expenditure follows from 

y. - tO - A~ i ( 3 6 )  

In view of its dual character, the new 10-table we have just found in 

constant prices can also be seen as a table in physical amounts, whereby 

the system of units is completely determined by the prices in the base 

year. By applying a gauge transformation with reference to the primary 

costs (this is equivalent with the Leontief price model), we get a table 

with shadow prices. Assuming the two applied estimates are correct, the 

shadow prices represent the price relations in the new year. The best 

estimate of the production structure leads to the co-called 'tallying' 

table, i.e. a table with identical row and column totals (cf. (8a) and 

(8b)), co that the smoothing RAS method with its 'polluting effect' is no 

longer necessary. 

The importance of this method lies in the fact that a 'tallying' table is 

only needed in studies where price effects play an important role. The RAS 

method does not yield very correct price relations. The method with shadow 



prices yields the best possible estimates relative prices. 

8. The 10-table as a set of relations 

In the 10-table the consumption and production by industries is 

registrated; the destination of the production is alco registrated. We can 

find al1 these data in matrix C (cf. (22)). Because evidently consumption 

by industries takes place to make production possible, input-output 

analysis starts out from a fixed relation between these quantities. In this 

sense, the 10-table represents a set of relations. In standard static 

input-output analysis, moreover, it is assumed that this table shows linear 

relations. This means that it is assumed that if production volume 

changes, consumption changes proportionally. This relation is reflected in 

the intermediary input coefficients A and primary input coefficients P 
respectively. 

In practice, these relations are seldom proportional and often not even 

linear. As we know, expansion (scale enlargement) or reduction changes the 

production structure (i.e. the intermediary, primary and facet input 

coefficients) in different ways. Without going further int0 the 

complication involved here, this could be included under the denominator 

technological change. 

Here we confine ourselves to the prortional relations. The input 

coefficients which proportionally relate volume to production and 

consumption respectively by way of the Leontief inverse, can also be used 

to relate other aspects of the production process, such as environmental 

pollution or price effects. 

Let US trace the supposed effect of price changes. For row totals t in o 
the 10-table (matrix C ) for base year 0, the following applies 

Here, the vector j is a summation vector that works only on the primary 



costs: if we split j the Same way as in C in (22), the first and last part 

consist only of zeros and the middle part only of ones. Equation (37) is in 

fact only another way of writing equation (lOa), and is also the Same as 

equation (15) if the vector s is based on a gauge on the basis of the cum 

of the primary costs. 

Suppose now that precisely at time T there is a simultaneous change in 

the production structure: a change of AAo in intermediary consumption 

and/or a change AP in the primary costs, for example; these two can be O 
combined in AC Now 

0 ' 

* 
applies. The asterisk refers to the fact that C contains new amounts, but o 
is still expressed in prices originally belonging to time 0. 

The production totals wil1 change due to two causes: first of al1 due to 

the changed intermediary demand and secondly due to the changed production 

structure which leads to new prices. If we express the changed production 

totals in new prices, we find 

Closer inspection of (39) shows that the vector tT is the gauge vector in 

aid of a gauge transformation on the basis of the formation of new value 

added. The vector with price ratios r' of the new prices with respect to 

the old ones follows directly 

(This expression looks very similar to (14), the distinction between the 

expressions is due to theold input structure being expressed in new prices 

in (14) while a new structure is expressed in old prices in (40). 

One often mentioned cause of inflation is that price increases lead to a 



form of compensation in wages. This wage compensation can in turn lead to 

price rises. This process is often referred to as the price-wage spiral. 

The wage compensation usually takes place on the basis of the co-called 

price index of consumption by households. This price index may be seen as 

an 'input structure' for wages. In this way, the above formulated form of 

the price-wage spiral can be simply simulated by including the relative 

composition of the relevant price index in the column corresponding with 
-* - 1 

the row wages in matrix C we then get matrix C The effects of the o : 0 ' 
price-wage spiral are then found by 

The form of expression (41) is the Same as ( 2 4 ) .  Matrix C' contains a set 
O -1 of relations which describe the production process; matrix C differs from 

-1 o 
C in two respects. First of al1 the column totals of the input o 
coefficients do not equal 1; remember, we are changing the production 

structure. In the second place, the elements in the column wages, i.e. the 

components of the price index, do not al1 equal zero. In fact we can 

consider matrix C with the input coefficients as a special form of a more 
- 1 o 

genera1 matrix C with relations on the production process. o 

Finally, there is the question of whether constructions such as the 

relation matrix actually have a Leontief inverse. In order to find that O 
out, we have to go back to the composition of the partitioned matrix C in 

- 1 ( 2 2 ) .  For matrix C we can construct the Same form by transferring the row o 
wages of the primary costs to the intermediary rows 

In analogy with (23) the existence of the Leontief inverse of is 
-1 

o 
sufficient for the existence of the Leontief inverse of C 

0 ' 

-1 -1 
To see whether the Leontief inverse of A exists, we partition A int0 o o 



four parts 

- 
where Äll contains the usual intermediary input coefficient, A12 a column - 
vector with the composition of the price index, A21 a row vector with wage 

input coefficients and Ä is the scalar zero. The Leontief inverse would 
2 2 

then have to have the following form 

where 

and 

The term E is the usual Leontief inverse on the basis of input 
coefficients, which we know exists (i.e. is not singular). If we can prove 

- 1 
that exists, then we also know that the Leontief inverse of C exists. o 

In our case, Ä2, equals 0. So 

In a normal 10-table, the wage costs constitute part of the primary costs. 

