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The primary task of national statistical institutes (NSI’s) is generally accepted to be the
collection of data of direct social and economic interest, for the purpose of reporting on
various aggregated measures of such data. One could classify this approach as purely
descriptive or observational: an answer to ”what is the current value/number/trend of
⟨𝑖𝑡𝑒𝑚⟩?”. Users of the output of NSI’s ‐ policy makers, scientists, the general public ‐ often have
questions not only about the ”what” but also the ”why”, which implies exploring the potential
causal connections between various indicators or their longitudinal behaviour. In a setting
where controlled experiments are impossible, there are limits to the scope for such causal
research. Therefore NSI’s are normally reticent or equivocal concerning causality in their
publications. Nevertheless, advances in causal structural modelling and ’natural experiments’,
as also recognised in the recent awarding of the Nobel memorial prize in economic sciences to
Angrist and Imbens for their methodological contributions to the analysis of causal
relationships, mean that it is timely to re‐examine the potential of such techniques within the
context of official statistics.

This paper is intended to explore to what extent causality research has a role in innovative
output of Statistics Netherlands. In the more appropriate, cautious, approach, the potential of
using data to exclude putative causal mechanisms appears to be the most promising, and is an
active line of research. A limited proof‐of‐concept study on secondary school selection
procedures is explored as an example of the technique but should not be interpreted as
exhaustive research on counterfactual causality or counterfactual fairness within school level
selection in the Netherlands.

1 Introduction

The primary task of national statistical institutes is generally accepted to be the collection of data
of direct social and economic interest, and reporting on various aggregated measures of such
data. In order to enable intercomparison between countries, it is important to establish common
standards and definitions for the collection of data and the various processing steps required to
produce the aggregates. When this concerns longitudinal data, in addition it matters to not
change standards and definitions over time, to the extent that this is feasible. Operational
experience shows that these two requirements, intercomparability between countries and over
time, can be incompatible and there are also other reasons why long consistent and high‐quality
time series are difficult to collect. In particular in the context of determining causal mechanisms
this is problematic. The time ordering of events, i.e. causes preceding consequences, can be
embedded as a relatively weak signal in time series which might be extracted through a
cross‐correlation of two or more of such time series. Anomalies in those time series, due to
extraneous breaks ‐ definition changes, changes in data collection procedures etc. ‐ can destroy
such correlations and worse, create spurious apparent correlations which can even reverse the
inferred causal directions from what the true situation is.

It is important therefore to investigate hypothesized causal mechanisms in various independent
ways, i.e. using not just longitudinal data and rely on the time ordering, but also use
cross‐sectional studies using for instance counter‐factuals in such data to exclude certain
pathways or directions in a causal diagram. Given the importance, it is useful to briefly describe
some basics of structural causal modelling (SCM) as part of this introduction, in addition to a
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brief discussion of what is known as predictive or Granger causality. Granger‐causality and
cointegration is originally presented in the papers of Granger (1969); Engle and Granger (1987).
Much more background on SCM can be found in the book of Pearl (2009) and also the book
Imbens and Rubin (2015) provides the framework for experimental/ observational settings and
examples. In the rest of this paper a particular case study is shown, where causal reasoning is
used to improve, at a fundamental level, machine learning methods which would otherwise
suffer from biases already present in the data used to train such methods. This case study
(section 2) is part of the MSc thesis of one of the authors of this paper (I.A.M. Boeters).

1.1 predictive causality and cointegration

In the paper of Granger (1969) the approach is presented for determining whether two regularly
sampled time series 𝑋, 𝑌 are related in the sense that time series 𝑌 lags a time series 𝑋, by an
integer number of the regular sampling intervals, so that the behaviour of 𝑋 can be used as a
predictor for 𝑌. A generalization to 3 or more time series is straightforward. In the notation of
Granger (1969), for the case of 2 variables, the focus is on simple causal models:

𝑋𝑖 =
𝑖

𝑗=1
𝑎𝑗𝑋𝑖−𝑗 +

𝑖

𝑗=1
𝑏𝑗𝑌𝑖−𝑗 + 𝜀𝑖 (1.1)

𝑌𝑖 =
𝑖

𝑗=1
𝑐𝑗𝑋𝑖−𝑗 +

𝑖

𝑗=1
𝑑𝑗𝑌𝑖−𝑗 + 𝜂𝑖

The summation index 𝑗 runs from 1, rather than 0, implying that there is no ’instantaneous
causality’ of 𝑋 to 𝑌 or vice versa, i.e. no dependency for the same time index 𝑖. This is what the
’simple’ in simple causal models refers to. The upper limit for 𝑗 is set to 𝑖 meaning that models
are excluded where there is significant direct correlation over timescales that are longer than the
entire temporal extent of the measured time series, where by definition the measurements start
at index 0. Evidently the direct causation can be much more limited in temporal extent than the
full length of the measured series, which in terms of the coefficients {𝑎, 𝑏, 𝑐, 𝑑}𝑗 implies that
there exists an𝑚 such that the coefficients with index 𝑗 are = 0 ∀𝑗 with𝑚 < 𝑗 ≤ 𝑖. The 𝑎 and 𝑑
coefficients express auto‐correlation in the time series 𝑋 and 𝑌 respectively, whereas the 𝑏 and 𝑐
express cross‐correlations between 𝑋 and 𝑌. In the absence of mutual causation (i.e. causal
loops or feedback) either the 𝑏 or the 𝑐 (but not both) are all = 0. The terms 𝜀, 𝜂 in eq. (1.1)
express measurement error and other stochastic perturbations in 𝑋 and 𝑌 which are presumed
independent, and with finite variance (e.g. Gaussian) at all times, so that the expectation values
𝐸[] satisfy:

𝐸[𝜀𝑖] = 𝐸[𝜂𝑖] = 0
𝐸[𝜀𝑖𝜂𝑗] = 0 (1.2)

𝐸[𝜀𝑖𝜀𝑗] = 𝜎2𝜀 𝑖𝛿𝑖𝑗
𝐸[𝜂𝑖𝜂𝑗] = 𝜎2𝜂 𝑖𝛿𝑖𝑗

where 𝛿𝑖𝑗 is the Kronecker 𝛿. If the errors are homoskedastic then the time index on the
variances 𝜎2 can be omitted, which is done here: it corresponds to the assumption of white
noise mentioned in Granger (1969).

In addition to this, Fourier transforms (FTs, or Cramer representations in the terminology of
Granger (1969)) are required to complete the expressions for quantifying predictive causality. In
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general the Fourier transform 𝐹(𝜔) of a time series 𝑓(𝑡) is defined by:

𝐹(𝜔) =
∞

−∞
𝑒𝑖𝜔𝑡𝑓(𝑡)d𝑡 (1.3)

which is invertible so that also:

𝑓(𝑡) = 1
2𝜋

∞

−∞
𝑒−𝑖𝜔𝑡𝐹(𝜔)d𝜔 (1.4)

If the function 𝑓(𝑡) is only known at 𝑁 discretely sampled times 𝑡𝑖 𝑖 ∈ {0, .., (𝑁 − 1)} which are
regularly spaced, as is the case considered in Granger (1969), a discrete version of the Fourier
transform can be defined as well, where the integral is replaced by summation with appropriate
weights for each of the samples 𝑓(𝑡), as follows:

𝐹(𝜔𝑙) =
𝑁

𝑘=0
𝑒𝑖𝜔𝑙𝑡𝑘𝑓(𝑡𝑘) (1.5)

where the only values of the frequency 𝜔𝑙 that are necessary and sufficient to fully specify the
transform 𝐹 are 𝜔𝑙 = 2𝜋𝑙/𝑇 in which 𝑇 is the total temporal extent of the measured time series
and the discrete index 𝑙 runs from −𝑁/2 to 𝑁/2. This discrete FT also is invertible, just as the
general expression is. It is most usual to use values of 𝑁 = 2𝑛 for some 𝑛 because there are
computational algorithms for this case that are particularly efficient (fast Fourier transforms,
FFTs), which means that 𝑁/2 is integer. The maximum frequency is referred to as the Nyquist
frequency: 𝜔𝑁𝑦𝑞 = 𝜋𝑁/𝑇. Note that in fact 𝐹(−𝜔𝑁𝑦𝑞) = 𝐹(𝜔𝑁𝑦𝑞) and also that for 𝑓(𝑡)
real‐valued it holds that 𝐹(−𝜔) = 𝐹(𝜔)∗ where the superscript ∗ signifies taking the complex
conjugate.

The approach of Granger (1969) is to look at properties of the cross‐correlation of 𝑋 and 𝑌 in the
Fourier domain and perform a test on the amplitude of the FT of the cross‐correlation function.
The details of how to test for the direction and magnitude of the predictive causality are in that
paper. It may be helpful for insight to take a slightly different route, based on Pijpers and
Wanders (1994); Pijpers (2021). For this the equations (1.1) are revisited but in a continuous
form, so that if 𝑋 causes 𝑌 then:

𝑌(𝑡) = 𝐾 ⃗𝑋𝑌(𝜏)𝑋(𝑡 − 𝜏)d𝜏 (1.6)

Where 𝜏 is the ’lag’ or ’delay’ between 𝑋 and 𝑌, and the kernel 𝐾 ⃗𝑋𝑌, in some fields referred to as
transfer function, expresses how strongly 𝑋 feeds through into 𝑌 over an entire range of
time‐delays, specified by the kernel 𝐾. Just as in eq. (1.1) the relationship between 𝑋 and 𝑌 is
presumed to be linear. The kernel 𝐾 ⃗𝑋𝑌 plays the same role as the coefficients 𝑏, and there is an
equivalent kernel 𝐾 ⃗𝑌𝑋 which has the same role as 𝑐 in eq. (1.1), by reversing the roles of 𝑋 and 𝑌
respectively. By allowing that 𝑋 and 𝑌 could be the same in eq. (1.6), also the cases of non‐zero
coefficients 𝑎 or 𝑑 is covered. Note that this then does require a little more care in terms of the
error treatment since then the errors cannot be completely i.i.d. In principle the formalism can
be extended to non‐linear relationships 𝐺(𝑋), as long as 𝐺 is known and invertible. An example
of the latter would be a sigmoid function:

𝐺(𝑋) = 𝑒𝛼𝑋
1 + 𝑒𝛼𝑋

𝑋 = 1
𝛼 ln

𝐺
1 − 𝐺 (1.7)
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By examining eq. (1.6) it becomes clear that the purpose of a test for causality is to establish
whether 𝐾 ≡ 0 for 𝜏 > 0 in which case 𝑋 does not have predictive causality for 𝑌, or 𝐾 ≡ 0 for
𝜏 < 0 in which case 𝑌 does not have predictive causality for 𝑋. If the results of such a test are
consistent with 𝐾 = 0 everywhere there is no information transfer (predictive power) either way,
i.e. no causal connection in the sense of Granger (1969). If the result were to be that there are
both values for 𝜏 > 0 and 𝜏 < 0 for which 𝐾 ≠ 0, then either there is mutual information
transfer between 𝑋 and 𝑌 or more complex causality, possibly with a latent (unmeasured) factor
or factors 𝑍 influencing both 𝑋 and 𝑌.

