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Abstract

Reliable statistics on travel behavior are important for national infrastructure planning, transport
policy‐making, and understanding mobility patterns. Recent advances in smartphone‐based
travel surveys enable passive data collection via smartphone Global Positioning System (GPS)
sensors. These smart surveys offer an alternative to traditional travel diary surveys, which are
typically impacted by a high response burden. This study examines the application of supervised
machine learning models to automatically identify transport modes from GPS measurements
obtained through a travel app developed by Statistics Netherlands. We compare Random Forest
and Extreme Gradient Boosting classification models trained on GPS‐based features in
combination with contextual location‐based features from OpenStreetMap, as well as temporal
features derived from time‐related information and previous travel behavior. The Extreme
Gradient Boosting model trained on the complete feature set achieved the highest accuracy
(0.91) and macro‐averaged F1‐score (0.84), while also achieving the best accuracy (0.84) when
evaluated on external validation data. Although these results suggest that fully automated
transport mode classification in the travel app may not be feasible, a semi‐automated approach
with targeted prompts could be used to balance transport mode classification accuracy and
response burden.

Keywords: transport mode detection, smart survey, Random Forest, Extreme Gradient Boosting,
GPS
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1 Introduction

Reliable statistics on travel behavior are important for national infrastructure planning, transport
policy‐making, and understanding mobility patterns. Traditionally, data on travel behavior are
collected by national statistical institutes through diary surveys (e.g., McCool et al. 2021). In
these surveys, respondents are asked to report their daily activities over a specified period. The
requested information typically includes the duration of a trip, the trip purpose (e.g., work,
shopping), and the transport mode used (e.g., car, walking). While diary‐based travel surveys
have long been the standard for collecting travel behavior data, they pose considerable
challenges. As diary‐based travel surveys rely on the respondent’s ability to remember their
travel activities, they are susceptible to recall bias, underreporting, and response‐over‐time bias
(McCool et al. 2021; Prelipcean et al. 2018). For example, short trips are typically under‐reported
(Stopher and Greaves 2007; Nahmias‐Biran et al. 2018), and the duration of public transport trips
is regularly overestimated compared to car trips (Bohte and Maat 2009). Furthermore, diary
surveys are time‐intensive and impose a high burden on respondents, which is associated with
an increased risk of non‐response and dropout (Kitamura and Bovy 1987; Hu et al. 2020; Wang
et al. 2024).

To address these challenges, researchers and statistical institutes are increasingly exploring smart
survey approaches. In smart surveys, data collection is facilitated by utilizing sensors available on
smartphones. In the context of travel surveys, the Global Positioning System (GPS) sensors in
smartphones can be used to collect information on individual travel behavior (e.g., Yang et al.
2018). The idea behind this approach is that the collected GPS measurements are used to define
segments, where each segment is a cluster of consecutive GPS points representing either a trip
or a stop (Safi et al. 2016). Based on these defined segments, travel statistics such as the trip
distance, duration, and speed can be computed (Xiao et al. 2012; Calabrese et al. 2013;
Nahmias‐Biran et al. 2018; Li et al. 2021). If done well, respondents no longer need to manually
record their trips, which may reduce respondent burden. Additionally, GPS data may provide
higher data granularity and more detailed information on travel behavior that is difficult to
obtain from a traditional diary survey. In this study, we assume that all trip segments are
single‐modal trips.

In 2018 and 2022/2023, Statistics Netherlands performed large‐scale field tests of a smart survey
application (McCool et al. 2021; Schouten et al. 2024). A travel app was developed that passively
collected GPS data from participants. There were three reasons for in‐house development:
transparency of technology and algorithms, flexibility in training and retraining machine learning
methods, and flexibility in monitoring and evaluation of in‐app respondent paradata (Klingwort
et al. 2026). The GPS measurements were algorithmically grouped into trips and stops (Klingwort
et al. 2025c). Participants were then prompted to annotate these trips and stops with the
corresponding transport mode or stop purpose (see Remmerswaal et al. (2025) for the role of
the respondent). This semi‐automated approach no longer requires respondents to provide
details about their travel times and durations, unlike traditional diary surveys. Only when the
stop/track segmentation algorithm failed did respondents still have to add all trip information
manually. However, even when the app accurately defined the stop/track segments, the
semi‐automated approach still relied on respondent input for annotating the collected data.

A potential next step for the travel app is to infer the transport mode from GPS data
automatically. If done well, this may eliminate the need for respondents to annotate the data
and enable entirely passive data collection. Automatic transport mode detection is a relevant
topic in international transportation research (Sadeghian et al. 2021; Yang et al. 2024), and
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several studies have been conducted in the Netherlands using data collected via the travel app
from Statistics Netherlands. Smeets et al. (2019) applied a Random Forest classifier to predict
transport mode based on data collected in 2018, and Fourie et al. (2025) developed a rule‐based
algorithm using data collected in 2022 and 2023. Both studies combined GPS data collected in
the app with location context data from OpenStreetMap (OSM), such as proximity to public
transport stations, to classify transport modes.

The studies used different approaches to handling the nested structure of the travel data, in
which respondents participating in the survey make multiple trips and may collect GPS data over
multiple days. Fourie et al. (2025) accounted for the nested data structure during the training
and testing of the algorithm by grouping trips from the same respondent into either the train or
test data. However, they did not include information on earlier travel behavior as potential input
for their model. Contrastingly, Smeets et al. (2019) considered all trips as independent events,
thereby not explicitly accounting for the nested structure of the data. However, they included an
indicator in their model indicating whether a transport mode had been used previously, thereby
acknowledging potential recurring patterns among respondents. Ultimately, it is not yet clear
whether the longitudinal structure of data collected in travel surveys can be used to improve the
predictive performance of transport mode classifiers.

In contrast to Smeets et al. 2019; Fourie et al. 2025, we study machine learning algorithms on the
2022/2023 dataset. We compare the performance of two commonly used supervised machine
learning algorithms in the field of transportation research: Random Forest and Extreme Gradient
Boosting (XGBoost) (Xiao et al. 2017; Bedogni et al. 2016; Bjerre‐Nielsen et al. 2020; Hasan et al.
2022; Sadeghian et al. 2022). We build on previous work by combining GPS data with
context‐location information from OSM. Additionally, we aim to capture potential temporal
patterns in the data by adding features based on prior travel behavior. Moreover, we analyze how
respondent prompts and respondent interaction could be applied in practice. With this, we aim
to answer the research question: how well can machine learning algorithms predict the mode of
transport in a smartphone‐based travel survey, considering different algorithms and feature sets?

The following section includes a brief overview of standard features and models in transportation
mode detection literature. After providing information on the data and methods, we compare
the predictive performance of two machine learning algorithms with different feature sets:
GPS‐based, OSM‐based, and temporal. We show that including temporal features provides a
slight increase in prediction performance with both algorithms. However, the added value differs
per model and is considerably lower than that of location‐based information from OSM.

2 Research Background

Given the increased prevalence of smartphones in society, many researchers are exploring the
potential of using smartphone sensors for data collection as an addition or alternative to
traditional diary surveys (Zhou et al. 2022). Smartphone sensors such as the GPS, Global System
for Mobile Communication (GSM), and Wi‐Fi Positioning System (WPS) can be used to collect
real‐time location data and discover individual mobility patterns (Xiao et al. 2012; Calabrese et al.
2013; Lu et al. 2019; Li et al. 2021). Data collected from these sensors may then be used to infer
mobility patterns, including the transport mode.

This section provides a brief overview of methods commonly used for transport mode detection
in the transportation research literature. The data collected by Statistics Netherlands in the field
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test of their travel app have been labeled by the respondents with the relevant transport mode.
Consequently, we focus particularly on supervised machine learning approaches that require
labeled data. Although semi‐supervised and unsupervised machine learning approaches are
becoming increasingly popular in the literature because they can be applied when labeled data is
limited or unavailable (Zhang et al. 2021), supervised approaches are preferred when labeled
data is available (Yang et al. 2024).

We also briefly discuss rule‐based algorithms, which have previously been successfully applied to
travel app data collected by Statistics Netherlands, see for example Klingwort et al. (2025a) and
Fourie et al. (2025). A summary of the predictive performance of smart features is given by
Klingwort et al. (2025b).

