Discussion Paper

Modelling mobility trends - update including 2022 ODiN data and Covid effects

Harm Jan Boonstra
Jan van den Brakel

October 24, 2023

Contents

1 Introduction 4
2 Data sources 6
3 Direct estimates 8
3.1 Point estimates 8
3.2 Variance estimates 9
3.3 Transformations of input series 11
3.4 Smoothing the standard errors of the direct estimates 12
3.5 Bias correction 13
4 Time series multilevel modelling 14
4.1 Model structure 15
4.2 Model estimation 17
5 Model building, selected models, and model prediction 17
5.1 Time series multilevel model for the number of trip legs 19
5.2 Time series multilevel model for distance per trip leg 20
5.3 Trend estimation and derived estimates 21
6 Results 23
6.1 Trip legs 23
6.2 Distance 25
6.3 Model alternatives 26
7 Discussion 27
A Time series plots model-based and direct estimates 34
A. 1 Total number of trip legs per day 34
A. 2 Total distance per day 38
A. 3 Number of trip legs per person per day 42
A. 4 Average distance per trip leg 124
A. 5 Average distance per person per day 206

Abstract

This work is carried out by Statistics Netherlands in collaboration with the Netherlands Institute for Transport Policy Analysis (KiM)/Rijkswaterstaat as an extension to the trend series projects carried out in 2018-2022, in which time series multilevel models have been developed for estimating mobility trends. In the current extension, new data from the Dutch Travel Survey (DTS) over 2022 are added to the series, providing a fifth year of data under the new ODiN design of the DTS. This means there is more data on which estimates of the discontinuities associated with the latest redesign can be based. However, the mobility in 2020, 2021 and to a somewhat lesser extent also in 2022, was strongly influenced by the Covid-19 pandemic. For that reason, the model also includes Covid effects. The model has been updated to allow for different Covid effects for 2022 compared to those for 2021 and 2020.
We describe the updated models for the two target variables considered: the number of trip legs per person per day and the distance travelled per trip leg. The models are specified in a hierarchical Bayesian framework and estimated using a Markov Chain Monte Carlo simulation method. From the model outputs trend estimates are computed at various aggregation levels for the mean number of trip legs per person per day and the mean distance traveled per trip leg, as well as for derived quantities such as the mean distance per person per day. The model accounts for the discontinuities due to changes in measurement bias induced by various redesigns over the period between 1999-2023. The estimated trend series are benchmarked towards the measurement level of the latest (ODiN) design.

1 Introduction

The Dutch Travel Survey (DTS) is a long-standing annual survey on mobility of residents of the Netherlands. It is carried out by Statistics Netherlands (CBS), and important users of the data are, among others, Rijkswaterstaat and The Netherlands Institute for Transport Policy Analysis (KiM, Kennisinstituut voor Mobiliteitsbeleid), both part of the Ministry of Infrastructure and Water Management.

Since 1985, the DTS survey has undergone several redesigns. The redesigns in 1999, 2004, 2010 and 2018 have caused major discontinuities in the time series of mobility estimates. In 2004 the design actually remained largely unchanged, but its implementation was transferred to another agency, causing several changes in the observed series. For brevity, however, we will mostly also refer to this transition as a 'redesign'.

For users of mobility estimates the changes due to redesigns are very inconvenient as they hamper the temporal comparability. For the redesign of 1999 direct information was available on the sizes of the discontinuities, based on a parallel conducted pilot study. This has been used to correct the series of estimates prior to 1999 to the level of the estimates under the new design. For the redesigns of 2004, 2010 and 2018 such parallel studies have not been carried out, so in order to estimate the discontinuities a time series model is needed, see van den Brakel et al. (2020). The time series models developed in the current trend estimation project aim to account for the discontinuities due to the redesigns, such that reliable series of trend estimates are obtained with good comparability over time.
Another issue addressed in the trend estimation project is the fact that estimates are desired for a breakdown into many domains, meaning that for each domain determined by both person characteristics (sex and age class) and trip characteristics (purpose and transportation mode) reliable time series of estimates are to be produced. So not only the discontinuities in each of these series should be accounted for, but in addition the amount of data directly relevant to an estimation domain in a specific year is often so small that direct estimates are very noisy and unreliable. The time series of such direct estimates display a lot of volatility caused by the large variances. The time series models developed are able to reduce the noise and yield model estimates that are more precise than the direct estimates by 'borrowing strength' over time as well as over multiple domains. Here the 'borrowing of strength' over domains is brought about by using multilevel time series models with random effects for several levels defining the domains. Within the field of official statistics, the framework of using models to improve on the accuracy of direct estimates for domains of interest is known as small area estimation, see Rao and Molina (2015) for an overview.

The overall purpose of the mobility trends project has been described by the initiators of the project (KiM, Rijkswaterstaat, CBS) as 'Development of a statistical methodology that can derive reliable trend estimates from OVG-MON-OViN-ODiN sample data for the most prevalent mobility data and that deals in a robust way with discontinuities due to redesigns of the survey process and sample noise.' Here OVG, MON, OViN and ODiN refer to the various names used for the DTS during periods with different survey designs. To achieve the purpose as described, time series multilevel models are employed to fit the input data, consisting of direct estimates and estimated standard errors compiled from the DTS survey data. The resulting trend estimates are used by KiM for example in
their publication 'Mobiliteitsbeeld' containing actual figures, trends, and expectations about mobility in the Netherlands. The trend estimates are also published on Statistics Netherlands' publication database StatLine, along with the regular annual output based on the DTS. Starting from 2022 the trend estimates are corrected to the ODiN design measurement level, where previously all estimates were corrected to the OViN design measurement level. This means that many trend series of number of trip legs and distance per trip leg are now estimated slightly higer than before 2022, since the change-over from OViN to ODiN in general has had an upward effect on the sample-based estimates. One plausible reason for these changes is that under the OViN design there was more under-reporting of trips. Another reason is that under ODiN the definition shifted to also include domestic holiday mobility.
The two target variables that are modelled using time series multilevel models are:

- number of trip legs per person per day (pppd)
- distance per trip leg (in hectometers)

A trip for a certain purpose may consist of several trip legs characterized by different transportation modes. Estimates are computed for domains defined by a
cross-classification of some or all of the following classification variables:

- sex (male, female)
- age class (6-11, 12-17, 18-24, 25-29, 30-39, 40-49, 50-59, 60-64, 65-69, 70+)
- purpose ("Work", "Shopping", "Education", "Leisure", "Other")
- mode ("Car driver", "Car passenger", "Train", "BTM (bus/tram/metro)", "Cycling", "Walking", "Other")
Age group 0-5 is no longer included, as this group is not observed anymore under the ODiN design, which started in 2018. This means that aggregate estimates now always refer to the population of people aged 6 and over.

The time series multilevel models are defined at the most detailed level, corresponding to the full cross-classification of sex, age class, purpose and mode, giving rise to $2 \times 10 \times 5 \times 7=700$ estimates for a particular year, although some of them such as car-driving or working for young children are structurally zero.