In the paper Pijpers and Wanders (1994) it is described how to determine the transfer function 𝐾
in (1.6) as a function of delay time, rather than merely performing the statistical test whether or
not it is equal to 0, even when the sampling is not perfectly regular. In the paper Pijpers (2021)
the same problem is solved but where 𝑋 = 𝑌 in (1.6). In any case, this problem belongs to the
class of inverse problems, which implies that it is ill‐posed: there is no unique solution for 𝐾 i.e.
many different 𝐾 would produce identical 𝑋 and 𝑌. In particular in the presence of stochastic
perturbations (measurement errors) this is an unfortunate property because 𝐾 tends to be
extremely sensitive to errors, and normally some form of regularization is required. Note that if
the relationship between 𝑋 and 𝑌 is non‐linear, through some link function 𝐺, there is a two step
process whereby first 𝐺 is determined through solving the inverse problem, and then 𝑋 is
determined from 𝐺 by the inverse operation. However, considering that the sensitivity to
stochastic perturbations of the first step is already very high, the second step may well
exacerbate the problem. For instance, in the example (1.7) for 𝐺, if the first step of the inverse
problem results in values of 𝐺 close to 0 or close to 1 with a finite error then this may well result
in values of X with an infinite margin of error: i.e. confidence intervals for X inferred to be
(−∞, 𝑥+) or (𝑥−, ∞) respectively.

The FT of convolution integrals such as (1.6) can be performed very simply in the Fourier domain.
The FT of a convolution of two functions is the product of the FT’s of those two functions. A
common shorthand notation for a convolution operation is a ∗, so that:

𝐹𝑇(𝑓 ∗ 𝑔) = 𝐹𝑇(𝑓)𝐹𝑇(𝑔) (1.8)

When applying this theorem (1.8) to equation (1.6), the result is:

𝐹𝑇(𝑌) = 𝐹𝑇(𝐾 ⃗𝑋𝑌)𝐹𝑇(𝑋) (1.9)

Merely dividing 𝐹𝑇(𝑌) by 𝐹𝑇(𝑋) and then performing an inverse Fourier transform is possible
only in the very exceptional case that there is no value for 𝜔 for which 𝐹𝑇(𝑋) = 0. This is
another way of expressing the ill‐posedness of the problem, and one standard way to deal with
this, for regularly sampled series, is to apply Wiener filtering which means that 𝐹𝑇(𝐾 ⃗𝑋𝑌) is
determined through:

𝐹𝑇(𝐾 ⃗𝑋𝑌) =
𝐹𝑇(𝑌)𝐹𝑇∗(𝑋)

𝐹𝑇(𝑋)𝐹𝑇∗(𝑋) + 𝜇 [𝐹𝑇(𝑋)𝐹𝑇∗(𝑋)]𝜔=0
(1.10)

where a star superscript indicates taking the complex conjugate. The second term in the
denominator on the righthand side, with 𝜇 > 0 is the regularization term with which the adverse
effects of noise and zero’s in the 𝐹𝑇(𝑋) are suppressed. It is clear that reversing the roles of 𝑋
and 𝑌, meaning that 𝑌 is hypothesized to have predictive causality for 𝑋 rather than vice versa,
produces a complex conjugate in the numerator. The denominator is real‐valued regardless of
whether 𝑌 or 𝑋 appears. If the power spectra of time series 𝑋 and time series 𝑌 are similar, i.e
𝐹𝑇(𝑋)𝐹𝑇∗(𝑋) ≈ 𝑐𝐹𝑇(𝑌)𝐹𝑇∗(𝑌) for some constant 𝑐, then this implies that apart from taking
complex conjugates the FT of the transfer function is the same and therefore the transfer
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function itself is time reversed but otherwise unaffected. Even if that approximate similarity of
the power spectra of 𝑋 and 𝑌 does not hold, it is clear that this affects the shape of the kernel
but not the overall time reversal. Causality in either direction can therefore be determined. In
this way the Granger causality test can be seen as the test whether 𝐾 is ≠ 0 anywhere for either
𝜏 > 0 or 𝜏 < 0.

The choice of weighting parameter 𝜇 will require some care. It will tend to be the case that if the
measured data 𝑋 and 𝑌 improve in signal‐to‐noise ratio, i.e. 𝜎2𝜀 / [𝐹𝑇(𝑋)𝐹𝑇∗(𝑋)]𝜔=0 ↓ and / or
𝜎2𝜂/ [𝐹𝑇(𝑌)𝐹𝑇∗(𝑌)]𝜔=0 ↓, then 𝜇 can be set to a smaller value. As noted above, it will not
usually be possible to set 𝜇 = 0 because even in the absence of any measurement noise, there
could still be 𝜔 values for which 𝐹𝑇(𝑋) = 0 or 𝐹𝑇(𝑌) = 0 which the regularization compensates
for. Since the norm of the functions 𝑋 and 𝑌, and their Fourier transforms, remain finite, as
𝜔 → ∞ the complex modulus of 𝐹𝑇(𝑋) and 𝐹𝑇(𝑌)must decrease and tend to 0. This is
important because it can be seen that with 𝜇 > 0 the regularization term must then always
dominate in the denominator for sufficiently high 𝜔. This means that high frequencies are
suppressed in the 𝐹𝑇(𝐾 ⃗𝑋𝑌) so sharp features and edges in 𝐾 ⃗𝑋𝑌(𝜏) cannot be reconstructed
properly, which is a fundamental property of inverse problems. Even if the transfer function 𝐾 in
reality were to have a very sharp edge at 𝜏 = 0 such a feature would be impossible to
reconstruct perfectly from data. In practice therefore, the requirents for the measured time
series in terms of numbers of samples in the series with high singal‐to‐noise ratio are quite strict
in order to apply this technique.

The extension to multiple variables 𝑋 (jointly) causing 𝑌, or more precisely that jointly have a
predictive causality for 𝑌, is explored in the paper Engle and Granger (1987). Before the
formalism above can be applied it is helpful to consider that among the separate 𝑋 there can in
principle also be a predictive causal connection, which complicates determining any connection
with 𝑌. In Engle and Granger (1987) this is referred to as the co‐integration of the 𝑋. The solution
for this is to first perform a linear transformation on the vector of time series 𝑋, such that the
resulting set 𝑋 are mutually orthogonal in the sense that the integral over time of the product of
any two elements 𝑋 becomes = 0 This orthogonality ensures that the causality analysis can
formally be done on each pair 𝑋, 𝑌 separately.

It should be noted, as is done in Granger (1969), that such predictive causality between 𝑋 and 𝑌
does not necessarily imply that the phenomenon which is measured by 𝑋 causes whatever
phenomenon 𝑌 measures. There could well be an unknown or unobserved common cause 𝑍
which affects both 𝑋 and 𝑌 but with different lags. In the absence of explicit knowledge of such a
𝑍, it is often a pragmatic choice to treat 𝑋 and 𝑌 as directly causally connected until proven
otherwise. For what follows in this paper it is assumed that preparatory research is carried out to
identify potential causal mechanisms, and therefore to be as complete as possible in identifying
relevant time series, and assume that this is sufficient for the subsequent analysis. One good way
to conceptualise setting up such analyses is structural causal modelling; in practice this is a way
to systematise knowledge about all relevant factors that might directly or indirectly influence a
certain outcome. This is the subject of the next section.

1.2 structural causal modelling

Graph theory serves as the mathematical language for causal structures and holds some basic
rules and definitions. Formally, a graph is a tuple 𝒢 ∶= (𝒱, ℰ) where 𝒱 is the set of nodes and
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ℰ ⊆ 𝑣 × 𝑣 is the set of edges representing the relationships between nodes (e.g., causal
relationships). A set 𝑝𝑎𝑣 of parents of node 𝑣 is the set of source nodes of incoming edges to 𝑣,
node 𝑣 being the child and the set of ancestors is obtained by collecting parent nodes recursively,
node 𝑣 being the descendant. Cyclical structure in a graph considerably complicates causal
inference. For this reason it is often assumed that the graph representing the causal structure is a
directed acyclic graph (DAG), with edges ℰ that have a certain orientation and without cyclic
structures within the graph, and this assumption is also adopted in this paper. For instance see a
simple DAG as in Figure 1.1 with nodes {X, Y, Z} and edges as arrows between the variables that
represent a direct causal dependence. In a causal structure, missing edges are as important as
the present ones.

𝑋 𝑌

𝑍

Figure 1.1 A directed acyclic graph (DAG) with nodes 𝒱 {X, Y, Z} and the directed
edges ℰ as arrows between them.

A structural causal model (SCM) captures the story behind the problem and describes how the
variables in a model are set. Formally, a SCM is defined as an ordered triple ⟨𝑈, 𝑉, 𝐹⟩ where 𝑈
denotes the set of exogenous variables, 𝑉 denotes the set of endogenous variables and 𝐹
denotes the set of functions mapping 𝑈 to 𝑉. The exogenous 𝑈 variables have no parents, which
means the causes of these factors are not explained by the model and they represent unknown
or random variability in the model. The endogenous 𝑉 variables have at least one parent, by
which the corresponding mathematical function describes how the variable state is calculated.
For instance, consider the following SCM (see also fig. 1.1):

𝑈 = {𝑈𝑋 , 𝑈𝑌 , 𝑈𝑍} , 𝑉 = {𝑋, 𝑌, 𝑍} , 𝐹 = {𝐹𝑋 , 𝐹𝑌 , 𝐹𝑍}
𝑋 ∶= 𝐹𝑋(𝑈𝑋)
𝑌 ∶= 𝐹𝑌(𝑋, 𝑍, 𝑈𝑌)
𝑍 ∶= 𝐹𝑍(𝑋, 𝑈𝑍) (1.11)

This particular DAG corresponds to a well known example concerning what was initially
incorrectly interpreted as gender bias against women in student admissions at Berkely University
(Bickel et al., 1975). That paper shows that while significantly more men were admitted to the
university, when department types were taken into account, 6/85 departments were biased
against men and 4/85 biased against women and no bias was discernible in any of the other
departments.

In this model (1.11) 𝑋 is gender, 𝑍 the department choice and 𝑌 the admission outcome. Since
the functions give a hint of which variables are causally related, causation can be drawn in a
graph by drawing arrows from the variables on the right side of each function to the variable on
the left side. When doing so in the example, the corresponding graph is the same as depicted in
Figure 1.1. Note that only the observed variables are depicted, and the 𝑈 variables are omitted
for simplicity with the assumption that they are independent. Graphical models aid the
understanding of causality and they ease the use of joint probability distributions. As in classical
statistics, probability distributions are important for causality to overcome uncertainty of the
exact answer, by instead considering the probabilities of each possible state a variable can have.
Following the graphical representation, when two variables in a model are conditionally

CBS | Discussion paper | June 2023 8



independent, i.e. 𝑋 ⟂⟂ 𝑌 the following equations on the probabilities hold:

𝑃(𝑋) = 𝑃(𝑋|𝑌) 𝑎𝑛𝑑 𝑃(𝑌) = 𝑃(𝑌|𝑋) (1.12)

The joint distribution of all variables in a model can be calculated by the product of all
conditional distributions of families in the graph. This is expressed in the following rule of
product decomposition (Pearl et al., 2016):

𝑃(𝑥1, 𝑥2, 𝑥3, ..., 𝑥𝑛) =
𝑖
𝑃(𝑥𝑖|𝑝𝑎𝑖) (1.13)

where 𝑖 runs over all nodes and 𝑝𝑎 of 𝑖 represents the parents of the node 𝑥𝑖. With the student
admission problem, the probability of a female student being admitted to the engineering
department, can be described by simply multiplying P(Female), P(Engineering
department|Female) and P(Admission outcome|Female, Engineering department). More
generally:

𝑃(𝑋 = 𝑥, 𝑌 = 𝑦, 𝑍 = 𝑧) = 𝑃(𝑌 = 𝑦|𝑋 = 𝑥, 𝑍 = 𝑧)𝑃(𝑍 = 𝑧|𝑋 = 𝑥)𝑃(𝑋 = 𝑥) (1.14)

In the Berkeley student admission problem, gender was observed as a causal effect of admission
outcome. However, when the choice of department was added with an incoming edge from
gender and outgoing edge to admission outcome in the model, which is called a chain structure,
the effect disappeared to a great extent. In the causal graph, Department Choice is referred to as
mediator between Gender and Admission outcome.