From (10a) we know that in the vector with the cumulative primary costs al1 

elements equal one. So for vector b, defined as 



with the cumulative wage costs, al1 elements are smaller than one: 

The sum of the elements of a and the vecor A equals one 
i 12 

co that 

alco applies, since the price index is composed of more than one component - 
unequal to zero. For the inproduct b' a, the following applies: 

i max ( Gi ) 1 ái 
i 

a max ( bi ) 

As I is a one-by-one matrix for the bottom right submatrix, and thus a 

scalar equal to one, 



applies. Thus we have proven that < is nonsingular so that the Leontief 
- 1 

inverse of C does exist. The above proof for the case in which an extra o 
relation is added to the primary costs can easily be extended to several 

relations. Obviously, it may sometimes be relevant to include other types 

of relationships in but it should be checked whether the expression in o ; 
(46) is not singular. 

A situation in which the wage-price spiral does not converge is a wage 

compensation on the basis of the total final demand while al1 primary cost 

categories increase in proportion with wage costs. In this situation, 

instead of ( 4 9 ) ,  the following applies 

The primary cost categories outside the wage costs thus have a damping 

effect (for that matter, domestic price rises will alco have effects on 

exchange rates which in turn will affect import prices). Furthermore, in 

practice there is a damping effect of technological change which usually 

leads to greater efficiency (e.g. less labour per unit of product). The 

convergence of the wage-price spiral is also affected by deviations in the 

composition of the price index and the relative composition of the total 

final demand. This latter effect can have both an damping and an amplifying 

effect. 

9. Facet reauirements and cumulative facet costs 

One popular application of input-output analysis is the calculation of 

facet requirements. Here we shall take as example energy requirements, i.e. 

cumulative energy consumption and the corresponding cumulative energy 

costs; we confine ourselves to electricity. We have opted for energy as the 

input-output analysis comprises some complications due to the fact that one 

energy carrier can be converted into another. For cumulative energy costs 

in particular it is not possible to use the input-output analysis in its 

most simple form. Among other things, these complications are related to 

the fact that when one energy carrier is converted int0 another, the energy 



content still available is reduced because of conversion losses, while the 

economic value of the new form of energy is higher. This higher value is 

due to the fact that the value of a product in itself is a cumulation of 

value added (eq. (10a)). Every production stage entails more value added 

which explains the above. The reduction of the energy content is inherent 

to physical or chemica1 processes. 

In input-output analysis according to an open Leontief model it is usual 

to calculate the cumulative effects relating to a facet according to 

equation (5). For a facet such as energy consumption, where more than one 

energy carrier is involved, the row vector f' is replaced by a matrix E 

with energy consumption figures. In chapter 2 we already stated that a 

matrix with facet data shows a strong resemblance to the matrix of the 

primary costs. This suggests the construction of a new complet 10-table C E 
including the facet energy consumption in analogy with (22). To this end we 

simply substitute matrix E for matrix P of the primary costs in (22), and 

similarly YE for Yp. (Should we want to involve the primary costs in the 

cumulation at the Same time, we can just combine them with E to form a 

larger matric; this als0 applies for any other facets. This extension is 

not relevant for our present line of argument.) The energy 10-table now 

obtained has the form 

In analogy with (23) we can calculate the Leontief inverse of the 

complete energy 10-table CE 



I - A  o 

= !  - 
P o 

O o I 1-l 

( I - A)-l o -1 - ( I - A )  YA 

- 
E ( I - A )-l - -1 - I E ( I - A )  y A + i E  

o o I 

The term Hll is again the usual Leontief inverse and E contains the 2 1 
cumulative facet coefficients. As we already stated in chapter 6, there is 

essentially no difference between the terms H and fi 
11 21 ; 

this is made clear 

in the form of the equations if we write H as 11 

This form of E is equivalent to the form of H in ( 5 6 ) ,  which implies 
11 2 1 

a comparable role for A and E in (55). 

A difference in comparibility between A and E can be seen by the fact 

that the second column of submatrices in (55) in principle zero. If we 

consider the facet energy consumption, it appears that this column is 

suddenly no longer zero in principle. Al1 sorts of conversion processes 

turn out to occur, processes which can be described to function as an input 

structure for the consumed form of energy. The energy facet electricity 

consumption, for example, is closely related to the conversion of other 

energy carriers such as coal, natura1 gas, petroleum products etc. And this 

in turn can go even further back to the coversion of crude petroleum int0 

petroleum products. Such conversion processes can be represented by 

choosing submatrix C suitably nonzero. However in converting energy 2 2 



carriers, nonenergy inputs are als0 consumed. This consumption can be found 

in A;  later we shall make a reasonable case for this part of the input 

structure being assigned directly to the columns corresponding with the 

facets in E. The consequence of this is that the submatrix C alco becomes 
12 

nonzero. In concequence of the second column becoming nonzero, the complete 

Leontief inverse has the following form 

where al1 submatrices of the irst two rows are nonzero. 

In this Leontief inverse we find both the cumulative consumption from the 

original and the pseudo industries (of the facets). If we want find out 

what the cumulative energy consumption is, we first of al1 want to take the 

sum of the cumulative consumption of the various energy carriers. This wil1 

lead to great errors, however, as we would then take both the cumulative 

consumption of both so-called primary energy carriers and the forms 

obtained by conversion together. Even if we only add together the 

cumulative consumption of primary energy carriers things could go wrong, 

since an energy form such as electricity, which usually is considered to be 

nonprimary, is sometimes obtained without there being a (conventional) 

primary energy carrier as a basis; this directly produced electric energy 

may then be 'forgotten'. This is the case for electricity generated by 

nuclear energy, water power, wind energy, solar energy, waste incineration 

etc.; this part of electricity is in fact a primary energy carrier. 