2.1 Supervised machine learning algorithms

Supervised machine learning algorithms have been a popular choice for transport mode
detection in the transportation research literature (Sadeghian et al. 2022; Yang et al. 2024).
Machine learning algorithms are well‐suited for high‐dimensional data and can capture complex,
non‐linear relationships in data (e.g., Boulesteix and Schmid 2014). Some of the algorithms used
for transport mode classification include Support Vector Machines (Bolbol et al. 2012), Naive
Bayes (Nour et al. 2016), and Bayesian Networks (Xiao et al. 2015). Decision tree‐based
ensemble models, such as gradient‐boosted trees and Random Forests, are also commonly used
for transport mode detection (e.g., Li et al. 2021; Lu et al. 2019; Shafique and Hato 2016; Liu
et al. 2022). As tree‐based ensemble models have been found to regularly outperform other
supervised machine learning models (Stenneth et al. 2011; Li et al. 2021; Sadeghian et al. 2021;
Liu et al. 2022), these will be discussed more in depth.

2.1.1 Random Forest and Extreme Gradient Boosting
Random Forest and Extreme Gradient Boosting (XGBoost), a specific implementation of
gradient‐boosted trees, are both ensemble models based on decision trees. However, these
models differ in how the trees are constructed and combined. Random Forests typically create a
large number of independent decision trees using bootstrapped samples of the data, also known
as bagging. The predictions are then aggregated through majority voting (Breiman 2001). In
contrast, XGBoost creates trees sequentially, where each new tree is trained to correct the
residual errors of the previous ones, also known as boosting (Chen and Guestrin 2016). This
approach may allow for learning more complex relationships and patterns in the data, potentially
achieving higher accuracy. However, it also results in higher model complexity and greater
hyperparameter sensitivity, which can lead to overfitting, especially when hyperparameters are
not properly tuned (e.g., Bentéjac et al. 2021). Both algorithms have the advantage of being
non‐parametric and are capable of handling strongly correlated features (Pappu and Pardalos
2014; Zhao et al. 2020).

Multiple studies have found that the Random Forest algorithm performs well in classifying
transport modes. Li et al. (2021) compared a Random Forest classifier against a Decision Tree,
AdaBoost, XGBoost, LightGBM, and Artificial Neural Network and found it provided the highest
accuracy rate on a test dataset with five transport modes with 91.1% accuracy. Furthermore,
Stenneth et al. (2011) found that a Random Forest algorithm outperformed Naive Bayes,
Decision Tree, and Bayesian Network with an accuracy of 93% in the classification of 6 transport
modes. Additionally, Smeets et al. (2019) used a Random Forest algorithm on earlier travel app
data collected by Statistics Netherlands, achieving 64% accuracy across eight transport modes
and 77% when collapsing modes into four overarching categories (walk, bike, motorized, and

CBS | Discussion paper | February 2026 6



public transport). In contrast, XGBoost has been used far less frequently for transport mode
detection. Still, it has been used successfully in the literature, with Liu et al. (2022) reporting that
both LightGBM and XGBoost slightly outperformed Random Forest with a macro‐averaged
F1‐score of 0.92 when classifying six transport modes. Considering these reported results, both
Random Forest and XGBoost models will be used and compared in this study.

2.2 Rule‐based Algorithms

Although machine learning algorithms have been most prevalent in the literature on transport
mode detection (Sadeghian et al. 2021), rule‐based algorithms have also been successfully used
to predict transport mode based on GPS data (Xiao et al. 2019; Fourie et al. 2025). As previous
transport mode detection approaches based on data from Statistics Netherlands used rule‐based
algorithms, they are also briefly discussed here.

Rule‐based algorithms have the advantage of high interpretability, especially in comparison to
machine learning algorithms. However, these approaches often require researchers to manually
adjust decision rules, which may be time‐intensive and require expert knowledge (Sadeghian
et al. 2021). On travel app data collected by Statistics Netherlands in 2022 and 2023, which is
also used in this study, Fourie et al. (2025) implemented a rule‐based algorithm with an accuracy
of 85% and balanced accuracy of 70% on a test set comprising seven transport modes. Besides
GPS‐based features, their study considered a large number of OSM‐based features, including
public transport routes, public transport stations, traffic indicators, and parking amenities.

2.3 Temporal Features

Travel surveys may have data collection windows ranging from a single day to multiple days or
multiple weeks or months (Axhausen et al. 2007). In the field test of the travel app developed by
Statistics Netherlands, respondents were asked to collect and annotate their travel behavior data
for either one or seven days. Consequently, the collected data can be considered longitudinal. As
a result, it is possible to explore whether recurring trips or other temporal patterns in the data
improve the accuracy of automatic transport mode detection.

However, few studies that apply traditional supervised machine learning algorithms for
automatic transport mode detection have incorporated the longitudinal nature of the data into
their models. Although there are studies explicitly making use of the longitudinal structure of
data, they typically make use of deep learning models like Long Short‐Term Memory (LSTM) (Liu
and Lee 2017; Yu 2021; Qin et al. 2019; Jiang et al. 2023). These models typically support
automatic feature extraction, including temporal dependencies, unlike most traditional machine
learning models for transport mode detection, which rely on manual feature extraction. Deep
learning models also allow for greater flexibility in the model input. Whereas traditional
supervised learning algorithms often require input at the trip segment level, deep learning
models allow GPS measurement‐level input. Creating features at the trip segment level requires
summarizing and aggregating GPS measurements to the trip segment level, resulting in
information loss (Yang et al. 2024). However, a major disadvantage of these algorithms is that
they require a huge amount of data to be trained successfully. The data available to this study
was considered too small to train an LSTM model.

Consequently, we aim to incorporate manually constructed temporal features into a traditional
supervised machine learning approach for automatic transport mode detection. We are

CBS | Discussion paper | February 2026 7



interested in whether information from previous trips and stops, and potential daily or weekly
patterns, may improve prediction performance, in addition to features based on GPS or OSM
data that are primarily used in the transportation research literature.

3 Data

3.1 Travel App Data

From November 2022 to February 2023, Statistics Netherlands collected smartphone GPS data
from a sample of the general population as part of a field test of a smartphone travel app
designed to measure travel behavior in the Netherlands. The field test used an experimental
design, with data collected across three phases. The phases differ in three ways: whether
respondents were asked to collect data for 1 or 7 days, whether they could edit their trips and
stops in the travel app, and whether they received an additional web‐based questionnaire
(Schouten et al. 2024). The data collected in the travel app used for this study is based on a total
of 501 respondents randomly sampled from the Dutch population.

After respondents were invited to participate in the field test and install the app, the
smartphone’s GPS sensors were used to collect information on respondents’ locations. An
algorithm was implemented to segment the data into stationary events (‘stops’) and travel
events (‘tracks’). Stops were determined when a respondent stayed within a 100‐meter radius
for at least 300 seconds (Gootzen et al. 2025; Klingwort et al. 2025c). The radius was adjusted
based on geolocation measurement accuracy, with lower accuracy resulting in a larger radius.
Accuracy is represented by a radius in meters in which the actual geolocation is expected to lie.
As a result, small values indicate more precise measurements.

Based on the algorithm‐generated segmented tracks and stops, a travel diary was automatically
generated and presented to the respondent. The respondent could label the presented tracks
and stops by selecting a transport mode for the tracks (e.g., bus, car, walking) and a stop purpose
for the stops (e.g., home, work, shopping) from provided options. For stop purpose predction,
we refer to Zahroh et al. (2025). Figure 3.1 provides an overview of the app’s user interface,
showing the homepage, a generated travel diary, and an annotated travel diary.

3.2 Data Pre‐processing

Pre‐processing of the travel app data was performed in two stages. The first stage was conducted
before the start of this study and consisted of removing low‐quality observations. Data from
respondents were excluded when they had recorded less than one hour of data or fewer than
2,000 GPS measurements (Schouten et al. 2024; Gootzen et al. 2025). Approximately 25% of
respondents and their corresponding data were excluded based on these quality criteria. This
ensures the analysis is based on high‐quality data, and the potential effects on performance have
not yet been studied.

The remaining data is stored in two separate datasets: one containing the annotated events and
the other containing the geolocations collected in the travel app. Each event includes a
respondent ID, a start time, an end time, an indication of whether the event is a track or a stop,
and, if provided by the respondent, the transport mode or stop purpose. The geolocations
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Figure 3.1 User interface of the travel app. The left image shows the app’s homepage,
with an overview of the days on which data was collected and/or labeled by the
respondent. The middle image shows the automatically generated travel diary
presented to the respondent. The right image shows the travel diary after the
respondent annotated it with transport modes and stop purposes. The data is based
on internal testing and does not reϐlect an actual respondent.

consist of a longitude, a latitude, a timestamp, and a respondent ID. These datasets were made
available at the start of this study.

The second stage of data pre‐processing includes all the steps performed in this study. In this
stage, all duplicate GPS measurements were removed. Duplicate measurements were identified
as observations with the same respondent ID and timestamp. Typically, these duplicates occur
when more than one sensor collects data simultaneously, or when multiple measurements are
made within the same second. When duplicates were found, the GPS measurement with the
lowest accuracy value was kept. Afterward, the geolocations were linked to their corresponding
events through the respondent ID and the event start and end times.