As observed in an earlier project phase, modeling all discontinuities as fixed effects generally results in overestimated discontinuities (Bollineni-Balabay et al., 2017). To reduce the risk of overestimated discontinuities and overfitting in general, we model many effects including discontinuities associated with the design transitions as random effects instead. In particular, a regularization method that employs non-normally distributed random effects is used to suppress noisy model coefficients and at the same time allow large effects sufficiently supported by the data. Outliers in the input series of direct estimates are also modelled, either by adopting a sampling distribution with broader than normal tails or by modelling them explicitly as additional random effects, which are subsequently removed from the trend estimates.

In Boonstra et al. $(2019,2021,2022)$ previous results on model development and mobility trend estimates based on the DTS are described. In this report we update these results after including the latest DTS data over 2022.

The effects that the Covid-19 pandemic has had on mobility in 2020 turned out to be too sudden and too large for the time series models developed before 2021 to accommodate them. Therefore in Boonstra et al. (2021) the models have been extended by including Covid effects for the year 2020. Omission of such effects would adversely affect the estimation of smooth trend model components and discontinuities corresponding to the

ODiN redesign. The inclusion of ODiN 2021 data made it clear that Covid had slightly different (generally smaller) effects in 2021, making it necessary to differentiate between Covid 2020 and 2021 effects in the model (Boonstra et al., 2022). It turns out that Covid-19 affects mobility in 2022 still differently. In many cases mobility levels have shifted somewhat back towards pre-Covid levels, but for a large number of domains Covid effects are still clearly visible. The model has therefore been updated so that it now differentiates between Covid effects of 2020, 2021 and 2022. It can be expected that Covid will have lasting effects on mobility, e.g. because of an increase in working from home. So far we do not distinguish between lasting and transient effects of Covid.

The remainder of this report is organized as follows. Section 2 describes the data sources used including a brief overview of the different redesigns the DTS has undergone. In Section 3 the computation of direct estimates and variance estimates from the DTS survey data is discussed, along with transformations of direct estimates and the Generalized Variance Function approach for smoothing the variance estimates, which both improve model fitting. Section 4 describes the hierarchical Bayesian time series multilevel modeling framework. The (updated) models for trip legs and distance are presented in Section 5 . Section 6 provides a discussion of the trend estimates based on the estimated models. The paper concludes with a discussion in Section 7. The appendices contain figures of the estimated trend series based on the models developed.

2 Data sources

The DTS is an annual survey that attempts to measure the travel behaviour of the Dutch population. Each year, a sample is drawn with sampling units being defined either as households (before 2010), or persons (since 2010). The variables of interest considered in this study are the number of trip legs and the distance traveled. Direct estimates for these quantities can be obtained using the survey weights that are computed for each year's response data. The survey weights account for the sampling design and reduce bias due to non-response, and the estimates based on them correspond to the general regression (GREG) estimator, see e.g. Särndal et al. (1992).

The DTS started in 1978, and originally was known under the (Dutch) name Onderzoek Verplaatsingsgedrag (OVG). It started off as a face-to-face household survey where each household member of 12 years or older was asked to report his/her mobility for two days. In 1985 the first large redesign took place. Interview modes changed to telephone and postal, and respondents reported their mobility for one specific day. This redesign led to discontinuities in the annual series of some of the statistics based on OVG. In 1994 the sample size of the DTS was substantially increased and from that year on children under 12 years old have also been included in the surveyed population of interest. In 1999, the DTS went through the second major redesign that featured some response motivation and follow-up measures. In preparation to this redesign a pilot based on the new design was conducted in 1998 in parallel with the survey under the old design. Based on the parallel surveys, correction factors were computed to correct the 1985-1998 OVG to the level of the new OVG. In 2004, the data collection for the survey was transferred to another agency. The survey design remained largely unchanged except for smaller sample sizes and some methodological changes. This 2004 transition also gave rise to discontinuities in some of the series, notably those disaggregated by
purpose. The DTS during the period from 2004 until the next major redesign in 2010 is referred to as MON (Mobiliteitsonderzoek Nederland). Since 2010 the DTS has been conducted by Statistics Netherlands again. In 2010 the survey changed to a person survey, and a sequential mixed mode design with face-to-face, telephone and web modes was established. This changeover led to sizeable discontinuities in many series. The years 2010 to 2017 constitute the OViN (Onderzoek Verplaatsingen in Nederland) period of the DTS. For more information on the history of the DTS and the changes resulting from the redesigns, we refer to Konen and Molnár (2007), Molnár (2007) and Willems and van den Brakel (2015).

Starting from 2018 the current design, named ODiN (Onderweg in Nederland), is in place. In ODiN several changes have been adopted, most of which can have systematic effects on the level of the observed mobility characteristics. Among the most important changes are

- The questionnaire has been completely redesigned.
- Children aged 0-5 are no longer surveyed.
- The definition of 'regular' mobility, which is the definition used in most DTS-based publications, has changed, and now includes domestic holiday and professional mobility. Flight trips are no longer observed in ODiN.
- ODiN is a CAWI-only survey, where OViN used a sequential mixed-mode CAWI-CAPI/CATI strategy. To boost response rates incentives in the form of (a chance to win) electronic gadgets are used.
- A new weighting scheme is used to better account for the changed composition of the response due to the design changes, including changes in regional oversampling.
The DTS only considers mobility within the Netherlands. Also, the DTS uses the concept of regular mobility, which until 2017 excluded holiday mobility as well as professional transport mobility. As mentioned, however, the definition of regular mobility has changed under the ODiN redesign and now includes both domestic holiday and professional mobility. In the case of professional mobility, the data allow to identify such trips, and it was decided to exclude professional mobility, to be more consistent with the definition of mobility used previously in the trend estimation project. However, the ODiN questionnaire design does not easily allow to remove the observed domestic holiday mobility. This means that the ODiN discontinuities will include the effects of this change in mobility definition.
For the OViN years the data contain a small number of trips for children under the age of 12 with purpose "Work", and we have changed this to purpose "Other". Flight trips are also removed from the data, because they are no longer reported in ODiN and because they gave rise to some unstable estimates of distance travelled for mode "Other". Since 2022 trend estimates are no longer produced for age group 0-5 years, since it is no longer observed under the ODiN design. It would be possible to still use the older estimates for this age class and keep extrapolating, while also borrowing some strength from neighbouring age class 6-11, but the resulting time series would become more and more uncertain.

Even though the DTS dates back to 1978, it was decided in Boonstra et al. (2019) to only use DTS data starting from 1999, the first year of the new OVG survey. This turned out to be sufficient for the purpose of obtaining reliable trends over the last 15 years or so. It also means that the large discontinuities arising from the 1999 redesign need not be modelled.