Beside chains, two more interesting structures in a causal model are forks and colliders, see
Figure 1.2. A fork structure consists of a node that is a common cause of two other variables, the
parent node often called a confounder, whereas a collider node is a common effect of two
variables, the child node being the collider.

𝑋 𝑌

𝑍

(a)

𝑋 𝑌

𝑍

(b)
Figure 1.2 Two graph structures. (A) The middle node (Z) being a fork/confounder
or in (B) a collider.

1.2.1 Model Discovery and Validity
To validate the SCM is difficult. In practice causal hypotheses, i.e. DAG topologies and functional
dependency, are set up in such a way as to enable falsification, if sufficient appropriate data are
available; most commonly the model can merely not be falsified which is evidently not the same
as validation or verification. For model discovery and validity, dependencies between variables
are of great importance. Following Pearl et al. (2016), the following rules on dependencies hold
for the different structures:

• Chain structures (Figure 1.1): 𝑍 and 𝑋 are dependent, 𝑌 and 𝑍 are dependent and 𝑋 and 𝑌
are dependent.

• Fork structures (Figure 1.2a): 𝑍 and 𝑋 are dependent, 𝑍 and 𝑌 are dependent and 𝑋 and 𝑌
are dependent.
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• Collider structures (Figure 1.2b): 𝑋 and 𝑍 are dependent, 𝑌 and 𝑍 are dependent and 𝑋 and 𝑌
are dependent given 𝑍.

Thus, while it is possible to condition on mediators and forks without changing the dependencies
between 𝑋 and 𝑌, conditioning on a collider 𝑍 opens up a path between 𝑋 and 𝑌 and they
become dependent. In more complex graph structures the notion of 𝑑‐separation, where 𝑑
denotes ”directional”, can be used to discover conditional independencies (Pearl, 2009):

Definition 1. d‐separation: Two variables 𝑋 and 𝑌 are d‐separated by a set of nodes S if all paths
between 𝑋 and 𝑌 are blocked by S. Paths are blocked when either:

1. Set S is in a fork or chain between 𝑋 and 𝑌
𝑋 ... ← 𝑆 → ... 𝑌 or 𝑋 ... → 𝑆 → ... 𝑌 or 𝑋 ... ← 𝑆 ← ... 𝑌

2. There is a collider (O) present between 𝑋 and 𝑌 that is not part of set S, nor are any of its
descendants
𝑋 ... → 𝑂 ← ... 𝑌

Furthermore, the global Markov property is assumed, in order to relate the graph structure to
probability distributions 𝑃𝑟 in the data:

Definition 2. Global Markov property: 𝑃𝑟 is Markov with respect to graph G for all sets S if:
𝑋 and 𝑌 are d‐separated by S in G⇒ 𝑋 ⟂⟂ 𝑌 | S

with 𝑃𝑟 being the probability distribution over the variables in the graph and with 𝑆 being a set
that can contain one or more variables, or be an empty set Ø. Put in words, if two variables 𝑋 and
𝑌 are 𝑑‐separated, 𝑋 and 𝑌 are independent. On the contrary, when there is at least one path
between 𝑋 and 𝑌 that is not blocked, 𝑋 and 𝑌 are d‐connected and most probably dependent,
i.e. 𝑋��⟂⟂ 𝑌. From the Markov condition it can be assumed that the other direction holds as well.
In particular, the Faithfulness assumption is agreed upon:

Definition 3. Faithfulness assumption: P is faithful with respect to graph G for all sets S if:
𝑋 and 𝑌 are d‐separated by S in G⇐ 𝑋 ⟂⟂ 𝑌 | S

Lastly, the Reichenbach’s common cause principle is agreed upon (Hausman and Woodward,
1999; Peters et al., 2017):

Definition 4. Reichenbach’s common cause principle: Assume that 𝑋��⟂⟂ 𝑌, then either:

1. X causes Y
2. Y causes X
3. There is a hidden variable, also called ”confounder” as common cause (fork)
4. A combination of the above

This simply confirms the idea that when two variables are dependent, there must be a causal
reason for this. Using background knowledge and independence testing on the data, causalities
can be discovered in the graph on the basis of the Markov and Faithfulness assumptions (Pearl,
2009). For example, independence tests on a dataset with 𝑉 = {𝑋, 𝑌, 𝑍}might reveal: 𝑋⟂⟂ 𝑌|𝑍.
Thus, 𝑋 and 𝑌 must be 𝑑‐separated by set 𝑍, so the possible graphs using Definition 1 are:
𝑋 ← 𝑍 ← 𝑌, 𝑋 → 𝑍 → 𝑌 and 𝑋 ← 𝑍 → 𝑌. Other algorithms have been constructed as a fast way
to find independencies within the data (Spirtes et al., 1993).
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Other techniques used for causal discovery include regression methods and invariant causal
prediction (Peters et al., 2017). With two random variables 𝑋 and 𝑌, for the regression method,
first X is regressed on Y and the independence between the residuals and 𝑋 is checked. Then 𝑌 is
regressed on 𝑋 and check independence between the residuals and 𝑌 is checked, to see whether
𝑋 → 𝑌 or 𝑋 ← 𝑌 is more suitable given the data. The overall maximum likelihood of different
models can also be calculated by regressing all nodes on their parents and calculating the
variance in residuals. Invariant causal prediction on the other hand, splits the data into different
environments and infers causal relationships from which parent→ child relationships stay
invariant over the course of different environments (Peters et al., 2017).

1.2.2 Interventions
An SCM can be seen as a set of instructions to generate a distribution from noise variables. Using
the SCM, the data can be manipulated and the new distribution studied. By doing manipulations,
i.e. interventions, it becomes possible to answer questions that go beyond studying observations
only and to study the effect of hypothetical actions. For example, by putting one of the variables
to a fixed value, also called the do‐operator. Under the do‐operation 𝑋 ∶= 𝑥, a new model𝑀′ is
constructed:

𝑀′ = 𝑀[𝑋 ∶= 𝑥] (1.15)

The corresponding causal effect can be described as the effect of the do‐operator on the
outcome variable Y, also called the average treatment effect 𝑓𝑡𝑟𝑒𝑎𝑡:

𝑓𝑡𝑟𝑒𝑎𝑡 ≡ 𝐸𝑀[𝑋∶=1][𝑌] − 𝐸𝑀[𝑋∶=0][𝑌] (1.16)

where 𝐸[𝑌] denotes the expectation of the outcome Y.

The do‐operator performs a surgery on the model: by fixing the value of a variable, the incoming
edges from the parents are deleted. Conditioning on a variable on the other hand, only changes
the way the data are examined, by focusing on only the cases of a specific group. If there is a
difference in probabilities after the do‐operator and after conditioning, as in most cases, this is
called confounding:

𝑃{𝑌 = 𝑦|𝑑𝑜(𝑋 ∶= 𝑥)} ≠ 𝑃{𝑌 = 𝑦|𝑋 = 𝑥} (1.17)

Thus, these terms are not interchangeable. However, the effect the do‐operator has in terms of
conditional probabilities can be estimated by conditioning on the parent nodes (Pa) of node X,
also called the adjustment formula:

𝑃{𝑌 = 𝑦|𝑑𝑜(𝑋 ∶= 𝑥)} =
𝑧
𝑃{𝑌 = 𝑦|𝑋 = 𝑥, 𝑃𝑎 = 𝑧}𝑃{𝑃𝑎 = 𝑧} (1.18)

However, one must be careful to not condition on a collider, which will create a dependency
between the adjacent nodes, as discussed above. To easily find deconfounding variables that can
safely be controlled for, the backdoor criterion is used (Pearl, 2009): they must not have a
backdoor path present between the nodes. A practical solution for confounding variables is to
use a randomized controlled trial. This way, all incoming edges are deleted, which naturally
closes all backdoor paths and potentially confounded paths. This is not always possible, and also
not always necessary.

In the particular example of discrimination, relevant for subsequent sections of this paper,
indirect paths with a mediator can contribute to discrimination by unobserved variables. For
instance in the case of the Berkeley admission problem, advertisements of the engineering
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department that are focused more on men than women, or fear of woman applicants to get
rejected in the engineering department, might be unobserved confounding variables (Barocas
et al., 2019). Thus, before conditioning on a set of variables, it is important to envision all indirect
paths that might hold discrimination. The often‐complex social structure behind discrimination
requires precise path inspection. Furthermore, these different paths can either be considered
socially acceptable or unacceptable/discriminating factors. Estimating the indirect effect by
disabling the direct effect of a sensitive attribute on the outcome is not possible, but
counterfactuals provide a way to estimate these path specific effects.

1.2.3 Counterfactuals
Counterfactuals are of a higher level than observations and interventions. They can answer
questions concerning situations that cannot be observed in the real world, hence the name
counter‐factual. Consider the following example: you have a headache and decide to take a pill.
After some time the headache disappears. The counterfactual question would be: would my
headache have disappeared if I were not to have taken a pill? As there can only be one
realisation ‐ either you take the pill or not ‐ it is not possible to know the answer to this situation.
Structural causal models give a way to answer such questions. Generally, the observational
evidence that the headache disappeared, holds some information and modifies the most
appropriate distribution function for the stochastic variation of the variables in the model. This
consequence is often referred to with the short‐hand formulation “biasing of the noise”. So a first
step is to condition on the event and calculate the new biased distribution of noise variables 𝑈′.
Secondly, the do‐operation 𝑋 ∶= 𝑥 is performed, as the treatment variable needs to be fixed on
not taking a pill. This results in a new structural causal model𝑀′. Thirdly, target counterfactual is
computed 𝑌𝑋∶=𝑥(𝐸) with the new 𝑈′ as initial seed in𝑀′. The definition from Barocas et al.
(2019) will be used:

Definition 5. Counterfactual in a structural causal model: Given a structural causal model M, an
observed event E, an action X:=x and a target variable Y, the counterfactual 𝑌𝑋∶=𝑥(𝐸) is defined
by the following three step procedure:

1. Abduction: Adjust noise variables to be consistent with the observed event. Formally,
condition the joint distribution of 𝑈 = (𝑈1, ..., 𝑈𝑑) on the event E. This results in a biased
distribution 𝑈′.