Moreover, it does not provide desired information with respect to 

conversion products. 

Let US now consider the production structure with respect to the 

electricity production and consumption and see how these and other pitfalls 

can be avoided in energy analysis. Normally in an 10-table we would find a 

row of electricity producers in which the values of the products consumed 

by the various buyers are mentioned. In the corresponding column we find 



the consumption by electricity producers. Further, we assume that in a row 

of E (and thus also Y ) we find the energy consumption in energy terms. E 

Eor an accurate energy analysis it is necessary to 'homogenize' these 

rows of pseudo industries. Electricity producers often provide nonenergy 

products (sometimes services); for example: sulphuric acid, gypsum, tar, 

cinders, fly ach, computer services, installation services etc. In as far 

as these nonenergy products have to be considered as unavoidably connected 

with the production of electricity, they should be included on one or more 

separate rows. A number of the inputs have to be transferred to the 

corresponding columns. The remaining energy row must be further homogenized 

by distinguishing between various energy products: electricity, steam and 

warm water; the input structure will alco have to be divided 

proportionally. At the same time, the row will have to be divided according 

to these energy carriers. 

In connection with the enormous price differences charged to the various 

buyers, the electricity row must be split int0 at least two rows: one for 

distribution services and one for the actual electricity supply. The column 

belonging to the former of these contains the input structure for - among 
other things - administrative costs and the maintenance and depreciation of 
the intricate distributon network. The second column contains the 

depreciation of the generators and the high-tension network and of course 

the costs of fuel and consumption of fuel in energy terms. Even co, price 

differences can occur due to al1 sorts of causes which leads to buyers 

being charged for different amounts of energy for the same amount of 

electricity (though this may sometimes be justified by the difference 

between continua1 and peak buyers). This is usually unjustified and to 

avoid it, it would be better to transfer the input structure from the 

column corresponding with the row of electricity in values to the column 

corresponding with electricity in amounts of energy. 

The electricity rows (values and amounts) are then each split int0 at 

least two rows: electricity from conversion and generated (primary) 

electricity. The latter group includes nuclear energy, water energy, wind 

energy, solar energy and waste incineration. I£ desired, these groups can 



be further divided according to the various fuels or techniques used. The 

rows can be obtained by means of proportional division from the original 

cum rows; if information that certain customers are mainly supplied with 

electricity produced in a specific way is available, this can alco be 

included in the rows if desired. The columns are obtained from information 

about the input structures for the various techniques. 

The transfer of the input structures to the columns corresponding with 

the rows in amounts means that submatrix C no longer consists only of 
12 

zeros. For the other energy products, too, it would be better to transfer 

input structures to the energy columns. In brief, this al1 leads to the 

following breakdowns with respect to electricity production: 

Table 1. Breakdown of electricity costs and consumption 

costs/consumption of matrix uni t column 

1. nonenergy products 

2. steam 

3. warm water 

4. distribution costs 

5. electricity costs 

6. steam 

7. warm water 

8. electricity from conversion 

9. elecrticity from generation 

money 

money 

money 

money 

money 

energy 

energy 

energy 

energy 

f illed 

emPtY 

emPtY 

filled 

emPtY 

f illed 

f illed 

filled 

f illed 

The same specifications should be applied to the rows and columns of 

other energy conversion industries in A: petroleum refineries, coke 

manufacturers, coal-gas manufacturers etc. A further specific problem in 

the energy sector concerns industries which, although not by nature energy 

manufacturers, produce energy products as a consequence of their specific 

production processes. This situation often occurs at blast furnaces, the 



petro-chemica1 industry, artficial fertilizer manufacturers etc. It is very 

difficult to assign an input structure to these energy products, moreover 

it does not make any sense to assign large scale iron-ore consumption to 

the product of electricity (except the ore required for capita1 goods). A 

normal manufacturer would produce these energy products in a completely 

different way. These products should indeed be seen as a saving , i.e. 

negative consumption of the products. Incidental buyers of the products can 

be assigned a normal cumulative input structure. In the case of blast 

furnaces, there is another specific matter: here blast furnace mixed gas is 

produced, although undoubtedly not deliberately. Here it should be seen as 

a negative consumption of the product which it substitutes; usually natura1 

gas or coal gas but sometimes coal or fuel oil. 

Imported energy constitutes a special problem. Sometimes it can be made 

to compete with domestic production and can then be dealt with in the 

normal manner in the framework of the 10-table. More often, however, it is 

not possible to have these energy carriers compete with domestic products 

because the energy carrier concerned is not produced domestically or for 

other reasons: domestic production may not in principle be able to meet 

demand, for example, while the domestic input structure deviates greatly 

from the foreign one. This is the case for North Sea oil versus crude 

petroleum from the Middle East among other things. In such cases, two sets 

of two rows each should be added to the table together with the 

corresponding columns. The first set contains a row for submatrix A with 

imported (cif) values and one for submatrix E in energy terms. The first 

coulmn remains empty, the other is filled with transport costs, the values 

at producer prices and energy amounts. The last two items are entered on 

the rows of the second set. The second set alco contains a row for in A and 

one for in E; except for the two formerly mentioned items, they remain 

empty. The column in the second set corresponding with the values is filled 

with the (foreign) input structure and the other in the second set remains 

emp ty . 