It is considered important that mobility trend estimates based on the DTS are in line with
external data sources on mobility. Such information has been used in a plausibility analysis, and a few external sources have also been considered for use as auxiliary information in the time series models used for trend estimation. One such source is a time series of annual total passenger train kilometers based on passenger surveys run by the Dutch railways NS. These series also include data on train rides by other private companies active in the Netherlands. Another relevant data source is the time series of car-kilometers compiled by Statistics Netherlands based on data from Nationale Autopas (NAP). This series includes kilometres driven abroad but nevertheless it is a potential covariate for the time series models based on the DTS. Also, annual figures of a set of weather characteristics collected by the Royal Netherlands Meteorological Institute (KNMI) have been considered as additional auxiliary series. Of these, the annual number of snow days is currently used in the trend model for the number of trip legs.

3 Direct estimates

To base a time series model for mobility trends directly on the micro-data from all years would require a rather complex model that must account for sampling design, non-response, different aggregation levels of interest, discontinuities, time trends, etc, all at once, which would pose significant computational challenges. Instead we follow a two-step estimation procedure often used in small area estimation. In the first step estimates and variance estimates of the target variables are obtained directly from each year's micro-data, at the most detailed aggregation level of interest. Here we make use of the existing survey weights, accounting for sampling design and non-response. In the second step these so-called 'direct estimates' serve as input for a time series model, which can be used to compute improved estimates of mobility accounting for possible discontinuities caused by the redesigns. This section outlines the computation of the direct estimates from the OVG-MON-OViN-ODiN survey data, see also Boonstra et al. (2019).

The direct estimates are computed for all years from 1999 until 2022 for trip legs pppd and distance per trip leg. This results in two tables of 700 series of direct estimates at the most detailed breakdown level considered.

3.1 Point estimates

Point estimates are readily computed using the existing survey weights. First consider the number of trip legs, and let r_{i} denote the number of trip legs reported by person i for the surveyed day. The average number of trip legs pppd is then estimated by

$$
\begin{equation*}
\hat{R}=\frac{\sum_{i \in s} w_{i} f_{i} r_{i}}{\sum_{i \in s} w_{i} f_{i}} \tag{1}
\end{equation*}
$$

where the sums run over respondents, w_{i} are person weights satisfying $\sum_{i \in s} w_{i}=N$ with N the total population size, and f_{i} is a so-called vacation factor. The latter take values slightly less than 1 , and are used to account for vacation mobility. The vacation factors are based on estimates obtained from the CVO (Continu Vakantieonderzoek) survey. They can be derived from the 'trip weights' v_{i} as

$$
\begin{equation*}
f_{i}=\frac{v_{i}}{D w_{i}} \tag{2}
\end{equation*}
$$

where D is the number of days in a year. The estimates (1) can be written more compactly in terms of the trip weights as

$$
\begin{equation*}
\hat{R}=\frac{\sum_{i \in s} v_{i} r_{i}}{\sum_{i \in s} v_{i}} \tag{3}
\end{equation*}
$$

The vacation factors have been used for official publications based on OVG, MON and OViN. In ODiN the vacation factors are no longer used, since a correction for non-response bias regarding vacation mobility is now integrated into the person weights w_{i} by using estimated population totals from CVO in the weighting scheme directly.
For the second target variable of interest, distance, we estimate the average distance per trip leg by

$$
\begin{equation*}
\hat{A}=\frac{\sum_{i \in s} w_{i} f_{i} a_{i}}{\sum_{i \in s} w_{i} f_{i} r_{i}}=\frac{\sum_{i \in s} v_{i} a_{i}}{\sum_{i \in s} v_{i} r_{i}} \tag{4}
\end{equation*}
$$

where a_{i} is the total distance for person i for all trip legs.
For estimates by mode and/or purpose, each particular category defines specific variables r and a referring only to the trip legs in that category, so that equations (1) and (4) still apply. For (further) subdivisions with regard to the person characteristics sex and age class, it is convenient to introduce a dummy variable δ_{i} for each combination of sex and age class, being 1 if person i belongs to this group and 0 otherwise, and then write instead of (1) and (4),

$$
\begin{align*}
& \hat{R}=\frac{\sum_{i \in s} w_{i} f_{i} \delta_{i} r_{i}}{\sum_{i \in s} w_{i} f_{i} \delta_{i}} \tag{5}\\
& \hat{A}=\frac{\sum_{i \in s} w_{i} f_{i} \delta_{i} a_{i}}{\sum_{i \in s} w_{i} f_{i} \delta_{i} r_{i}} .
\end{align*}
$$

By using δ_{i} also in the denominator of \hat{R}, we obtain estimates of the means per sex, age class combination. Note that the denominator of \hat{R} does not depend on any selection of purpose or mode.
As mentioned in the Introduction, at the most detailed level, each target variable gives rise to a set of 700 estimates per year, corresponding to the full cross-classification of person characterics sex and age class and trip characteristics purpose and mode. Some of the 700 domains are, however, non-existent. We refer to these domains as structural zeros, since the number of trips in these domains is zero by definition. This concerns the following domains: age 6-11 in combination with mode "Car driver" or purpose "Work" and age 12-17 mode car driver before 2011. Starting from 2011 it is possible to drive a car from age 17, and this can be seen in the data. Distances per trip leg corresponding to structural zero trip legs are undefined, and therefore missing in the set of direct estimates. Other occasional zeros for trip legs and missings for distance per trip leg occur in some years for 'rare domains' such as education for the elderly. These accidental zeros and missings will be filled in by the predictions based on the time series models.

3.2 Variance estimates

For variance estimation we distinguish between person surveys (OViN, ODiN) and household surveys (OVG, MON). For the latter, the household is the unit of sampling. Observations from persons from the same household cannot be regarded as independent. For example, distances travelled by young children and their parents are often correlated, depending on purpose and mode. Variance estimates should account for the dependence between persons clustered within households.

First write estimates (1) and (4) in the general form

$$
\begin{equation*}
\hat{Y}=\frac{\sum_{i \in s} w_{i} y_{i}}{\sum_{i \in s} w_{i} z_{i}} \tag{6}
\end{equation*}
$$

which is a ratio of two population total estimates based on person weights w_{i}. For the average number of trip legs pppd, $y_{i}=f_{i} r_{i}$ and $z_{i}=f_{i}$; for the average distance per trip leg, $y_{i}=f_{i} a_{i}$ and $z_{i}=f_{i} r_{i}$.
Basic estimates of the sampling variances of \hat{Y} that ignore the variation of the weights, finite population corrections and the variance of the denominator, are given by

$$
\begin{equation*}
v_{0}(\hat{Y})=\frac{1}{\left(\sum_{i \in s} w_{i} z_{i}\right)^{2}} \frac{N^{2}}{n} S^{2}(y) \tag{7}
\end{equation*}
$$

