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Summary 
In this paper a model-based inference procedure based on a multivariate 

structural time series model is developed for the production of monthly figures 

about consumer confidence. The input for the model consists of five series of 

direct estimates for the indices that measure consumer confidence, which are 

derived from the Dutch Consumer Survey. The model improves the accuracy of the 

direct estimates, since it provides a better separation of measurement errors and 

sampling errors from estimated target parameters. The standard errors for the 

month-to-month changes are clearly smaller under the time series model. A 

second problem addressed in this paper is related to the transition to a new survey 

process in 2017. Structural time series models in combination with a parallel run 

are applied to estimate discontinuities induced by the redesign. A backcasting 

algorithm designed for the consumer confidence variables is developed to 

construct uninterrupted input series for the aforementioned structural time series 

model. This inference method facilitated a smooth transition to a new survey 

design and resulted in uninterrupted published series about consumer confidence 

that date back to 1986. The method is implemented for the production of official 

monthly figures on consumer confidence in the Netherlands. 

Keywords 
Small area estimation, structural time series model, discontinuities 
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1. Introduction 

The Dutch Consumer Survey (CS) measures consumer confidence in the 

Netherlands with a monthly frequency. Until 2016, monthly figures were obtained 

with design-based inference methods applied to data obtained with probability 

sampling with a sample size of about 1000 respondents per month. This paper 

addresses two problems. First, the series of the monthly estimates are quite 

volatile. This is the result of the relatively small sample size and because the CS 

measures a relative short term emotion about the respondents opinion of the 

financial and economic climate, despite the fact that most questions actually refer 

to the last or upcoming 12 months. Increasing the sample size would therefore 

only partially reduce the volatility of the series. This is nevertheless not an option, 

since Statistics Netherlands (as many other statistical institutes) has to reduce 

administration costs and response burden. The second problem is the disruption 

of the continuity of the time series as a result of a redesign of the survey process 

that took place in the beginning of 2017. Changes in the questionnaire and 

fieldwork strategies generally have a systematic effect on the outcomes of a 

survey, since they affect non-sampling errors like measurement bias and selection 

bias. Systematic differences in time series induced by survey redesigns are further 

referred to as discontinuities. In a well-designed transition process, discontinuities 

are quantified to avoid confounding real period-to-period change from sudden 

changes in measurement bias and selection effects. 

 

Since the CS is a repeated survey, a structural time series model (STM) can be 

developed as a solution for both problems. Seemingly Unrelated Time Series 

Equation (SUTSE) models are applied to the CS as a form of small area estimation 

and to account for discontinuities induced by the redesign of 2017. The underlying 

series of the five indices, which together define the consumer confidence, are the 

input series of the time series model. SUTSE models are multivariate structural 

time series models were relations between the input series are modelled with 

contemporaneously correlated disturbances of the state variables (Harvey, 1989, 

Ch. 8). Through a SUTSE model, sample information observed in previous 

reference periods is used to obtain more accurate estimates. Moreover, 

correlations between the disturbances of e.g. the trend are useful to borrow 

strength from the other variables used in the construct for consumer confidence. 

In this paper we also discuss the role of correlations between the measurement 

error terms of the series. Sudden real events influence all series simultaneously, 

which results in correlated population irregular terms. 

 

The use of time series modelling with the aim of improving the precision of survey 

data has been considered by many authors and dates back to Blight and Scott 

(1973). It can be interpreted as a form of small area estimation by borrowing 

strength over time (Rao and Molina, 2015). This approach has been applied before 

in the context of official statistics, see e.g. Tam (1987), Binder and Dick (1989, 

1990), Bell and Hillmer (1990), Tiller (1992), Rao and Yu (1994), Pfeffermann and 

Burck (1990), Pfeffermann and Bleuer (1993), Pfeffermann (1991), Pfeffermann 
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and Tiller (2006), Harvey and Chung (2000), and Feder (2001), Van den Brakel and 

Krieg (2015) and Elliot and Zong (2019).  

 

Discontinuities caused by a redesign of the survey process can be quantified in 

different ways, see Van den Brakel et al. (2020) for an overview. One approach is 

to collect data under both the old and the new design in parallel for some period 

of time, which is further referred to as a parallel run. The difference of the 

estimates based on both designs can be used as a direct estimate of the 

discontinuity. In the case of a sufficiently large parallel run this is a reliable and 

timely approach. The major drawback is that it requires additional data collection, 

which makes the approach costly. Alternatively a time series model can be applied 

where the discontinuities are estimated using a level intervention (Van den Brakel 

and Roels, 2010). In the case of a small parallel run, the information from the 

parallel run can be used as a-priori information in the time series model, e.g. 

through an informative initialization of the Kalman filter. This initial estimate is 

further improved with the information from the time series observed before and 

after the parallel run (Van den Brakel and Krieg, 2015). 

 

Discontinuity estimates for the CS caused by the redesign are based on a parallel 

run of three months, with a sample size that is equal to the regular sample size. 

These estimates are improved with a structural time series model, as outlined 

above. When the estimates for discontinuities are known, it is important to 

communicate about them with the users of the series to avoid misinterpretation of 

the series. In the case of the CS the series of the past are corrected for the 

discontinuities. The series underlying the CS are percentages and a correction 

method is proposed that attempts to keep the adjusted values in the admissible 

range between 0% and 100%. The time series modelling approach developed in 

this paper has been implemented for the production of Statistics Netherlands' 

official monthly consumer confidence figures since April 2017. 

 

The paper is organized as follows. Section 2 provides a description of the Dutch CS. 

In Section 3, a structural time series model is developed for the estimation of 

monthly consumer confidence figures. In this section, results are presented based 

on observations for the period before the redesign in 2017. In Section 4 the 

change-over to the new design is described. In this section a method for 

estimating discontinuities that combines a parallel run with a time series modelling 

approach is proposed. Furthermore, a correction method to adjust the series 

observed before the change-over to the level of the series observed under the 

new design is described. Finally, results for discontinuity estimates and corrected 

series are presented. Section 5 summarizes how the estimation method is 

implemented for the production of official monthly consumer confidence figures. 

The paper finalizes with a conclusion in Section 6. 
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2. The Dutch Consumer Survey 

The Consumer Survey (CS) is a monthly survey. Before the redesign of 2017, each 

month a sample of approximately 2,500 households was drawn by stratified 

sampling from a sample frame of addresses that is derived from the Dutch 

Municipal Register. Stratification is based on the cross-classification of 12 

provinces and urbanization level in five classes. All households have equal 

inclusion probabilities. The monthly surveys are based on independent cross-

sectional samples. Sampled households are observed in one month only. 

Households for which a known landline telephone number was available, were 

contacted by an interviewer who completes the questionnaire by computer 

assisted telephone interviewing (CATI) during the first ten working days of the 

month. The questionnaire is completed by the head of the household. The head of 

the household is the household member that contributes the largest share to the 

household income. Households without a known landline telephone number were 

not contacted. On average a net sample of about 1,000 responding households 

was obtained, resulting in a response rate of about 40%. A major part of the non-

response consisted of households for which no known telephone number of a 

landline connection is available. The response among households for which a 

telephone number was available was about 60%.  

 

For the consumer confidence index, questions concerning the following five 

variables are relevant: 

1. opinion about changes of the general economic situation of the country over 

the last 12 months, abbreviated as Econ. L12, 

2. expectations of changes of the general economic situation of the country over 

the next 12 months, abbreviated as Econ. N12, 

3. opinion about changes of the financial situation of the household over the last 

12 months, abbreviated as Fin. L12, 

4. expectations of changes of the financial situation of the household over the 

next 12 months, abbreviated as Fin. N12, 

5. whether it is the right moment for people to make major purchases, 

abbreviated as Major pur. 

 

The questions for the first four variables have two positive and two negative 

answer options (“a lot better”, “a little better”, “a lot worse”, “a little worse”). 

Furthermore, there is the neutral option “the same” as well as “do not know”. The 

question for the fifth variable has one positive and one negative answer option 

(“yes, it is the right moment now”, “no, it is not the right moment now”). 

Furthermore, there is a neutral option (“it is neither the right moment nor the 

wrong moment”) as well as “do not know”. The percentages of positive, negative 

and neutral answers (as percentage points of the total answers) 𝑝𝑖
+, 𝑝𝑖

−, 𝑝𝑖
0 with 

𝑝𝑖
+ + 𝑝𝑖

0 + 𝑝𝑖
− = 100 are computed for each question 𝑖 = 1, … ,5. Estimates for 

the five variables mentioned above are obtained by the difference of positive and 

negative answers, i.e. 𝑦𝑖 = 𝑝𝑖
+ − 𝑝𝑖

− for 𝑖 = 1, … , 5. Furthermore, the five variables 

are combined by computing the following averages: 

– 𝑦6 = (𝑦1 + 𝑦2) 2⁄   which is the indicator for economic climate,  
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– 𝑦7 = (𝑦3 + 𝑦4 + 𝑦5) 3⁄  which is the indicator for willingness to buy, 

– 𝑦8 = (𝑦1 + 𝑦2 + 𝑦3 + 𝑦4 + 𝑦5) 5⁄  which is the indicator for consumer 

confidence.  

The indicators 𝑦1, … , 𝑦8 are the main target variables in the publication. Until the 

end of 2016 unweighted sample means were used as estimates for the target 

variables. Expressions for the variance of the eight series are given by Van den 

Brakel et al. (2017). The publication of monthly figures started in 1986. Both the 

original figures and seasonally adjusted figures of the indicator series are 

published. Furthermore, the underlying series of the percentages are also 

published.   

 

Approaching households with a non-secret landline telephone will result in low 

coverage of the target population. In combination with the low response rate, the 

non-response will be not missing at random. Until the end of 2016 this problem is 

ignored, but it was a reason for a redesign of the survey process of the CS. In 

January 2017 five important changes were implemented simultaneously; 1) The 

sample design changed from a stratified sample of households to a stratified 

sample of persons. A sample of 2150 persons is drawn each month. All persons 

have equal inclusion probabilities. With a response rate of about 47% this results 

in a net sample of slightly more than 1000 respondents. 2) The data collection 

mode changed from CATI to a sequential mixed mode design, where the 

respondents are first asked to complete a questionnaire via web. After three 

reminders, the web non-respondents are interviewed by phone (as far as phone 

numbers are available, including mobile phones). 3) There are changes in the 

questionnaire. The most important change is the way in which the answer 

categories are offered. Under the old questionnaire the respondent could first 

choose between the options “worse”, “neutral”, or “better”. In the case “worse” 

or “better” was selected, the respondent had to specify whether it is “a lot” or “a 

little” better or worse.  In the new questionnaire the two positive and two 

negative answer options for questions 1 to 4 are shown directly. 4) Another 

important change is that a conditional incentive is given to respondents to 

improve the response rate (a tablet is raffled among the respondents). 5) Finally, 

the sample estimates are based on the generalised regression (GREG) estimator 

(Särndal et al., 1992) to correct, at least partially, for selective non-response. The 

changeover to a sequential mixed-mode design will reduce the undercoverage but 

the response rates are still very low. It can be anticipated that the non-response is 

still not missing at random and that the GREG will not sufficiently correct for this. 

Further research in fieldwork methods that improve response rates and estimation 

methods that correct for selective non-response is needed, see for example 

Pfeffermann and Sikov (2011). 

 

A side effect of this redesign is that it causes a sudden change in selection effects, 

as another part of the population is willing to respond when another mode is 

applied, and when an incentive is offered. Furthermore, there are sudden changes 

in the measurement bias due to the use of another data collection mode (partially 

without interviewer) and changes in the questionnaire. These cause the so-called 

discontinuities. 
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3. Inference for monthly CS 
figures using structural time 
series models 

In this section a STM is developed using the series observed from January 1987 

until December 2016. With a structural time series model, a series is decomposed 

in a trend component, a seasonal component, other cyclic components, a 

regression component and an irregular component for the unexplained variation. 

For each component a stochastic model is assumed. This allows the trend, 

seasonal, and cyclic component but also the regression coefficients to be time-

dependent. If necessary, ARMA components can be added to capture the 

autocorrelation in the series beyond these structural components. See Harvey 

(1989) or Durbin and Koopman (2012) for an introduction to structural time series 

modelling. 

3.1 Model description 

Each month 𝑡 a direct sample estimate �̂�𝑖,𝑡 is computed for the five variables 𝑦𝑖  

(𝑖 = 1, … , 5) measured with the questions of the CS, as explained in Section 2. 

Constructing time series models for series of sample estimates starts with 

formulating a measurement error model that decomposes the estimate into a true 
but unknown population parameter, say 𝜃𝑖,𝑡, and a sampling error, say �̃�𝑖,𝑡:  

 
�̂�𝑖,𝑡 = 𝜃𝑖,𝑡 + �̃�𝑖,𝑡, (𝑖 = 1, … , 5).               (3.1) 

 

For the unknown population parameter, a basic STM is assumed, i.e. 