In this way we have homogenized 10-table C with respect to energy 

consumption, and thus obtained 10-table C With this 10-table we can 
E ' 

calculate the Leontief inverse of (58). This Leontief inverse now gives the 



cumulative consumption coefficient of the products of both the original and 

the pseudo industries. If we want to find out the cumulative energy 

consumption, we simply cum up the primary energy carriers (including 

generated electricity). 

For some purposes, it is necessary to know the cumulative actual energy 

consumption: the consumption of energy not used for direct conversion. In 

that case, first of all, al1 energy carriers are summed up, after which the - 
part used for direct conversion is subtracted. The calculation of what is 

to be subtracted seems complicated, for while we do want to subtract the 

energy content of, say, converted petroleum products, we may not want to 

subtract the cumulative energy consumption involved in transport to and 

from refeineries etc. To this end we regard submatrix C that describes 
2 2 

the conversion processes. We construct matrix n with the Same dimensions as 
C2*, which is completely filled with zeros except for the part which does 

not refer to energy conversion (e.g. energy supplies for transport to 

petroleum refineries). The pure conversion matrix Z then follows from 

If we define the corresponding totals t as 
2 

where i i and i respectively are summation vectors with the correct 
1' 2 3 

length. We then calculate the coefficient matrix by 

Depending on what we do and what we do not define as belonging to Z, 

complicated structures rnay occur in the pure conversion matrix. The energy 

input which must be assigned to the conversion processes can be found in a 

new Leontief inverse S z 



The cumulative actual energy consumption per unit of product is now 

Summation over the various energy 

- 
W = i' W 

carriers leads to 

( 6 4 )  

The latter summation can obviously only be introduced if energy consumption 

is recorded in the Same unit on the various rows in C E ' 

We then consider the cumulative energy costs. Of the 9 rows in table 1, 

rows 2 - 5 are usually regarded as energy costs. However, some people wil1 
not see row 4  as energy costs. Such considerations apply to al1 energy 

carriers. With respect to the composition of energy costs, it can be said 

that a significant part of energy costs related to higher energy forms, 

such as electricity, concern the consumption of other energy carriers. In 

addition there are nonenergy costs, but again these hide cumulative energy 

costs. I£ we calculate the cumulative energy costs by way of the Leontief 

inverse for C i. e. from H, a number of energy costs are included more than E 
once, which is obviously not correct. We can simply state that in order to 

arrive at a correct cumulative costs analysis, no energy costs composed of 

cumulative energy costs are to be included in the calculation! This implies 

that these energy costs - situated further back - of the input structure 
concerned have to be excluded. The input structures of the rows 2 - 5 in 
table 1 are stated in columns 4 and 6-9. We must render these columns zero; 

5 
for this we have the selection vector mechanism at our disposal . 

We define selection vector o by setting the elements relating to the E 
energy input structure at one and the other elements at zero. For the 

residual vector p we then find E 



We then render the desired columns of C zero according to the expression E 

and find the cumulative energy costs in the expression 

Sometimes we may be interested in finding out the cumulative primary 

energy costs against producer prices. These concern the cumulative products 

of the energy generating plants. These kinds of plants, too, have a 

cumulative energy consumption with costs that can be assigned to it. The 

latter cost structure is already incorporated in the price of the primary 

energy carriers, however. In analogy with the foregoing, this implies that 

this input structure must be eliminated with the aid of selection vectors. 

We select the energy generation (pseudo) industries with the aid of 

selection vector a this leads to the complementary residual vector p D ; D ' 
The cumulative primary energy costs then follow from 

We now get the curious phenomenon that the cumulative energy costs refer 

to cumulative actual energy consumption, but also to the cumulative primary 

energy consumption (i.e. the costs of making energy available). Moreover, 

the cumulative primary energy costs alco refer to the cumulative primary 

energy consumption, while there is alco the option of considering the 

cumulative consumption of primary energy behind that as well! For there are 

alco cumulative energy costs at the basis of cumulative energy costs! 

The model described here in aid of energy consumption and energy costs 

can als0 be applied to other facets. Consumption and costs of raw materials 



for example, though there is the extra complication that the various raw 

materials cannot usually be added together. 

The conclusions of this chapter are: 

1. For energy analysis the 10-table should be extended with the energy 

consumption in energy terms. 

2. The complete 10-table must be homogenized. 

3. The input structure for the conversion plants should be divided between 

the columns corresponding with the rows of the energy costs and those of 

energy consumption; they wil1 usually have to be transferred completely 

to the last columns as the production relations are then reflected 

better. 

4. The energy link products should be regarded as negative consumption. 

5 .  To calculate total consumption the rows of primary energy consumption 

in the complete Leontief inverse should be added together. 

6. For the cumulative actual energy consumption the result of a limited 

number of cumulation processes should be subtracted. 

7. The cumulative (actual or otherwise) energy costs can only be calculated 

from a Leontief inverse when an appropriate selection vector is applied. 