In addition, transport mode categories such as ‘car driver’, ‘car passenger’, and ‘delivery van
driver’ were combined into a single ‘car’ category, and ‘bike’ and ‘e‐bike’ were combined into a
single ‘bike’ category. Combining bike and e‐bike categories was also done in Smeets et al.
(2019), resulting in a higher prediction accuracy. In contrast to their study, however, public
transport and motorized modes were not combined in this study. Unlabelled trips and
miscellaneous transport modes were excluded from the analysis. The miscellaneous category,
where respondents could enter free text, was excluded due to its heterogeneity and limited
interpretability. The remaining transport mode labels include bike, bus, car, metro, train, tram,
and walking. As the respondents provided transport mode labels in the travel app, these are
used as ground truth for transport mode classification.

CBS | Discussion paper | February 2026 9



Lastly, tracks exceeding 10 hours in duration or containing fewer than 10 geolocation
measurements were excluded from the analysis. Very long tracks may reflect measurement or
processing errors, whereas tracks with few GPS measurements may yield unreliable event‐level
statistics and model features. Only minimal filter criteria were applied, resulting in some
remaining trips with very high trip durations or very few GPS measurements. However, stricter
filter criteria were not applied, as it is expected that potential future travel app data may exhibit
similar patterns.

3.3 Target Variable

After preprocessing, the remaining data consisted of 2,916,696 geolocation measurements
representing 4,101 labeled trips made by 251 users. The target variable is the respondents’
transport mode label. The distribution of transport modes is shown in Table 3.1. Car trips are
most frequent, followed by walking and biking. Public transport trips occur considerably less
frequently, with less than 1% of labeled trips made by tram. Consequently, the data is highly
imbalanced. The average trip duration for respondents is 25 minutes. For comparison, the row
‘Netherlands 2023 %’ contains the percentages based on the regular survey. The categories bus,
tram, and metro are grouped in the official statistics and constitute together 2.2%. In this study,
each of these categories is predicted separately. Figure 3.2 shows a boxplot with the trip
duration in minutes for each of the seven transport modes.

Table 3.1 Distribution of transport modes in the pre‐processed travel app data
Class Car Walking Bike Train Bus Metro Tram Other Total

N 1842 987 932 158 94 56 32 0.0 4101
% 44.9 24.1 22.7 3.9 2.3 1.4 0.8 0.0 100

Netherlands 2023 % 44.5 20.6 26.8 2.6 * * * 3.7 100

Figure 3.2 Boxplot of trip duration for each of the seven transport modes
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3.4 GPS‐based Features

GPS‐based features were created from the pre‐processed geolocation data in two steps. First,
features were calculated at the GPS measurement level, which consists of timestamps and
longitude/latitude value pairs. Clusters of consecutive GPS measurements that were classified as
a track by the stop‐algorithm were grouped. For these clusters, the distance between
consecutive points was computed using the Haversine formula for great‐circle distance to
determine the distance traveled between GPS measurements Bansal 2021. The distance traveled
and the time difference between points were then used to calculate speed and its higher‐order
derivatives: acceleration (𝑚/𝑠2), jerk (𝑚/𝑠3), and snap (𝑚/𝑠4). Acceleration measures the rate
of change of speed, jerk measures the rate of change of acceleration, and snap measures the rate
of change of jerk. These higher‐order derivatives were computed to monitor changes in motion
that may help distinguish between transport modes. Additionally, the bearing was calculated
from the difference in longitude and latitude between the two points. The bearing was calculated
only for GPS measurements with a speed of at least 0.6 m/s, as lower speeds yielded highly
divergent consecutive bearing values, which were deemed uninformative. All computations were
performed with the geosphere package in R (Hijmans 2024; R Core Team 2024).

In a second step, GPS measurement‐level features were aggregated to the event‐level by
computing summary statistics. These summary statistics include the mean, median, minimum,
maximum, standard deviation, coefficient of variation, autocorrelation coefficient, skewness,
kurtosis, interquartile range (IQR), and values at the 1st, 5th, 10th, 90th, 95th, and 99th
percentiles. These summary statistics were computed for speed, acceleration, jerk, snap,
difference in bearing, altitude, and measurement accuracy. Additionally, the frequency and size
of outliers were taken into account for speed, acceleration, jerk, and snap. Outliers were defined
as observations that fall more than 1.5 IQR above or below the third or first quartile. For speed
and difference in bearing, the proportion of values within pre‐specified intervals were computed
as well. Finally, the total trip duration is computed as the sum of distances between consecutive
GPS points. An overview of all computed features is provided in Appendix A.

Figure 3.3 shows a boxplot of median speed for each of the seven transport modes, one of the
summary features extracted from the GPS data. Some of the outliers represent implausible
values, such as a median walking speed greater than 50 km/h, which can occur when
measurement inaccuracy is high or when trips are mislabeled.
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Figure 3.3 Boxplot of median speed for each of the seven transport modes

3.5 OpenStreetMap‐based Features

In addition to the GPS data collected through the travel app, external geospatial data from
OpenStreetMap (OSM) was used to enrich the GPS data with contextual location‐based
information. OSM is an open‐source platform maintained by a large user community that
provides detailed location data, including information on roads, buildings, public transport
infrastructure, and other elements relevant to travel behavior analysis (OpenStreetMap
Contributors 2025). For this study, OSM data were sourced from Geofabrik (Geofabrik 2025),
which provides extracted OSM data for specific regions. OSM data on public transport routes,
public transport stations, traffic indicators, and parking amenities are used for the Netherlands
and the German regions Baden‐Württemberg, Niedersachsen, and Nordrhein‐Westfalen. The
OSM‐based features used in this study are derived from the methods described by Fourie et al.
(2025). Their approach for extracting context‐location features to enhance transport mode
prediction has been adopted with minimal modifications. Features such as the proximity to
public transport lines and intersection counts were computed as outlined in their study. An
overview is provided in Appendix A.

3.6 Temporal Features

In addition to the GPS and OSM features, multiple temporal features were created to enrich the
input data. This is new in contrast to all other transport mode prediction studies conducted at
Statistics Netherlands. The work by Zahroh et al. 2025 to predict travel motives also used such
temporal features, which were found to be relevant in this context. With these features, we aim
to capture patterns in data from previous tracks and stops, and to situate tracks within a daily or
weekly context. Such features include indicators of the day of the week, whether a trip was
made during morning or evening rush hour, the number of trips made so far on a given day, and
the daily cumulative duration and distance traveled. Furthermore, the duration and purpose of
previous stops were added as features, along with the duration and transport mode of the last
three tracks made by the respondent.
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Finally, to capture respondent‐specific patterns, respondent baselines were constructed by taking
the cumulative mean of various speed‐related statistics. These include the cumulative mean of
the average, median, standard deviation, interquartile range, and 90th percentile of speed.
Additionally, the cumulative mean of trip duration and distance is constructed. For each new
track, the difference from the respondent baseline is then computed. For the most common
transport modes (car, bike, and walking trips), mode‐specific respondent baselines of the mean
were also computed.

Besides GPS‐based temporal features, OSM‐based temporal features have also been created.
These consist of user baselines or cumulative means of the number of encounters with public
transport stations and public transport lines along tracks, as well as the difference from these
user baselines for each new track. An overview of these features can be found in Appendix A.

3.7 External Validation Data

To assess the external validity of the transport mode classification models, an external validation
dataset is used. The data were collected using the Statistics Netherlands travel app in the
summer of 2024. As this is a later version of the travel app than the one used for the 2022/2023
data collection, the sensor configuration differs slightly. The data were collected as part of
Eurostat’s Smart Surveys Implementation project (Eurostat 2024) and are publicly available on
the project’s GitHub (essnet‐ssi 2025). It has also been used in various discussion papers
published by Statistics Netherlands (Fourie et al. 2025; Klingwort et al. 2025c).

The data were collected specifically to obtain high‐quality transport mode labels with no errors.
A small group of employees from Statistics Netherlands and Utrecht University was instructed to
collect data on trips that were expected to be challenging to classify, such as public transport
trips with multiple transfers. Data was collected by five respondents in the Netherlands and
Germany, resulting in 137 trips to be classified.

Two differences between the data collected in 2022/2023 and 2024 should be mentioned. First,
the available transport modes differ slightly. Whereas the car is the most common transport
mode in the 2022/2023 data, no car trips have been made in the 2024 data. Additionally, the
2024 validation data includes trips labeled as ‘ferry’, a category not included in the 2022/2023
data. Second, no stops were recorded in the 2024 validation data, and the data do not represent
regular travel days, unlike the 2022/2023 data. Consequently, temporal features that use
information about previous stop duration and purpose have not been added.