 
𝜃𝑖,𝑡 = 𝐿𝑖,𝑡 + 𝑆𝑖,𝑡 + 𝐼𝑖,𝑡,  (𝑖 = 1, … , 5),             (3.2) 

 
with 𝐿𝑖,𝑡 the level of a stochastic trend component that models the low frequency 

variation of the series, 𝑆𝑖,𝑡 a stochastic component that models the seasonal 

fluctuation around the trend and 𝐼𝑖,𝑡 the population irregular term. Inserting (3.2) 

into (3.1) gives the time series model for the observed series: �̂�𝑖,𝑡 = 𝐿𝑖,𝑡 + 𝑆𝑖,𝑡 +

𝐼𝑖,𝑡 + �̃�𝑖,𝑡, (𝑖 = 1, … , 5). Three different models to account for the population 

irregular term and the sampling error are compared. The first model has a 

separate population irregular term and a sampling error 

 
�̂�𝑖,𝑡 = 𝐿𝑖,𝑡 + 𝑆𝑖,𝑡 + 𝐼𝑖,𝑡 + 𝑘𝑖,𝑡𝜀𝑖,𝑡,     (𝑖 = 1, … , 5),             (3.3.a) 

 

with 𝑘𝑖,𝑡 = √Var(�̂�𝑖,𝑡) the standard error of the observed series and 𝜀𝑖,𝑡 a normally 

distributed error term. In the second model, the population irregular term and the 
sampling error are combined in one measurement error, i.e., 𝑒𝑖,𝑡 = 𝐼𝑖,𝑡 + �̃�𝑖,𝑡 and 

scaled with the standard error of the input series: 
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�̂�𝑖,𝑡 = 𝐿𝑖,𝑡 + 𝑆𝑖,𝑡 + 𝑘𝑖,𝑡𝑒𝑖,𝑡,     (𝑖 = 1, … , 5),               (3.3.b) 

 
with 𝑒𝑖,𝑡 a normally distributed error term. In the third model the measurement 

errors are not scaled with the standard errors of the input series, which implies 

that the heteroscedasticity of the sampling errors is ignored: 

 
�̂�𝑖,𝑡 = 𝐿𝑖,𝑡 + 𝑆𝑖,𝑡 + 𝑒𝑖,𝑡,     (𝑖 = 1, … , 5).               (3.3.c) 

 
The standard errors of the input series 𝑘𝑖,𝑡 can be derived from the survey samples 

and will be specified below. 

 

The five series defined in formulas (3.3.a), (3.3.b) and (3.3.c) can be combined in a 
vector �̂�𝑡 = (�̂�1,𝑡 , �̂�2,𝑡 , �̂�3,𝑡 , �̂�4,𝑡, �̂�5,𝑡)′, which can be modelled with the so-called 

Seemingly Unrelated Time Series Equation (SUTSE) models (Harvey, 1989, Ch. 8). In 

a SUTSE model, each observed series appears in one equation and are 

contemporaneously correlated through the disturbance terms of their state 

variables. The SUTSE models for (3.3.a), (3.3.b) and (3.3.c) are defined as: 

 

�̂�𝑡 =  𝐋𝑡 + 𝐒𝑡 + 𝑰𝑡 + 𝑲𝑡𝛆𝑡,                    (3.4.a) 

 

�̂�𝑡 =  𝐋𝑡 + 𝐒𝑡 + 𝑲𝑡𝐞𝑡,                     (3.4.b) 

 

�̂�𝑡 =  𝐋𝑡 + 𝐒𝑡 + 𝐞𝑡,                     (3.4.c) 

 
with 𝐋𝑡 = (𝐿1,𝑡, 𝐿2,𝑡, 𝐿3,𝑡, 𝐿4,𝑡, 𝐿5,𝑡)′, 𝐒𝑡 = (𝑆1,𝑡, 𝑆2,𝑡, 𝑆3,𝑡, 𝑆4,𝑡, 𝑆5,𝑡)′, 𝑰𝑡 =

(𝐼1,𝑡, 𝐼2,𝑡, 𝐼3,𝑡, 𝐼4,𝑡, 𝐼5,𝑡)′, 𝑲𝑡 a 5 × 5 diagonal matrix with the standard errors 𝑘𝑖,𝑡 as 

diagonal elements, 𝛆𝑡 = (𝜀1,𝑡, 𝜀2,𝑡 , 𝜀3,𝑡, 𝜀4,𝑡, 𝜀5,𝑡)′ and 𝐞𝑡 = (𝑒1,𝑡, 𝑒2,𝑡, 𝑒3,𝑡, 𝑒4,𝑡, 𝑒5,𝑡)′.  

The trends 𝐿𝑖,𝑡 (𝑖 = 1, … ,5) are modelled with the so-called smooth trend model: 

 
𝐿𝑖,𝑡 =  𝐿𝑖,𝑡−1 + 𝑅𝑖,𝑡−1, 

𝑅𝑖,𝑡 =  𝑅𝑖,𝑡−1 + 𝜂𝑅,𝑖,𝑡,                    (3.5) 

 
with 𝐿𝑖,𝑡 the level of the trend and 𝑅𝑖,𝑡 the slope parameter. The disturbance terms 

𝜂R,𝑖,𝑡 are normally distributed with 

 
E(𝜂R,𝑖,𝑡) = 0, 

Cov(𝜂R,𝑖,𝑡 , 𝜂R,𝑖′,𝑡′) = {

𝜎R,𝑖
2 if 𝑖 = 𝑖′ and 𝑡 = 𝑡′

𝜍R,𝑖,𝑖′ if 𝑖 ≠ 𝑖′ and 𝑡 = 𝑡′

0 if 𝑡 ≠ 𝑡′

.          (3.6) 

 

This is a dynamic model for the low frequency variation, which has the flexibility to 

capture the trend as well as economic cycles. It can therefore be interpreted as the 

trend plus economic cycle, which is shortly referred to as trend. The smooth trend 

model is chosen because it results in a more stable trend estimates compared to 

for example the local level model (that has disturbance terms for the level 

parameter and does not have a slope parameter) or the local linear trend model 

(that has disturbance terms for both the level and the slope parameters). This is in 

line with the aim of the CS to evaluate economic and financial confidence over the 
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last and next 12 months. Note that in (3.6) the slope disturbance terms can be 

correlated, which makes sense since the five variables measure related 

phenomena.  

The so-called trigonometric seasonal model is used to model the seasonal 
component 𝑆𝑖,𝑡 (𝑖 = 1, … ,5), which is defined as: 

 

𝑆𝑖,𝑡 = ∑ 𝑆𝑖,𝑡,𝑙
6
𝑙=1 ,                     (3.7) 

 

with 

 
𝑆𝑖,𝑡,𝑙 = 𝑆𝑖,𝑡−1,𝑙 cos(ℎ𝑙) + 𝑆𝑖,𝑡−1,𝑙

∗ sin(ℎ𝑙) + 𝜂𝑆,𝑖,𝑡,𝑙, 

𝑆𝑖,𝑡,𝑙
∗ = 𝑆𝑖,𝑡−1,𝑙

∗ cos(ℎ𝑙) − 𝑆𝑖,𝑡−1,𝑙 sin(ℎ𝑙) + 𝜂𝑆,𝑖,𝑡,𝑙
∗ , ℎ𝑙 =

𝜋𝑙

6
, 𝑙 = 1, … ,6. 

 
The disturbances 𝜂S,𝑖,𝑡,𝑙   and 𝜂S,𝑖,𝑡,𝑙

∗  are normally distributed with 

 

E(𝜂S,𝑖,𝑡,𝑙) = E(𝜂S,𝑖,𝑡,𝑙
∗ ) = 0, 

 

Cov(𝜂S,𝑖,𝑡,𝑙 , 𝜂S,𝑖′,𝑡′,𝑙′) = Cov(𝜂S,𝑖,𝑡,𝑙
∗ , 𝜂S,𝑖′,𝑡′,𝑙′

∗ )

= {
𝜎S,𝑖

2 if 𝑖 = 𝑖′ and 𝑡 = 𝑡′ and 𝑙 = 𝑙′

0 otherwise 

  

 

Cov(𝜂S,𝑖,𝑡,𝑙 , 𝜂S,𝑖′,𝑡′,𝑙′
∗ ) = 0 for all 𝑖, 𝑡, 𝑙.  

 

Model (3.7) is a dynamic model that allows for seasonal patterns that gradually 

change over time. Like in the case of the trend component, it is possible to allow 

for non-zero correlations between disturbance terms of the seasonal components 

of the five input series. In this application, the variances of the disturbance terms 

tend to zero, which implies that seasonal components are nearly time invariant 

and their disturbance terms are almost equal to zero. Allowing for non-zero 

correlations between the disturbance terms does not contribute to better model 

fits in this application. For this reason a diagonal covariance structure for (3.7) is 

chosen in advance.  

 

The population irregular terms in (3.4.a) are normally distributed with 

 
E(𝐼𝑖,𝑡) = 0, 

Cov(𝐼𝑖,𝑡 , 𝐼𝑖′,𝑡′) = {

𝜎I,𝑖
2 if 𝑖 = 𝑖′ and 𝑡 = 𝑡′

𝜍I,𝑖,𝑖′ if 𝑖 ≠ 𝑖′ and 𝑡 = 𝑡′

0 if 𝑡 ≠ 𝑡′

.             (3.8) 

 

The scaled sampling errors in (3.4.a) are normally distributed with: 

 
E(𝜀𝑖,𝑡) = 0, 

Cov(𝜀𝑖,𝑡 , 𝜀𝑖′,𝑡′) = {
𝜎ε,𝑖

2 if 𝑖 = 𝑖′ and 𝑡 = 𝑡′

0 otherwise
.            (3.9) 

 

The measurement errors in (3.4.b) and (3.4.c) are normally distributed with: 

 



 

 

CBS | Discussion Paper | April 2024  11 

 

E(𝑒𝑖,𝑡) = 0, 

Cov(𝑒𝑖,𝑡 , 𝑒𝑖′,𝑡′) = {

𝜎e,𝑖
2 if 𝑖 = 𝑖′ and 𝑡 = 𝑡′

𝜍e,𝑖,𝑖′ if 𝑖 ≠ 𝑖′ and 𝑡 = 𝑡′

0 if 𝑡 ≠ 𝑡′

.             (3.10) 

 

Note that non-zero correlations between the population irregular terms in (3.8) 

and the measurement errors in (3.10) are allowed. A motivation for  modelling 

correlations between population irregular terms or measurement errors is that 

some events, e.g. good or bad news about the economy, influence the answers to 

all questions in a similar way. 

 
The standard errors 𝑘𝑖,𝑡 of the input series are obtained from the sample surveys. 

The corresponding variances are approximated as: 

 

Var(�̂�𝑖,𝑡) = Var(�̂�𝑖
+ − �̂�𝑖

−) = Var(�̂�𝑖
+) + Var(�̂�𝑖

−) − 2Cov(�̂�𝑖
+, �̂�𝑖

−)

=
1

𝑛𝑡
[�̂�𝑖

+(100 − �̂�𝑖
+) + �̂�𝑖

−(100 − �̂�𝑖
−) − 2�̂�𝑖

+�̂�𝑖
−]               

.       (3.11) 

 

This approximation is based on the variance of proportions under simple random 

sampling with replacement, which is motivated by the small sampling fraction of 

the monthly samples. The stratification of the sample design is ignored, which 

implies that the variance will be slightly overestimated by formula (3.11). 

 

The SUTSE models (3.4) can be interpreted as small area estimation models. 

Through the trend and seasonal components in this model, information from the 

past about the long-term development and seasonal fluctuations is used to 

improve the direct sample estimates. The covariances between the slope 

disturbance terms and population irregular terms of the five input series in the 

SUTSE model further improve the model fits.  

 

The following versions of model (3.4) will be compared to investigate the influence 

of the correlations between trend and measurement error components: 

– Model 1: the model as described by equations (3.4) – (3.8), i.e., with 

correlations between the slope disturbances of the trend and between the 

measurement errors of the five series. The three different ways of handling the 

sampling errors result in three versions of Model 1: 

a. M1a: based on (3.4.a) with correlated population irregular terms 

defined by (3.8) and sampling errors defined by (3.9) and (3.11). 

b. M1b: based on (3.4.b) with correlated measurement errors defined 

by (3.10) and (3.11). 

c. M1c: based on model (3.4.c) with correlated measurement errors 

defined by (3.10). The heteroscedasticity of the sampling errors is 

ignored under this model. 

– Model 2: similar to Model 1, but without correlation between the population 

irregular terms or measurement errors of the five series. The three different 

ways of handling the sampling errors result in three versions of Model 2: 

a. M2a: based on (3.4.a) with a diagonal covariance for the 
population irregular terms in (3.8), i.e., 𝜍I,𝑖,𝑖′ = 0, and sampling 

errors defined by (3.9) and (3.11). 
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b. M2b: based on (3.4.b) with a diagonal covariance matrix for the 
measurement errors defined by (3.10), i.e., 𝜍e,𝑖,𝑖′ = 0, scaled with 

sampling errors defined by (3.11). 

c. M2c: based on model (3.4.c) with a diagonal covariance matrix for 
the measurement errors defined by (3.10), i.e., 𝜍e,𝑖,𝑖′ = 0.  

– Model 3: similar to Model 2, but without correlation between the slope 

disturbances and without correlation between the measurement errors of the 

five series. The three different ways of handling the sampling errors result in 

three versions of Model 3: 
a. M3a: based on (3.4.a) with 𝜍R,𝑖,𝑖′ = 0 in (3.6), 𝜍I,𝑖,𝑖′ = 0 in (3.8) and 

sampling errors defined by (3.9) and (3.11). 
b. M3b: based on (3.4.b) with 𝜍R,𝑖,𝑖′ = 0 in (3.6), 𝜍e,𝑖,𝑖′ = 0 in (3.10), 

scaled with sampling errors defined by (3.11). 
c. M3c: based on model (3.4.c) with 𝜍R,𝑖,𝑖′ = 0 in (3.6), 𝜍e,𝑖,𝑖′ = 0 in 

(3.10).  