2. Action: Perform do‐intervention 𝑋 ∶= 𝑥 in the structural causal model M resulting in the
model𝑀′ = 𝑀[𝑋 ∶= 𝑥].

3. Prediction: Compute target counterfactual 𝑌𝑋∶=𝑥(𝐸) by using 𝑈′ as the random seed in𝑀′.

Counterfactuals can quantify path specific effects. Confounded paths can be eliminated by using
the do‐operator 𝐸[𝑌|𝑑𝑜(𝑋 ∶= 𝑋)]. For mediating paths, as in Figure 1.1 counterfactuals are
used to decompose the causal effect into the direct effect of 𝑋 → 𝑌 and indirect effect of
𝑋 → 𝑍 → 𝑌. The direct effect is quantified by setting the mediator to a specific level:

𝐸[𝑌|𝑑𝑜(𝑋 ∶= 1, 𝑍 ∶= 𝑧)] − 𝐸[𝑌|𝑑𝑜(𝑋 ∶= 0, 𝑍 ∶= 𝑧)] (1.19)

This is also called the controlled direct effect. Besides, the direct effect can be calculated by using
the natural direct effect:

𝐸[𝑌𝑋∶=1,𝑍∶=𝑍𝑋∶=0 − 𝑌𝑋∶=0,𝑍∶=𝑍𝑋∶=0] (1.20)

Hereby, the mediator Z can still vary as if no treatment occurred: 𝑋 ∶= 0.
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The natural direct effect generates a notion of the natural indirect effect:

𝐸[𝑌𝑋∶=0,𝑍∶=𝑍𝑋∶=1 − 𝑌𝑋∶=0,𝑍∶=𝑍𝑋∶=0] (1.21)

Hereby, the treatment is fixed to no treatment and the effect is examined of treatment versus no
treatment on the mediator value. With counterfactuals it becomes possible to compute
path‐specific effects and design decision rules that eliminate path‐specific effects that are
undesirable, for example based on assumptions regarding discrimination. Before considering
normative fairness measures and counterfactual discrimination practices in further detail, first a
useful technique to do causal inference is discussed.

1.3 Causal Effect Variational Autoencoder

Exact inference can be difficult when a causal model consists of a lot of variables, including
possibly some unobserved ones. Therefore, approximate inference is proposed as a method for
inferring the causal relationships and unobserved variables. In particular, the Causal Effect
Variational Autoencoder (CEVAE) method can be applied (Louizos et al., 2017). A Variational
Autoencoder is a latent variable model that learns to represent the input data via an encoder and
a decoder (Kingma and Welling, 2013; Rezende et al., 2014). When the input of the model is of a
certain dimension, the hidden layer, also called a bottle neck, must be of a smaller dimension and
the output layer is again of the same dimension as the input layer. Both the encoder and decoder
are neural networks. The encoder encodes the input layer to the latent space Z, which is a
distribution over Z. The decoder network reconstructs the input from latent space Z to the
output layer. The network learns by maximizing the variational lower bound of the likelihood of
observing the data in the current model. As the network learns to represent the data, the latent
space holds valuable information in a lower dimensional space, i.e. high‐level features, that can
still accurately represent the input data. Many studies have demonstrated the validity of the
method in the past (Chung et al., 2015; Gregor et al., 2015; Louizos et al., 2015).

In the CEVAE in particular, the latent space represents unobserved variables, and the decoder
represents the data generation process by a causal graph (Helwegen et al., 2020; Louizos et al.,
2017). Hence, the decoder is based on the structure of the causal graph, whereby the
nodes/variables are represented as probability distributions. The edges are represented as
neural networks in order to capture the non‐linear relationships between the variables.
Following Helwegen et al. (2020); Louizos et al. (2017), stochastic optimization of the network by
maximizing the variational lower bound is done via the following equation:

ℒ = ℒ𝑟𝑒𝑐 + ℒ𝑟𝑒𝑔 (1.22)

so that ℒ is the combined loss of the reconstruction and regularization loss terms. The
reconstruction loss considers the log‐likelihood of the probability distributions given the
observed variables and is calculated by:

ℒ𝑟𝑒𝑐 =
𝑁

𝑖=1
𝔼𝑞(𝑧𝑖|𝑥𝑖 ,𝑦𝑖)[log 𝑝(𝑥𝑖|𝑝𝑎𝑖) + log 𝑝(𝑦𝑖|𝑥𝑖 , 𝑧𝑖)] (1.23)

where 𝑖 refers to an instance, 𝑧𝑖 to the latent space z, 𝑦𝑖 to the outcome of the current instance,
𝑥𝑖 to the other variables and 𝑝𝑎𝑖 the parents of these variables in the model. The regularization
term controls the variation between the true posterior and the approximate posterior. The
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regularization and loss is calculated as in eq. 1.24.

ℒ𝑟𝑒𝑔 =
𝑁

𝑖=1
𝔼𝑞(𝑧𝑖|𝑥𝑖 ,𝑦𝑖)[log 𝑝(𝑧𝑖) − log 𝑞(𝑧𝑖|𝑥𝑖 , 𝑦𝑖)] (1.24)

Using reparametrization, the optimization of the network can be done using a stochastic gradient
descent method such as e.g. Adam (Kingma and Ba, 2014).

2 Application: counterfactual
fairness

In previous studies, different fairness metrics on (algorithmic) decisions have been proposed and
tested. Based on the review of Verma and Rubin (2018), an overview will be given. For simplicity,
here the focus is on binary classification. The usual statistical measures are employed to quantify
the performance of an algorithm that produces a predictied probability score 𝑆 for an instance to
belong to a class: True Positive (TP) is an instance that is accurately classified as positive, False
Positive (FP) is an instance that is wrongly classified as positive, False Negative (FN) is an instance
that is wrongly classified as negative and True Negative (TN) is an instance that is accurately
classified as negative.

The following proportion measures are considered: Positive Predictive Value (PVV), True Positive
Rate (TPR), False Discovery Rate (FDR), False Positive Rate (FPR), False Omission Rate (FOR), False
Negative Rate (FNR), Negative Predictive Value (NPV) and True Negative Rate (TNR), see Table 2.1
for their corresponding formulas (Verma and Rubin, 2018).

Table 2.1 A confusion matrix containing statistical measures on the performance of
an algorithm.

Actual ‐ Positive Actual ‐ Negative

Predicted ‐
Positive

True Positive (TP)
PPV = 𝑇𝑃

𝑇𝑃+𝐹𝑃

TPR = 𝑇𝑃
𝑇𝑃+𝐹𝑁

False Positive (FP)
FDR = 𝐹𝑃

𝑇𝑃+𝐹𝑃

FPR = 𝐹𝑃
𝐹𝑃+𝑇𝑁

Predicted ‐
Negative

False Negative (FN)
FOR = 𝐹𝑁

𝑇𝑁+𝐹𝑁

FNR = 𝐹𝑁
𝑇𝑃+𝐹𝑁

True Negative (TN)
NPV = 𝑇𝑁

𝑇𝑁+𝐹𝑁

TNR = 𝑇𝑁
𝐹𝑃+𝑇𝑁

The fairness conditions, based on these measures, that can be distinguished are listed below
(Verma and Rubin, 2018). The first nine are based solely on the aforementioned statistical
measures. Fairness measures 10–13 consider a probability prediction, 14–16 consider similarities
between instances/subjects and 17–20 elaborate fairness with respect to a causal graph. Groups
are formed on the basis of a sensitive attribute. For example, the performance of the algorithm
on people with a Dutch ethnicity can be compared to the performance on people with a
non‐Dutch ethnicity.
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1. Demographic parity/Statistical parity: 𝑇𝑃+𝐹𝑃
𝑡𝑜𝑡𝑎𝑙 should be equal between groups.

2. Conditional demographic parity: same as Demographic parity, but with some legitimate
attributes that are allowed to influence the prediction and should be controlled for.

3. Predictive parity/Precision parity: PPV should be equal between groups, and consequently
FDR should.

4. Predictive equality/False positive parity: FPR should be equal between groups, and
consequently TNR should.

5. Equal opportunity/True positive parity: FNR should be equal between groups, and
consequently TPR should.

6. Equalized odds/Positive rate parity: TPR and FPR should be equal between groups
(combination of the previous two).

7. Conditional use accuracy equality: PPV and NPV should be equal between groups.
8. (Overall) accuracy parity: 𝑇𝑃+𝐹𝑁

𝑡𝑜𝑡𝑎𝑙 should be equal between groups.
9. Treatment equality: 𝐹𝑃

𝐹𝑁 should be equal between groups.
10. Calibration: TP probability should be equal for all probability scores S.
11. Well‐calibration: same as Calibration, plus the TP probability should match the probability

score S for all groups.
12. Balance for positive class: average predicted probability score S should be equal for subjects

in the positive class.
13. Balance for negative class: average predicted probability score S should be equal for subjects

in the negative class.
14. Causal discrimination: any two subjects with the exact same attributes X, but a different

group, should have similar classification.
15. Fairness through unawareness: no sensitive attribute should be explicitly used in the

decision‐making process.
16. Fairness through awareness: similar individuals (via a distance metric) should have similar

classification.
17. Counterfactual fairness: given a causal graph, the predicted outcome in the graph should not

depend on a sensitive attribute, see Definition 6.
18. No unresolved discrimination: given a causal graph, there should be no path from the

sensitive attribute to the predicted outcome, except via resolving variables, the variables
deemed non‐discriminatory.

19. No proxy discrimination: given a causal graph, there should be no path from the sensitive
attribute to the predicted outcome that is blocked by a proxy variable.

20. Fair inference: given a causal graph, and paths that are classified as legitimate or illegitimate,
there should be no illegitimate paths from the sensitive attribute to the predicted outcome.

Some fairness conditions are mutually exclusive so it is necessary to make a choice which one to
optimise in any given application. For example, consider the USA discrimination laws disparate
treatment and disparate impact. Disparate treatment states that all people with equal ability
should have the same opportunity, i.e. equality of opportunity. Disparate impact states that
inequality in the outcome should be minimized. But minimizing inequality in the outcome might
result in a different treatment for similar people. This collision of preferences encoded in law has
produced serious problems with the legal mechanism intended to minimise discrimination in the
USA in the past. A second issue is that perfect classification does not exist. Choosing which is the
right fairness measure depends on which mistakes are most tolerated for the given problem.
When detecting fraud, False Positives are highly disapproved, much more so than for instance
with a classifier that scans CVs for job hiring. One example in the domain of education, is the
Texas 10% rule, or Texas House Bill 588, that guarantees admission to state‐funded universities
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for the best 10% of each class, resulting in more diverse university classrooms (U.S.C., 1996). As
for the Netherlands, out of the four main functions of education one is to stimulate equal
opportunities (Werfhorst, 2007). For example, more money is distributed to schools in deprived
areas (Min. OCW, 2017). For more information on the Dutch laws relevant to this problem, some
excerpts are given in the Appendix I Dutch Laws on Equality and Education.

As multiple studies have pointed out, non‐causal fairness measures do not take into account all
variables and examine the fairness of their relationships. Consequently, for this study we focus
on causal fairness and specifically, the individual level counterfactual fairness is proposed as a
valid metric. However, as mentioned earlier, this is time and context dependent and current
shared social attitudes. as well as legal and governance context, should help with an ultimate
choice before application.

2.1 De ining counterfactual fairness

Counterfactual demographic parity or counterfactual fairness (Kusner et al., 2018), is based on its
observational counterpart called conditional demographic parity. Counterfactual demographic
parity states that the distribution of the predictor should stay the same in a different world
where the sensitive attribute is different, i.e.: �̂�𝐴∶=𝑎(𝐸) and �̂�𝐴∶=𝑎′(𝐸) should follow the same
distribution. On the individual level, when the value of the sensitive attribute of a person is
changed, this should have no effect on the outcome of the model. The following notion of
counterfactual fairness is used (Kusner et al., 2018):

Definition 6. Counterfactual Fairness. Predictor �̂� is counterfactually fair if for individuals with
observed variables X=x and sensitive attribute A=a the following is satisfied:

𝑃(�̂�𝑑𝑜(𝐴=𝑎) = 𝑦|𝑋 = 𝑥, 𝐴 = 𝑎) = 𝑃(�̂�𝑑𝑜(𝐴=𝑎′) = 𝑦|𝑋 = 𝑥, 𝐴 = 𝑎)

for all 𝑦 and any value of 𝑎′, where 𝑃(�̂�) is the probability distribution of the predictor and
𝑑𝑜(𝐴 = 𝑎′) is the intervention of changing the sensitive attribute to 𝑎′.