where n is the number of respondents, $S^{2}(y)=\frac{1}{n-1} \sum_{i \in s}\left(y_{i}-\bar{y}\right)^{2}$ is the sample variance of y, with $\bar{y}=\frac{1}{n} \sum_{i \in s} y_{i}$ the sample mean of y.
These variance estimates are improved by taking into account (i) the variance of the denominator, (ii) the variance inflation due to variation of the weights (Särndal et al., 1989), and (iii) the variance reducing effect of some covariates used for stratification or weighting. The variance estimates incorporating all three improvements are computed as (see e.g. Särndal et al. (1992))

$$
\begin{align*}
v(\hat{Y}) & =\frac{n}{\left(\sum_{i \in s} w_{i} z_{i}\right)^{2}} S^{2}(w e) \\
e_{i} & =e_{i}^{y}-\hat{Y} e_{i}^{z} \\
e_{i}^{y} & =y_{i}-x_{i}^{\prime} \hat{\beta}^{y} \\
\hat{\beta}^{y} & =\left(\sum_{i \in s} x_{i} x_{i}^{\prime} / u_{i}\right)^{-1} \sum_{i \in s} x_{i} y_{i} / u_{i} \tag{8}\\
e_{i}^{z} & =z_{i}-x_{i}^{\prime} \hat{\beta}^{z} \\
\hat{\beta}^{z} & =\left(\sum_{i \in s} x_{i} x_{i}^{\prime} / u_{i}\right)^{-1} \sum_{i \in s} x_{i} z_{i} / u_{i}
\end{align*}
$$

Here $S^{2}(w e)$ is the sampling variance of $w_{i} e_{i}$, where e_{i} are generalized residuals, defined in terms of regression residuals e_{i}^{y} for y and e_{i}^{z} for z. The regressions are based on vectors of covariates x_{i} and a positive variance factor u_{i}. For the persons survey case we use $u_{i}=1$.
For the regressions defining the residuals in (8), the following covariate model is used:
$h h s i z e+$ province + sex $*$ ageclass + urbanisation + month + weekday + fuel in which hhsize is the number of persons in a household, ageclass is as defined in the Introduction, urbanisation is the degree of urbanisation of the residential municipality in 5 classes, month is the survey month, weekday the day in the week the response refers to, and fuel is the fuel type of the car used by the respondent in three classes: petrol, other or none if the respondent doesn't use a car. These covariates represent an important subset of variables that have been used for stratification and weighting of the survey data over the years.

The variance formula (8) can be used for any variables y and z in (6) so it applies to all estimates by any combination of trip characteristics purpose, mode and person characteristics sex and age class.

We have compared the simple variance estimates computed with (7) with the refined ones based on (8), and observed that the differences are mostly modest but not generally negligible. The most important refinement turns out to be the variance inflation due to the variation of weights. This clearly increases the variance estimates for domain estimates based on widely varying weights.
For the years before 2010, when the surveys were conducted as household surveys, the same formulas can be used, with the understanding that the unit index i refers to households. In that case y_{i}, z_{i} refer to weighted household totals, the weights w_{i} to the average of the person weights within a household, and x_{i} to household totals of the weighting covariates. The regression variances u_{i} are taken equal to the household size, and n in (8) becomes the number of responding households. We refer to Boonstra et al. (2018) for further details as well as for plots of the direct estimates and their standard errors for trip legs and distance at several aggregation levels. These plots show that for 'common domains' such as purpose "Work" for age classes 30-39, 40-49, standard errors are stable and rather small. For rare domains the standard errors are on average much larger, and, like the point estimates, volatile and sometimes missing. Boonstra et al (2018) also contains a short discussion about the covariances/correlations between the direct estimates within each year. Most of these cross-sectional correlations are small, but there are some large positive and negative ones. The largest positive correlations occur between estimates for modes that are often combined in a single trip, like "Walking" and "Train", while most negative correlations occur between modes that are rarely combined such as "Car driver" and "Cycling". Furthermore, in OVG/MON years, there are some more positive correlations induced by the household clustering, for example between estimates for parents ("Car driver") and children ("Car passenger") and purpose "Shopping" or "Other". The effect of the cross-sectional correlations on the (standard errors of) the trend estimates was tested using a simplified multilevel time series model and found to be quite small in that case. Due to computational issues we have not been able to use the full correlation matrices of the input estimates in the full time series models used to compute the trend estimates, although we expect to see only a small effect there as well.

3.3 Transformations of input series

The direct estimates and standard errors of the number of trip legs and the distances serve as input for the multilevel time series models used to obtain more accurate and robust trend series. In Boonstra et al. (2019) it was found that instead of directly modeling the direct estimates it is better to first apply a transformation to these input estimates. Using a square-root transformation for trip legs and a log-transformation for distance was seen to improve both model fits as well as the convergence of the simulation-based model fitting procedure. These transformations also reduce the dependence between direct point estimates and standard errors. After fitting the model the inverse transformation is applied to produce the trend estimates, as detailed in Subsection 5.3.
Let $\hat{Y}_{i t}$ denote the direct estimate for year t and domain i of the number of trip legs or distance. For the trip legs variable a square-root transformation is used: $\hat{Y}_{i t}^{\text {sqrt }} \equiv \sqrt{\hat{Y}_{i t}}$. A first-order Taylor linearisation yields approximated standard errors $\operatorname{se}\left(\hat{Y}_{i t}^{\text {sqrt }}\right)=\operatorname{se}\left(\hat{Y}_{i t}\right) /\left(2 \sqrt{\hat{Y}_{i t}}\right)$. Note that these standard errors are undefined for domains without observed trips (zero point estimate and standard error), but this is no problem
as they are imputed using a Generalized Variance Function (GVF) smoothing model, as described below.
For the distance variable a logarithmic transformation is used: $\hat{Y}_{i t}^{\log } \equiv \log \hat{Y}_{i t}$, which is well-defined as all distance input estimates are positive. Standard errors for the transformed data are approximated by first-order Taylor linearisation:
$s e\left(\hat{Y}_{i t}^{\mathrm{log}}\right)=\operatorname{se}\left(\hat{Y}_{i t}\right) / \hat{Y}_{i t}$.

3.4 Smoothing the standard errors of the direct estimates

The time series models considered regard the (transformed) direct point estimates as noisy estimates of a true underlying signal. However, the accompanying variance estimates are largely treated as fixed, given quantities by the model. As the variance estimates can be very noisy due to the detailed estimation level, it is wise to smooth them before using them in the model. That way they better reflect the uncertainty of the direct estimates. The most obvious defect of the estimated standard errors is that they are zero in case of zero or one contributing sampling unit. ${ }^{1)}$ This is correct for the structural zero domains, but it does not reflect the actual uncertainty about the accidental zero estimates for number of trip legs. For distance, the most problematic estimates are the zero variance estimates in case of a single contributing sampling unit. If there are no contributing sampling units for a certain domain then the direct distance estimate is treated as missing.