 

Note that the three versions of Model 3 are equivalent to fitting univariate models 

to each series separately, since all covariances of the state disturbance terms are 

equal to zero. 

 

The general way to proceed is to put the structural time series model into state 

space representation. See the Appendix for state space representation of Models 

(3.4.a), (3.4.b) and (3.4.c). Then the Kalman filter can be applied to obtain optimal 

estimates for the state vector. The Kalman filter is a recursive procedure to obtain 

optimal estimates for the state vector at time 𝑡 based on the data up to and 

including time period 𝑡, which are referred to as the filtered estimates. The filtered 

estimates of past state vectors can be updated if new data become available. This 

procedure is referred to as smoothing. Let 𝛼𝑡 denote the vector with unknown 
state variables for period 𝑡. Let 𝛼𝑡|𝑡′ denote the estimate for the state variables for 

period 𝑡, based on the observations obtained until (and including) period 𝑡′. If 𝑇 
denotes the length of the completely observed series, then 𝛼𝑡|𝑡 are the filtered 

estimates and 𝛼𝑡|𝑇 are the smoothed estimates.  

 

Since revisions of published figures are no part of the normal publication strategy 

at Statistics Netherlands, interest in this application is mainly focused on the time 

series model estimates based on the complete set of information that would be 

available in the regular production process to produce consumer confidence 

figures for month 𝑡. This can be approximated with the filtered estimates. Filtered 

estimates for period 𝑡 can be updated with the information that became available 

after period 𝑡. To illustrate the additional gain of applying a smoothing filter, we 

also compare the filtered estimates with the smoothed estimates.  

 

The hyperparameters 𝜎∗
2 and 𝜍∗ are estimated with maximum likelihood, using a 

numerical optimization procedure. The maximum likelihood estimates for the 

hyperparameters are inserted into the Kalman filter but treated as if they were the 

true values, known without error. This implies that the additional uncertainty of 

using the maximum likelihood estimates for the hyperparameters is ignored in the 

standard errors for the filtered and smoothed estimates for the trend and signal of 

the CS parameters. This is a standard approach in state space modelling and 
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acceptable in this application given the long series that are available, see Bollineni-

Balabay et al. (2017) for a motivation and Pfeffermann and Tiller (2005) for a 

bootstrap approach that accounts for the additional uncertainty in the standard 

errors of the estimated state variables as a result of using maximum likelihood 

estimates for the hyperparameters in the Kalman filter. Finally, the state variables 

are initialized with a diffuse initialization, unless stated differently. See Harvey 

(1989) or Durbin and Koopman (2012) for technical details. In this paper Ssfpack 

3.0 (Koopman et al., 1999b, and Koopman et al., 2008) in combination with Ox 

(Doornik, 1998) is used for the computations. 

 

After the model is estimated, model-based estimates for the five series can be 
computed. The trend 𝐿𝑖,𝑡 and signal, which is defined as 𝐿𝑖,𝑡 + 𝑆𝑖,𝑡 are used as 

model-based estimates for consumer confidence indicators. The model-based 

estimates of the combined series, i.e., economic climate, willingness to buy, and 

consumer confidence are computed as means of the estimates for the five series.  

The standard errors for the model estimates of the combined series account for 
the correlation between the state variables (𝐿𝑖,𝑡 and 𝑆𝑖,𝑡) of the underlying series. 

Deriving the combined indices from the model estimates of the five input series 

has the advantage that the model estimates are numerically consistent. This would 

not be the case if three separate univariate time series models were applied to the 

direct estimates of the three combined indices. 

 

With the diffuse initialization of the Kalman filter the first 12 observations are 

required to construct a proper prior for the Kalman filter. It is understood that in 

the figures in the results sections the first 14 years are omitted so that that 

differences between estimation results are more visible. 

3.2 Results 

The nine models described in Section 3.1 are applied to series from January 1987 

until December 2016. The figures in this section are restricted to the period 2001 – 

2016 to facilitate a better interpretation of the graphs. The model evaluation is 

based on the entire series.  

 

Maximum likelihood estimates for the standard deviations of slope disturbance 

terms, seasonal disturbance terms, population irregular terms and the 

measurement error for the five baseline variables are presented in Table 3.1 for 

the nine models. There are only small differences between the standard deviations 

of the slope disturbance terms of Model M1a, M1b an M1c. This also applies to 

the three versions of Model 2 and the three versions of Model 3. The standard 

deviations of the slope disturbance terms under the three versions of Model 2 are 

larger compared to Model 1 and Model 3. For all models it follows that the 

seasonal component is time invariant for Econ. N12 and almost time invariant for 

Econ. L12, Fin. L12 and Fin. N12. 

 

For model (3.4.a) it is difficult to estimate the standard deviation of both the 

population irregular term (𝜎𝐼,𝑖 ) and the scaled sampling errors (𝜎𝜀,𝑖) with maximum 

likelihood. Therefore 𝜎𝜀,𝑖 is set equal to one. As a result, the variance of the 
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sampling error 𝑘𝑖,𝑡𝑒𝑖,𝑡 is equal to the variance of the input series. Note that the 

standard deviations for the population irregular term are clearly larger than one. 
The standard errors 𝑘𝑖,𝑡 vary between 1.2 and 1.6 with an average around 1.5. This 

illustrates that the population irregular term is at least as large as the sampling 

error. This also follows from the standard deviations of the measurement errors 

under models (3.4.b). In this model the measurement errors are scaled with the 

standard errors of the input series. If the population irregular term would be small 

compared to the sampling error, then the maximum likelihood estimates for 𝜎𝑒,𝑖 in 

M1b, M2b and M3b would take values close to one. The estimates for 𝜎𝑒,𝑖, 

however, are clearly larger, which indicates once again that the population 

irregular term has a substantial share in the measurement errors. The standard 

deviations of measurement errors under models (3.4.c) have the largest values 

since they reflect the total variance of the population irregular term and the 
sampling error without scaling them with the factors 𝑘𝑖,𝑡.  

 

Tables 3.2 – 3.6 show the maximum likelihood estimates of the correlations of 

three model specifications of Models 1 and 2. The correlations between the slope 

disturbances are given in Table 3.2 for Model M1a. The correlation matrices for 

Model M1b and M1c are almost equivalent and are therefore left out. As 

expected, high correlations between slope disturbance terms are observed, since 

opinions about financial and economic situation are related. The correlation matrix 

for the population irregular term under Model M1a is given in Table 3.3, for the 

measurement errors, scaled with the sampling errors, under Model M1b in Table 

3.4, and for the measurement errors under Model M1c, which ignores the 
standard errors 𝑘𝑖,𝑡, in Table 3.5. There are a few small differences between the 

correlations under these three different models but it can be concluded that the 

patterns are rather consistent. The correlations between the slope disturbances 

are given in Table 3.6 for Model M2a. The correlation matrices for Model M2b and 

M2c are almost equivalent and are therefore left out. The correlations of the slope 

disturbances are larger under the three different specifications of Model 2 than 

under the three different specifications of Model 1. This is because under Model 1, 

a part of the co-movements of the series is considered as correlations between the 

measurement errors. Under Models M2a, M2b and M2c this variation is 

interpreted as trend fluctuations. As explained in Section 3.1, there are arguments 

that the measurement errors are correlated. Models M1a, M1b and M1c are 

therefore preferred over the three different versions of Model 2, and the 

correlations in Table 3.6 are probably over-estimated. From Table 3.1 it follows 

that the standard deviations of the slope disturbance terms are consistently higher 

compared to the three versions of Model 1 and Model 3, which is another 

indication that the trends under the three versions of Model 2 tend to overfit the 

observed series. 

 

Differences between filtered trends as well as their standard errors for the five 

input series and the three indices that are a linear combination of the five input 

series under M1a, M1b and M1c are very small (smaller than one percent point). 

This also holds for the filtered signals. In a similar way the differences between the 

smoothed trends as well as the smoothed signals under M1a, M1b and M1c are 

negligible. This also applies to the filtered and smoothed trends and signals and 

the standard errors under M2a, M2b and M2c and the filtered and smoothed 
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trends and signals and the standard errors under M3a, M3b and M3c. It follows 

from Table 3.1 that the standard deviations of the slope disturbance terms and the 

disturbance terms of the seasonal component are not affected by the three 

different versions of modelling the population irregular term and sampling errors. 

Also the correlations between the slope disturbance terms presented in Tables 3.2 

and 3.6 are not influenced by the three different covariance structures of the 

population irregular term and sampling errors. This explains why the estimates for 

trends and signals are hardly affected by the three different covariance structures 

for the population irregular terms and sampling errors.  

 

From now on we will present estimation results for trends and signals for the 

models that have a separate component for the population irregular term and the 

sampling error, i.e. M1a, M2a and M3a, since these three models are based on 

model (3.4.a) which has the most intuitive interpretation of accounting for 

population irregular term and sampling error. It is understood that similar results 

are obtained for filtered and smoothed estimates for the other two versions of 

models 1, 2 and 3.     

   

Comparing the filtered as well as smoothed trends for the five input series and the 

three indices that are a linear combination of the five input series shows that the 

trend under Model M3a often differs from Model M1a and Model M2a. Since the 

five input series show strong co-movements, Model M1a and M2a improve the 

accuracy of the trend estimates since they use the information from the other 

series via the strong positive correlations between the slope disturbance terms. 

Generally, the trend under Model M2a is more volatile compared to Model M1a, 

since a part of the measurement error under Model M1a is interpreted as trend 

movements under Model M2a. As an example the filtered and smoothed trends 

under the three models are shown for Fin. N12 in Figure 3.1.  

 

The filtered signals under Model M2a and Model M3a are both close to the direct 

estimates, which indicates that these models hardly smooth the input series. The 

filtered signals under Model M1a are more smooth compared to the direct 

estimates. Also the smoothed signals under Model M2a and M3a are more volatile 

and closer to the direct estimates than the smoothed signals under Model M1a. As 

an example, Figure 3.2 compares the filtered and smoothed signal under Model 

M1a with the direct estimates for consumer confidence. The smoothed estimates 

are clearly more stable than the filtered estimates. The filtered estimates illustrate 

the consumer confidence figures as they are published at the end of the reference 

period. Publishing the more stable smoothed estimates requires a revision policy. 

This is, however, not in line with the publication strategy of Statistics Netherlands. 
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Hyperparameter Variable     Sd     

  M1a M1b M1c M2a M2b M2c M3a M3b M3c 

Slope (𝜎R,𝑖) (3.6) Econ. L12 2.61 2.58 2.61 4.01 3.98 4.01 2.62 2.60 2.62  
Econ. N12 2.89 2.89 2.88 4.85 4.85 4.84 2.86 2.86 2.84  
Fin. L12 0.54 0.54 0.54 0.59 0.58 0.59 0.47 0.46 0.46  
Fin. N12 0.60 0.60 0.60 1.05 1.04 1.04 0.55 0.54 0.54  
Major pur. 0.94 0.93 0.94 1.13 1.12 1.13 0.88 0.87 0.87 

Seasonal (𝜎S,𝑖) (3.7) Econ. L12 0.03 0.03 0.03 0.00 0.02 0.02 0.02 0.02 0.03  
Econ. N12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00  
Fin. L12 0.02 0.03 0.03 0.02 0.02 0.02 0.02 0.03 0.03  
Fin. N12 0.04 0.04 0.04 0.04 0.04 0.04 0.05 0.05 0.05  
Major pur. 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 

Population irregular term (𝜎𝐼,𝑖 ) (3.8) Econ. L12 3.47   2.76   3.49    
Econ. N12 5.94   4.87   5.87    
Fin. L12 1.90   1.96   1.93    
Fin. N12 2.25   2.10   2.09    
Major pur. 2.15   2.13   2.17   

Sampling error (𝜎𝜀,𝑖)*) (3.9) Econ. L12 1.00   1.00   1.00   

 Econ. N12 1.00   1.00   1.00   

 Fin. L12 1.00   1.00   1.00   

 Fin. N12 1.00   1.00   1.00   

 Major pur. 1.00   1.00   1.00   

           

Table continues on next page           
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Hyperparameter Variable     Sd     

  M1a M1b M1c M2a M2b M2c M3a M3b M3c 

Measurement error (𝜎𝑒,𝑖) (3.10) Econ. L12  2.47 3.83  2.05 3.18  2.47 3.83 

 Econ. N12  3.85 6.14  3.21 5.12  3.81 6.08 

 Fin. L12  1.55 2.49  1.58 2.53  1.57 2.51 

 Fin. N12  1.77 2.73  1.70 2.61  1.69 2.62 

 Major pur.  1.67 2.68  1.65 2.66  1.67 2.69 
Table 3.1: maximum likelihood estimates of standard deviations slope disturbance terms, seasonal disturbance terms and the measurement error 
*): the standard deviation of the sampling errors are not estimated by maximum likelihood but are set equal to 1.  
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  Econ. L12 Econ. N12 Fin. L12 Fin. N12 Major pur. 