4 Methodology

This section describes the training process and evaluation of the machine learning models used
for the transport mode classification. A total of eight models have been trained: four Random
Forest models and four XGBoost models. The models are trained on four different sets of
features. The first feature set includes only GPS‐based features. The second set includes both
GPS‐based and OSM‐based features. The third set contains GPS‐based and temporal features.
Lastly, the fourth feature set contains all features. The remainder of this section describes the
modeling approach, including data splitting, model training, and the evaluation metrics used.
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4.1 Machine Learning Classiϐication Task

The goal of automatic transport mode detection can be formulated as a multi‐class classification
task. The prediction instance is a single annotated track. The to‐be‐classified transport mode
labels contain seven classes: bike, bus, car, metro, train, tram, and walk. The input for the
classification models are the four feature sets: (1) GPS‐based, (2) GPS combined with OSM, (3)
GPS combined with temporal features, and (4) the complete set of features. The two
classification algorithms are Random Forest and XGBoost.

4.2 Class Imbalance

Given the large class imbalance in the data, inverse class weights were computed and provided
to the model to penalize misclassifications of underrepresented classes. The weights assigned to
the classes were 0.59 for bike, 6.30 for bus, 0.32 for car, 10.11 for metro, 3.75 for train, 20.71 for
tram, and 0.63 for walk. Although a downsampling strategy was also considered for the Random
Forest model, inverse class weights were ultimately chosen for ease of implementation with
XGBoost. This allows for easier comparison between the two sets of models.

4.3 Training Procedure

As preparation, the data was split into a training and a testing dataset at a 75/25 ratio. A blocking
strategy was used to ensure that all trips from a single respondent were included in either the
training or test data, but not both. This strategy ensures that the models are evaluated on
unseen respondents and may prevent overly optimistic model evaluation when similar trips from
a single respondent are used for both training and testing the model.

4.4 Hyperparameter Tuning

Model hyperparameters were tuned using a grid search and 10‐fold cross‐validation on the
training data. The same type of blocking strategy used to split the train and test data was used to
create the 10 folds. As a result, tracks from the same respondent were all assigned to the same
fold for validation.

4.4.1 Random Forest
Tuning and training of the Random Forest classifier was performed in R (R Core Team 2024) with
the tuning pipeline from the caret package (Kuhn 2008). The ranger implementation of the
random forest algorithm was used for training the model parameters (Wright and Ziegler 2017).
A grid search was performed for two key model parameters: mtry, which represents the number
of potential features randomly selected at each tree split, and min.node.size, which specifies
the minimum number of observations required in a terminal node. The grid search values for the
randomly selected features were set at 20, 30, and 40. The minimum node sizes considered were
200, 300, and 400. Whereas the number of randomly sampled features impacts the feature
diversity of the Random Forest model, the minimum node size influences the tree depth. Low
values for the randomly sampled selected features typically result in a higher variety of features
being selected into the model, which may decrease prediction performance if they are minimally
correlated with the classification target variable. On the other hand, high values typically allow
for stronger variables to be selected more often, but may therefore also result in trees with
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higher correlation and an increased risk of overfitting. In contrast, larger minimum node sizes
lead to shallower trees and therefore regularize the model, reducing the risk of overfitting. In
contrast, lower minimum node sizes result in deeper trees that are more prone to overfitting the
data.

The hyperparameter grid search for the random forest model was performed with 200 trees.
Afterward, model hyperparameters were selected based on the macro‐averaged recall of the
cross‐validation sets. With these hyperparameters, a final model with 2000 trees was trained on
the complete training data. For the Random Forest model with only GPS features, the number of
randomly sampled features was set to 20, and the minimum node size was set to 400. For the
other three models, the selected hyperparameter values were 300 for the minimum node size
and 30 for the number of potential features to be selected. An overview of the four Random
Forest models with the final hyperparameter values can be found in Table 4.1.

Table 4.1 Final hyperparameters for the Random Forest classiϐication models

Model 1 2 3 4
Algorithm Random Forest Random Forest Random Forest Random Forest
Features GPS GPS, OSM GPS, temporal All

Feature subsample 20 30 30 30
Minimum node size 400 300 300 300
Number of trees 2000 2000 2000 2000

Figure 4.1 illustrates the hyperparameter sensitivity for the Random Forest model trained on the
complete feature set. To better illustrate the hyperparameter sensitivity, additional values were
added for the minimum node size (0 and 100) and the number of randomly selected features (10
and 50). The figure illustrates that the minimum node size has a larger effect on the mean recall
in the cross‐validation loop than the number of randomly sampled features. Although the
models with minimum node sizes of 0 and 100 achieve visibly lower mean recall scores than
those with a minimum node size of 200 or more, the mean recall scores of the models with
minimum node sizes of 200, 300, and 400 are much closer to each other.

Figure 4.1 Average recall in the cross‐validation for different hyperparameter values
of the Random Forest model
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4.4.2 XGBoost
Unlike the Random Forest algorithm, XGBoost has many tunable hyperparameters. Although
there is no consensus in the literature on XGBoost about optimal hyperparameter settings or
tuning strategies (Bentéjac et al. 2021; Kapoor and Perrone 2021), the learning rate is often
considered one of the key hyperparameters for model performance (Chen and Guestrin 2016).

The XGBoost model hyperparameters were tuned using 10‐fold cross‐validation in three steps,
with the same blocking strategy as for the Random Forest cross‐validation. All XGBoost tuning
and training was done with the xgboost package in R (Chen and Guestrin 2016). In the first step,
an initial grid search was performed for the hyperparameters gamma, max_depth, and
min_child_weight. These hyperparameters affect the model complexity and regularization.
gamma represents the minimum loss reduction required to keep branching the tree.
Consequently, higher gamma values have a regularizing effect on the model, helping reduce
overfitting. Both the maximum depth and the minimum child weight influence the model’s
complexity. High maximum depth values result in deeper, more specialized trees, whereas high
minimum child weights prevent the creation of small, highly specific tree branches. The grid
search values for these hyperparameters were 1, 2, and 5 for gamma, 3, 4, and 6 for maximum
depth, and 10, 20, and 30 for minimum child weight.

In the second step, a grid search was performed for the hyperparameters subsample and
colsample_bytree. These hyperparameters affect the model’s sampling behavior. The
subsample hyperparameter represents the proportion of observations that is randomly selected
from the data to be used in fitting the tree, and the colsample_bytree represents the
proportion of features that are randomly selected to serve as potential input for the tree. The
grid search values for these hyperparameters were 0.5, 0.7, and 0.9 for both the subsample and
the colsample_bytree.

A final grid search was performed to determine the learning rate eta and the number of
boosting iterations. Learning rates of 0.05, 0.1, 0.2, and 0.3 were tested in a cross‐validation
setting. The maximum number of boosting iterations was set to 200 trees, with the option to
stop the algorithm earlier if no improvement in the evaluation metric was observed in the last 20
iterations.

In all three tuning steps, the hyperparameters were selected based on the multi‐class logistic loss
in the cross‐validation. Table 4.2 shows the final hyperparameter values for each of the four
XGBoost models.

Table 4.2 Final hyperparameters for the XGBoost classiϐication models

Model 5 6 7 8
Algorithm XGBoost XGBoost XGBoost XGBoost
Features GPS GPS, OSM GPS, temporal All

Gamma 2 1 5 1
Maximum depth 3 3 3 3
Minimum child weight 20 20 30 10
Data subsample 0.9 0.9 0.9 0.9
Feature subsample 0.7 0.7 0.7 0.9
Learning rate (eta) 0.1 0.1 0.3 0.2
Boosting Iterations 42 54 14 23

Figure 4.2 shows the sensitivity of the XGBoost model with all feature sets to different settings of
the learning rate hyperparameter. In a 10‐fold cross‐validation loop, the multi‐class logistic loss
was tracked for up to 200 boosting iterations (200 trees). If the multi‐class logistic log loss did not
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decrease in the last 20 iterations, the algorithm was allowed to stop earlier. The log loss is
averaged over the validation sets, and four different values of eta were tested in the
cross‐validation loop. The plot shows that the higher learning rates converge much faster to a
stable level within the first 50 iterations. Contrastingly, the lowest learning rate converges more
slowly, with the multi‐class log loss decreasing considerably more slowly. Although low learning
rates converge much more slowly and require a larger number of boosting iterations, and
therefore more computational power and time, they also have a lower risk of over‐fitting. On the
other hand, the fast convergence of the high learning rates can also be seen as a considerable
advantage in terms of speed and computational power. The computational power and time
required for training the model are minor issues when training the model once. Overfitting is a
more severe issue in this case. When the model is retrained during fieldwork, computational
power and time become more important issues.