10. The 10-table as a time operator 

The Leontief inverse can be turned int0 a Taylor series expansion quite 

simp ly 

The interpretation of this series expansion is that the zeroth order term 

represents the production to which one wants to link a certain effect, and 

is therefore normalized to one unit. The first term represents what has 

happened one step back in the production process (this is therefore the 

direct consumption); the second term represents what has happened two steps 



back in the production process, etc. This chain of production steps 

suggests that the terms of the series expansion are related to the passing 
6 

of time, a suggestion made in the study on production chains , for 

example, but alco to be found in work by earlier researchers. It is obvious 

that the higher order terms reflect processes which precede certain 

processes reflected in lower order terms. However, instinct tells US that 

the processes represented by a higher order term did not al1 take place in 

the Same time interval; for as different processes require different 

amounts of time, time shifts will occur in higher order terms. 

For a better insight we shall examine the individual production steps in 

relation to the time they take. In one production step we encouter roughly 

the following phases: 1. supply of raw materials; 2. storage of raw 

materials (buffer stock); 3. actual processing; 4. stock formation of 

products, followed by actual delivery. Let US now define the time needed 

for one production step as the time that passes between the supply by the 

previous industry and the delivery by the industry under review. In this 

way we consistently regard al1 production phases in relation to the time 

they take for each production process. 

The time the first phase - the supply of raw materials - takes varies 

considerably depending on the nature of the raw materials concerned. Input 

such as electricity involves no transport time at all, as the producer 

supplies it on the customer's premises; coconuts from a Pacific island, on 

the other hand, will undergo a few month's journey before they arrive at 

the customer's (for some time effect studies it would probably be better to 

define the time of supply of imported commodities as the time at which they 

pass through customs). The time needed for transport appears to depend 

mainly on the nature of the supplier, but sometimes the nature of the buyer 

is also important. Some commodities are sold via wholesale, where stock 

formation is a common occurrence, which then takes extra time. If large 

buyers do not buy through wholesalers, while smal1 buyers do, the nature of 

the buyer is relevant for the time involved. The second phase - storage - 
turns out to depend on both the nature of the commodities (i.e. the nature 

of supplier) and the nature of the buyer. By definition, a commodity like 

electricity is not stored. If storage does take place then a minimum 



storage time must apply, as many buyers keep a buffer stock; afterwards 

commodities that arrive at the Same time are consumed over a certain time 

interval. Large buyers usually recieve their raw materials more frequently 

than small buyers and this obviously alco influences the time required. 

Many buyers are large buyers of a number of raw materials and small buyers 

of others. Here both the nature of the commodities and the nature of the 

buyer affect the time involved. The amount of time involved in the third 

phase, the actual production step, depends on the type of process. Some 

processes are fairly direct, others take several months, agricultural 

production for example. The length of time involved in the fourth phase - 
stock formation and delivery - alco varies widely. Electricity, for 
example, cannot be stored, while a uranium enriching plant supplies its 

products at very great intervals. 

We see then that the time that passes between the supply of a raw 

material and the delivery of a product in which it is processed is not 

determined onesidedly by the supplying or buying industry, but by a 

combination of supplier and buyer. Moreover, the time intervals are alco 

influenced by the nature of the phenomenon under study: the time intervals 

differ for the actual flow of commodities through the production structure, 

the incorporation of price changes of raw materials (some price changes are 

incorporated immediately while others are only once the stock at the old 

price has been processed, still others are saved up and incorporated 

collectively after a certain time interval), or a period of strong 

disruption when the supply of essential raw materials ceases temporarily. 

Following from chapter 8, we shall take the example of incorporating prices 

changes here. 

Let US go back to the series expansion in (69). We want to consider every 

term as an equal time interval for al1 rows in A. Ideally we would choose - 
the interval infinitesimally small, but this is impossible in practice. 

Moreover, the information about the time concerned is usually so inaccurate 

that such precision would not be meaningful. Every term in the series 

expansion must describe what happens in the successive periods. Suppose 

(initial) price changes occur in what we cal1 the zeroth period. Some of 

these price changes are incorporated quickly i.e. between 0.5 and 1.5 



periods later. (We assume here that no price changes are incorporated in 

the interval O - 0.5, as the actual production time usually leads to a 
certain 'reaction time'. In principle, the model can be adapted to 

extremely quick price change incorporations.) We shall assume that for 

these price mutations there is a reaction time of one period on average. 

However, no other price changes are incorprated in this time interval. 

In the interval of 1.5 - 2.5 periods later, a number of price changes 
from the first period are incorporated, but alco some of the price changes 

of the zeroth period that had not yet been incorporated. And this chain of 

price adjustments extends across several time intervals; formally speaking, 

across an infinite nurnber of intervals. 

Al1 the price changes from the previous interval are incorporated in the 

series expansion of (69), there is one 'standard' reaction time. This 

standard reaction time does not correspond with the practice in which the 

reaction time for every cel1 of A can differ. However, we can construct a 

matrix A in which we have al1 the relations that fit in the 'standard' 
6 

time intervals of one period. This requires the creation of co-called 

'waiting rooms': first, second, third, etc. waiting rooms in order to be 

able to reflect the various delays. Each industry requires a different 

number of waiting rooms, depending on the maximum number of standard 

intervals delay that can occur. To this end, for each industry, we 

introduce an extra column for each waiting room, with a corresponding row 

in the table. The original consumption by a certain industry must now be 

spread out across the set of waiting rooms which now represent an industry. 

Every waiting room further has an output that equals the sum of the inputs 

supplied completely to the waiting room of a lower order. Only the waiting 

room with the lowest order has an output to the waiting rooms of other 

industries or to the final demand. 