Econ. L12 1     

Econ. N12 0.865 1    

Fin. L12 0.600 0.371 1   

Fin. N12 0.909 0.929 0.584 1  

Major pur. 0.528 0.384 0.771 0.614 1 
Table 3.2: correlations slope disturbances, model with correlations slope disturbances and 
correlations measurement (Model M1a) 

 

  Econ. L12 Econ. N12 Fin. L12 Fin. N12 Major pur. 

Econ. L12 1     

Econ. N12 0.636 1    

Fin. L12 0.120 -0.110 1   

Fin. N12 0.262 0.423 0.322 1  

Major pur. 0.284 0.265 -0.127 -0.002 1 
Table 3.3: correlations population irregular terms for a model with correlations between slope 
disturbances and correlations between population irregular terms (Model M1a) 

 

  Econ. L12 Econ. N12 Fin. L12 Fin. N12 Major pur. 

Econ. L12 1     

Econ. N12 0.564 1    

Fin. L12 0.090 -0.076 1   

Fin. N12 0.208 0.342 0.204 1  

Major pur. 0.212 0.209 -0.075 0.002 1 
Table 3.4: correlations measurement errors for a model with correlations between slope 
disturbances and correlations between measurement errors scaled with sampling errors (Model 
M1b) 

 

  Econ. L12 Econ. N12 Fin. L12 Fin. N12 Major pur. 

Econ. L12 1     

Econ. N12 0.562 1    

Fin. L12 0.089 -0.079 1   

Fin. N12 0.199 0.340 0.203 1  

Major pur. 0.211 0.207 -0.078 0.002 1 
Table 3.5: correlations measurement error for a model with correlations between slope 
disturbances and correlations between measurement errors not scaled with sampling errors 
(Model M1c) 

 

  Econ. L12 Econ. N12 Fin. L12 Fin. N12 Major pur. 

Econ. L12 1     

Econ. N12 0.956 1    

Fin. L12 0.712 0.577 1   

Fin. N12 0.971 0.978 0.711 1  

Major pur. 0.739 0.669 0.827 0.754 1 
Table 3.6: correlations slope disturbances for a model with correlations slope between 
disturbances and without correlations between population irregular terms (Model M2a) 
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The standard errors of the filtered and smoothed signals for consumer confidence 

under the three models are compared with the standard errors of the direct 

estimates in Figure 3.3. The standard errors under Model M1a are clearly larger 

than under Model M2a and M3a. The standard errors of the filtered estimates 

under Model M1a are clearly larger than those for the direct estimates. The 

standard errors of the smoothed estimates under Model M1a and the standard 

errors of the filtered estimates under Model M2a and M3a are more or less the 

same as those of the direct estimates. For the other two combined series, 

economic climate and willingness to buy, the standard errors of the filtered and 

smoothed signals under Model M1a are also larger than under Models M2a and 

M3a. For economic climate the standard error of the direct estimates is smaller 

than the standard errors of the filtered signals for all three models. The standard 

errors of the smoothed signals for Model M2a and M3a are more or less equal to 

the standard errors of the direct estimates. For willingness to buy the standard 

errors of the filtered as well as the smoothed signals under all three models are 

smaller than those of the direct estimates (results not shown).  

 

It is a remarkable result that the standard error of the filtered signals are equal or 

even larger than the standard errors of the direct estimates. A general finding in 

the literature is that state space models applied to series obtained with repeated 

surveys result in model estimates with standard errors that are substantially 

smaller compared to the standard errors of the direct survey estimates, see e.g. 

Pfeffermann and Bleuer (1993), Pfeffermann and Burck (1990), Pfeffermann and 

Tiler (2006), Krieg and Van den Brakel (2012), Van den Brakel and Krieg (2015, 

2016), Boonstra and van den Brakel, (2019). The reason that this is not the case for 

the Dutch CS is explained as follows. Recall from the discussion of the maximum 

likelihood estimates in Table 3.1 that the population irregular term is at least as 

large as the sampling error. This additional uncertainty of the population irregular 

term is reflected in the standard error of the time series model estimates, which 

are estimates for the trend, 𝐿𝑡, or the signal, 𝐿𝑡 + 𝑆𝑡. The sample estimates of the 

CS are direct or design-based estimates for the population parameter 𝜃𝑡.  Their 

standard errors, on the other hand, only contain the uncertainty due to the 

sampling error. Furthermore, the positive correlations between the measurement 

errors particularly increase the standard errors of the composite indices. It is 

nevertheless essential to model the correlation between the measurement errors 

since this results in a better separation of the measurement error from trend and 

signal.  

 

The filtered trend estimates are volatile. Together with the relative large 

population irregular terms, this is an indication that the questions of the CS 

measure a short-term emotion and are not interpreted by the respondents as a 

long term evaluation over the last and next 12 months of the economy and the 

financial situation. This observation is supported by the fact that the time series 

contain a seasonal pattern, which would not be present if questions are 

interpreted as the situation over the last 12 and next 12 months. As a result, the 

largest contribution of the time series model in this application is obtained with 

the smoothed estimates, which are more stable and have smaller standard errors. 
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Figure 3.1: filtered trends (upper panel) and smoothed trends (lower panel) for three models for 
Fin. N12  
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Figure 3.2: direct estimates and filtered signal (upper panel) and filtered and smoothed signal 
(lower panel) under model M1a for consumer confidence 

 

 

-50

-40

-30

-20

-10

0

10

20

30

2001 2003 2005 2007 2009 2011 2013 2015

P
o

in
t 

es
ti

m
at

es
 (

p
er

ce
n

ta
ge

)

Time (months)

Filtered signal (M1a) Direct estimates

-50

-40

-30

-20

-10

0

10

20

30

2001 2003 2005 2007 2009 2011 2013 2015

P
o

in
t 

es
ti

m
at

es
 (

p
er

ce
n

ta
ge

)

Time (months)

Filtered signal (M1a) Smoothed signal (M1a)



 

 

CBS | Discussion Paper | April 2024  22 

 

 
Figure 3.3: standard errors of direct estimates and of filtered and smoothed estimates of signal 
under three models for consumer confidence 

 

Since the standard errors of the filtered signals are stable over time, the standard 

errors of the five baseline series and the three combined series are shown in Table 

3.7 for December 2016 (last observation before the change-over to the new 

design). Standard errors for the smoothed signals are also stable over time, except 

for the last months of the series. Therefore, standard errors for the smoothed 

signals are included in Table 3.7 for December 2015. Standard errors for the trends 

are presented in a similar way in Table 3.8. The standard errors for the trends are 

very similar to the standard errors of the signals. Model M2a has the smallest 

standard errors for all variables. For some variables, the differences are 

substantial. For the five baseline series the standard error under Model M1a is 

smaller than those under Model M3a. For the combined series, however, the 

standard errors under Model M1a are larger than those under Model M3a. From 

the comparison between Model M2a and Model M3a, it follows that modelling 

cross-sectional correlations through the trend component improves the precision 

of the model estimates. Modelling the correlation between the population 

irregular terms decreases the precision, because the positive correlation inflates 

the variance of the population irregular terms of the combined series. As 

motivated above, it is necessary to account for these correlations to avoid 

underestimating the uncertainty of the model predictions. 

 

A major advantage of inference based on time series models is that the gain in 

precision of period-to-period changes is large. To illustrate this, the standard 

errors of the month-to-month developments for filtered and smoothed signals for 

the consumer confidence under the three models and the direct estimates are 

compared in Figure 3.4. The period-to-period change and their standard errors are 
obtained by calculating the linear combination of ∆𝑡= 𝐿𝑡|𝑡 − 𝐿𝑡−1|𝑡 + 𝑆𝑡|𝑡 − 𝑆𝑡−1|𝑡 

via the Kalman filter recursion. This requires that the state variables for 𝐿𝑡−1 and 

𝑆𝑡−1  remain in the state vector. For the direct estimates these standard errors are 
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larger, since the direct estimates of two different periods in a cross-sectional 

survey are independent. For the model estimates, however, these standard errors 

are smaller, mainly due to the strong positive correlation between the trend levels 

of two subsequent periods.  

 

  Model M1a Model M2a Model M3a 

 filt. smooth. filt. smooth. filt. smooth. 

Econ. L12  3.22 2.27 2.68 2.01 3.24 2.27 

Econ. N12 4.78 3.16 3.97 2.81 4.86 3.21 

Econ. climate 3.60 2.45 2.65 2.03 2.92 1.98 

Fin. L12 1.69 1.16 1.66 1.13 1.77 1.20 

Fin. N12 1.73 1.26 1.58 1.21 1.93 1.38 

Major pur. 2.18 1.79 2.30 1.78 2.23 1.85 

Willingn. to buy 1.20 0.90 1.14 0.87 1.14 0.88 

Consumer conf. 1.84 1.27 1.33 1.05 1.35 0.95 
Table 3.7: standard error filtered estimates signal last period (December 2016) and smoothed 
estimates (December 2015) for 8 series 

  

  Model M1a Model M2a Model M3a 

 filt. smooth. filt. smooth. filt. smooth. 

Econ. L12  3.34 2.24 2.83 2.24 3.38 2.28 

Econ. N12 4.84 3.09 4.05 2.95 4.97 3.18 

Econ. climate 3.70 2.45 2.89 2.15 3.01 1.95 

Fin. L12 1.64 0.96 1.62 0.94 1.75 1.05 

Fin. N12 1.60 0.92 1.45 0.89 1.91 1.12 

Major pur. 2.26 1.28 2.25 1.29 2.37 1.43 

Willingn. to buy 1.23 0.74 1.09 0.73 1.17 0.83 

Consumer conf. 1.80 1.24 1.43 1.14 1.39 0.91 
Table 3.8: standard error filtered estimates trend last period (December 2016) and smoothed 
estimates (December 2015) for 8 series  
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Figure 3.4: standard errors for month-to-month-development direct estimates and filtered 
estimates signal under three models, consumer confidence 

3.3 Model evaluation 

The assumptions underlying the state space model are evaluated by testing 

whether the standardized innovations are standard normally and independently 

distributed, see Durbin and Koopman (2012), Sections 2.12 and 7.5. Different tests 

(Bowman-Shenton normality tests, F-tests for heteroscedasticity, QQ-plots, plots 

of standardized innovations and sample correlograms, Durbin Watson test) 

indicate some small violations of these assumptions for all models. The results on 

normality and heteroscedasticity are comparable under all models. The 

correlograms show very weak autocorrelation of lag 1 for some of the series, 

under all versions of model 1, 2 and 3. Since the input series are very long, even 

small violations of the model assumptions could be significant, but the violations 

we found here are acceptable. Alternative models for trend, i.e., local level model 

or a local linear trend model, and a seasonal component with separate variance 

components for the harmonics in (3.7) or including AR(1), MA(1) or ARMA(1,1) 

components did not improve these diagnostics.  

 

The models are also compared using AIC and BIC which are defined as AIC =  −2 ∗

LL + 2(𝑞 + 𝑝) and BIC =  −2 ∗ LL + (𝑞 + 𝑝) ∗ Log(𝑇 − 𝑝), with LL the 

loglikelihood, 𝑞 the number of hyperparameters estimated with maximum 

likelihood, 𝑝 the number state variables and 𝑇 the length of the observed series. 

Results are presented in Table 3.9. Under both criteria Model M1a is preferred. It 

can be concluded that the models with a separate component for the population 

irregular term and the sampling error, i.e. Model (3.4.a), outperforms the models 

that combine the population irregular term and sampling error in one 
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measurement error, i.e. Models (3.4.b) and (3.4.c).  Model M1a, M2a and M3a are 

nested and can be compared with a likelihood ratio (LR) test, see Table 3.10. 

Similar results are obtained for the three different versions of Model 2 and the 

three different versions of Model 3.  

 

Model Loglikelihood AIC BIC 

M1a -5293.3 10706.52 10937.48 

M2a    -5347.2 10794.48 10986.95 

M3a -5501.8 11083.68 11237.65 

M1b -5303.1 10726.24 10957.20 

M2b -5357.4 10814.88 11007.35 

M3b -5514.8 11109.62 11263.59 

M1c -5305.8 10731.60 10962.56 

M2c -5360.3 10820.68 11013.15 

M3c -5518.1 11116.20 11270.17 
Table 3.9: AIC and BIC values for the three models 

 

Comparison LR statistic df p-value 

Model M1a versus Model M2a 107.96 10 0.000 

Model M2a versus Model M3a 309.20 10 0.000 

Model M1a versus Model M3a 417.16 20 0.000 
Table 3.10: Results likelihood ratio tests 

 

The test for Model M2a versus Model M3a indicates that modelling the correlation 

between the slope disturbance terms significantly improves the model fit. The test 

for Model M1a versus Model M2a shows that modelling the correlation between 

the measurement errors further improves the model fit significantly. Finally the 

test for Model M1a versus Model M3a shows that the joint test on the inclusion of 

a full covariance matrix for the slope disturbance terms and the measurement 

errors rejects the null hypothesis that both models are equivalent. A model that 

allows for correlated slope disturbance terms must also allow for correlated 

measurement errors. Otherwise, correlated measurement errors in all input series 

could be incorrectly interpreted as a true development of the trend instead of 

measurement errors (sampling noise or noise in the population parameter). In 

conclusion, Model M1a is the best fitting model. 
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4. Discontinuities 

An important aspect of the implementation of the new design in 2017 is to 
quantify and correct for discontinuities in the outcomes of the Dutch CS that are 
the result of the implementation of a new survey process. In this application 
discontinuities are analyzed at the level of the percentage of positive, neutral or 

negative answer categories of the five questions, i.e.,  𝑝𝑖
+,  𝑝𝑖

−, 𝑝𝑖
0 for 𝑖 = 1, … ,5, as 

these percentages are the variables measured through the questionnaire. These 
discontinuity estimates are used to compute uninterrupted series for the 

percentages 𝑝𝑖,𝑡
+ ,  𝑝𝑖,𝑡

0 ,  𝑝𝑖,𝑡
−  for 𝑖 = 1, … ,5, by adjusting the series observed before 

the change-over to the level of the series observed under the new design. These 
corrected series are used in a second step to calculate uninterrupted series for 
𝑦1,𝑡 , … , 𝑦5,𝑡. These backcasted series will be used as the input for model (3.4) that 
is used in the production of official monthly figures about consumer confidence. 
The method to adjust the percentage series observed before the change-over will 
be worked out in this section. The proposed method ensures that the size of the 
correction at a specific time period depends on the size of the discontinuities of 
these percentages and the share of the percentages over the three categories at 
that time period. It will be shown that such a correction is more realistic than an 
approach that directly estimates and adjusts discontinuities at the level of the 
input series 𝑦1,𝑡 , … , 𝑦5,𝑡. 