Figure 4.2 Averaged multi‐class log loss in cross‐validation for different learning
rates (eta)

4.5 Model Evaluation

4.5.1 Confusion Matrix‐based Evaluation Methods
We measured model performance using accuracy, balanced accuracy, macro‐averaged F1 score,
and average recall. The last three evaluation criteria are confusion‐matrix‐based metrics that are
considered suitable for multi‐class classification in imbalanced datasets (Luque et al. 2019).
Whereas balanced accuracy for each class is the mean of the true positive rate (recall) and the
true negative rate, the F1 score balances precision and recall. F1 scores close to 1 indicate high
precision and recall, whereas scores below 0.5 indicate a poor prediction performance.

Although accuracy is typically not recommended for imbalanced datasets because it often favors
the correct prediction of large classes, it was chosen as an evaluation metric for comparing
datasets. The validation dataset contains the class ‘ferry’, which was not included in the
2022/2023 data used to train the models, and it does not include any car tracks. Consequently,
any evaluation metrics requiring the recall and precision cannot be correctly computed or are not
directly comparable. The overall accuracy is simply the number of correct predictions divided by
the total number of predictions.

CBS | Discussion paper | February 2026 17



The F1 score for a single class is the harmonic mean of precision and recall:

𝐹1 = 2 ⋅ Precision ⋅ Recall
Precision + Recall

where the recall is given by TP (true positives)
TP+FN (false negatives)

and the precision is given by TP
TP+FP (false positives) .

The macro‐averaged F1 is then computed by taking the mean of the F1 scores over all classes.

The balanced accuracy for a single class is the mean of the true positive rate and true negative
rate:

Balanced Accuracy = 1
2 ( TP

TP + FP
+ TN

TN + FN
)

4.5.2 Feature Importance
For the Random Forest models, feature importance is evaluated using the permutation variable
importance measure (Altmann et al. 2010). This measure can be understood as the mean
decrease in prediction accuracy and calculated by looking at the decrease in accuracy when the
values of a single feature are randomly shuffled, thereby isolating the effect of that particular
feature on the model’s prediction performance. This method is often preferred over the default
impurity or Gini importance measure (Janitza et al. 2018).

On the other hand, XGBoost computes feature importance with three importance metrics. First,
the gain is the improvement in prediction accuracy resulting from splitting based on that feature.
Second, the cover is the number of observations in the training data that were affected by a
branch split based on that feature. Lastly, the frequency is the number of times a feature is used
in all the grown trees.

4.5.3 Predicted Pseudo‐Probabilities
In addition to the predicted transport modes, pseudo‐probabilities for each transport mode were
also extracted from the Random Forest and XGBoost models1). These predicted probabilities
were used to visualize the relationships among the probability assigned to the predicted class,
the probability assigned to the second‐most‐likely class, and whether the initial predicted mode
was correct.

This exploratory analysis was conducted to assess whether higher predicted probabilities are
associated with greater prediction accuracy and whether these probabilities are informative for a
potential implementation of respondent prompts in the travel app. The idea behind such
prompts is that whenever there is high uncertainty in a transport mode classification, a targeted
prompt could be sent in the travel app, asking respondents to either validate the classification or
choose between two or more transport modes.

1) We refer to Puts and Daas (2021), for further reading on pseudo‐probabilities.
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Although both Random Forest and XGBoost models can return predicted class probabilities,
these probabilities are computed differently. Whereas Random Forest calculates the predicted
class probability as the proportion of decision trees in the full ensemble that vote for that
particular class, XGBoost obtains predicted probabilities by applying a softmax function to the
logits produced at the leaves of the trees and accumulated over boosting iterations, normalizing
these to sum to one across the different classes. Even though these model outputs are expressed
as probabilities, neither Random Forest nor XGBoost is a probabilistic generative model and
therefore does not return actual likelihoods or true probability estimates. Consequently,
predicted probabilities are understood as pseudo‐probabilities in this study. Although not true
probabilities, they may still provide information about the classification models’ predictive
uncertainty.

5 Results

This section shows the prediction performance of the eight machine learning classification
models. Confusion matrices, variable importance and hyperparameter effects are visualised for
the best performing models. Additionally, these models are evaluated on the external validation
dataset from 2024.

5.1 Predictive Performance

In this section, the predictive performance of the models developed in this study is presented.
Table 5.1 shows the prediction performance of the eight trained machine learning models
evaluated on the test data according to the accuracy rate, mean balanced accuracy, mean recall,
and macro‐averaged F1 score. Overall, the best‐performing models on the test set are the
Random Forest and XGBoost models trained on all feature sets. Whereas the XGBoost model has
the highest overall accuracy (.91) and macro‐averaged F1‐score (.84) out of the eight models, the
Random Forest has the highest balanced accuracy (.93) and mean recall (.87). However, the
difference in the evaluation scores is larger for the metrics where XGBoost outperforms the
Random Forest (accuracy and F1‐score). For the metrics where the Random Forest outperforms
the XGBoost (balanced accuracy and recall), the difference between the two models is smaller.
When comparing the Random Forest and XGBoost models with other feature sets, XGBoost
consistently scores better on the overall accuracy and macro‐averaged F1‐score than the Random
Forest alternative, except for the models with both GPS and OSM‐based features, where the
scores are approximately the same. XGBoost also slightly outperforms Random Forest on
balanced accuracy and recall for the GPS‐only and GPS + temporal models. However, for the
models that combine GPS with OSM features, the Random Forest achieves higher scores for
these two metrics than the XGBoost. Regarding the feature sets, adding temporal features
slightly improves prediction performance. For both the Random Forest and XGBoost models,
those with GPS and temporal features achieve higher evaluation scores than those with only GPS
features, and those with the complete feature set perform better than those with GPS and OSM
features. This difference in prediction performance is very minimal for the Random Forest, where
none of the metrics improve by more than .03 in the evaluation score. However, we observe a
large difference with XGBoost, where adding temporal features alongside GPS and OSM features
increases the macro‐averaged F1‐score from .75 to .84.
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Table 5.1 Evaluation metrics for the Random Forest (RF) and XGBoost (XGB)
machine learning models, evaluated on the test data
Model Algorithm Features Accuracy Mean balanced Mean Macro‐averaged

accuracy recall F1‐score
1 RF GPS .70 .78 .62 .50
2 RF GPS, OSM .86 .92 .86 .75
3 RF GPS, temporal .81 .81 .65 .57
4 RF All .87 .93 .87 .78
5 XGB GPS .80 .80 .63 .57
6 XGB GPS, OSM .88 .88 .78 .75
7 XGB GPS, temporal .86 .85 .72 .66
8 XGB All .91 .92 .85 .84

Table 5.2 and 5.3 present the confusion matrices for the Random Forest and XGBoost models
trained on all feature sets, as well as the recall, precision, and F1‐score for each class. For both
models, we see that the classification of the dominant classes is typically better than that of the
less represented classes, in particular, the tram and metro. When comparing the two confusion
matrices, the largest discrepancy between the two models is in the smallest tram class. Whereas
the XGBoost predicts the transport mode as tram for 13 observations, 9 of which are correct, the
Random Forest predicts tram 33 times. Although this results in perfect recall, a large number of
car trips have also been misclassified as tram trips, thereby lowering precision. Additionally, the
Random Forest’s recall for the bus class is considerably higher than the XGBoost’s, but lower for
the other classes.

Table 5.2 Confusion matrix of the Random Forest model with all features, evaluated
on the test data

Actual Mode
Predicted Bike Bus Car Metro Train Tram Walk Total
Mode

Bike 171 0 18 0 2 0 26 217
Bus 2 22 4 0 0 0 0 28
Car 10 2 426 0 2 0 14 454
Metro 0 1 2 10 0 0 4 17
Train 1 0 1 2 36 0 2 42
Tram 4 0 15 1 1 11 1 33
Walk 7 0 10 0 1 0 248 266

Total 195 25 476 13 42 11 295 1057
Recall .88 .88 .89 .77 .86 1.00 .84 .87
Precision .79 .79 .94 .59 .86 .33 .93 .75
F1‐score .83 .83 .92 .67 .86 .50 .88 .78
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Table 5.3 Confusion matrix of the XGBoost model with all features, evaluated on the
test data

Actual Mode
Predicted Bike Bus Car Metro Train Tram Walk Total
Mode

Bike 184 0 10 0 2 2 17 215
Bus 1 19 2 1 0 0 0 23
Car 3 5 446 0 1 0 13 468
Metro 0 0 2 10 0 0 3 15
Train 1 1 1 2 36 0 2 43
Tram 1 0 2 0 0 9 1 13
Walk 5 0 13 0 3 0 259 280

Total 195 25 476 13 42 11 295 1057
Recall .94 .76 .94 .77 .86 .82 .88 .85
Precision .86 .83 .95 .67 .84 .69 .92 .82
F1‐score .90 .79 .94 .71 .85 .75 .90 .84

5.2 Feature Importance

Figures 5.1 and 5.2 show the 20 most important features in the Random Forest and XGBoost
models trained on the complete feature set. In the Random Forest, the most important features
are determined by the permutation variable importance method. In contrast, in the XGBoost
model, the average gain in accuracy determines which features are most important. When
comparing the two models, we see that features related to speed are essential in both. For the
Random Forest model, almost all features deemed important are related to speed. The
exceptions are two OSM‐based features on the proximity to bus routes and two temporal
features that contain information on the previous trip mode. Consequently, we can consider that
speed summary statistics play an important role in distinguishing between transport modes.