For example, if the outcome variable 𝑌 refers to salary categories and sex is the sensitive
attribute then changing in the available dataset the value of the variable sex from ‘male’ to
‘female’, or vice versa, while keeping other variables invariant should yield the same probability
of model outcome. A violation of this would indicate that reality appears not to conform to the
counterfactual fairness criteria.
Importantly, to construct valid counterfactuals, flipping the sensitive attribute should also adjust
downstream features. Only changing the value of the sensitive attribute and letting the other
features remain the same, would wrongly assume that there are no descendants of the sensitive
attribute in the graph. This is therefore distinct from adjusting only marginal propensities in a
model. This notion of fairness is satisfied by default when only non‐descendants of sensitive
attributes in the causal graph are used to predict the outcome.

One important thing to mention is the difficulty of validating the structural causal model that
includes a sensitive attribute like ethnicity. Ethnicity can either be seen as a biological or a social
construct. As social construct, it is difficult to find a set of nodes to represent the influence of
society on ethnicity. Besides, the social constructs lack modularity, as structural causal models
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are systems of reduced complexity. Furthermore, ethnicity as a feature might be unstable, as the
world changes over time. As discussed earlier, this effect cannot be taken into account in an
acyclic graph. As a final remark, people that belong to a specific group might change their
behavior based on their agreement with the group they are assigned to. This is also called a
looping effect, which changes the model over time (Hacking, 2006).

2.2 (Meta‑)data used

2.2.1 Qualitative
The causal model in this study was constructed to be as closely related to the real decision
problem as possible, concerning school level selection for secondary education. In order to
reduce the researcher bias, being in the present case the potential bias of ourselves as authors,
concerning knowledge on the subject, studies on bias in the Dutch selection procedure were
examined. A systematic literature search was performed using the search engines Google Scholar
and PubMed. Search terms included the following words: ”bias”, ”inequality”, ”selection
procedure”, ”tracking”, ”school system”, ”Dutch”, ”the Netherlands”, ”ethnicity”, ”gender” and
”social economic status”. For selecting the articles, there was a focus on studies that analyzed
inequalities in the selection procedure. Besides, only studies on the Dutch school system were
considered, or studies in countries with a similar education structure. This resulted in a total
selection of 18 studies.

Social 
Economic 

Status*

Education of 
parents

Preliminary 
advice 
teacher

EPST** 
advice

Quality 
school9

8

4

9

Final advice
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3
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3

1, 2, 3, 6, 7
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3

17

3
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Figure 2.1 A theoretical model on bias in the Dutch education system. *Can be based
on income of parents, education of parents, estimated value of the house and the
occupation of parents. **EPST = End‑of‑Primary‑School‑Test. ***Track mobility and
education level are again in luenced by sensitive attributes [11], [12]. References: 1.
Timmermans et al. (2018), 2. Geven et al. (2018), 3. Lek (2020), 4. Gentrup et al.
(2020), 5. Boone and Van Houtte (2013), 6. Ditton et al. (2005), 7. Dumont et al.
(2019), 8. Timmermans et al. (2015), 9. Agirdag et al. (2013), 10. Boterman (2019),
11. Tieben (2011), 12. Tolsma et al. (2007), 13. CBS (2018), 14. CBS (2021), 15. Hop
and van Boxtel (2013), 16. Ministerie van Onderwijs Cultuur enWetenschap (2021),
17. Spinath et al. (2014), 18. Marioni et al. (2014).

With this a theoretical model of the Dutch education system is constructed, see Figure 2.1. The
nodes in the figure illustrate the variables that play a role, consisting of the sensitive attributes
(ethnicity and gender), the outcome of the model (the ultimate education level, three years after
the selection procedure) and other identified features. The arrows in the graph represent some
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sort of a causal link (in the sense of section 1.2) between the predecessor and the successive
node. The numbers in Figure 2.1 are references to the studies that indicated these effects.

The Dutch secondary school system is differentiated in a number of types, although there are
provisions for pupils to switch between these types (see also Fig. 2.6 below). The distinct types
have the abbreviations ’vwo’ (a pre‐university track), ’havo’ (a pre‐further education track), and
’vmbo’ (a pre‐vocational track). Within the ’vmbo’ track there is still a distinction between a
somewhat more theory oriented (’vmbo‐t’) or somewhat less theory oriented (’vmbo‐k’)
sub‐track or an intermediate sub‐track (’vmbo‐g’) and finally also a more basic skills oriented
sub‐track (’vmbo‐b’). Often in secondary schools, the different tracks, or a subset of these, are
offered co‐located in the same building. In a minority of secondary schools there are evenmixed
classes for the lower years, so that the differentiation between two tracks, for instance the vwo
and havo track, is postponed compared to what is generally done in the Netherlands.

The literature analysis identified numerous potential causes for the inequalities within the Dutch
education system, with varying levels of supporting statistical evidence. To start with, teachers
might be biased, either in an implicit or explicit way (Geven et al., 2018; Timmermans et al.,
2018). Some teachers might have implicit prejudices against certain social or ethnic groups, or
they might take into account a sensitive attribute itself or a proxy variable for constructing the
advice, such as the education of parents or situation at home (Ditton et al., 2005). This effect
might have increased after the change in the selection procedure, whereby the teacher’s
estimate gained a higher priority over the EPST test result. Besides, it is observed that parents
that attained higher education have a more powerful position in conversations with the teacher,
and object more often (Dumont et al., 2019; Timmermans et al., 2018).

Parents that attained higher education also seem to be more involved in school activities. Some
studies, but not all, revealed a higher involvement in school practices (Geven et al., 2018).
Besides, higher educated parents have a higher admiration and have higher expectations for
their children (Geven et al., 2018). Parents also impact the decision of primary school, which
appears in the high level of school segregation, especially in the cities of the Netherlands (Vogels
et al., 2021). The differences in quality of the school and the classroom composition might again
affect the inequalities in education, albeit the effects of classroom composition can be both
positive and negative (Geven et al., 2018).

Moreover, the individualistic culture and the idea that each child should be maximally stimulated
in order to optimize growth, leads to more differentiation within the classroom and between
schools (Denessen, 2017; Van de Werfhorst, 2011). Secondary schools use this differentiation as
advertisement to attract parents and their children. This is one of the reasons why, despite the
advice of the Dutch educational inspection to counteract inequalities, numbers of broad schools
have been decreasing over the years (Vogels et al., 2021).

The Dutch education system is known for its early differentiation at the age of 11 or 12. The early
selection has its roots in the past century (the so‐called Mammoetwet in the 1960s) and common
social attitudes around that time. but now appears outdated. At such a young age, the pupils are
mainly a reflection of their parents (Shavit and Blossfeld, 1993). In comparison with countries like
Austria, Germany and Switzerland, the Netherlands have a highly differentiated secondary school
system (Van de Werfhorst, 2011). From comparative studies, we know that a high level of
differentiation is associated with more inequalities between social and ethnic groups (Van de
Werfhorst and Mijs, 2010), and less transfer ability to higher education. It is debatable whether
the high level of differentiation stimulates the learning environment in the class at all (Van de
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Werfhorst, 2011). It seems that at least the gain in knowledge of children in higher levels do not
outweigh the decline in learning of children in lower levels. Reasons might entail the waste of
talents and learning loss in lower tracks. High differentiation is also associated with a lower
desire to continue higher education and lower societal participation (Van de Werfhorst, 2011).

Another cause is the difference in educational and monetary resources that children from
different social and ethnic groups have (Aalders et al., 2020; Vogels et al., 2021). Parents who
attained higher education are more capable of supporting and helping their children with
learning. This became especially clear during the COVID pandemic (Bol, 2020). Besides,
wealthier families can afford educational trips during free time and provide their children with
extra training (Kuyper and Van der Werf, 2012). Even EPST trainings to get a higher advice exist,
although this is against the advice of the EPST test makers (Bisschop et al., 2019; PO‐raad, 2019).

Yet another cause is the language level of the pupils. Pupils that have a family with a migration
background may have more difficulty in keeping up with the Dutch language. This again affects
the involvement of parents and their capability to support their children with learning. For pupils
that speak a different language at home for the first four years of their lives, the selection at the
age of 11 or 12 might be too early to reach the appropriate language level. The current focus of
education on the Dutch language makes it a difficult problem. Other research revealed that
performance expectations are lower for pupils with a migration background or low social
economic status (Dijks et al., 2020; Geven et al., 2018). Low expectations are negatively
correlated with growth, by self‐fulfilling prophecy and fixed mindset. This is also the case for
relatively low advices, as the children know the advice of the school before making the test, and
believe the teacher knows best (Timmermans et al., 2013).

It is important at this point to emphasise that the analysis in the paper is exploratory. The
primary purpose here is to demonstrate the technique and therefore a choice is made to work
with a pared‐down version of the full causal diagram. A more complete analysis would certainly
appear to be worthwhile but is beyond the scope of this research. The actual (un)fairness of the
Dutch education system should only be judged on the basis of a more complete causal model.
From all the different factors that play a role, it can be concluded that the problem is complex. It
is important to identify all factors and determine the size of their impact. For an overview of all
the identified factors, see Figure 2.1. In what follows, the most important factors are summarized
in the causal graph of Figure 2.4, which is in essence a pared‐down version of the graph
presented in Figure 2.1. Since ethnicity seemed to have a larger impact on the selection
procedure compared to gender, ethnicity is picked as a sensitive attribute. The causal graph
includes the following variables and their causal relationships: sensitive attribute 𝐴, social
economic status 𝑆, language level 𝐿, preliminary advice teacher 𝑇, EPST advice 𝐸, the unknown
variable that holds intelligence 𝑈 and the outcome variable 𝑌, which is the educational level 3
years after the selection procedure. Most factors cannot be influenced by the students
themselves. It is important to discuss with teachers and experts which influences are deemed
fair and which are deemed unfair. For this study, multiple different combinations of pathways
were proposed for a fair prediction.

2.2.2 Quantitative
For this study, Dutch pupils that attended the selection procedure in school years 2015/2016,
2016/2017 and 2017/2018 were included (n = 297.035; mean age at the start of the selection
procedure = 11.96 ± 0.45). Pupils were only included if three years later, they were enrolled in
school year three of Secondary Education and they were not in amixed class. Both information
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on the pupils during the selection procedure and their educational level after three years was
extracted from the CBS databases. In particular, the following attributes were gathered: the
sensitive attribute, social economic status, language level, the teacher’s preliminary advice, the
EPST advice, the final advice and the education level after 3 years. Pupils that had missing data in
one of the target attributes were dropped1), except for students with only one missing datapoint
for either education of the mother or education of the father. More details on the attributes are
provided below.

Education
mother

Education
father

60.2%

22.5%

17.3%

Figure 2.2 Missing data imputation. Size and distribution of the missing data: grey
boxes represent data that are present and white boxes data that are missing.