4.1 Quantifying discontinuities  

In this application, discontinuities are estimated by means of a parallel run in 

combination with a time series intervention analysis, following the method 

proposed by Van den Brakel et al. (2020). The available budget allowed a parallel 

run of three months in the first quarter of 2017, where the sample sizes for both 

designs were equal to the net sample size of the regular survey, i.e., around 1000 

persons. Initial direct estimates for the discontinuities are obtained as contrasts 

between direct or design-based sample estimates under the old and new survey 

design. The precision of the estimated discontinuities can be further improved by 

modelling the observed series with a STM. The population parameter of interest is 

modelled with a trend, seasonal component, population irregular term and the 

sampling error, similar to the models developed in Section 3. The discontinuity is 

modelled with an intervention variable that switches from zero to one at the 

moment that the survey is transferred from the old to the new design. Under the 

assumption that the other components of the time series model (trend and 

seasonal) describe the evolution of the population parameter correctly, the 

regression coefficient of the intervention variable can be interpreted as an 

estimate for the discontinuity. The level intervention approach with state space 

models was originally proposed by Harvey and Durbin (1986) to estimate the 

effect of seat belt legislation on British road casualties. If no information from a 

parallel run would be available, the regression coefficient for the intervention 

variable would be initialized in the Kalman filter with a diffuse prior. The direct 

estimate for the discontinuity and its variance obtained from the parallel run can 
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be used as an informative initialization for the regression coefficient of the level 

intervention in the Kalman filter. In this way, the discontinuity estimate from the 

parallel run is improved with the available information from the entirely observed 

time series.  

 

Based on the parallel run there are two estimates for the percentages of the five 

questions 𝑝𝑖,𝑡
+ ,  𝑝𝑖,𝑡

0 ,  𝑝𝑖,𝑡
− , which are denoted �̂�𝑖,𝑡

𝑗,O
  (𝑗 ∈ {+,0, −}) for the estimate of 

𝑝𝑖,𝑡
𝑗

 under the old design and �̂�𝑖,𝑡
𝑗,N

 for the estimate of 𝑝𝑖,𝑡
𝑗

 under the new design. 

Direct estimates for the discontinuities are obtained as: 

 

Δ̂(𝑝𝑖
𝑗
) =

1

3
∑ [�̂�𝑖,𝑡

𝑗,N
− �̂�𝑖,𝑡

𝑗,O
]

2017(3)
𝑡=2017(1)  , for 𝑗 ∈ {+,0, −}.            (4.1) 

 

Since the percentages 𝑝𝑖,𝑡
+ ,  𝑝𝑖,𝑡

0 ,  𝑝𝑖,𝑡
−  for each question 𝑖 sum to 100%, it follows that 

 

∑  ∆̂(𝑝𝑖
𝑗
)𝑗∈{+,0,−} = 0 .                   (4.2) 

 

The variance of the estimates of the discontinuities can be estimated by 

 

Var̂[Δ̂(𝑝𝑖
𝑗
)] =

1

9
∑ [Var̂(�̂�𝑖,𝑡

𝑗,O
) + Var̂(�̂�𝑖,𝑡

𝑗,N
)]

2017(3)
𝑡=2017(1) ,           (4.3) 

 

with 

 

Var̂ (�̂�𝑖,𝑡
𝑗,d

) = �̂�𝑖,𝑡
𝑗,d

(100 − �̂�𝑖,𝑡
𝑗,d

)/𝑛𝑡
d,  for 𝑑 ∈ {O, N}  

 

and 𝑛𝑡
O, 𝑛𝑡

N the sample size in month 𝑡 under the old and new design. 

 

In a next step a three dimensional multivariate model is applied to the three series 

with percentages of positive, negative and neutral answers for each question 

separately, i.e. for 𝑖 = 1, … ,5. For notational convenience, the index 𝑖  is omitted in 

the formulas. It is understood that the observations of each series up until and 

including December 2016 are based on the old design. From January 2017 on, the 

observations are based on the new design. For each of the three series the basic 

structural time series model is extended with a level intervention. In a similar way 

as in Section 3, three models that account in different ways for the sampling error 

and the population irregular term are compared. The first model has a separate 

component for the population irregular term and the sampling error: 

 

�̂�𝑡 =  𝐋𝑡 + 𝐒𝑡 + 𝜷′ 𝐱t + 𝑰𝑡 + 𝑲𝑡𝛆𝑡,                (4.4.a) 

 

where �̂�𝑡 = (�̂�𝑡
+,  �̂�𝑡

0,  �̂�𝑡
−)′ is the vector of direct estimates of the percentages, 

until 2016 based on the old design and from 2017 based on the new design, 𝐋𝑡 =

 (𝐿𝑡
+,  𝐿𝑡

0,  𝐿𝑡
−)′  is the vector of the trends, 𝐒𝑡 = (𝑆𝑡

+,  𝑆𝑡
0,  𝑆𝑡

−)′ is a vector of the 

seasonal patterns, 𝐱t = (𝑥𝑡 , 𝑥𝑡 , 𝑥𝑡)′ the level intervention variable, i.e. 𝑥𝑡 switches 

from zero to one in January 2017 when the new design is implemented and  𝛃 =

(𝛽 
+, 𝛽 

0,  𝛽 
−)′ the regression coefficients of the level interventions that can be 

interpreted as approximations of the discontinuities. Finally, 𝑰𝑡 =  (𝐼𝑡
+,  𝐼𝑡

0,  𝑖𝑡
−)′ is a 

vector with population irregular term components,  𝛆𝑡 = (𝜀𝑡
+, 𝜀𝑡

0, 𝜀𝑡
−)′  is a vector 
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containing normally distributed error terms that are pre-multiplied by a 3 × 3 

diagonal matrix 𝑲𝑡, with diagonal elements equal to the standard error of the 

input series, i.e. 

 

𝑘𝑡
𝑗

= √Var(�̂�𝑡
𝑗
) = √�̂�𝑡

𝑗
(100 −  �̂�𝑡

𝑗
)/𝑛𝑡,  with 𝑗 ∈ {+,0, −}.  

 

The second model combines the population irregular term and the sampling error 

into one measurement error, say 𝐞𝑡 = 𝑰𝑡 + 𝛆𝑡, that is scaled with the standard 

errors of the input series: 

 

�̂�𝑡 =  𝐋𝑡 + 𝐒𝑡 + 𝜷′ 𝐱t + 𝑲𝑡𝐞𝑡.                  (4.4.b) 

 

The third model combines the population irregular term and the sampling error 

into one measurement error and ignores the time varying behavior of the sampling 

errors: 

 

�̂�𝑡 =  𝐋𝑡 + 𝐒𝑡 + 𝜷′ 𝐱t + 𝐞𝑡.                   (4.4.c) 

 

The variables 𝐿𝑡
𝑗
 and 𝑆𝑡

𝑗
 with 𝑗 ∈ {+,0, −} are smooth trend models and 

trigonometric seasonal models as described in Section 3.1. For the disturbance 

terms it is assumed that they are mutually independent, normally distributed with 

expectation zero and time-independent variance components. From (4.2) it 

follows that the coefficients for the discontinuities, 𝛽+ , 𝛽0  and 𝛽− , must obey the 

restriction that they add up to zero. This is enforced with the following transition 

equations in the state space model: 

 
𝛽𝑡

+ = 𝛽𝑡−1
+

𝛽𝑡
− = 𝛽𝑡−1

−

𝛽𝑡
0 = −𝛽𝑡−1

+ − 𝛽𝑡−1
−

.                    (4.5) 

 

The subscript 𝑡 indicates the notation of the transition equations. As there is no 

disturbance term, 𝛃 is still time-independent. The population irregular terms (𝑰𝑡), 

the scaled sampling errors (𝛆𝑡) and the measurement errors (𝐞𝑡) are modelled as 

normally and independently distributed random variables, i.e., 𝐼𝑡
𝑗
~𝑁(0, 𝜎𝐼,𝑗

2 ), 

𝜀𝑡
𝑗
~𝑁(0, 𝜎𝜀,𝑗

2 ), 𝑒𝑡
𝑗
~𝑁(0, 𝜎𝑒,𝑗

2 ), 𝑗 ∈ {+,0, −}. As in Section 3, the variances of scaled 

sampling errors in Model (4.4.a) are not estimated with maximum likelihood but 

are taken equal to one to force that the variance of 𝑘𝑡
𝑗
𝜀𝑡

𝑗
 is equal to the variance of 

the sampling error Var(�̂�𝑡
𝑗
). Finally note that since the neutral category is not used 

in the indices of consumer confidence, neither in the baseline nor the combined 

indices, a pragmatic alternative is to model the series of positive and negative 

percentages in a bivariate model without restrictions on the coefficients of the 

discontinuities. The state space representation of Models (4.4.a), (4.4.b) and 

(4.4.c) is given in the Appendix. 
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4.2 Correction methods for discontinuities  

As explained at the beginning of Section 4, the series of the percentages observed 

before the redesign of January 2017 are corrected to the level of the percentage 

series observed under the new design. These so-called backcasted percentage 

series are used to compile backcasted input series for the time series model (3.4). 

The percentages can only have admissible values in the range [0,100]. Therefore 

correction methods are considered that result in backcasted series that have 

values in this admissible range. In this case the backcasted target variables 

�̂�1, … , �̂�5 will also have values in the admissible range [-100, +100]. Let �̃�𝑖,𝑡
𝑗,N

 denote 

the backcasted series of �̂�𝑖,𝑡
𝑗,O

. The following correction is proposed for 

percentages: 

 

�̃�𝑖,𝑡
𝑗,N

= �̂�𝑖,𝑡
𝑗,O

+ �̂�𝑖
𝑗 𝑝𝑖,𝑡

𝑗,O
(100−�̂�𝑖,𝑡

𝑗,O
)

𝑝𝑖,𝜏
𝑗,O

(100−�̂�𝑖,𝜏
𝑗,O

)
 , for 𝑡 = 1, … , 𝑇 − 1,              (4.7) 

 

with 𝑇 the month of the change-over to the new design, which is January 2017. 

Furthermore, �̂�𝑖,𝜏
𝑗,O

 denotes an estimate under the old design obtained during the 

entire period of the parallel run (denoted by 𝜏). The estimated discontinuity �̂�𝑖
𝑗
 is 

multiplied by a factor proportional to the variance of the percentage, estimated by 

�̂�𝑖,𝑡
𝑗,O

(100 − �̂�𝑖,𝑡
𝑗,O

). The correction is zero when �̂�𝑖,𝑡
𝑗,O

= 0 or �̂�𝑖,𝑡
𝑗,O

= 100, and it is 

maximal when �̂�𝑖,𝑡
𝑗,O

= 50. The denominator of the factor is the population variance 

of the percentage under the old design during the three months of the parallel run 

and ensures that the corrected percentage estimate obtained for these three 

months are close to the values observed under the new design during the parallel 

run. 

 

When all three percentages �̂�𝑡
𝑗
 for 𝑗 ∈ {+,0, −} are corrected with (4.7) the sum of 

the corrected percentages is no longer 100. Since the neutral percentage �̂�𝑡
0 is not 

used in the computation of the indicators 𝑦𝑖  , this percentage is corrected as 

�̃�𝑖,𝑡
0,N = 100 − �̃�𝑖,𝑡

+,O − �̃�𝑖,𝑡
−,O. The size of the correction in (4.7) diminishes when the 

percentage �̂�𝑖,𝑡
𝑗,O

 is close to 0 or 100. It is nevertheless not guaranteed that the 

values of �̃�𝑖,𝑡
𝑗,N

 are in the admissible range of [0,100]. They can take values outside 

this range when the percentages during the parallel run �̂�𝑖,𝜏
𝑗,O

, are close to 0 or 100 

and the discontinuity 𝛽𝑖
𝑗
 is large. Note that the underlying assumption of the 

proposed correction method is that the discontinuity is small when the variance is 

small. This assumption would be violated in this case.  