Figure 5.1 Top 20most important variables in the Random Forest model based on
the permutation method

Whereas the speed variables are highly represented among the top 20 most important variables
in the Random Forest model, the XGBoost model includes a broader variety of feature types.
Proximity to public transport lines is highly influential in this model, with proximity to metro, bus,
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tram, and train routes ranking high on the list. While speed‐based features remain clearly still
very important in the model, OSM‐based features play a larger role in distinguishing between
transport modes.

Figure 5.2 Top 20most important variables in the XGBoost model based on the
average gain in accuracy

Additionally, some temporal features are among the top 20 most influential features. Besides
information on the previous transport mode, which was also among the Random Forest’s most
important features, XGBoost also considers the trip’s average speed difference relative to the
cumulative mean of a respondent’s car, bike, and walking speeds. Compared to the Random
Forest model, the XGBoost model considers more features that provide specific information or
context to distinguish between single transport modes. In contrast, the Random Forest model
prioritizes speed‐related features that can distinguish between a larger number of modes
simultaneously.

5.3 Model Validation on Additional Data

To check generalisability, the Random Forest and XGBoost models were evaluated on an external
validation dataset. Table 5.4 compares the overall accuracy rate achieved on the test data and
the external validation data. For the Random Forest and XGBoost models trained on the
complete feature set, confusion matrices and class‐specific metrics are also available for
comparison in Table 5.5 and 5.6.

Table 5.4 shows that each of the eight models achieves a considerably lower accuracy on the
external evaluation data compared to the test data. The sharp drop in accuracy may indicate that
these models are specifically trained on data collected in a specific context and time, and
therefore do not generalize fully to respondents or time periods outside this context.

Among the eight models, the XGBoost model trained on the complete feature set achieves the
highest accuracy (.84) on the external validation data. This is considerably higher than the
accuracy of the Random Forest models trained on all features (.74). Furthermore, the difference
in accuracy between the model evaluated on the test data and on the external validation data is
smallest for the XGBoost model with all features. This may indicate that the final XGBoost model
generalizes best outside the specific context in which the original data was collected.
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Table 5.4 Overall accuracy of the eight machine learning models evaluation on the
test and external validation data

Model Algorithm Features Accuracy on Accuracy on
test data external validation data

1 Random Forest GPS .70 .56
2 Random Forest GPS, OSM .86 .73
3 Random Forest GPS, temporal .81 .57
4 Random Forest All .87 .74
5 XGboost GPS .80 .63
6 XGboost GPS, OSM .88 .77
7 XGboost GPS, temporal .86 .69
8 XGboost All .91 .84

In the confusion matrices of Tables 5.5 and 5.6, we observe that both models perform relatively
well at classifying train and walking trips, with XGBoost also achieving good results for the metro
class. Even though bike trips were one of the larger classes in the original training data, neither
model performs well at classifying this mode, with the Random Forest achieving a modest
precision of .37 and the XGBoost achieving 0.60. In general, the XGBoost model outperforms the
Random Forest, achieving higher precision and F1‐scores across most classes.

Table 5.5 Confusion matrix of the Random Forest model with all features, evaluated
on the external validation data

Actual Mode
Predicted Bike Bus Car Ferry Metro Train Tram Walk Total
Mode

Bike 7 1 0 3 0 0 1 7 19
Bus 1 4 0 0 0 1 0 0 6
Car 0 0 0 0 0 0 0 1 1
Ferry 0 0 0 0 0 0 0 0 0
Metro 0 0 0 0 4 1 2 7 14
Train 0 0 0 0 0 7 1 0 8
Tram 2 0 0 0 1 0 23 7 33
Walk 0 0 0 0 0 0 0 56 56

Total 10 5 0 3 5 9 27 78 137
Recall .70 .80 ‐ 0 .80 .78 .85 .72 ‐
Precision .37 .67 ‐ ‐ .29 .88 .70 1.00 ‐
F1‐score .48 .73 ‐ ‐ .42 .82 .77 .84 ‐
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Table 5.6 Confusion matrix of the XGBoost model with all features, evaluated on the
external validation data

Actual Mode
Predicted Bike Bus Car Ferry Metro Train Tram Walk Total
Mode

Bike 9 1 0 1 0 0 0 4 15
Bus 0 3 0 0 0 0 0 2 5
Car 0 0 0 0 0 0 0 0 0
Ferry 0 0 0 0 0 0 0 0 0
Metro 0 0 0 0 4 0 0 0 4
Train 0 0 0 0 0 9 2 0 11
Tram 1 1 0 0 1 0 23 5 31
Walk 0 0 0 2 0 0 2 67 71

Total 10 5 0 3 5 9 27 78 137
Recall .90 .60 ‐ 0 .80 1.00 .85 .86 ‐
Precision .60 .60 ‐ ‐ 1.00 .82 .74 .94 ‐
F1‐score .72 .60 ‐ ‐ .89 .90 .79 .90 ‐

5.4 Misclassiϐication

A brief comparison of misclassification across the XGBoost and Random Forest models with all
features indicates considerable overlap in misclassified trips between the two models. Of the 94
misclassifications made by the XGBoost model on the internal test data, 76 (81%) were also
misclassified by the Random Forest model.

These trips may be difficult to classify in general due to data quality or ambiguous travel patterns.
Misclassification and data quality were briefly explored in terms of the number of geolocations
and the average accuracy (in meters). The 20% of trips with the fewest GPS points (fewer than
142 measurements) accounted for 45% of misclassifications in the XGBoost model evaluated on
the test data. Similarly, the 20% of trips with the highest average accuracy (greater than 12
meters) accounted for 39% of misclassification in the XGBoost model. Additionally, very long trips
also seemed more difficult to classify. Among the 11 trips in the test data with a travel duration of
5 hours or longer, 27% were misclassified, compared with the overall misclassification rate of 9%.

Potentially ambiguous travel patterns are evident in some misclassifications by the XGBoost
model for classes where we expect distinct trip characteristics. For example, the average mean
speed of all the labeled walking trips in the test data was 7.26 km/h. However, the 13 walking
trips in the test data that were classified as car trips by the XGBoost model (see Table 5.3) had an
average mean speed of 27.03 km/h. Similarly, the average speed of labeled train trips in the test
data is 170.20 km/h, while the average speed of the three labeled train trips classified as walking
trips is 13.87 km/h.

5.5 Predicted Pseudo‐Probabilities

In this subsection, the pseudo‐probabilities predicted on the test data by the Random Forest and
XGBoost models with all features are visualized to explore model uncertainty. Figures 5.3 and 5.4
show scatterplots of the predicted pseudo‐probabilities for the top two classes with the highest
probability, for each of the original transport mode labels. The x‐axis represents the predicted
pseudo‐probability of the predicted transport mode, and the y‐axis indicates the probability of
the second most likely transport mode. Figure 5.3 (Random Forest) shows that for most of the
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correctly classified trips, the model assigned a relatively high probability to the predicted class.
The under‐represented transport modes, tram, metro, and bus, seem to be an exception, with
both correct and incorrect classifications generally having lower predicted probabilities for the
predicted class. Although most misclassified points appear where the predicted probability is low
and the gap between the two probabilities is small, misclassifications with a high
pseudo‐probability for the predicted class also occur. This suggests that model prediction
uncertainty could, to some extent, be informative for prediction accuracy and may be addressed
via potential respondent prompts. However, it is unlikely that all misclassifications could be
targeted through such a strategy.