The thus obtained matrix A with elements a 6 has much larger 
i j  

A P 
proportions than the original matrix A. Subindices X and p give the order 

of the waiting rooms and thus the delays. The waiting rooms function as a 

sort of pseudo industry here. 



We can thus consider the original 10-table as a projection of the table 

with waiting rooms. Between elements a of the intermediary part A of the 
ij 

original table and the elements ai j of the intermediary part A of the 
X D 

6 

new table there are the following relations : 

Equation (70) states that an element of the original matrix A is spread out 

across several waiting rooms, while (71) states that the amount (value) 

spread out must equal the original one. Equation (72) states that the whole 

consumption package is supplied from a waiting room of a higher order to 

one with an order exactly one lower; 
'max 

( j ) gives the total number of 

Figure 2. The composition of matrix A (top) in relation to the original 
6 

matrix (bottom). Part of the column and row respectively of 

industries i and j are shown. Industry i is divided int0 three 

waiting rooms, industry j into four. The original cells of matrix 

A are turned into (3x3), (3x4), (4x3) and (4x4) submatrices of A 
6 

respectively. 





waiting rooms for industry j. Equation (73) states that no transfers are 

possible from waiting rooms of a higher order to waiting rooms belonging 

to another industry. Figure 2 shows how matrix A is filled. 
6 

In analogy with usual input-output analysis, we can calculate the input 

coefficient A from the matrix A For this we must divide each individual 
6 6 ' 

column by the corresponding totals t where the elements of t for the 
6 ' 6 

ordinary industries equal the corresponding elements of t, and for the 

waiting rooms equal the row totals. 

If we now apply the series expansion of ( 6 9 )  to matrix Ä we can follow 
6 

the commodities flow through the production structure on the basis of equal 

time intervals. Here matrix Ä functions as a time operator, whereby a 
6 

higher power of A represents a repeated application of the time operator. 
6 

If we want to measure the rate of inflation and perhaps damping times, we 

must extend matrix Ä with an input structure for wages, in analogy with 
6 

chapter 8, but this time extended with the waiting rooms which describe the 

average delay of the wage rises granted per industry. In this way we get 

matrix Ä' 
6 ' 

In order to follow inflation through time, it is necessary to determine 

the terms in the series expansion individually. Although in the usual 

Leontief inverse the progression coverges relatively quickly, this wil1 not 

-lL 
be the case for terms A . This is due first of al1 to the addition of the 
input structure for wage costs and secondly to the addition of waiting 

rooms. This leads to the possibility of computer machine errors cumulating 

in an undesired way, in addition to a great deal of computer time. The 

cumulation of machine errors can be restriced somewhat by calculating the 

various terms of the series expansion by multiplication of previously 

obtained terms in such a way that only the terms with an exponent which can 

be written as a power of 2 are used. The computer time can be reduced 

somewhat by making use of techniques for sparse matrices for lower powers. 

Whether or not sufficient convergence is obtained with a certain term can 

be checked with the aid of the Leontief inverse 



which is the limit of the summation of the terms of the series expansion. 

When the convergence takes place very slowly, increasing the time interval 

for higher order terms by consistently leaving out one or more terms of the 

series expansion can be considered. 

Of course, the question arises what the average delay for the 

incorporation of price changes is. The cum of al1 the delays measured in 

the time intervals connected with the waiting rooms is given by the 

series expansion 

The average delay 6 is now obtained by dividing each element by the 
cumulative contribution of one (pseudo) industry to the other: 

With the aid of the projection of the terms of the series expansion on a 

time axis we can follow the consequences of changes in the production 

structure through time. For this we use the complete 10-table of (22) as a 

starting point, whereby primary inputs and the final output are considered 

as an intrinsic part of the production structure. We expand this matrix C 
with waiting rooms to matrix C In adding the waiting rooms it should be 

6 ' 
kept in mind that the delays here can be influenced, as some companies are 

able to anticipate (somewhat) changes in the production structure. The 

consequences of changes in the production structure probably spread out 



more quickly due to this than the actual flow rate of commodities through 

the Same production structure. For that matter, it should be kept in mind 

that a change in the production structure usually induces further changes. 

For changes in consumption and production often lead to undesired stock 

changes which have to be disposed of. 

A change in the production structure at time O with a term AC (a change 
6 

in the flow rate between two industries is therefore also a change in the 

production structure) leads to the new production structure: 

The cumulative effects of a production structure noticed after n intervals 

are : 

while for the new structure they are 

The change in effects then noticed is the addition of the following term of 

the series expansion according to the new structure minus the addition 

which should have taken place according to the old structure: 

Further elaboration gives 

For most of the changes in the production structure it can be said that 



only the first term, or the first two terms at the most, of (81) are 

relevant. We can therefore state that a change in the production structure 

after n time intervals still leads to the following changes: 

-1 The time operator A used here has no possiblity of simulating the 
6 

extremely quick passing on of price change effects. The effects of such an 

extremely quick passing on can be represented by an operator l? which is 

considered as not taking any time at all, and which thus works immediately. 

The processes that take time cannot therefore be simulated by this 

operator. This means that this operator may not have a resultant in its 

effects on the columns belonging to the processes that take time; in the 

corresponding columns of i' we indeed find only zeros. The processes that do 

work immediately must be represented by this operator. For the immediate 

processes we find in the columns of r the part of the input structure that 
represents the immediate process. Because of the special form of r, this 
matrix is idempotent from a certain power k + 1 onwards, and indeed in such 
a way that the resulting matrix consists solely of zeros: 

while 

also applies. Because it is idempotent, this indicates that more than one 

immediate process can take place successively (i.e. with an infinitesimally 

small time interval). In realistic cases, k will be relatively small as it 

is very unprobable that many processes which are 'immediate' by 

approximation can take place within the standard time interval. The 

operator r can therefore only approximate reality if no production loops 
occur. A realistic matrix r will be al1 but completely filled with zeros. 