 

As an alternative approach, an additive correction after applying a logratio 

transformation is considered. This forces that the adjusted series obey the 

restriction that they do not take values outside the admissible range of [0,100] and 

that the sum over the three categories equals 100. The neutral percentages �̂�𝑖,𝑡
0,𝑑, 

for 𝑑 ∈ {O, N}, are used as the reference category in the denominator of the 

logratio transformation, which is defined as: 
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𝑧𝑖,𝑡
+,𝑑 = ln (

𝑝𝑖,𝑡
+,𝑑

𝑝𝑖,𝑡
0,𝑑),  𝑧𝑖,𝑡

−,𝑑 = ln (
𝑝𝑖,𝑡

−,𝑑

𝑝𝑖,𝑡
0,𝑑),  for 𝑑 ∈ {O, N}.          (4.8) 

 

As a next step, series observed under the old design are adjusted to the level 

under the new design using the following additive correction to the logratio 

transformed series: 

 

�̃�𝑖,𝑡
+,𝑁 = ln (

𝑝𝑖,𝑡
+,𝑂

𝑝𝑖,𝑡
0,𝑂) +  ln (

�̂�𝑖
+

�̂�𝑖
0),  �̃�𝑖,𝑡

−,𝑁 = ln (
𝑝𝑖,𝑡

−,𝑂

𝑝𝑖,𝑡
0,𝑂) +  ln (

�̂�𝑖
−

�̂�𝑖
0), for 𝑡 = 1, … , 𝑇 − 1. (4.9) 

 

In (4.9), �̂�𝑖
+, �̂�𝑖

0 and  �̂�𝑖
− denote the Kalman filter estimates for the discontinuities 

obtained with model (4.4) using the information from the parallel run through the 

informative initialization of the Kalman filter as described in Subsection 4.1. 

Subsequently, the anti-logratio transformation,  

 

�̃�𝑖,𝑡
+,𝑁 = 100

𝑒
�̃�𝑖,𝑡

+,𝑁

𝑒
�̃�𝑖,𝑡

+
  +  𝑒

�̃�𝑖,𝑡
−

  + 1
, �̃�𝑖,𝑡

−,𝑁 = 100
𝑒

�̃�𝑖,𝑡
−,𝑁

𝑒
�̃�𝑖,𝑡

+
  +  𝑒

�̃�𝑖,𝑡
−

  + 1
, �̃�𝑖,𝑡

0 = 100
1

𝑒
�̃�𝑖,𝑡

+
  +  𝑒

�̃�𝑖,𝑡
−

 +  1
,  

                            (4.10) 

for 𝑡 = 1, … , 𝑇 − 1, is applied to obtain three corrected series for the percentages 

that obey the restriction that they take values in the admissible range [0,100] and 

add up to 100%. A drawback of the logratio transformation is that the effect of the 

correction can become very large when the ratios �̂�𝑖,𝑡
+,O/�̂�𝑖,𝑡

0,O or �̂�𝑖,𝑡
−,O/�̂�𝑖,𝑡

0,O are 

smaller than 1. This will be demonstrated in Section 4.3. 

4.3 Estimation results for discontinuities 

Table 4.1 shows the estimates of the discontinuities obtained with the parallel run 

for the five variables. In this period most of the respondents were positive about 

the economic situation. For the variables Econ. L12, Econ. N12, Fin. L12 and Fin. 

N12 the percentage of “a little better” increased substantially under the new 

design. Also the percentage of “a little worse” increased, but to a smaller extent 

(not presented in Table 4.1). The percentages of the other answer options all 

decreased. These changes can be explained partially by the changes in the 

questionnaire. Under the old design the respondent could, in addition to the 

neutral options, only choose between “better” and “worse”. When, according to 

the respondent, the situation was changed only a little, the options “better” or 

“worse ” did probably not feel appropriate, not knowing that “a little worse” or “a 

little better” are also possible answers. The respondent then probably chose the 

neutral answer category more often. Under the new design the respondent 

chooses “a little worse” or “a little better” and during the parallel run mostly “a 

little better” more frequently. The question major purchases, the only question 

where the questionnaire is not changed, is the only question where the 

discontinuity for the positive answers is negative, and smaller than for the other 

questions.  
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 positive answers 

 ( Δ̂(𝑝𝑖
+)) 

negative answers 

 (Δ̂(𝑝𝑖
−)) 

indicator 

 (Δ̂(𝑝𝑖
+) − Δ̂(𝑝𝑖

−)) 

Econ. L12 11.4 (1.3) -0.1 (0.9) 11.5 

Econ. N12 16.8 (1.2)   0.1 (0.8) 16.7 

Fin. L12   8.7  (1.0)  3.2 (1.1)    5.5 

Fin. N12 11.1 (1.0)  3.1 (0.9)   8.0 

Major pur. -4.7 (1.2)   0.1  (0.8)  -4.8 
Table 4.1: estimates discontinuities obtained with the parallel run, standard errors in brackets  

 

Models (4.4.a), (4.4.b) and (4.4.c) are applied to estimate the discontinuities. 

Results are presented for the three-dimensional model applied to the series of 

percentages. The series start in April 1986 and run up to February 2020. Up to and 

including December 2016 the estimates are based on the old design and starting 

from January 2017 they are based on the new design. Similar to the results in 

Section 3, filtered and smoothed estimates for trends, seasonals and 

discontinuities are very similar under the three Models (4.4.a),  (4.4.b) and  (4.4.c).  

The estimates of the discontinuities are shown in Table 4.2, 4.3 and 4.4. A few 

minor differences can be observed between the model that ignores the time 

varying behaviour of the sampling errors (Table 4.4) compared to the other models 

that account for the time varying sampling errors (Tables 4.2 and 4.3). 

 

The Kalman filter estimates in Table 4.2 are comparable to the direct estimates 

based on the parallel run in Table 4.1. It is particularly nice to see that the 

estimates obtained with the parallel run are in line with the Kalman filter 

estimates with a diffuse initialisation, which does not use the results from the 

parallel run. As a result the point estimates obtained with a diffuse and an 

informed prior match well. If the additional information from the parallel run is 

included in the Kalman filter through an informed initialization, the standard 

errors of the discontinuity estimates clearly decrease. Under the diffuse 

initialization, the standard errors of the discontinuity estimates are substantially 

larger than the standard errors of the direct estimates obtained with the parallel 

run. In this situation, there is no control over the precision of the discontinuity, 

since the precision depends on the volatility of the time series at hand. This in 

contrary to the parallel run, where the precision can be controlled by calculating 

the minimum required sample size to observe a pre-specified difference at a pre-

specified power and significance level. When the results of the parallel run are 

combined with the time series modelling approach through an informative 

initialization of the Kalman filter, then the most precise estimates for the 

discontinuities are obtained, since all available information from the observed 

time series before and after the change-over and the parallel run are combined. 

The improvement of the precision with respect to the time series model with a 

diffuse initialization is substantial. With respect to the direct estimates of the 

parallel run there is only a slight improvement of the precision of the discontinuity 

estimates in this application. This might, however, be different in other 

applications. 

 

The estimates of the discontinuities obtained with the time series model are 

instable if only a few observations after the change-over are available. They 
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improve when more data under the new design become available. Figures 4.1 and 

4.2 show the real-time estimates for the discontinuities based on the data from 

January 2017 until February 2020 for the percentages of respectively the positive 

and negative answers for Econ. L12. The figures show how the estimates of the 

discontinuities evolve when more data become available. The initial estimates, 

directly after the change-over to the new design, are in the right order of 

magnitude. Nevertheless, there are some visible changes during the first six 

months. In the case of the informative initialization the changes are much smaller. 

During the first six months the standard errors of the estimates decrease, where 

the decrease for the diffuse initialization is substantial. After this period both the 

point estimates and the standard errors stabilize to constant values. It is difficult 

to conclude in general how many observations under the new design are required 

before a stable estimate for the discontinuities is obtained, since this depends on 

the flexibility of the trend. 

 

 Diffuse Kalman filter 

initialization 

Informative Kalman filter 

initialization 

 positive 

answers  

negative 

answers 

positive 

answers 

negative 

answers 

Econ. L12 10.7 (3.0) 0.1 (2.5) 11.2 (1.1) -0.1 (0.8) 

Econ. N12 20.1 (3.3) -0.8 (3.1) 17.2 (1.1)  0.2 (0.7) 

Fin. L12   9.7 (1.2) 2.1 (1.5) 9.1 (0.8)  3.0 (0.9) 

Fin. N12 12.2 (1.2) 4.6 (1.5) 11.7 (0.7)  3.5 (0.8) 

Major pur. -6.5 (1.8) 1.3 (1.5) -5.1 (1.0)  0.3 (0.7) 
Table 4.2: estimates discontinuities based on STM, standard errors in brackets under Model (4.4.a)  

 

 Diffuse Kalman filter 

initialization 

Informative Kalman filter 

initialization 

 positive 

answers  

negative 

answers 

positive 

answers 

negative 

answers 

Econ. L12 10.3 (3.0) 0.1 (2.4) 11.2 (1.1) -0.1 (0.8) 

Econ. N12 20.2 (3.5) -0.8 (3.1) 17.3 (1.1)  0.2 (0.7) 

Fin. L12   9.7 (1.2) 2.2 (1.5) 9.1 (0.8)  3.0 (0.9) 

Fin. N12 12.2 (1.2) 4.6 (1.5) 11.7 (0.7)  3.5 (0.8) 

Major pur. -6.5 (1.8) 1.3 (1.5) -5.1 (1.0)  0.3 (0.7) 
Table 4.3: estimates discontinuities based on STM, standard errors in brackets under Model (4.4.b)  

 

 Diffuse Kalman filter 

initialization 

Informative Kalman filter 

initialization 

 positive 

answers  

negative 

answers 

positive 

answers 

negative 

answers 

Econ. L12 9.2 (2.6) 1.0 (2.9) 11.0 (1.1) 0.0 (0.8) 

Econ. N12 19.3 (3.0) 0.5 (3.7) 17.3 (1.1)  0.2 (0.7) 

Fin. L12   9.8 (1.2) 2.1 (1.5) 9.1 (0.8)  2.9 (0.9) 

Fin. N12 12.1 (1.2) 4.9 (1.6) 11.7 (0.7)  3.6 (0.8) 

Major pur. -6.5 (1.8) 1.3 (1.8) -5.2 (0.9)  0.2 (0.7) 
Table 4.4: estimates discontinuities based on STM, standard errors in brackets under Model (4.4.c)  
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Figure 4.1: development of point estimates (left panel) and standard errors (right panel) of 
discontinuities percentages of positive answers, Econ. L12.  

 

 
Figure 4.2: development of point estimates (upper panel) and standard errors (lower panel) of 
discontinuities of percentages negative answers, Econ. L12 
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4.4 Results for series corrected for discontinuities  

In this section the effects of the correction methods described in Section 4.2 on 

the indicator series of the CS are investigated for the variables Econ. L12 and 

Major pur. The discontinuity estimates are based on the time series model (4.4.a) 

with an informative initialization of the Kalman filter. These discontinuity 

estimates are used to compute series adjusted to the level of the new design for 

the percentages 𝑝𝑖,𝑡
+ ,  𝑝𝑖,𝑡

0 ,  𝑝𝑖,𝑡
− , using the proportional correction method defined 

by (4.7) and the additive correction method in combination with the logratio 

transformation defined by (4.9) and (4.10). These corrected series are used to 
calculate uninterrupted series for 𝑦1,𝑡, … , 𝑦5,𝑡, which are on their turn the input for 

Model (3.4.a).   

 

Figure 4.3 shows the indicator series under the old design for Econ. L12 from 

January 2001 up to March 2017 together with the series corrected using the two 

correction methods. The discontinuities for this variable are Δ̂(𝑝1
+) = 11.2 and  

Δ̂(𝑝1
−) = −0.1 (Table 4.2) in a period where the consumer confidence is positive. 

Figure 4.3 shows that during periods where Econ. L12 has positive values, both 

methods correct in more or less the same way, i.e., the adjusted series become 

more positive and the corrections are equal. In periods where Econ. L12 has 

negative values, the logratio transformation makes the adjusted series more 

negative, while the proportionally corrected series stay close to the original series. 

This stronger correction under the logratio transformation in an opposite direction 

as observed during the parallel run seems less plausible compared to mild 

correction under the proportional correction. 

 

Figure 4.4 shows the original and corrected series for the Major pur. For this 

variable the discontinuities are rather small, but compared to Econ. L12 they have 

opposite signs: Δ̂(𝑝5
−) = −5.1 and  Δ̂(𝑝5

+) = 0.3. For Major pur. both correction 

methods give similar results: the values for the adjusted series are smaller than 

the original series and the effect of both corrections is the same. For this variable 

there is no preference for one of the two correction methods.  

 

From these results there is a slight preference for the proportional correction, 

since the logratio transformation sometimes leads to larger corrections in a 

different direction as observed during the parallel run. A disadvantage of the 

proportional correction, however, is that the corrected values could fall outside 

the range of [−100, +100]. However, this only happens for unrealistic large values 

of the discontinuities. In Figure 4.5 it is simulated with arbitrary chosen values for 

the discontinuities for Econ. L12, namely  Δ̂(𝑝1
+) = −10 and Δ̂(𝑝1

−) = 20, that the 

proportional correction leads to outcomes smaller than -100 in the most negative 

periods. In this case the logratio correction would be preferred.  