Figure 5.3 Predicted pseudo‐probabilities of the predicted transport mode against
the predicted pseudo‐probabilities of the secondmost likely transport mode in the
Random Forest model (all features), evaluated on the test data

Similar patterns can be observed in Figure 5.4 (XGBoost), although we also see that XGBoost
pseudo‐probabilities are typically higher than those from the Random Forest model. The density
of correct predictions in the bottom‐right corner is high across many classes, indicating that
many correct predictions receive high predicted pseudo‐probabilities in the XGBoost model. The
tram class is the largest exception, since both correct and incorrect predictions have relatively
low predicted probabilities compared to other classes. As with Random Forests, incorrect
predictions are more often assigned lower pseudo‐probabilities than correct ones. However,
there are multiple instances of incorrect predictions with high pseudo‐probabilities as well.
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Figure 5.4 Predicted pseudo‐probabilities of the predicted transport mode against
the predicted pseudo‐probabilities of the secondmost likely transport mode in the
XGBoost model (all features), evaluated on the test data

5.6 Respondent prompts

We simulated the potential effect of asking respondents to choose between the top two
predicted classes based on the model’s pseudo‐probabilities. For this exploratory analysis,
incorrect test set predictions were corrected by replacing the original predicted class with the
second‐most‐likely class. The results for both models are shown in Figure 5.5. The x‐axis
represents the proportion of the test data that was subjected to the adjustment, based on
quantiles of the predicted pseudo‐probability for the predicted class. For example, at 10%, the
adjustment is applied to the initially incorrect predictions that fall within the 10% of all
observations that received the lowest predicted probability for the predicted class. Recalculated
metrics are presented on the y‐axis and include the overall prediction accuracy and
macro‐averaged F1‐score for both the Random Forest and XGBoost models with all features.

When adjusting the incorrect predictions based on the relative value of the predicted
probabilities, both the accuracy and macro‐averaged F1‐score initially increase considerably.
When incorrect predictions within the 30% lowest predicted probabilities are changed to the
second most likely class, the Random Forest accuracy changes to .93 compared to .87 when no
adjustments are made. Additionally, the macro‐averaged F1‐score increases from .78 to .87. The
XGBoost results show similar patterns, with the accuracy increasing from .91 to .96 and the
macro‐averaged F1‐score increasing from .84 to .91. However, the increase in the evaluation
metrics stagnates and sometimes even diminishes above 30% of adjustment. This is mainly due
to many misclassifications receiving relatively lower predicted probabilities and therefore being
adjusted early on. Another potential reason for the stagnation is that misclassifications with high
predicted probabilities have low probabilities for the remaining classes, leading to slight
differences and high uncertainty among the second, third‐, and fourth‐most‐likely classes.
Therefore, second‐best predictions are less likely to be informative. Additionally, when
misclassified predictions are changed to second‐best predictions that are also incorrect, the
macro‐averaged F1‐score can be negatively affected when incorrect predictions change from a
higher to a lower represented class.

CBS | Discussion paper | February 2026 26



Figure 5.5 Accuracy andmacro‐averaged F1‐score for the Random Forest and
XGBoost models (all features) evaluated on the test set, when adjusting the
misclassiϐied instances to the secondmost likely transport mode based on the
pseudo‐probability of the predicted class

6 Discussion

In this study, we trained and evaluated eight supervised machine learning models for automatic
transport mode detection using GPS data collected in a smart survey travel app. We aimed to
evaluate the performance of two supervised machine learning techniques: Random Forest and
Extreme Gradient Boosting (XGBoost). Additionally, it was investigated whether including
temporal features alongside GPS and OpenStreetMap (OSM) features improved the model’s
prediction performance.

The XGBoost model trained on the complete feature set achieved the highest overall prediction
performance, with an accuracy of .91 and macro‐averaged F1‐score of .84 on the test data. This
model seemed to generalize moderately well when evaluated on an external validation set
collected in a different time period and context, with different travel app settings, achieving an
accuracy of 84%. However, the confusion matrices and F1‐scores indicate that some classes were
more challenging to predict in the test and external validation data. This was often the case for
the under‐represented transport modes, including the tram, metro, and bus.

6.1 Value of Temporal Features

The temporal features had a modest contribution to the model performance, especially
compared to the OSM features. For both the Random Forest and XGBoost models, models that
included temporal features outperformed those using only GPS features, and models that
included all features outperformed those combining GPS with OSM features. However, this
improvement was more substantial in the XGBoost models than in the Random Forest models,
where it was small. The external validation results indicated that the temporal features
generalized well to a different context, especially for the XGBoost model.
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However, a considerable limitation is that some of these temporal features rely on labeled data
from previous events. If this information is correct and available, these temporal features may
improve prediction performance, especially when data are collected over a more extended
period. Nonetheless, if correctly labeled data is unavailable, these features can only be
constructed by using prediction results from earlier trips as input for predicting subsequent trips,
which is likely to decrease performance. Consequently, the merit of implementing a transport
mode classification model with label‐dependent temporal features in a travel app may depend
on how many days of data are collected and whether respondents are asked to inspect or
validate the collected data.

6.2 RelatedWork

Compared to previous studies, the XGBoost model with all features performs reasonably well. It
improves upon the prediction accuracy of the Random Forest models in Smeets et al. (2019),
who reported a prediction accuracy of .64 when classifying a similar number of transport modes,
and an accuracy of .85 when collapsing the classes into walking, motorized transport modes, and
public transport. The 2018 app used for this study was limited in respondent retractions. For
example, the start and end times of a stop/track could not be edited.

Compared to the study by Fourie et al. (2025), who implemented a rule‐based algorithm to
predict transport mode on the same data that was used in this study, the XGBoost model with all
features achieved slightly higher prediction accuracy. Their study reported an accuracy of .85 and
a balanced accuracy of .70. Their rule‐based algorithm was also evaluated on the external
validation data that was used in this study, resulting in an accuracy of .80, with the minor
difference that their study excluded the ferry trips from the analysis and allowed for multiple
transport mode predictions. The rule‐based algorithm used only 13 GPS and OSM‐based
features, resulting in a model with lower complexity and higher interpretability than those in this
study.

A specific limitation of this study regarding interpretability concerns feature importance. Due to
the high dimensionality of the data, some of the features are strongly correlated. Although the
Random Forest and XGBoost algorithms appear relatively robust to multicollinearity (e.g.,
Lindner et al. 2022; Neyra et al. 2024), the reliability of feature importance metrics may be
compromised, leading to an inaccurate representation of individual feature effects. Although the
feature importance plots of these relatively complex models can provide a general understanding
of which feature types are important for transport mode classification, specific individual‐feature
effects should be interpreted with caution.

6.3 Travel App Respondent Prompts

Although the XGBoost model with the complete feature set performed relatively well on both the
test and external validation data, it did not achieve consistent predictive performance across all
transport mode classes. Therefore, a fully automated travel app approach without any
respondent interaction or validation may not be feasible. A potential alternative may be a
semi‐automated approach with targeted respondent prompts. Respondents could be prompted
to confirm transport mode classifications based on prediction uncertainty, data quality, or other
variables or considerations. Although such an approach is not fully automated, respondents may
experience less burden than in a travel app implementation, where all data needs to be validated.
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This study briefly explored the possibility of using predicted pseudo‐probabilities from
classification models to inform targeted respondent prompts. The simulated respondent prompt
example in Figure 5.5 indicates that sending out respondents’ prompts for 10% to 30% of the
recorded trips could already increase accuracy considerably, assuming respondents select the
correct transport mode.

Future work could investigate potential pseudo‐probability thresholds for targeted prompts,
which differ for various models. Additionally, data quality could be considered as information for
respondent prompts as well. Misclassification in the XGBoost model occurred more often when a
relatively low number of GPS measurements were collected for a trip, or when the average GPS
measurement accuracy (in meters) was high. For these data quality‐related measures, there may
also be thresholds that could be optimized for sending out targeted respondent prompts.
Although not explored in this study, other variables or patterns may also be informative for
prompt strategies that balance response burden and classification accuracy.

In addition to increasing classification accuracy, targeted respondent prompts could also serve
other purposes. If a machine learning classification model were implemented in a travel survey
app, additional labeled and validated data would be beneficial for periodic retraining and
re‐evaluation. Respondent prompts could then be optimized to collect additional labeled data on
trips that exhibit atypical travel patterns. Alternatively, respondent prompts could be sent out
whenever an under‐represented public transport mode is expected, to reduce class imbalance or
better understand travel patterns for these modes.