• Sensitive attribute:
– Ethnicity: for second‐generation immigrants, i.e. at least one parent is not born in the

Netherlands, the country of birth of the mother was selected, unless the mother was born
in the Netherlands, otherwise the country of the father was selected. For first‐generation
immigrants, the country of birth was selected. The resulting countries of origin were first
divided into the four largest ethnicity groups within the Netherlands: Dutch (1), Moroccan
(2), Surinamese, Dutch Antillean or Aruban (3) and Turkish (4). The remaining countries
were divided into three groups: from EU‐15 countries2) and developed economies (5),
from new EU countries and economies in transition (6) and from other countries (7),
resulting in a total of seven categories.

• Social Economic Status (SES). The following indicators for SES were included in the vector:
– Highest attained education of both the mother and the father: eight categories can be

distinguished: Primary Education (1), ”vmbo‐b”/”vmbo‐k”/”mbo 1” (2),
”vmbo‐g”/”vmbo‐t”/junior classes ”havo”/junior classes ”vwo” (3), ”mbo 2”/”mbo 3” (4),
”mbo‐4” (5), ”havo”/”vwo” (6), ”hbo” bachelor/”wo” bachelor (7) and ”hbo” master/”wo”

1) The study startedwith a sample of (close to) 531,5 thousand pupils andwas reduced to (just over) 297 thousand pupils,
due to the selection criteria and (multiple) missing values. This reduction is important for selection bias purposes. This
is acceptable for demonstrating the technique, but a more complete analysis ought to investigate the effect of such
listwise deletions on the model, and fairness measures, outcomes

2) The EU‐15 countries, as defined by CBS are: Belgium, Germany, Denmark, Finland, France, Greece, Ireland, Italy, Lux‐
embourg, the Netherlands, Austria, Portugal, Spain, United Kingdom and Sweden.
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master/doctor (8). The categories were encoded as dummy variables with the first
category being dropped3). Only when one out of both variables for education mother and
father was missing, this attribute was imputed based on all the other variables, to let the
variables stay correlated. See Figure 2.2 for the size and distribution of the missing data.
The imputation technique used was ’predictive mean matching’, which selected five
similar entries and randomly picked one of the values for imputation. This process
resulted in five datasets that were all used for subsequent analysis in the experiment
(Van Buuren, 2018). See Figure 2.3 for the results of the data imputation. No differences
in results were found between the datasets.

– The estimated value of the house: the value of the house the pupil was living during the
selection procedure, under the Dutch version of the Valuation of Immovable Property Act,
i.e. theWet Waardering Onroerende Zaken (WOZ). The data were controlled for the
annual increase in WOZ value. By Winsorizing the data, the influence of outliers was
minimized: values higher than 1.000.000 were assigned the value 1.000.000, which
affected 0.72% of the data. Afterwards, the data were normalized.

– Percentile disposable income: the income of the household of the house where the pupil
was living during the selection procedure. The percentile groups were normalized by
default.

– The type of income of the mother and father: employee (1), director and major
stakeholder (2), self‐employed entrepreneur (3), self‐employed (4), family worker (5),
unemployment benefit (6), welfare benefit (7), other social benefits (8), employment and
support allowance (9), pension (10), studying with income (11), studying without income
(12), without income (13). The categories were encoded as dummy variables with the first
category being dropped.

• Language level
– Reading skills: three indicators of the Dutch language level can be distinguished: lower

than 1F, 1F and 2F. The categories were encoded as dummy variables with the first
category being dropped.

– Language skills: the same categories as reading skills were used.
• Preliminary advice of the teacher. The eleven types of advices are: ”vmbo‐b”, ”vmbo‐b/k”,

”vmbo‐k”, ”vmbo‐k/g”, ”vmbo‐g”, vmbo‐g/t”, ”vmbo‐t”, ”vmbo‐t/havo”, ”havo”, ”havo/vwo”
and ”vwo”. The categories were encoded as dummy variables with the first category being
dropped.

• EPST advice. The nine types of advices are: ”vmbo‐b”, ”vmbo‐b/k”, ”vmbo‐k”, ”vmbo‐g”,
vmbo‐g/t”, ”vmbo‐t”, ”havo”, ”havo/vwo” and ”vwo”. The categories were encoded as
dummy variables with the first category being dropped.

• Final advice. The same categories as Preliminary advice of the teacher were used.
• Education level after three years. The six types of education level are: ”vmbo‐b”, ”vmbo‐k”,

”vmbo‐g”, ”vmbo‐t”, ”havo” and ”vwo”. This ordering is also used when referring to higher or
lower educational attainment.

Accordingly, each record in the dataset represented a pupil and consisted of a vector of size 85.

2.3 Data analysis

3) The first category/column is being dropped for categorical variables to avoid multicollinearity within the data: highly
correlated variables, with a single variable that can be predicted based on other variables.
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Figure 2.3 Results of missing data imputation. Left side: education mother, right
side: education father. The amount per education level is depicted for the original
dataset and the ive imputed datasets.

2.3.1 simplifying the graph
The data analysis was performed on the causal graph depicted in Figure 2.4. The results of
literature search, described in section 2.2.1, produced a more detailed graph (Fig. 2.1) which for
convenience and tractability of the analysis has been simplified somewhat. The different
variables are denoted as follows:

• 𝐴: sensitive attribute (ethnicity)
• 𝐿: language level
• 𝑆: social economic status
• 𝑇: teachers’ preliminary advice
• 𝐸: EPST advice
• 𝐹: final advice
• 𝑈: unknown variable that holds intelligence
• 𝑌: outcome educational level 3 years after the selection procedure

𝐴

𝑆

𝐿

𝑇

𝐸

𝑈

𝐹

𝑌

Figure 2.4 The causal graph on bias in the selection procedure, where 𝐴 is the
sensitive attribute (ethnicity), 𝑆 is the social economic status, 𝐿 is the language level, 𝑇
is the teachers’ preliminary advice, 𝐸 is the EPST advice, 𝐹 is the inal advice, 𝑈 is the
unknown variable that holds intelligence and 𝑌 is the outcome educational level 3
years after the selection procedure. The grey node represents an unknown variable.

There is one unknown variable 𝑈, intelligence, hence the CEVAE is constructed to approximately
infer the distribution over the latent space of the variable 𝑈 and the causal relationships at the
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same time (Louizos et al., 2017). From now on, the latent space is denoted as latent space 𝑈.
Since the true posterior depends on the variables 𝐿, 𝑇, 𝐸 and 𝐹, the encoder network consists of
the approximate posterior 𝑞(𝑢|𝑙, 𝑡, 𝑒, 𝑓). The predictor 𝑌 is absent in the encoder network
otherwise the network would be trained on information of the predictor itself and out‐of‐sample
prediction would not be possible. The network consists of an input layer with the size of the total
dimensions of 𝐿, 𝑇, 𝐸 and 𝐹, a hidden layer with a dimension of 50 with exponential linear unit
(ELU) activation (Clevert et al., 2015) (required for improved modelling of non‐linear
relationships between the input and outcome variables), and the output is restricted to be
5‐dimensional and is considered a product distribution of standard Gaussians:

𝑞(𝑢𝑖|𝑙𝑖 , 𝑡𝑖 , 𝑒𝑖 , 𝑓𝑖) =
𝐷𝑈

𝑗=1
𝒩(𝜇𝑖𝑗 , 𝜎𝑖𝑗) (2.1)

whereby 𝑖 refers to a point in the dataset, i.e. a student, 𝑗 to the dimension, 𝐷𝑈 to the dimension
of latent space 𝑈 and 𝜇𝑖𝑗 and 𝜎𝑖𝑗 are the parameters of the standard Gaussian learned separately
by the neural network. The decoder network consists of the model posterior 𝑝(𝑢) which is
represented as a normal distribution with a mean of 0 and a standard deviation of 1, see Eq 2.2,
and multiple reconstruction networks for the observed variables.

𝑝(𝑢𝑖) =
𝐷𝑈

𝑗=1
𝒩(𝑢𝑖𝑗|0, 1) (2.2)

After a sample of the inferred 𝑈 is taken, the observational data of each variable in Figure 2.4 are
reconstructed using six separate neural networks, one for each of the inputs, to approximate the
parameters of the distributions. Each neural network of variable 𝑥𝑖 with 𝑥𝑖 ∈ {𝐿, 𝑆, 𝑇, 𝐸, 𝐹, 𝑌},
has as input the observational data of its parent nodes 𝑝𝑎𝑖, a hidden layer with a dimension of 50
with ELU activation and the output has the same dimension as the variable 𝑥𝑖 itself. For all
decoder networks that reconstruct the observed variables, a TARnet structure is used (Shalit
et al., 2017) to preserve the effect of the treatment, as in Louizos et al. (2017). This is extended
to be 𝑘 separate heads for the different groups of the sensitive attribute, as in Schwab et al.
(2018). For example see Figure 2.5 for the network architecture for reconstructing variable 𝐿
(language level) which has as input the 5‐dimensional variable 𝑈, the four different types of 𝐴 are
represented in the k head structure, the network has a hidden layer of 50 nodes and each head
has as output four nodes, similar to the size of the variable itself.

All binary variables in the model are parametrized as Bernoulli distributions, whereby the neural
network outputs the corresponding probability using a Sigmoid function to get an outcome
within the range [0,1] (Han and Moraga, 1995). Continuous variables are parameterized as
Normal distributions, whereby the neural network separately outputs the mean 𝜇 and standard
deviation 𝜎. The standard deviation is forced to be positive by using the Softplus activation
function (Glorot et al., 2011). The output network of the predictor 𝑌 has a Softmax activation
function to get values within the range [0,1] for each possible outcome/category, i.e. the six
different education levels, that sum up to one (Goodfellow et al., 2016). To calculate the
reconstruction loss of 𝑌, the highest value is selected and compared with the actual 𝑌 of the
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Figure 2.5 Neural network architecture for reconstructing the variable 𝐿 (language
level). The network has as input the 5‑dimensional variable 𝑈. Four heads represent
the variable 𝐴. Each head has four nodes, similar to the size of the variable itself.

batch data. Given the equations Eq. 1.22, Eq. 1.23 and Eq. 1.24, the objective of this CEVAE
model becomes:

ℒ =
𝑁

𝑖=1
𝔼𝑞(𝑢𝑖|𝑙𝑖 ,𝑡𝑖 ,𝑒𝑖 ,𝑓𝑖) [log 𝑝(𝑙𝑖|𝑎𝑖 , 𝑢𝑖) + log 𝑝(𝑠𝑖|𝑎𝑖) + log 𝑝(𝑡𝑖|𝑎𝑖 , 𝑙𝑖 , 𝑠𝑖 , 𝑢𝑖)

+ log 𝑝(𝑒𝑖|𝑎𝑖 , 𝑙𝑖 , 𝑠𝑖 , 𝑡𝑖 , 𝑢𝑖) + log 𝑝(𝑓𝑖|𝑎𝑖 , 𝑡𝑖 , 𝑒𝑖 , 𝑢𝑖)
+ log 𝑝(𝑦𝑖|𝑎𝑖 , 𝑓𝑖 , 𝑢𝑖) + 𝑙𝑜𝑔 𝑝(𝑢𝑖) − log 𝑞(𝑢𝑖|𝑙𝑖 , 𝑡𝑖 , 𝑒𝑖 , 𝑓𝑖)]

(2.3)

The optimizer Adam (Kingma and Ba, 2014) is used with a learning rate of 0.0005 and a batch size
of 500. A total of 150.000 training iterations are performed. The data are split into training and
test data (10%). The model is tested on the test set every 100 times to check for overfitting.