 

Figure 4.6 shows that also with realistic values of the discontinuities the logratio 

transformation could result in large corrections. Here the correction methods are 

applied to the indicator series of Major pur. with arbitrarily, but realistic, chosen 

values for discontinuities of Δ̂(𝑝5
+) = −5 and  Δ̂(𝑝5

−) = −10. In some periods the 

logratio correction is small (for example around 2007), but is extremely large in 

other periods (for example in 2003-2006 and 2009-2015). Furthermore, the 
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logratio corrected series is always positive, even in periods where the original 

series is negative. This illustrates the disadvantage of the logratio correction, 

namely that the correction can become very large when the ratio of the original 

figure is much smaller than 1. This effect is also visible for the proportional 

correction, but to a lesser extent. From these results we conclude to use the 

proportional correction for backcasting the input series �̂�1, … , �̂�5.  

 
Figure 4.3: comparison of backcasting methods for indicator Econ. L12. Estimates of discontinuities 
are based on STM with an informative initialization 

 

 
Figure 4.4: comparison of backcasting methods for indicator of Major pur. Estimates of 
discontinuities are based on STM with informative initialization 
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Figure 4.5: comparison of backcasting methods for indicator of Econ. L12 and arbitrarily chosen 

values for the discontinuities, namely: �̂�(𝐩𝟏
+) = −𝟏𝟎 and �̂�(𝐩𝟏

−) = 𝟐𝟎. 

 
Figure 4.6: comparison of backcasting methods for indicator of Major pur. and arbitrarily chosen 

values for the discontinuities, namely: �̂�(𝐩𝟓
+) = −𝟓 and  �̂�(𝐩𝟓

−) = −𝟏𝟎. 
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5. Official publications based on 
structural time series 
modelling 

Since 2017 the time series model (3.4c) is implemented in the production process 
of the Dutch CS. The baseline series �̂�1,𝑡 , … , �̂�5,𝑡 are the input series for the model. 

This model was chosen despite model (3.4a) is preferred from a methodological 

point of view, as model (3.4a) is more complex and the differences between the 

model estimates are ignorable. These series observed for the years until December 

2016 are corrected to the level of the new design following the approach 

described in Subsection 4.4. The filtered trend estimates are published and replace 

the former seasonally corrected figures. These series of filtered estimates, 

corrected for the discontinuity, starts in 1986. 

In Figure 5.1 the unadjusted and adjusted direct estimates for consumer 

confidence are compared with the filtered and smoothed trend estimates 

obtained with time series model (3.4.a). The direct estimates observed under the 

old design (dashed line) are plotted until December 2016. The adjusted series of 

consumer confidence (solid red line) is continued with the direct estimates 

observed under the new design after January 2017. The adjusted series for the 

period until December 2016 is obtained as the average over the five backcasted 
baseline series �̂�1,𝑡 , … , �̂�5,𝑡. As a result an uninterrupted series of direct estimates 

for the monthly consumer confidence is obtained. The filtered trend (solid blue 

line) replaces the seasonally adjusted figures in the official publications of the 

Dutch CS and can be interpreted as a trend-cycle component obtained by 

removing seasonal fluctuations, the population irregular term and the sampling 

error from the series of direct estimates. For the period before January 2017, the 

trend is also corrected to the level observed under the new design, since time 

series model (3.4.a) uses the five backcasted baseline indices as input series. As a 

result uninterrupted trend series are obtained for the period starting in 1986. 

These backcasted series are published in order to provide users with uninterrupted 

series. The smoothed trend in the bottom panel show the more stable and optimal 

estimates for consumer confidence, since the trend estimates for each period is 

based on all available observations. 

 

Results in Figure 5.1 are presented until December 2019. The corona crisis that 

started in the first quarter of 2020 resulted in a dramatic drop of the consumer 

confidence. To avoid temporal model miss-specification it was necessary to 

increase the flexibility of the trend, by making the variance of the slope 

disturbance terms in (3.6) time varying, following the same approach as described 

in Van den Brakel et al. (2022). Details of this approach and alternative methods 

considered to accommodate in the model for the sudden changes in the dynamics 

of the underlying series, are described in a separate paper (Van den Brakel et al, 

2023). 
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Figure 5.1: comparison direct estimates (original and backcasted) with filtered trend estimates, as 
published, consumer confidence (upper panel) and smooth trend estimates (bottom panel).  
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6. Discussion 

In this paper a model-based inference method for the Dutch Consumer Survey (CS) 

is developed. The method is based on a Seemingly Unrelated Structural Time 

Series Equation (SUTSE) model where the monthly direct estimates of five baseline 

indices for consumer confidence are used as input. These indices are on their turn 

obtained from the difference between the percentage of respondents with a 

positive and a negative opinion on five topics on the economic and financial 

situation. From the five baseline indices, three composite indices are derived. One 

of them is the consumer confidence, which is the average over all five baseline 

indices. The SUTSE model is developed to produce more accurate monthly 

consumer confidence indicators and to estimate and correct for discontinuities 

induced by a change-over to a new survey design in January 2017.  

 

The time series in the best fitting SUTSE model are contemporaneously correlated 

through the disturbance terms of the trend and the population irregular terms. 

Besides the population irregular term, the model also accounts for the sampling 

error. Model-based estimates including standard errors for the three composite 

indicators are obtained by calculating the average over the trend and signal (trend 

plus seasonal) of the relevant baseline indicators. Filtered trends and signals are 

rather volatile in this application. More precise and stable estimates are obtained 

with the Kalman smoother. The latter are however not published by Statistics 

Netherlands, since this requires a revision of earlier published figures. 

 

The survey redesign in 2017 resulted in discontinuities in the series of the Dutch 

CS. To separate real month-to-month changes from sudden differences in 

measurement and selection bias due to the redesign, discontinuities are estimated 

by collecting data under both the old and the new design in parallel during the first 

quarter of 2017. The precision of these estimates can be improved with a time 

series model where the discontinuity is modelled with a level shift. An informative 

initialization is applied for the regression coefficient of this level shift in the 

Kalman filter using the direct estimates and their standard errors obtained in the 

parallel run. In this way the information observed with the time series before and 

after the change-over is used to further improve the direct estimates for the 

discontinuities. 

 

Discontinuities appear in the percentage distribution across the positive, neutral, 

and negative response categories obtained with the questions about the economic 

situation, the financial situation and major purchases. The way that the 

discontinuities in the percentages result in discontinuities in the five baseline 

indices depend on the percentage distribution across these three categories. Since 

these distributions vary considerably over time, a time varying correction for the 

discontinuities is proposed. This is achieved by modelling the discontinuities in the 

time series of the percentages of the positive, neutral, and negative response 

categories. To maintain uninterrupted series, the time series of these percentages 

observed under the old design are backcasted to the level of the new design. An 

adjustment method is proposed that accounts for the fact that the values of the 
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adjusted proportions are in the range [0,100]. Under this method the size of the 

adjustment in each period is made proportional to the variance of the estimated 

proportion. Alternatively, a logratio or logit transformation is considered. The 

drawback of the logratio transformation is that the adjustments can be extremely 

large in periods where the value of the original ratio is smaller than 1. Another 

alternative would be the probit link function, which is left for further research. 

 

Backcasted series of the five baseline indices are derived from the backcasted 

series of the percentages of the positive, neutral, and negative response 

categories. The adjustments in the five baseline series are time varying, since the 

distribution of respondents over the positive, neutral, and negative response 

categories changes over time and since the adjustments in the series of these 

percentages is time varying. These adjusted series are extended with the direct 

estimates observed after April 2017 and are used as input series for the 

multivariate time series model to estimate monthly trends for the CS. This method 

has been implemented in April 2017 for the publication of uninterrupted monthly 

CS figures and trends that start in 1986. The trend estimates replace seasonal 

adjusted figures and can be interpreted as a trend-cycle derived from the direct 

estimates from which seasonal component, population irregular component and 

the sampling error are removed.  
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Appendix: State space 
representations 

The state space representations of the SUTSE models in Section 3 are defined by a 

measurement equation and a transition equation. The measurement equation 
defines how the observed series   �̂�𝑡 = (�̂�1,𝑡 , �̂�2,𝑡 , �̂�3,𝑡 , �̂�4,𝑡, �̂�5,𝑡)′ depends on a 𝑝 

dimensional vector 𝛂𝑡 that contains the unobserved state variables: 

 

�̂�𝑡 = 𝐙𝑡𝛂𝑡,                       (A.1) 

 

with 𝐙𝑡 a design matrix. There is no measurement error in (A.1) since in this 

application the measurement errors are included in the state vector. The transition 

equation describes how the state variables evolve from period 𝑡 − 1 to 𝑡 and is 

defined as: 

 

𝛂𝑡 = 𝑻𝛂𝑡−1 + 𝛈𝑡,                       (A.2) 
E(𝛈𝑡) = 𝟎𝑝, 

Cov(𝛈𝑡, 𝛈𝑡′) = {
𝐐     if 𝑡 = 𝑡′

𝐎𝑝×𝑝 if 𝑡 ≠ 𝑡′, 

 
with 𝟎𝑝 a 𝑝 dimensional vector with each element equal to zero and 𝐎𝑝×𝑝 a 𝑝 × 𝑝 

dimensional matrix with each element equal to zero. Similarly 𝐈𝑝 denotes the 𝑝 ×

𝑝  identity matrix and 𝟏𝑝 a 𝑝 dimensional vector with each element equal to one. 

For Model (3.4.a) it follows that the state space representation is obtained with: 

https://www.cbs.nl/nl-nl/achtergrond/2023/52/consumenten-vertrouwen-onderzoek-tijdens-covid-19
https://www.cbs.nl/nl-nl/achtergrond/2023/52/consumenten-vertrouwen-onderzoek-tijdens-covid-19
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𝛂𝑡 = (𝜶𝑡
𝐿1, 𝜶𝑡

𝐿2, 𝜶𝑡
𝐿3, 𝜶𝑡

𝐿4, 𝜶𝑡
𝐿5, 𝜶𝑡

𝑆1, 𝜶𝑡
𝑆2, 𝜶𝑡

𝑆3, 𝜶𝑡
𝑆4, 𝜶𝑡

𝑆5, 𝜶𝑡
𝐼 , 𝜶𝑡

𝜀)′,       (A.3) 

    𝜶𝑡
𝐿𝑖 = (𝐿𝑖,𝑡, 𝑅𝑖,𝑡), 𝑖 = 1, … ,5, 

    𝜶𝑡
𝑆𝑖 = (𝑆𝑖,𝑡,1, 𝑆𝑖,𝑡,1

∗ , 𝑆𝑖,𝑡,2, 𝑆𝑖,𝑡,2
∗ , 𝑆𝑖,𝑡,3, 𝑆𝑖,𝑡,3

∗ , 𝑆𝑖,𝑡,4, 𝑆𝑖,𝑡,4
∗ , 𝑆𝑖,𝑡,5, 𝑆𝑖,𝑡,5

∗ , 𝑆𝑖,𝑡,6) , 𝑖 = 1, … ,5, 

    𝜶𝑡
𝐼 = (𝐼1,𝑡, 𝐼2,𝑡, 𝐼3,𝑡, 𝐼4,𝑡, 𝐼5,𝑡), 

    𝜶𝑡
𝜀 = (𝜀1,𝑡, 𝜀2,𝑡, 𝜀3,𝑡 , 𝜀4,𝑡, 𝜀5,𝑡), 

𝐙𝑡 = (𝒁𝑡
𝐿  𝒁𝑡

𝑆 𝒁𝑡
𝐼  𝒁𝑡

𝜀) with                   (A.4) 

    𝒁𝑡
𝐿 = 𝐈5 ⊗ (1,0), 

    𝒁𝑡
𝑆 = 𝐈5 ⊗ (1,0,1,0,1,0,1,0,1,0,1), 

    𝒁𝑡
𝐼 = 𝐈5, 

    𝒁𝑡
𝜀 = diag(𝑘1,𝑡, 𝑘2,𝑡, 𝑘3,𝑡, 𝑘4,𝑡, 𝑘5,𝑡), 

𝐓 = blockdiag(𝐓𝐿 , 𝐓𝑆 , 𝐓𝐼 , 𝐓𝜀 ) with               (A.5) 

    𝐓𝐿 =  𝐈5 ⊗ (
1 1
0 1

), 

    𝐓𝑆 = 𝐈5 ⊗ blockdiag(𝐂1, 𝐂2, 𝐂3, 𝐂4, 𝐂5, 1) with 

    𝐂𝑖 = (
cos(ℎ𝑙) sin(ℎ𝑙)

− sin(ℎ𝑙) cos(ℎ𝑙)
), ℎ𝑙 =

𝜋𝑙

6
, 𝑙 = 1, … ,5, 

    𝐓𝐼 = 𝐓𝜀 = 𝐎5×5, 

𝛈𝑡 = (𝛈𝑡
𝐿1, 𝛈𝑡

𝐿2, 𝛈𝑡
𝐿3, 𝛈𝑡

𝐿4, 𝛈𝑡
𝐿5, 𝛈𝑡

𝑆1, 𝛈𝑡
𝑆2, 𝛈𝑡

𝑆3, 𝛈𝑡
𝑆4, 𝛈𝑡

𝑆5, 𝛈𝑡
𝐼 , 𝛈𝑡

𝜀) with      (A.6) 