As part of the input structure is now mentioned in r, this part must be 



eliminated from This often means that certain elements have to be 
6 ' 

rendered zero. We cal1 this new time operator from which the immediate 
-l* processes have been eliminated A 

6 .  

The series expansion of (75) which reprecents the time lag is now 

transformed to 

w k i -* 
D = Z i .  [ x16+ i - O  j - l  

The interpretation of this series expansion is as follows: in every time 

interval a number of processes are carried out, represented by the time 
-l* 

operator A followed by an infinite number of immediate processes of which 
S 

j only the first k have any influence, represented by operators i' . 

The influence of changes in the production structure which are of 

consequence for the capita1 goods must be calculated separately. The reason 

behind this is that time lags here are much greater than those involved in 

ordinary intermediary consumption; therefore it would be necessary to 

consider many more terms in the series expansion. The effects via the 

consumption of capita1 goods must be simulated by creating a separate time 

scale for them, whereby the other effects are considered as having a 

(nearly) immediate effect. 
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Available National Accounts Occasional Pa~ers 

Flexibility in the system of National Accounts, Eck, R. van, 
C.N. Gorter and H.K. van Tuinen (1983) 
This paper sets out some of the main ideas of what gradually 
developed int0 the Dutch view on the fourth revision of the SNA. In 
articular it focuses on the validit and even desirability of the 
Pnclusion of a number of carefully cxosen alternative definitions 
the "Blue Bookn and the or anization of a flexible s stem starting 
from a core thaf is easier !o understand than the 1961; SNA. 

The unobserved economy and the National Accounts in the Netherlands, 
a sensitivity analysis, Broesterhuizen, G.A.A.M. (1983) 
This paper studies the influence of fraud on macro-economic 
statistics, especially GDP. The term "fraudn is used as meaning 
unreporting or underreporting income (e.g. to the tax authorities). 
The conclusion of the analysrs of rowth figures is that a bias in 
the growth of GDP of more than 0. 5f is very unlikely. 

Secondary activities and the National Accounts: Asvects of the Dutch 
measuremént practice and its effects on the unofficial economy, 
Eck. R. van (1985) 
In the process ofrestimatin national product and other variables in 
the Natronal Accounts a numfer of methods is used to obtain initia1 
estimates for each economic activit These methods are described 
and for each method various possibilities for distortion are 
considered. 

Comparability of in~ut-out ut tables in time, Al, P.G. and 
G .A. A.M. Broesterhuizen (1685) 
In this paper it is argued that the comparability in time of 
statistics, and in ut-output tables in particular, can be filled in 
in various ways. &e wa in which it is filled depends on the 
structure and object o% the statistics concerned. In this respect 
it is important to differentiate between coordinated input-output 
tables, in which groups of units (industries) are divided int0 
rows and columns, and anal tical input-output tables, in which the 
rows and colunms refer to Komogeneous activities. 

The use of chain indices for deflatin the National Accounts, Al, 
P.G. , B.M. Balk, S. de Boer and G.P. %en Bakker (1985) 
This paper is devoted to the problem of deflatin National Accounts E and input-output tables. This problem is approac ed from the 
theoretical as wel1 as from the practica1 side. Althou h the 
theoretical argument favors the use of chained vartia- k indices, 
the current practice of compilating National Accounts restricts to 
using chained Paasche and Laspeyres indices. Various possible 
objections to the use of chained indices are discussed and rejected. 

Revision of rhe system of National Accounts: the case for 
flexibility, Bochove, C.A. van and H.K. van Tuinen (1985) 
This paper examines the purposes of the SNA and concludes that they 
frequent1 conflict with one another. Consequently, the structure of 
the SNA sxould be made more flexible. This can be achieved b means 
of a system of a eneral purpose core supplemented with s ec 1 al modules 
This core is a fukl-fledged detailed system of National Rccounts 
with a greater institutionai content than the present SNA and a more 
elaborate description of the economy at the meso-level. The modules 
are more analytic and reflect special purposes and specific 
theoretical views. It is argued that future revisions wil1 concentrate 
on the modules and that the core is more durable than systems like 
present SNA. 

Integration of input-out ut tables and sector accounts; a possible 
solution, BOS, C. v.d. ($985) 
In this aper, the establishment-enterprise or company problem is 
tackled Ey taking the institutional sectors to which the establishments 
belong int0 account during the construction of input-output 
tables. The extra burden on the construction of fnput-output tables 
resulting from this approach is examined for the Dutch situation. An 
adapted sectoring of institutional units is proposed for the 
construction of rnput-output tables. The proposed approach contains 
perspectives on further specification of the institutional sectors, 



households and non-financial enterprises and quasi-corporate 
enterprises. 

NA/08 A note on Dutch National Accounting data 1900-1984, Bochove, C.A. 
van (1985) 
This note rovides a brief survey of Dutch national accounting data 
for l900-1!84, concentrating on national income. It indicates where 
these data can be found and what the major discontinuities are. The 
note concludes that estimates of the level of national income may 
contain inaccuracies; that its growth rate is measured accurately 
for the period since 1948; and that the real income growth rate 
series for 1900-1984 may contain a systematic bias. 