After construction of the CEVAE model, ML models with different input selections are built, to
propose different kinds of fair ML models. The different input structures are as follows: {𝑈}, {𝑈,
𝐹}, {𝑈, 𝐿, 𝑆, 𝑇, 𝐸, 𝐹} and {𝑈, 𝐴, 𝐿, 𝑆, 𝑇, 𝐸, 𝐹}. Each model is based on part of the selected
attributes and the models predicted the educational level of pupils 3 years after the selection
procedure. Just as done above, the models’ architecture has a hidden layer of 50 nodes with ELU
activation and the output of the network has six dimensions, one for each educational level,
again with Softmax activation to get a probability for each category that adds up to one. The
networks were trained for 1.000 iterations with a batch size of 500. Each training loop, 𝑈 was
sampled from the learned CEVAE model given the batch data. Multiple models with different
inputs are constructed to compare accuracy and fairness of the method. The models were
optimized using RMSprop (Tieleman and Hinton, 2014) with a learning rate of 0.0005. The
accuracy of each model is calculated by selecting the highest two probabilities, as is done when
two subsequent educational levels are predicted in real life. If the actual outcome 𝑌 is part of
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them, the prediction is considered correct. Accuracy was also evaluated in terms of how secure
the model is in the case of a correct and an incorrect prediction. Besides, a confusion matrix was
constructed to evaluate the type of mistakes. A total of 10 repetitions are performed to measure
the stability of the method.

2.3.2 preprocessing
The data are first inspected to get an indication of the quality and to get the degree of inequality
within the current sample. From the 297 thousand pupils, a total of 46.2% of the pupils switched
to another level within 3 years of secondary education, of which 43.4% switched one or multiple
levels up. When mixed classes are not taken into account, which lead to a switch by default,
27.0% of the students switched to another education level, of which 40.9% up. See Figure 2.6 for
a visualization of the switching behavior, with on the left side the proportion of pupils for the
different final school advices and on the right side the education levels 3 years later.

 vwo (23.7%) 

 havo/vwo (9.3%) 

 havo (19.2%) 

 vmbo-t/havo (7.6%) 

 vmbo-t (16.5%) 

 vmbo-g/t (1.5%) 

 vmbo-g (3.4%) 

 vmbo-k/g (0.4%) 

 vmbo-k (9.1%) 

 vmbo-b/k (2.9%) 

 vmbo-b (5.3%) 

vwo  (28.4%) 

havo  (24.3%) 

vmbo-t  (19.1%) 

vmbo-g  (7.9%) 

vmbo-k  (13.1%) 

vmbo-b  (6.1%) 

Loading [MathJax]/extensions/MathMenu.jsFigure 2.6 The switching behavior of students up‑ and downstream. Final school
advices are depicted on the left. The education level students reached after 3 years
are depicted on the right. The thickness of lines represent the amount of pupils.

To get an indication of the inequality within the current sample, the final school advices and
education level reached after 3 years were grouped by ethnicity type. The percentage students
for each of the different education levels are depicted in Figure 2.7 and Figure 2.8. On top of each
bar, the group total for the different ethnicity types are depicted. Based on the similarities within
these figures, for further analysis the three biggest non‐Dutch groups are combined (Moroccan,
Surinamese, Dutch Antillean and Aruban and Turkish) as well as the ”From economies in
transition” and ”Other” ethnicity groups, resulting in a total of four different ethnicity groups.

CBS | Discussion paper | June 2023 25



4.5

11.4

9

13.1

4.1

6.7 6.6
2.6

5.7

4.8

6.4

2.5

3.2 3.5

8.8

12.8

12

14.6

6.7

9.5 9.4
0.4

0.6

0.6

0.7

0. 3

0.4
0.5

3.4

4.2

4.3

5.2

2.6

3.3 3.5
1.5

1.9

1.4

1.9

0 .9

1.4
1.4

16.5

19.8

17.5

19.3

14.3

16.2
16.8

7.4

9.3

8.7

8.7

7.3

8.3
8.5

20.1

15.2

16.5

14.5

19.5

18.2
17.7

9.6

7.9

8.4

7

10.5

9.5
9.4

25.2 11.1 16.8 8.7 31.3 23.5 22.7

Dutch Moroccan Surinamese,

Dutch Antillean &

Aruban

Turkish From European

(15) &

developed

economies

From economies

in transition

Other
0

20

40

60

80

100

Education level

(final advice)

vwo

havo/vwo

havo

vmbo-t/havo

vmbo-t

vmbo-g/t

vmbo-g

vmbo-k/g

vmbo-k

vmbo-b/k

vmbo-b

A
m

o
u
n
t
 o

f 
s
t
u
d
e
n
t
s
 (

%
)

n = 229.757 n = 12.792 n = 8.061 n = 9.647 n = 11.608 n = 5.977 n = 19.193

Figure 2.7 The percentage of students for the different education level of inal
advices grouped by ethnicity type. Group totals are depicted on top of each bar.
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Figure 2.8 The percentage of students for the different education levels after 3 years
grouped by ethnicity type. Group totals are depicted on top of each bar.

2.3.3 models and counterfactuals
The results on the CEVAE approximate inference method were examined by looking at the
different loss components of the model during training (see Figure 2.9). The losses on the
training batch are calculated for each iteration and on the test set each 100 iterations. In the
upper graphs, the reconstruction loss for the different attributes of the model are plotted: 𝑙, 𝑠
(separately for the continuous and binary part, denoted as 𝑠_𝑐𝑜𝑛 and 𝑠_𝑏𝑖𝑛 respectively), 𝑡, 𝑒, 𝑓
and 𝑦. The graph on the bottom right displays the regularization loss of the CEVAE. The
combined loss of the reconstruction and regularization loss is depicted in the bottom left graph.

The counterfactual fairness of the selection procedure is evaluated by investigating the
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Figure 2.9 Loss components of the CEVAE. In green the loss on the training set and in
blue the loss on the test set. The irst seven graphs depict the reconstruction losses of
the attributes 𝑙, 𝑠_𝑐𝑜𝑛, 𝑠_𝑏𝑖𝑛, 𝑡, 𝑒, 𝑓 and 𝑦. The bottom right shows the regularization
loss and the bottom left the combined loss.

difference in outcome for real data �̂� and the outcome for generated counterfactual data
�̂�𝑑𝑜(𝐴=𝑎′). The counterfactual data are generated by altering the value of the sensitive attribute
from Dutch→Moroccan, Surinamese, Dutch Antillean and Aruban and Turkish, from Dutch→
From EU‐15 and developed countries, from Dutch→ Other and altering the other way around.
Figure 2.10 shows the most important result of the approach of altering the value from Dutch→
Moroccan, Surinamese, Dutch Antillean and Aruban and Turkish. The mean difference in
outcome by the generation of these counterfactual datapoints was 1.02.

Figure 2.10 Difference between outcome �̂� and �̂�𝑑𝑜(𝐴=𝑎′) by altering 𝑎 from Dutch→
Moroccan, Surinamese, Dutch Antillean and Aruban and Turkish. Positive numbers
show a higher predicted education level in �̂� compared to �̂�𝑑𝑜(𝐴=𝑎′).

The ML models were built with different input selections. The stability of the models was tested
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by doing ten repetitions. The models with the input {𝑈} had a mean accuracy of 65.0% (±0.2), a
confidence of the model in the case of correct predictions of 67.4% (±0.2) and a confidence in
incorrect cases of 59.5% (±0.2). The model with input {𝑈, 𝐹} had 85.7% (±0.1) accuracy, 84.0%
(±0.2) confidence correct and 77.0% (±0.3) confidence incorrect. The fairness unawareness
input {𝑈, 𝐿, 𝑆, 𝑇, 𝐸, 𝐹} gave an accuracy of 85.0% (±0.1), a confidence correct of 82.1% (±0.5)
and a confidence incorrect of 77.7% (±0.5). The full model with input {𝑈, 𝐴, 𝐿, 𝑆, 𝑇, 𝐸, 𝐹} had an
accuracy of 84.9% (±0.2), a confidence correct of 81.1% (±0.5) and a confidence incorrect of
77.0% (±0.6). See Table 2.2 for an overview of the results.

The performances of the different models are also displayed using confusion matrices, illustrated
in Figure 2.12. Looking at the predicted and true class, one can have an idea about the type of
mistakes of the model. Note that for the accuracies in Table 2.2, the highest two categories are
selected, while for the confusion matrices we focused solely on the highest value.

Table 2.2 Accuracies of the MLmodels with different input selections. The mean
accuracy and standard deviation (SD) of ten repetitions is shown. Con idence correct
shows the con idence of the model for correct predictions and the con idence incorrect
shows the con idence of the model in incorrect cases.

Input Mean accuracy
(±SD) (%)

Confidence cor‐
rect (±SD) (%)

Confidence incor‐
rect (±SD) (%)

{𝑈} 65.0 (0.2) 67.4 (0.2) 59.5 (0.2)
{𝑈, 𝐹} 85.7 (0.1) 84.0 (0.2) 77.0 (0.3)
{𝑈, 𝐿, 𝑆, 𝑇, 𝐸, 𝐹} 85.0 (0.1) 82.1 (0.5) 77.7 (0.5)
{𝑈, 𝐴, 𝐿, 𝑆, 𝑇, 𝐸, 𝐹} 84.9 (0.2) 81.1 (0.5) 77.0 (0.6)

Fairness of the models was also tested using EOP as a fairness measure. For all models, the
𝑃(�̂� = 0|𝑌 = 1) was measured, whereby 0 indicated a lower predicted educational attainment
level than the true outcome. Here the ordering as described at the end of section 2.2.2 is used,
which could alternatively be interpreted as a measure for the relative proportion of
practical/vocational skills and theoretical/academic skills associated with these educational
categories. See Table 2.3 for an overview of the proportion of pupils for the different models.
The closer the EOP values of the different ethnicity groups, the more fair the algorithm, an equal
value being the absolute fair scenario which is not the case. The model with input {𝑈} exposes
the most similar EOP values.

Table 2.3 EOP of the MLmodels with different input selections. The EOP for the
different ethnicity groups are displayed.

Input EOP
Input Dutch (%) Moroccan,

Surinamese,
Dutch Antillean
and Aruban and
Turkish (%)

From EU‐15 or
other similarly de‐
veloped countries
(%)

Others (%)

{𝑈} 18.0 17.4 19.7 17.7
{𝑈, 𝐹} 13.9 18.5 15.5 18.8
{𝑈, 𝐿, 𝑆, 𝑇, 𝐸, 𝐹} 14.1 18.0 17.8 19.7
{𝑈, 𝐴, 𝐿, 𝑆, 𝑇, 𝐸, 𝐹} 16.7 18.4 18.1 19.2
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(c) Model with input {𝑈, 𝐿, 𝑆, 𝑇, 𝐸, 𝐹}
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(d) Model with input {𝑈, 𝐴, 𝐿, 𝑆, 𝑇, 𝐸, 𝐹, 𝑈}
Figure 2.12 Confusion matrices of the MLmodels with different input variables. The
x‑axis represents the predicted class. The y‑axis represents the true class. The
numbers show the percentage of cases.

2.4 Discussion of case study

The first, preparatory, step of this research is to identify the factors that play a role in the decision
making process for students’ allocation to secondary education levels, in order to construct a
valid causal model. This causal model allows systematic exploration of possible biases in the
selection procedure, some of which the current literature also indicates to be present. The most
important identified factors included the language level of pupils, SES with interrelated factors
such as parental education level and bias in the teachers’ estimates.