    𝛈𝑡
𝐿𝑖 = (0, 𝜂𝑅,𝑖,𝑡), 𝑖 = 1, … ,5, 

    𝛈𝑡
𝑆𝑖 = (𝜂𝑆,𝑖,𝑡,1, 𝜂𝑆,𝑖,𝑡,1

∗ , … , 𝜂𝑆,𝑖,𝑡,5, 𝜂𝑆,𝑖,𝑡,5
∗ , 𝜂𝑆,𝑖,𝑡,6) , 𝑖 = 1, … ,5, 

    𝛈𝑡
𝐼 = (𝐼1,𝑡, 𝐼2,𝑡, 𝐼3,𝑡, 𝐼4,𝑡, 𝐼5,𝑡), 

    𝛈𝑡
𝜀 = (𝜀1,𝑡, 𝜀2,𝑡, 𝜀3,𝑡 , 𝜀4,𝑡, 𝜀5,𝑡), 

𝐐 = blockdiag(𝐐𝐿, 𝐐𝑆, 𝐐𝐼 , 𝐐𝜀) with               (A.7) 

    𝐐𝐿 = 10 x 10 matrix with diagonal elements       

(0, 𝜎𝑅,1
2 , 0, 𝜎𝑅,2

2 , 0, 𝜎𝑅,3
2 , 0, 𝜎𝑅,4

2 , 0, 𝜎𝑅,5
2 ) and off-diagonal elements 𝜍𝑅,2𝑖,2𝑖′

2  for 𝑖, 𝑖′ =

1, … , 5, and all other off-diagonal elements are equal to zero 

    𝐐𝑆 = diag(𝟏11 ⊗ 𝜎S,1
2 , 𝟏11 ⊗ 𝜎S,2

2 , 𝟏11 ⊗ 𝜎S,3
2 , 𝟏11 ⊗ 𝜎S,4

2 , 𝟏11 ⊗ 𝜎S,5
2 ), 

    𝐐𝐼 = 5 x 5 matrix with diagonal elements (𝜎𝐼,1
2 , 𝜎𝐼,2

2 , 𝜎𝐼,3
2 , 𝜎𝐼,4

2 , 𝜎𝐼,5
2 ) and off-

diagonal elements 𝜍𝐼,𝑖,𝑖′
2  for 𝑖, 𝑖′ = 1, … , 5, 

    𝐐𝜀 = diag(𝜎ε,1
2 , 𝜎ε,2

2 , 𝜎ε,3
2 , 𝜎ε,4

2 , 𝜎ε,5
2 ). 

 

The state space representation for Model (3.4.b) is obtained by: 
– Replacing 𝜶𝑡

𝐼  and 𝜶𝑡
𝜀 in (A.3) by 𝜶𝑡

𝑒 = (𝑒1,𝑡, 𝑒2,𝑡, 𝑒3,𝑡, 𝑒4,𝑡, 𝑒5,𝑡), 

– Skipping 𝒁𝑡
𝐼  in 𝒁𝑡  in (A.4) and skipping 𝐓𝐼  in 𝐓 in (A.5), 

– Replacing 𝛈𝑡
𝐼  and 𝛈𝑡

𝜀 in (A.6) by 𝛈𝑡
𝑒 = (𝑒1,𝑡, 𝑒2,𝑡, 𝑒3,𝑡, 𝑒4,𝑡, 𝑒5,𝑡), 

– Replacing 𝐐𝐼 and 𝐐𝜀 in 𝐐  in (A.7) by 𝐐𝑒, which is 5 x 5 matrix with diagonal 

elements (𝜎𝑒,1
2 , 𝜎𝑒,2

2 , 𝜎𝑒,3
2 , 𝜎𝑒,4

2 , 𝜎𝑒,5
2 ) and off diagonal elements 𝜍𝑒,𝑖,𝑖′

2  for 𝑖, 𝑖′ =

1, … , 5. 
 

The state space representation for Model (3.4.c) is obtained by: 
– Replacing 𝜶𝑡

𝐼  and 𝜶𝑡
𝜀 in (A.3) by 𝜶𝑡

𝑒 = (𝑒1,𝑡, 𝑒2,𝑡, 𝑒3,𝑡, 𝑒4,𝑡, 𝑒5,𝑡), 

– Skipping 𝒁𝑡
𝐼  in 𝒁𝑡  in (A.4) and skipping 𝐓𝐼  in 𝐓 in (A.5), 

– Replacing 𝒁𝑡
𝜀 = diag(𝑘1,𝑡, 𝑘2,𝑡, 𝑘3,𝑡, 𝑘4,𝑡, 𝑘5,𝑡) in (A.4) by 𝒁𝑡

𝑒 = 𝑰5, 

– Replacing 𝛈𝑡
𝐼  and 𝛈𝑡

𝜀 in (A.6) by 𝛈𝑡
𝑒 = (𝑒1,𝑡, 𝑒2,𝑡, 𝑒3,𝑡, 𝑒4,𝑡, 𝑒5,𝑡), 

– Replacing 𝐐𝐼 and 𝐐𝜀 in 𝐐  in (A.7) by 𝐐𝑒, which is 5 x 5 matrix with diagonal 

elements (𝜎𝑒,1
2 , 𝜎𝑒,2

2 , 𝜎𝑒,3
2 , 𝜎𝑒,4

2 , 𝜎𝑒,5
2 ) and off diagonal elements 𝜍𝑒,𝑖,𝑖′

2  for 𝑖, 𝑖′ =

1, … , 5. 
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The state space representation of Model (4.4.a) in Section 4 is obtained with 

measurement equation (A.1) where the observed series �̂�𝑡 is replaced by �̂�𝑡 =

(�̂�𝑡
+,  �̂�𝑡

0,  �̂�𝑡
−)′ and transition equation (A.2) where: 

𝛂𝑡 = (𝜶𝑡
𝐿+, 𝜶𝑡

𝐿0, 𝜶𝑡
𝐿−, 𝜶𝑡

𝑆+, 𝜶𝑡
𝑆0, 𝜶𝑡

𝑆−, 𝜶𝑡
𝛽

, 𝜶𝑡
𝐼 , 𝜶𝑡

𝜀)′,           (A.8) 

    𝜶𝑡
𝐿𝑖 = (𝐿𝑖,𝑡, 𝑅𝑖,𝑡), 𝑖 = +,0, −, 

    𝜶𝑡
𝑆𝑖 = (𝑆𝑖,𝑡,1, 𝑆𝑖,𝑡,1

∗ , 𝑆𝑖,𝑡,2, 𝑆𝑖,𝑡,2
∗ , 𝑆𝑖,𝑡,3, 𝑆𝑖,𝑡,3

∗ , 𝑆𝑖,𝑡,4, 𝑆𝑖,𝑡,4
∗ , 𝑆𝑖,𝑡,5, 𝑆𝑖,𝑡,5

∗ , 𝑆𝑖,𝑡,6) , 𝑖 = +,0, −,    

    𝜶𝑡
𝛽

= (𝛽𝑡
+, 𝛽𝑡

0, 𝛽𝑡
−), 𝜶𝑡

𝐼 = (𝐼𝑡
+, 𝐼𝑡

0, 𝐼𝑡
−), 𝜶𝑡

𝜀 = (𝜀𝑡
+, 𝜀𝑡

0, 𝜀𝑡
−), 

𝐙𝑡 = (𝒁𝑡
𝐿  𝒁𝑡

𝑆 𝒁𝑡
𝛽

 𝒁𝑡
𝐼  𝒁𝑡

𝜀) with                  (A.9)  

    𝒁𝑡
𝐿 = 𝐈3 ⊗ (1,0), 

    𝒁𝑡
𝑆 = 𝐈3 ⊗ (1,0,1,0,1,0,1,0,1,0,1), 

    𝒁𝑡
𝛽

= 𝑥𝑡𝐈3, 𝒁𝑡
𝐼 = 𝐈3, 𝒁𝑡

𝜀 = diag(𝑘1,𝑡 , 𝑘2,𝑡, 𝑘3,𝑡), 

𝐓 = blockdiag(𝐓𝐿 , 𝐓𝑆 , 𝐓
𝛽

, 𝐓𝐼 , 𝐓𝜀 ) with               (A.10) 

    𝐓𝐿 =  𝐈3 ⊗ (
1 1
0 1

), 

    𝐓𝑆 = 𝐈3 ⊗ blockdiag(𝐂1, 𝐂2, 𝐂3, 𝐂4, 𝐂5, 1) with 𝐂𝑖 defined in (A.5) 

    𝑻
𝛽

= (
1 0 0
0 1 0

−1 −1 0
), 𝐓𝐼 = 𝐓𝜀 = 𝐎3×3, 

𝛈𝑡 = (𝛈𝑡
𝐿+, 𝛈𝑡

𝐿0, 𝛈𝑡
𝐿−, 𝛈𝑡

𝑆+, 𝛈𝑡
𝑆0, 𝛈𝑡

𝑆−, 𝛈𝑡
𝛽

, 𝛈𝑡
𝐼 , 𝛈𝑡

𝜀) with            (A.11) 

    𝛈𝑡
𝐿𝑖 = (0, 𝜂𝑅,𝑖,𝑡), 𝑖 = +,0, −, 

    𝛈𝑡
𝑆𝑖 = (𝜂𝑆,𝑖,𝑡,1, 𝜂𝑆,𝑖,𝑡,1

∗ , … , 𝜂𝑆,𝑖,𝑡,5, 𝜂𝑆,𝑖,𝑡,5
∗ , 𝜂𝑆,𝑖,𝑡,6), 𝑖 = +,0, −, 

    𝛈𝑡
𝛽

= 𝟎3,  𝛈𝑡
𝐼 = (𝐼𝑡

+, 𝐼𝑡
0, 𝐼𝑡

−), 𝛈𝑡
𝜀 = (𝜀𝑡

+, 𝜀𝑡
0, 𝜀𝑡

−), 

𝐐 = blockdiag(𝐐𝐿, 𝐐𝑆, 𝐐𝛽 , 𝐐𝐼 , 𝐐𝜀) with                (A.12) 

    𝐐𝐿 = diag(0, 𝜎𝑅,+
2 , 0, 𝜎𝑅,0

2 , 0, 𝜎𝑅,−
2 ),  

    𝐐𝑆 = diag(𝟏11 ⊗ 𝜎S,+
2 , 𝟏11 ⊗ 𝜎S,0

2 , 𝟏11 ⊗ 𝜎S,−
2 ), 

    𝐐𝛽 = 𝐎3×3, 

    𝐐𝐼 = diag(𝜎𝐼,+
2 , 𝜎𝐼,0

2 , 𝜎𝐼,−
2 ),  

    𝐐𝜀 = diag(𝜎ε,+
2 , 𝜎ε,0

2 , 𝜎ε,−
2 ). 

 

 

The state space representation for Model (4.4.b) is obtained by: 

– Replacing 𝜶𝑡
𝐼  and 𝜶𝑡

𝜀 in (A.8) by 𝜶𝑡
𝑒 = (𝑒𝑡

+, 𝑒, 𝑒𝑡
−), 

– Skipping 𝒁𝑡
𝐼  in 𝒁𝑡  in (A.9) and skipping 𝐓𝐼  in 𝐓 in (A.10), 

– Replacing 𝛈𝑡
𝐼  and 𝛈𝑡

𝜀 in (A.11) by 𝛈𝑡
𝑒 = (𝑒𝑡

+, 𝑒𝑡
0, 𝑒𝑡

−), 

– Replacing 𝐐𝐼 and 𝐐𝜀 in 𝐐  in (A.12) by 𝐐𝑒 = diag(𝜎𝑒,+
2 , 𝜎𝑒,0

2 , 𝜎𝑒,−
2 ). 

 

The state space representation for Model (4.4.c) is obtained by: 

– Replacing 𝜶𝑡
𝐼  and 𝜶𝑡

𝜀 in (A.8) by 𝜶𝑡
𝑒 = (𝑒𝑡

+, 𝑒, 𝑒𝑡
−), 

– Skipping 𝒁𝑡
𝐼  in 𝒁𝑡  in (A.9) and skipping 𝐓𝐼  in 𝐓 in (A.10), 

– Replacing 𝒁𝑡
𝜀 = diag(𝑘1,𝑡, 𝑘2,𝑡, 𝑘3,𝑡) in (A.9) by 𝒁𝑡

𝑒 = 𝑰3, 

– Replacing 𝛈𝑡
𝐼  and 𝛈𝑡

𝜀 in (A.11) by 𝛈𝑡
𝑒 = (𝑒𝑡

+, 𝑒𝑡
0, 𝑒𝑡

−), 

– Replacing 𝐐𝐼 and 𝐐𝜀 in 𝐐  in (A.12) by 𝐐𝑒 = diag(𝜎𝑒,+
2 , 𝜎𝑒,0

2 , 𝜎𝑒,−
2 ). 

 

 

 

 

 



 

 

CBS | Discussion Paper | April 2024  46 

 

Explanation of symbols 
 

Empty cell Figure not applicable 

. Figure is unknown, insufficiently reliable or confidential 

* Provisional figure 

** Revised provisional figure 

2017–2018 2017 to 2018 inclusive 

2017/2018 Average for 2017 to 2018 inclusive 

2017/’18 Crop year, financial year, school year, etc., beginning in 2017 and ending 

in 2018 

2013/’14–2017/’18 Crop year, financial year, etc., 2015/’16 to 2017/’18 inclusive 

 

Due to rounding, some totals may not correspond to the sum of the separate 

figures. 
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