The models considered for smoothing the variance estimates are simple regression models relating the variance estimates to a few predictors such as sample size, design effects, and point estimates. Such models are known as Generalized Variance Function (GVF) models in the literature, see Wolter (2007), Chapter 7. As in Boonstra et al. (2019) the GVF smoothing models are applied to the transformed standard errors. The predictions from the GVF models are then used as (smoothed) standard errors accompanying the transformed direct estimates as input for the time series multilevel models. In particular, this yields reasonable standard errors for domains with no observed trips.
Let $\hat{Y}_{t i j k l}^{\mathrm{tr}}$ denote either the sqrt-transformed direct estimates for trip legs or the log-transformed estimates for distance, for year t, sex i, age class j, purpose k and mode l. For both target variables we use the same GVF smoothing model

$$
\begin{equation*}
\log \operatorname{se}\left(\hat{Y}_{t i j k l}^{\mathrm{tr}}\right)=\alpha+\beta \log \tilde{Y}_{t i j k l}^{\mathrm{tr}}+\gamma \log \left(m_{t i j k l}+1\right)+\delta \log \left(\operatorname{deff}_{t i j k l}\right)+\epsilon_{t i j k l} \tag{9}
\end{equation*}
$$

where $m_{t i j k l}$ is the number of sampling units (households or persons, depending on the survey year) contributing to domain (i, j, k, l) in year t, and

$$
\begin{equation*}
\operatorname{deff}_{t i j k l}=1+\frac{\operatorname{var}(w)_{t i j k l}}{\bar{w}_{t i j k l}^{2}} \tag{10}
\end{equation*}
$$

is the design effect of the survey weights, in which the second term is the squared coefficient of variation of the weights of the contributing units to a specific year and domain. ${ }^{2)}$ This factor accounts for the variance inflation due to the variation of the weights. Since we cannot trust the direct estimates for very small $m_{t i j k l}$, the $\tilde{Y}_{t i j k l}^{\mathrm{tr}}$ on

[^0]| predictor | coefficient | estimate | se |
| :---: | :---: | :---: | :---: |
| 1 | α | -0.624 | 0.010 |
| $\log \tilde{Y}_{t i j k l}^{\text {sqrt }}$ | β | 0.956 | 0.003 |
| $\log \left(m_{t i j k l}+1\right)$ | γ | -0.507 | 0.001 |
| $\log \left(\operatorname{deff}_{t i j k l}\right)$ | δ | 0.361 | 0.006 |

Table 3.1 Estimated coefficients of the GVF model (9) for number of trip legs.

predictor	coefficient	estimate	se
1	α	-0.931	0.019
$\log \tilde{Y}_{t i j k l}^{\log }$	β	0.200	0.010
$\log \left(m_{t i j k l}+1\right)$	γ	-0.334	0.002
$\log \left(\operatorname{deff}_{t i j k l}\right)$	δ	0.119	0.026

Table 3.2 Estimated coefficients of the GVF model (9) for distance per trip leg.
the right hand side of (9) are simple smoothed estimates

$$
\begin{align*}
\tilde{Y}_{t i j k l}^{\mathrm{tr}} & =\lambda_{t i j k l} \hat{Y}_{t i j k l}^{\mathrm{tr}}+\left(1-\lambda_{t i j k l}\right) \hat{Y}_{\cdot . j k l}^{\mathrm{tr}} \\
\lambda_{t i j k l} & =\frac{m_{t i j k l}}{m_{t i j k l}+1} \tag{11}
\end{align*}
$$

where $\hat{Y}_{. j k l}^{\mathrm{tr}}$ denotes the mean of $\hat{Y}_{t i j k l}^{\mathrm{tr}}$ over the years and sexes. For $m_{t i j k l}=0$ this replaces the estimate by the mean over year and sex for the same age class, purpose and mode. For $m_{t i j k l}=1$ the average of this mean and the estimate itself is used, and for large $m_{t i j k l}$ essentially the original point estimate is used.
The regression errors $\epsilon_{t i j k l}$ are assumed to be independent and normally distributed with a common variance parameter σ^{2}. The GVF models are fitted to the non-zero standard errors of the transformed direct estimates. Summaries of the estimated model coefficients for trip legs and distance are given in Tables 3.1 and 3.2. The predicted (smoothed) standard errors based on the fitted models are

$$
\begin{align*}
& s e_{\text {pred }}\left(\hat{Y}_{t i j k l}^{\mathrm{tr}}\right)= \\
& \quad \exp \left(\hat{\alpha}+\hat{\beta} \log \tilde{Y}_{t i j k l}^{\mathrm{tr}}+\hat{\gamma} \log \left(m_{t i j k l}+1\right)+\hat{\delta} \log \left(\operatorname{deff}_{t i j k l}\right)+\hat{\sigma}^{2} / 2\right) \tag{12}
\end{align*}
$$

where $\hat{\sigma}$ is 0.11 for trip legs and 0.43 for distance. The R-squared model fit measures for both models are quite high: 0.89 for trip legs and 0.61 for distance. Note that the exponential back-transformation in (12) includes a bias correction, which in this case has only a small effect.

3.5 Bias correction

Direct estimates are usually constructed to be approximately unbiased. However, by applying a non-linear transformation, the estimates become slightly biased. Previously, we corrected for this bias in the back-transformation to the original scale (Boonstra et al., 2021). For the log transformation, a bias correction $\frac{1}{2} s e_{\text {pred }}\left(\hat{Y}_{i t}^{\log }\right)^{2}$ was added to the predictions at the log-scale, and then the exponential back-transformation was applied, similar to the bias correction in (12). See also Fabrizi et al. (2018). On average, this indeed largely removed the small negative bias due to the log transformation. However, in several small domains this bias correction gave rise to visible small irregularities over time caused by variation in the (smoothed) standard errors at the log
scale. To avoid such irregularities, we incorporate the bias correction already in the transformed input estimates. That is, for distance per trip leg, to which a log transformation is applied, we now define our input estimates as

$$
\begin{equation*}
\hat{Y}^{\log } \equiv \log \hat{Y}+\frac{1}{2} s e_{\text {pred }}\left(\hat{Y}^{\log }\right)^{2} \tag{13}
\end{equation*}
$$

where $s e_{\text {pred }}\left(\hat{Y}^{\mathrm{log}}\right)$ are the GVF smoothed standard errors as discussed in Subsection 3.4 (here we simplify notation by suppressing subscripts). This way, any remaining irregularities in $s e_{\text {pred }}\left(\hat{Y}_{i t}^{\text {log }}\right)$ will now mostly get filtered out by the model, while on average the small negative bias is still largely removed.