NA/09 The structure of the next SNA: review of the basic options, Bochove, 
C.A. van and A.M. Bloem (1985) 
There are two basic issues with respect to the structure of the nexf 
version the UN System of National Accounts. The first is its 'size : 
reviewing this issue, it can be conçluded that the next SNA must be 
'large ' in the sense of containin an integrated meso-economic 
statistica1 system. It is essentiaf that the neut SNA contains an 
institutional system without the im utations and attributions that 
pollute present SNA. This can be acgieved by distinguirhing, in the 
centra1 system of the next SNA, a core (the institutional system), a 
standard module for non-market production and a standard module 
describing attributed income and consumption of the household 
sector. 

NA/10 Dual sectoring in National Accounts, Al, P.G. (1985) 
The economic process consists of various sub-processes, each 
requiring its own characteristic classification when described from a 
statistica1 point of view. In doing this, the interfaces linking-the 
sub-systems describing the individual processes must be charted in 
order to reflect the relations existing within the overall process. 
In this paper, this issue is examined with the s ecial refernce to 
dual sectoring in s stems of National Accounts. eollowing a 
conceptual explanatTon of dual sectoring, an outline is given of a 
statistica1 system with complete dual sectoring in which the 
linkages are also defined and worked out. It is shown that the SNA 1968 
is incomplete and obscure with respect to the links between the two 
sub-processes. 

NA/11 Backward and forward linkages with an a plication to the Dutch agro- 
industrial complex, Harthoorn, R. (19851 
Some industries induce production in ot er industries. An elegant 
method is developed for calculating forward and backward linka 5s 
avoiding double counting. For 1981 these methods have been appfied 
to determine the influence of Dutch agriculture in the Dutch economy 
in terms of value added and labour force. 

NA/12 Production chains, Harthoorn, R. (1986) 
This pa er introduces the notion of production cains as a measure 
of the Kierarchy of industries in the production process. Production 
chains are sequences of transformation of products by successive 
industries. It is possible to calculate forward transformations as 
wel1 as backward ones. 

NA/13 The simltaneous compilation of current rice and deflated input- 
output tables, Boer, S. de and G.A.A.M. groesterhuizen (1986) 
This pa er discusses a number of aspects of the procedure according 
to whicf: in ut-out ut tables are compiled in the Netherlands. A few 
years ago tRis metiod underwent an essential revision. The most 
significant improvement means that during the entire statistica1 
process from the processsing and anal sis of the basic data up to 
and inciuding the phase of balancin tge tables, data in current prices 
and def lated data are obtained s imuftaneously and in cons is tency 
with each other. Data in current prices first used to be compiled and 
data in constant prices and changes in volume and prices used to be 
estimated only afterwards. With the new method the o portunity for 
the analysis of the interrelations beween various kfnds of data, and 
thus better estimates is used. 

NA/14 A proposal for the s optic structure of the next SNA, Al, P.G. and 
C.A. van Bochove (19E) 



Features of the hidden economy in the Netherlands, Eck, R. van and 
B. Kazemier (1986) 
This pa er ~resents curve results on the size and structure of the 
hidden Pabour market in txe Netherlands. 

Uncoverin hidden income distributions: the Dutch approach, Bochove, 
C.A.  van (j1987) 

Main national accounting series 1900-1986, Bochove, C.A.  van and 
T . A .  Huitker (1987) 
The main national accountin series for the Netherlands, 1900-1986, 
are provided, dong with a grief explanation. 

The Dutch economy, 1921-1939 and 1969-1985. A comparison based on 
revised macro-economic data for the interwar period, Bakker, G.P. den, 
T.A.  Huitker and C.A. van Bochove (1987) 

Constant wealth national income: accounting for war damage with an 
a plication to the Netherlands,1940-1945,Bochove, C.A. van and 
W! van Sorge (1987) 

The micro-meso-macro linkage for business in an SNA-compatible 
system of economic statist~cs, Bochove, C.A. van (1987) 

Micro-macro link for government, Bloem, A.M. (1987) 
This paper describes the way the link between the statistics on 
overnment finance and national accounts is provided for in the 
dtch government finance statistics. 

Some extensions of the static open Leontief model, Harthoorn, R. 
(1987) . - ~  - - , 
The results of input-output analysis are invariant for a 
transformation of the system of units. Such transformation can be 
used to derive the Leontief rice model, for forecasting input- 
output tables and for the cayculation of cumulative factor costs. 
Finall the series expansion of the Leontief inverse is used to 
descri i: e how certain economic processes are spread out over time. 
Compilation of household sector accounts in the Netherlands 
National Accounts, Laan, P. van der (1987) 
This a er provides a concise description of the way in which 
houseRoPd sector accounts are compiled within the Netherlands 
National Accounts. Special attentron is paid to differences 
with the recommendatrons in the United Nations System of 
National Accounts (SNA). 

On the adjustment of tables with Lagrange multipliers, Harthoorn, R. 
and J. van Dalen (1987) 
An efficient variant of the Lagrange method is given, which uses no 
more computer time and centra1 memory then the widely used RAS 
method. Also some special cases are discussed: the adjustment of row 
sums and column sums, additional restraints, mutual connections 
between tables and three dimensional tables. 

Re uests for copies of National Accounts Occasional Papers should be 
ad8ressed to : CBS, National Accounts Department 

P.O. Box 959 
2270 AZ Voorburg 
The Netherlands 
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