It is important to emphasise that the primary intention of the case study is to present and
develop the technique, rather than to judge in an absolute sense the (un)fairness of selection
processes in the Dutch educational system. There are several reasons why such an interpretation
would be incautious, the most important of which is that the full causal graph is pared down.

With the pared down causal graph as adopted for the study, the counterfactual fairness can be
determined, which is the second step of the research. Relationships in the causal graph, as well
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as the unknown variable intelligence, are estimated by maximizing the variational lower bound of
the CEVAE model. By sampling from the learned distributions, the effect of generating
counterfactual data, i.e. altering the value of the sensitive attribute, are examined.

The method reveals a slight decrease in predicted education level when altering the sensitive
attribute from Dutch→Moroccan, Surinamese, Dutch Antillean and Aruban and Turkish. In
addition, to propose fair ML models, models with different input selections are built. The model
with input selection 𝑈 (i.e. only the latent variable intelligence) yielded an accuracy of around
65%, while the models with more input variables all yielded an accuracy of around 85%. For all
models, the confidence of the model was lower on average in the case of an incorrect prediction
compared to a correct prediction. This can be considered as extra information that can
contribute to the performance of the models. Confusion matrices revealed a high‐level
estimation of actual class or one of the next classes. ”Vmbo‐g” was difficult to predict for all
models. Specifically the model with only {𝑈} as input showed a low accuracy for ”vmbo‐b” and
”vmbo‐g”, the two smallest categories, depicted in Figure 2.8. The model with input selection {𝑈}
did score the highest on the EOP fairness metric, albeit its relatively low accuracy. The revealed
inequalities within the current data sample by inspecting the data are similar to previous studies
(Lek, 2020). In line with the previous research results, testing the CEVAE with counterfactual data
showed some effect of altering the sensitive attribute. This confirms the finding that the
selection process, at least in the pared‐down version of its causal graph analysed here, contains
bias. For the subsequent analysis, when the only ”counterfactually fair” attribute was taken into
account for the model (the non‐descendant of sensitive attributes) the model yielded a lower
accuracy than the models that considered more input variables. This is in line with previous work
(Helwegen et al., 2020; Kusner et al., 2018) and suggests that the model has to give up some
accuracy for the predictor to be more fair. Another way of describing this would be to state that a
fair prediction can apparently not be as definitive or absolute in its pronouncements. In
particular, as the data inherits the prejudices of prior decision makers, 𝑌 is also biased.

Counterfactual fairness as a measure does not require high accuracy of the model per se, by
definition. What is surprising is the relatively big change in accuracy compared to previous
research (Kusner et al., 2018). A possible explanation for this might be that only 𝑈 can be
selected as attribute or that the current method is not ideal. Perhaps none of the data available
in a primary school setting are sufficiently informative for deciding which is the most appropriate
vocational training, leading to particularly poor results for assessing which of the several possible
”vmbo” classes is most appropriate for any given pupil.

The results of this study should be interpreted with caution, given that it is based on a
pared‐down causal graph. Even though a lot of literature studies are incorporated in the
construction of it, the causal graph still carries a lot of assumptions. A further extended analysis
would be required to examine every causal link in this graph to asses the objective support for its
existence, which holds both for the full causal graph and the pared‐down version of it. This is
especially of concern when counterfactuals are tested on a graph. This is especially the case
because in this study the evidence for causal relationships is analysed using approximate
inference instead of exact inference, for ease of computation and also for inferring unobserved
variables. Besides, the way the unknown variable 𝑈 (intelligence) is inferred is the inverse of
what happens in real life, where 𝑈 has a causal effect on the attributes 𝐿, 𝑇, 𝐸 𝐹 and 𝑌. When
assuming the causal graph, we assume 𝑈 is an exogenous variable that can only be explained by
effects outside of the model. However, in this study, since it is believed that 𝑈 has an effect on all
its child nodes, and 𝑈 is restricted to be of a lower dimension, 𝑈 is believed to hold high
dimensional features of 𝐿, 𝑇, 𝐸 𝐹 and 𝑌. Another note should be taken of the fact that this study
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was not able to use 𝑌 for the inference of 𝑈 for out‐of‐sample prediction purposes. Some
information for inferring 𝑈 is lost this way. Yet, given these shortcomings, some information is
stored in the variable 𝑈 as indicated by the performance of the model with as only input 𝑈.

The findings of this study are also limited by the possible selection bias that occurred by dropping
pupils that contained missing data (see Footnote 1). For example, it is known that for immigrants
less data on highest attained education is available at CBS (CBS, 2021). In addition, CBS does not
possess data on non‐subsidised education and education taken abroad. Selection bias occurs
when the sample is not a good representative of the whole population and although CBS has
records on all pupils in the Netherlands, only a part of the data is used for the analysis. Besides,
the models were less accurate on smaller groups, for example in pupils that ended up in
”vmbo‐b” and ”vmbo‐g”, due to sample size disparity. The educational level ”vmbo” was divided
into the four subgroups to include all possibilities and to resemble reality. For future research, it
would be interesting to see if combining them would solve the problem. During the testing of the
models, it became apparent that all models were worse at predicting pupils from the ethnicity
groupsMoroccan, Surinamese, Dutch Antillean and Aruban and Turkish. This result may be
explained by the fact that the outcome for these groups is the most distinctive. The same can
happen for minority groups in decision making problems in the real world (Sandoval and Miille,
1980).

3 Conclusions

The aim of this research is to explore how causality inference can play a role in improving the
evidence base for evidence‐based governance. In essence the use of causality inference would
be the next step. Beyond merely identifying correlations and trends, which are currently routine
activities for national statistical institutes, it would be worthwhile to explore what evidence there
is for those correlations to be causal in character. Given the context that national statistical
institutes by their very nature work in, controlled, isolated experiments are not possible to
perform. At least there is no feasible route to do so by design, although in some cases ’natural
experiments’ in the sense of Imbens and Rubin (2015) may be available. The availability at CBS of
many good quality time series can be of some help to assess Granger or predicitive causality, as is
demonstrated in section 1, but does require a solid foundation in the sense that all relevant time
series ought to be taken into account. A systematic process for identifying which variables are
required is through the construction of causal graphs.

In the design of such causal graphs, and testing this design for correctness, another form of
causality, counterfactual causality can play a role especially if large cross‐sectional datasets are
available so that the multivariate data space is covered well. The techniques of counterfactual
analysis are becoming more prevalent, see e.g. Piccialli et al. (2023) for a very recent example in
machine learning. For the case study presented here a paricular form of that, counterfactual
fairness, is employed to explore potential biases in the decision process which leads to school
level advice.

It bears repeating from the concluding paragraph of sect. 2.2.1 that the analysis in the paper is
exploratory. The primary purpose here is to demonstrate the technique and therefore a choice is
made to work with a pared‐down version of the full causal diagram. A more complete analysis
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would certainly appear to be worthwhile but is beyond the scope of this research. The actual
(un)fairness of the Dutch education system should only be judged on the basis of a more
complete causal model and not on the pared‐down version analysed here.

The case study on fairness demonstrates that counterfactuals can be used to get an estimation of
fairness, which is therefore a viable alternative as it is not possible to do interventions on the real
world system to get answers on fairness questions. In general, it seems that predicting the
educational level of pupils three years ahead is a difficult task. This study indicates that including
additional attributes for predicting the outcome (besides intelligence), increased the accuracy
but lowered the fairness of the model. These extra attributes that appear to be good predictiors
of the educational level, might also be considered unfair, like socio‐economic status
(Timmermans et al., 2018) or situation at home (Bijl, 2020), but this also depends on normative
notions of fairness. These results, and also the indirect indications from e.g. the amount of
switching between school levels of pupils, indicate that estimating future education at the age of
12 might be too early.

Further work is required to replicate and validate this specific counterfactual fairness application.
Besides, multiple causal models can be put forward and tested. Regarding fairness in the
education domain, while this study offered multiple ML models with different input selections,
future research could identify fair pathways to ultimately construct ML models. Experts can be
interviewed for this purpose, which was outside the scope of the current study. The location of
schools can also be considered in future research, as the bias might differ between cities and
villages (Vogels et al., 2021). Especially in cities with ”superdiversity” like in Amsterdam, where
63% of the pupils have a non‐Dutch ethnicity (Crul, 2016), bias in the selection procedure
remains an important issue.
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I Dutch Laws on Equality and
Education
Article 1 of the Dutch constitution states equal treatment of individuals in equal circumstances
and prohibition of discrimination of individuals on the grounds of religion, belief, political
opinion, race or sex or any other grounds (Nederlandse Overheid, 1815):

Art. 1
Allen die zich in Nederland bevinden, worden in gelijke gevallen gelijk behandeld. Discriminatie
wegens godsdienst, levensovertuiging, politieke gezindheid, ras, geslacht of op welke grond dan
ook, is niet toegestaan.

The law is further elaborated on in the Algemene wet gelijke behandeling (Equal Treatment Act)
(Nederlandse Overheid, 1994).
Article 23 of the Dutch constitution states that the government is responsible for education (both
private and public), that everyone is free to give education and that the government should
monitor the quality of education (Nederlandse Overheid, 1815). Besides, children in the
Netherlands are obligated to follow education by the Leerplichtwet 1969 (Compulsory Education
Act) (Nederlandse Overheid, 1968).
In addition, Article 28 and Article 29 of the United Nations Convention on the Rights of the Child
specify the right of education for each child and optimal development of the child’s potential,
respectively (United Nations, 1989):

Article 28
1. States Parties recognize the right of the child to education, and with a view to achieving this
right progressively and on the basis of equal opportunity, they shall, in particular:
(a) Make primary education compulsory and available free to all;
(b) Encourage the development of different forms of secondary education, including general and
vocational education, make them available and accessible to every child, and take appropriate
measures such as the introduction of free education and offering financial assistance in case of
need;
(c) Make higher education accessible to all on the basis of capacity by every appropriate means;
(d) Make educational and vocational information and guidance available and accessible to all
children;
(e) Take measures to encourage regular attendance at schools and the reduction of drop‐out
rates.
2. States Parties shall take all appropriate measures to ensure that school discipline is
administered in a manner consistent with the child’s human dignity and in conformity with the
present Convention.
3. States Parties shall promote and encourage international cooperation in matters relating to
education, in particular with a view to contributing to the elimination of ignorance and illiteracy
throughout the world and facilitating access to scientific and technical knowledge and modern
teaching methods. In this regard, particular account shall be taken of the needs of developing
countries.
Article 29
1. States Parties agree that the education of the child shall be directed to:
(a) The development of the child’s personality, talents and mental and physical abilities to their
fullest potential;
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(b) The development of respect for human rights and fundamental freedoms, and for the
principles enshrined in the Charter of the United Nations;
(c) The development of respect for the child’s parents, his or her own cultural identity, language
and values, for the national values of the country in which the child is living, the country from
which he or she may originate, and for civilizations different from his or her own;
(d) The preparation of the child for responsible life in a free society, in the spirit of understanding,
peace, tolerance, equality of sexes, and friendship among all peoples, ethnic, national and
religious groups and persons of indigenous origin;
(e) The development of respect for the natural environment.
2. No part of the present article or article 28 shall be construed so as to interfere with the liberty
of individuals and bodies to establish and direct educational institutions, subject always to the
observance of the principle set forth in paragraph 1 of the present article and to the requirements
that the education given in such institutions shall conform to such minimum standards as may be
laid down by the State.
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