For trip legs, where a square root transformation is applied, we can similarly incorporate a bias correction in the transformed input estimates, instead of in the back-transformation of the model predictions. The bias correction is derived from the fact that the design expectation of the direct estimates can be written as

$$
\begin{aligned}
E(\hat{Y}) & =E\left(\left(\hat{Y}^{\text {sqrt }}\right)^{2}\right)=E\left(\left(\eta+e^{\text {sqrt }}\right)^{2}\right)=\eta^{2}+2 \eta E\left(e^{\text {sqrt }}\right)+E\left(\left(e^{\text {sqrt }}\right)^{2}\right) \\
& =\eta^{2}+s e_{\text {pred }}\left(\hat{Y}^{\text {sqrt }}\right)^{2}
\end{aligned}
$$

where η denotes the model predictions at the square root scale, and $e^{\text {sqrt }}$ is the vector of sampling errors after transformation, assumed to be normally distributed with (GVF smoothed) standard errors $s e_{\text {pred }}\left(\hat{Y}^{\text {sqrt }}\right)$. Here, the bias correction is not additive at the transformed scale, so in order to incorporate it in the input estimates we need to make a further approximation,

$$
\begin{equation*}
\eta=\sqrt{E(\hat{Y})-s e_{\text {pred }}\left(\hat{Y}^{\mathrm{sqrt}}\right)^{2}} \approx \sqrt{E(\hat{Y})}-\frac{1}{2} s e_{\text {pred }}\left(\hat{Y}^{\mathrm{sqrt}}\right)^{2} / \sqrt{E(\hat{Y})} \tag{14}
\end{equation*}
$$

justified by the fact that $s e_{\text {pred }}\left(\hat{Y}^{\text {sqrt }}\right)^{2}$ is relatively small compared to \hat{Y}. If we replace $E(\hat{Y})$ in the second term by \hat{Y}, we can use this term as a bias correction in the transformed input estimates, so that

$$
\begin{equation*}
\hat{Y}^{\mathrm{sqrt}} \equiv \sqrt{\hat{Y}}+\frac{1}{2} s e_{\text {pred }}\left(\hat{Y}^{\mathrm{sqrt}}\right)^{2} / \sqrt{\hat{Y}} . \tag{15}
\end{equation*}
$$

For domains with incidental zero estimates, $\hat{Y}=0$, this does not work. For those domains we replace the bias correction term in (15) by a smoothed version, computed using the predictions obtained by GVF model (9) applied to the target variable $s e_{\text {pred }}\left(\hat{Y}^{\text {sqrt }}\right)^{2} / \sqrt{\hat{Y}}$. We verified that the bias correction term is always relatively small compared to $\sqrt{\hat{Y}}$, and that to a large extent it removes the small negative bias due to the square root transformation, without introducing irregularities in the final trend estimates that can be seen when the bias correction is instead incorporated in the back-transformation.

4 Time series multilevel modelling

The time series multilevel models considered are extensions of the popular basic area level model proposed by Fay and Herriot (1979). The models are defined at the most detailed level, i.e. the full cross-classification of sex, age class, purpose, mode and year. Let us again denote by $\hat{Y}_{i t}^{\mathrm{tr}}$ the transformed direct estimates for either trip legs or distance in year t and domain i. Here domain i refers to a particular combination of sex, age class, purpose and mode, so that i runs from 1 to $M_{d}=700$ and t from 1 to T
corresponding to the years 1999 to 2022. We further combine these estimates into a vector $\hat{Y}=\left(\hat{Y}_{11}, \ldots \hat{Y}_{M_{d} 1}, \ldots \hat{Y}_{1 T}, \ldots \hat{Y}_{M_{d} T}\right)^{\prime}$. Note that \hat{Y} is a vector of dimension $M=M_{d} T$. Structural zero domains are not modelled, and it is implicitly understood that they are removed from all expressions. The number of modelled initial estimates is thereby reduced from $M=M_{d} T=700 \times 24=16800$ to a total of 16152 . For distance per trip leg there are some additional domains without initial estimates due to the (coincidental) absence of observed trips. The total number of available initial distance estimates is 15493. For both target variables model estimates are eventually produced for all 16152 non-structurally-zero domains.

4.1 Model structure

The multilevel models considered take the general linear additive form

$$
\begin{equation*}
\hat{Y}^{\mathrm{tr}}=X \beta+\sum_{\alpha} Z^{(\alpha)} v^{(\alpha)}+e \tag{16}
\end{equation*}
$$

where X is a $M \times p$ design matrix for a p-vector of fixed effects β, and the $Z^{(\alpha)}$ are $M \times q^{(\alpha)}$ design matrices for $q^{(\alpha)}$-dimensional random effect vectors $v^{(\alpha)}$. Here the sum over α runs over several possible random effect terms at different levels, such as transportation mode and purpose smooth trends, white noise at the most detailed level of the M domains, etc. This is explained in more detail below. The sampling errors $e=\left(e_{11}, \ldots, e_{M_{d} 1}, \ldots e_{M_{d} T}\right)^{\prime}$ are taken to be normally distributed as

$$
\begin{equation*}
e \sim N(0, \Sigma) \tag{17}
\end{equation*}
$$

where $\Sigma=\operatorname{diag}\left(s e_{\text {pred }}\left(\hat{Y}_{t i j k l}^{\mathrm{tr}}\right)^{2}\right)$, i.e. a diagonal matrix with values equal to the square of the smoothed standard errors computed as discussed in Subsection 3.4.

Equations (16) and (17) define the likelihood function

$$
\begin{equation*}
p\left(\hat{Y}^{\mathrm{tr}} \mid \eta, \Sigma\right)=N\left(\hat{Y}^{\mathrm{tr}} \mid \eta, \Sigma\right), \tag{18}
\end{equation*}
$$

where $\eta=X \beta+\sum_{\alpha} Z^{(\alpha)} v^{(\alpha)}$ is called the linear predictor. A Student-t distribution for the sampling errors in (17) has been considered instead of the normal distribution to give smaller weight to more outlying observations. This is a traditional approach for handling outliers in Bayesian regression, see e.g. West (1984). We allow the degrees of freedom parameter of the Student-t distribution to be inferred from the data. It has been assigned a Gamma(2,0.1) prior distribution, which was recommended as a default prior in Juárez and Steel (2010).
The fixed effect part of η contains an intercept and main effects and possibly the second-order interactions for linear trends, discontinuities and the breakdown variables sex, age, purpose and mode. The vector β of fixed effects is assigned a normal prior $p(\beta)=N(0,100 I)$, which is very weakly informative as a standard error of 10 is very large relative to the scales of the transformed direct estimates and the covariates used.
The second term on the right hand side of (16) consists of a sum of contributions to the linear predictor by random effects or varying coefficient terms. The random effect vectors $v^{(\alpha)}$ for different α are assumed to be independent, but the components within a vector $v^{(\alpha)}$ are possibly correlated to accommodate temporal or cross-sectional correlation. To describe the general model for each vector $v^{(\alpha)}$ of random effects, we suppress superscript α in what follows.
Each random effects vector v is assumed to be distributed as

$$
\begin{equation*}
v \sim N(0, A \otimes V) \tag{19}
\end{equation*}
$$

where V and A are $d \times d$ and $l \times l$ covariance matrices, respectively, and $A \otimes V$ denotes the Kronecker product of A with V. The total length of v is $q=d l$, and these coefficients may be thought of as corresponding to d effects allowed to vary over l levels of a factor variable, e.g. purpose effects ($d=5$) varying over time ($l=24$ years). The covariance matrix A describes the covariance structure among the levels of the factor variable, and is assumed to be known. Instead of covariance matrices, precision matrices $Q_{A}=A^{-1}$ are actually used, because of computational efficiency (Rue and Held, 2005). The covariance matrix V for the d varying effects is parameterized in one of three different ways:

- an unstructured, i.e. fully parameterized covariance matrix
- a diagonal matrix with unequal diagonal elements
- a diagonal matrix with equal diagonal elements

The following priors are used for the parameters in the covariance matrix V :

- In the case of an unstructured covariance matrix the scaled-inverse Wishart prior is used as proposed in O'Malley and Zaslavsky (2008) and recommended by Gelman and Hill (2007).
- In the case of a diagonal matrix with equal or unequal diagonal elements, half-Cauchy priors are used for the standard deviations. Gelman (2006) demonstrates that these priors are better default priors than the more common inverse gamma priors for the variances.