6.4 Limitations and FutureWork

This study has several additional limitations that should be addressed. First, all transport mode
labels were treated as ground truth, even though the data may contain incorrectly labeled trips.
These may affect the reliability of temporal features that rely on previously labeled events and
the overall model performance. As many transport mode detection studies typically use
non‐probability sampling with respondents who have been specifically instructed or trained to
collect GPS data (Sadeghian et al. 2021), there has been limited investigation into the effect of
potentially incorrect labels in transport mode detection. Second, although the trained
classification models were evaluated on external validation data in addition to internal test data,
the evaluation was still limited to two specific contexts. Third, to better understand model
generalisability, evaluating model performance on broader contexts would be beneficial.
Currently, there is no standard framework for comparing transport mode detection models
developed in different demographic, temporal, and geographical contexts. Future work on
transport mode detection may benefit from the development of a standard evaluation dataset or
framework. Fourth, the model fit is likely dependent on the number of available data points. This
was not varied during the study, and additional data may yield more optimal parameter choices.
Fifth, prior to transport mode prediction, the location data is split into segments of stops and
tracks. In the current study, these track segments were assumed to be fixed. In contrast, in
reality, improvements to track segmentation may be possible, which will likely influence the
results of this study. Lastly, this work did not consider multi‐modal trips, because the annotations
were single‐modal labels. In reality, multi‐modal trips occur and are currently reflected in this
model only if the segmentation splits multi‐modal trips into separate segments.
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7 Conclusion

This study evaluated and compared the performance of Random Forest and XGBoost models for
transport mode detection using GPS data collected in a smartphone travel survey app. In
addition to GPS‐based information, context‐location information from OpenStreetMap (OSM)
and temporal features capturing past travel behavior were used to train the models. The
XGBoost model trained on all features achieved the highest overall accuracy and macro‐averaged
F1‐score, and also performed best on an external validation dataset. Although OSM‐based
features yielded the largest performance improvements, adding temporal features yielded
modest improvements in the XGBoost models. However, the choice of model and features may
also depend on practical considerations, such as computational costs and speed.

Based on the results of this study, a fully automated approach to transport mode classification
may not be feasible. In particular, underrepresented transport modes are challenging to classify
consistently. Alternatively, smartphone‐based travel surveys may explore semi‐automated
approaches that utilize targeted respondent prompts, balancing classification accuracy with
minimizing response burden.
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Appendices

A Feature List

A.1 GPS‐based Features

– Speed
– Summary statistics: mean, median, minimum, maximum, skewness, kurtosis, interquartile

range, standard deviation, coefficient of variation, and autocorrelation coefficient
– Speed values at nth percentiles: 1, 5, 10, 90, 95, and 99
– Outlier summaries: proportion of outliers (>1.5 IQR above the third quantile), and mean

outlier value
– Proportion of speed values within specified intervals: 0 ‐ 3 km/h, 3 ‐ 8 km/h, 8 ‐ 15 km/h,

15 ‐ 30 km/h, 30 ‐ 50 km/h, 50 ‐ 80 km/h, 80 ‐ 120 km/h, and >120 km/h
– Acceleration, jerk, and snap

– Summary statistics: mean, median, minimum, maximum, skewness, kurtosis, interquartile
range, standard deviation, coefficient of variation, and autocorrelation coefficient

– Values at nth percentiles: 1, 5, 10, 90, 95, and 99
– Outlier summaries: proportion of high outliers (>1.5 IQR above the third quantile), mean

high outlier value, proportion of low outliers (<1.5 IQR below the first quantile), and mean
low outlier value

– Difference in bearing between consecutive points
– Summary statistics: mean, median, minimum, maximum, skewness, kurtosis, interquartile

range, standard deviation, coefficient of variation, and autocorrelation coefficient
– Values at nth percentiles: 1, 5, 10, 90, 95, and 99
– Proportion of bearing difference values within specified intervals: 0 ‐ 5, 5 ‐ 10, 10 ‐ 15, 15 ‐

30, 30 ‐ 45, 45 ‐ 90, and >90
– Total distance

– Total distance traveled in km
– Trip duration

– Trip duration in minutes
– Accuracy

– Summary statistics: mean, median, minimum, maximum, skewness, kurtosis, interquartile
range, standard deviation, coefficient of variation, and autocorrelation coefficient

– Speed values at nth percentiles: 1, 5, 10, 90, 95, and 99
– Altitude

– Summary statistics: mean, median, minimum, maximum, skewness, kurtosis, interquartile
range, standard deviation, coefficient of variation, and autocorrelation coefficient

– Values at nth percentiles: 1, 5, 10, 90, 95, and 99

A.2 OSM‐based Features

– Route and public transport station counts (based on a 20‐meter buffer)
– Number of overlaps with bike, bus, metro, train, and tram routes
– Number of overlaps with bike, bus, metro, train, and tram routes, normalized by track size
– Number of encountered bus, metro, train, and tram stations
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– Number of encountered bus, metro, train, and tram stations, normalized by track size
– Route and public transport station proximity

– Minimum, maximum, mean, and standard deviation of the distance to bike, bus, metro,
train, and tram routes

– Distance to nearest bus, metro, train, and tram station at the beginning and end of a trip,
taking the average of the first and last five GPS measurements with an accuracy below 20
meters (if all GPS measurements have an accuracy greater than 20, the measurement
with the lowest accuracy from the first and last 10 observations is used)

– Proximity to parking amenities (based on a 20‐meter buffer)
– Distance to nearest parking place, parking entrance, charging station, bike parking, and

bike rental at the beginning and end of a trip, taking the average of the first and last five
GPS measurements with an accuracy below 20 meters (if all GPS measurements have an
accuracy greater than 20, the measurement with the lowest accuracy from the first and
last 10 observations is used)

– Traffic indicators (based on a 10‐meter buffer)
– Number of encountered traffic signals, street lights, speed cameras, roundabouts,

motorway junctions, stops, and turning circles
– Number of encountered traffic signals, street lights, speed cameras, roundabouts,

motorway junctions, stops, and turning circles, normalized by track size

For more extensive information on the computation of these OSM‐based features, see Fourie
et al. (2025).

A.3 Temporal Features

– Information from the previous stop
– Binary indicator if the previous event was a stop
– Duration of the previous stop in minutes
– One‐hot encoded previous stop purpose (education, home, other, paid work, pickup

goods, pickup people, shopping, sport, transfer, unpaid work, visit)
– Information from previous tracks

– Trip duration of the last three tracks (lag 1, lag 2, and lag 3)
– One‐hot encoded transport mode of the last three tracks (lag 1, lag 2, and lag 3)

– Temporal context
– nth daily trip
– daily cumulative duration of trips
– daily cumulative duration of distance traveled
– Binary indicator if the trip fell (partially) within morning rush hour and/or evening rush

hour (morning and evening rush hours as defined by the Dutch ANWB)
– Proportion of the trip duration that falls within the morning or evening rush hour
– One‐hot encoded day of the week

– Respondent‐specific baselines (cumulative means)
– Respondent‐specific cumulative mean for the following GPS‐based features: 90th and

95th speed percentiles, median speed, mean speed, interquartile range speed, trip
duration in minutes, and total duration in km

– Difference between the current trip and the respondent‐based cumulative means for the
previously mentioned GPS‐based features

– Mode‐specific cumulative means: mean walking speed, mean bike speed, and mean car
speed (mode‐specific cumulative means are only updated when respondents make and
label these trips)

– Difference between the current trip and the respondent‐based mode‐specific cumulative
means
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B Additional Tables With Evaluation
Metrics

Table B.1 F1 scores by class for the eight machine learning models evaluated on the
internal test data

Algorithm Features Bike Bus Car Metro Train Tram Walk
1 RF GPS .82 .24 .71 .29 .59 .02 .88
2 RF GPS + OSM .83 .69 .90 .65 .86 .47 .88
3 RF GPS + temporal .83 .50 .88 .25 .64 .05 .88
4 RF all .83 .83 .92 .67 .86 .50 .88
5 XGB GPS .84 .31 .84 .44 .63 .06 .89
6 XGB GPS + OSM .84 .69 .92 .71 .87 .33 .90
7 XGB GPS + temporal .89 .55 .90 .43 .67 .30 .90
8 XGB all .90 .79 .94 .71 .85 .75 .90

Table B.2 F1 scores by class for the eight machine learning models evaluated on the
external validation data

Algorithm Features Bike Bus Car Ferry Metro Train Tram Walk
1 RF GPS .44 .21 ‐ ‐ .17 .63 0 .88
2 RF GPS + OSM .48 .73 ‐ ‐ .42 .75 .78 .84
3 RF GPS + temporal .45 .19 ‐ ‐ .18 .63 0 .89
4 RF all .48 .73 ‐ ‐ .42 .82 .77 .84
5 XGB GPS .60 .14 ‐ ‐ 0 .63 0 .95
6 XGB GPS + OSM .69 .62 ‐ ‐ .50 .89 .81 .83
7 XGB GPS + temporal .59 .18 ‐ ‐ 0 .70 .22 .95
8 XGB all .72 .60 ‐ ‐ .89 .90 .79 .90
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