The following random effect structures are considered in the model selection procedure:

- Random intercepts for the M_{d} domains obtained by the full cross clasification of age, gender, purpose and mode. In this case $A=I_{M_{d}}$ and V is a scalar variance parameter, and the corresponding design matrix is the $M \times M_{d}$ indicator matrix for domains. This can be extended to a vector of random domain intercepts, random slopes for linear time effects and discontinuities due to the redesigns in 2004, 2010 and 2018. In that case V is a 5×5 covariance matrix, parameterized by variance parameters for the intercepts, linear time slopes and the coeffcients for the level interventions, and possibly 10 correlation parameters.
- Random effects that account for outliers. The data for some years appear to be of lesser quality. This is the case especially for data on the number of trip legs in 2009. In order to deal with such less reliable estimates, random effects can be used to absorb some of the larger deviations in such years. The corresponding effects are removed from the trend prediction. This is an alternative to the use of fat-tailed sampling distributions such as the Student-t distribution for dealing with outliers.
- Random walks or smooth trends at aggregated domain levels (e.g. purpose by mode). See Rue and Held (2005) for the specification of the precision matrix Q_{A} for first and more smooth second order random walks. A full covariance matrix for the trend innovations can be considered to allow for cross-sectional besides temporal correlations, or a diagonal matrix with equal or different variance parameters to allow for temporal correlations only.
- White noise. In order to allow for random unexplained variation, white noise at the most detailed domain-by-year level can be included. In this case $A=I_{M}$ and V a scalar variance parameter, and the design matrix is $Z=I_{M}$.
We also investigate generalisations of (19) to non-normal distributions of random effects. Relevant references are Carter and Kohn (1996) in the state space modelling context, Datta and Lahiri (1995), Fabrizi and Trivisano (2010) and Tang et al. (2018) in the small area estimation context, and Lang et al. (2002) and Brezger et al. (2007) in the
context of more general structured additive regression models. In particular, the following distributions are considered for various random effect terms:
- Student-t-distributed random effects
- Random effects with a so-called horseshoe prior (Carvalho et al., 2010).
- Random effects distributed according to the Laplace distribution. This corresponds to a Bayesian version of the popular lasso shrinkage, see (Tibshirani, 1996; Park and Casella, 2008).

These alternative distributions have fatter tails allowing for occasional large effects. The Laplace and particularly the horseshoe distribution have the additional property that they shrink noisy effects more strongly towards zero.

4.2 Model estimation

The models are fitted using Markov Chain Monte Carlo (MCMC) sampling, in particular the Gibbs sampler (Geman and Geman, 1984; Gelfand and Smith, 1990). See Boonstra and van den Brakel (2018) for a specification of the full conditional distributions. The models are run in R (R Core Team, 2015) using package mcmcsae (Boonstra, 2021). The Gibbs sampler is run in parallel for three independent chains with randomly generated starting values. In the model building stage 1000 iterations are used, in addition to a 'burn-in' period of 500 iterations. This was sufficient for reasonably stable Monte Carlo estimates of the model parameters and trend predictions. For the selected models we use a longer run of 5000 burn-in plus 10000 iterations of which the draws of every fifth iteration are stored. This leaves $3 * 2000=6000$ draws to compute estimates and standard errors. The convergence of the MCMC simulation is assessed using trace and autocorrelation plots as well as the Gelman-Rubin potential scale reduction factor (Gelman and Rubin, 1992), which diagnoses the mixing of the chains. For the longer simulation of the selected models all model parameters and model predictions have potential scale reduction factors below 1.1 (only a few parameters have diagnostic values >1.02) and sufficient effective numbers of independent draws.
Several models of the form (16) have been fitted to the data. For the comparison of models using the same input data we use the Widely Applicable Information Criterion or Watanabe-Akaike Information Criterion (WAIC) (Watanabe, 2010, 2013) and the Deviance Information Criterion (DIC) (Spiegelhalter et al., 2002). We also compare the models graphically by their model fits and trend predictions at various aggregation levels.

5 Model building, selected models, and model prediction

The transformed direct estimates for the 700 domains over the 1999-2022 period along with their smoothed standard errors, as described in Section 3, serve as input data for the time series models. Note that these input estimates already include a small bias correction to counter the small biasing effect of the non-linear transformation. The variables defining the domains (sex, ageclass, purpose, mode) and the years (yr) have been used in the model development in many ways, e.g. using different interactions of various orders. Some additional covariates have been constructed in order to model the discontinuities that occur as a result of the change-over to MON in 2004, to OViN in

2010, and ODiN in 2018, as well as to reduce the influence of some lesser quality 2009 input estimates. For the MON discontinuities in 2004, a level intervention variable br_mon is introduced taking values 1 between 2004 and 2009, and 0 otherwise. Since MON discontinuities appear to be substantial only for purposes 'Shopping', 'Leisure' and 'Other' we also introduce the variable br_mon_SLO, equal to $b r_{-}$mon for these three purposes only, and 0 for purposes 'Work' and 'Education'. For the OViN discontinuities in 2010 a variable br_ovin is defined, taking values 1 for the years 2010 and later and 0 otherwise. Likewise, for the ODiN discontinuities in 2018 a variable br_odin is defined, taking values 1 from 2018 and 0 otherwise. A slight modification of the intervention variables was necessary in order not to introduce artificial discontinuities in the age 12-17 car driver domains, which are structurally zero domains before 2011. Also, for year 2009 a dummy variable dummy_2009 has been created being 1 only for year 2009 and 0 otherwise. The variable covid is now defined as taking the value 1 for the Covid pandemic years 2020, 2021 and 2022 and zero otherwise. This variable and its corresponding effects were introduced in Boonstra et al. (2021) to accommodate the large changes in mobility caused by the pandemic. The incorporation last year of ODiN 2021 data showed that the effects on mobility in 2021 are often different from those in 2020, and smaller for most domains. Therefore, a further intervention variable covid2021 was introduced, taking the value 1 for year 2021 only, and 0 otherwise. The influence of Covid on mobility has further decreased in 2022 although for many domains mobility is still different from pre-Covid levels. Because of this we also introduce a variable covid 2022 taking the value 1 only for year 2022, and 0 otherwise, so that the model can be easily extended to include specific (Covid) effects for 2022. Finally, the year variable itself is also used quantitatively to define linear time trends, and for that purpose we use a scaled and centered version denoted yr.c. All mentioned variables are used in different parts of the model, with associated fixed and random slope effects. In order to improve the modelling of Covid effects on mobility over the years 2020-2022 we have tried to incorporate indicators for policy measures that were imposed over time to combat the pandemic. For this purpose we have used the stringency indicator for The Netherlands, as compiled and disseminated for all countries by the Oxford COVID-19 Government Response Tracker (Hale et al., 2021). This indicator is based on several underlying indicators about such measures as school closing, workplace closing, public transport restrictions, restrictions on gatherings, etc. Unfortunately, these indicators turned out not to be good predictors for the relative covid effects on mobility in 2020, 2021 and 2022. Where the stringency indicator shows stronger measures on average in 2021 compared to 2020, the data show that effects on mobility are usually smaller in 2021. For 2022 the indicator also seems too high compared to the size of Covid effects. A possible explanation is that the compliance with Covid measures might have eroded over time.

Some other covariates extracted from other sources like Statistics Netherlands' Statline and KNMI meteorological annual reports have also been used as candidate covariates in the model development. The weather variables considered concern annual averages at a central measurement location in The Netherlands (De Bilt). From these weather variables only a variable snowdays representing the number of snow days by year is used in the selected trip legs model. In Boonstra et al. (2019) an administrative variable $k m_{-} N A P$ representing annual registered car kilometers collected from Nationale Autopas (NAP) was used in the distance model. As this variable is usually not available in time for producing new mobility trend estimates it is no longer considered for inclusion in the models.

In the following two sub-sections, time series models developed for the number of trip legs and the distance per trip leg are discussed. Along the way, we emphasize the differences with the previously developed models as described in Boonstra et al. (2022), which have been taken as a starting point. Following that, it is described how the target trend estimates are derived from the developed time series models. The models are expressed as time series multilevel models in a hierarchical Bayesian framework and fit using a Markov Chain Monte Carlo (MCMC) simulation method, as described in Section 4.

5.1 Time series multilevel model for the number of trip legs

As described in Section 3, we model the square-root-transformed direct estimates (including bias correction) of the number of trip legs pppd, using the corresponding transformed and GVF-smoothed standard errors to define the variance matrix Σ of the sampling errors.

The model parameters in (16) are separated in fixed and random effects. The fixed effects specification for the updated model is

```
sex \(*\) ageclass + purpose \(*\) mode + mode \(*\) snowdays
    + purpose *br_mon_SLO
    \(+(\) purpose + mode \() *(\) br_odin + covid + covid \(2021+\) covid 2022\()\)
    + covid_shopping_walking + covid2021_shopping_walking
    + covid2022_shopping_walking
    + covid_leisure_walking + covid2021_leisure_walking
    + covid2022_leisure_walking
```

Compared to the model described in Boonstra et al. (2022) the set of fixed effects has been extended by the inclusion of covid 2022 effects in exactly the same way as they are included for the overall covid effects and the covid 2021 effects. Thus the model contains covid2022 effects by purpose, by mode, and for the specific interactions of purpose 'Leisure' with mode 'Walking', to account for the different and mostly smaller effects on mobility compared to 2020.

The random effects part of the model for number of trip legs consists of the components listed in Table 5.1. The first component 'V_2009' is included to account for some very influential outliers in 2009. It uses a horseshoe prior distribution, which turned out to work well as for most domains the outlier effects are negligible, but for a few domains, notably those for children and purposes 'Shopping' and 'Other', they are very large, as can be seen from Figure A.19. The variable dummy_2009_SO is a limited version of dummy_2009, and only equals 1 for year 2009 in combination with age class 6-11 and purposes 'Shopping' or 'Other'. Associated with dummy_2009_SO the variable dummy_2009_classes is the categorical variable with classes defined by the cross-classification of sex, age class, mode and purpose classes for which dummy_2009_SO is nonzero, all other classes being grouped into a single remainder category.

The random effects component 'V_BR' includes MON, OViN and ODiN discontinuity random effects, as well as random intercepts, linear time trends, and covid effects, varying over all domains (the cross-classification of sex, age class, purpose and mode). Compared to last year's model specific covid2022 effects have been added. The full covariance matrix V in (19) is now a 8×8 matrix parameterised in terms of standard deviation and correlation parameters. Here too the variable br_mon_SLO indicates that

Model Component	Formula V	Variance Structure	Factor A	Prior	Number of Effects
V_2009	dummy_2009_SO	scalar	dummy_2009_classes	horseshoe	25
V_BR	$\begin{aligned} & 1+y r . c+ \\ & \text { br_mon_SLO }+ \\ & \text { br_ovin }+ \text { br_odin }+ \\ & \text { covid }+ \text { covid } 2021+ \\ & \text { covid } 2022 \end{aligned}$	unstructured	sex* AR1(ageclass, 0.75) * purpose $*$ mode	Laplace	5600
RW1AMM	$\begin{aligned} & \hline \text { ageclass } * \\ & \text { purpose } * \text { mode } \\ & \hline \end{aligned}$	scalar	RW1 ${ }^{(y r)}$	normal	8400
RW2MM	purpose	unstructured	sex * mode * RW2 (yr)	normal	1680
WN_MM	mode	unstructured	purpose $* y r$	normal	840
WN	1	scalar	$\begin{aligned} & \text { sex } * \text { ageclass } * \\ & \text { purpose } * \\ & \text { mode } * y r \end{aligned}$	normal	16152

Table 5.1 Summary of the random effect components for the updated model for trip legs. The second and third columns refer to the varying effects with covariance matrix V in (19), whereas the fourth and fifth columns refer to the factor variable associated with A in (19). The last column contains the total number of random effects for each term.

MON breaks are only considered for purposes 'Shopping', 'Leisure' and 'Other'. This component uses a Laplace prior distribution for the random effects, which shrinks noisy effects more while large significant effects are shrunk less. Note also that the effects follow an AR1 autoregressive process as a function of ordered age class. The autoregressive parameter is fixed at 0.75 , an approximately optimal value arrived at by grid search. This way of exploiting the order of age classes further helps to improve the (difficult) estimation of break effects.
The next two model components are time trend components. The component 'RW1AMM' adds a local level trend component for each age class, purpose, mode combination. Component 'RW2MM' represents smooth trends for each combination of sex, mode and purpose, where different variances corresponding to different degrees of smoothness as well as correlations are allowed among the 5 purposes distinguished. The 'RW1AMM' component only uses a single ('scalar') variance parameter and can be interpreted as a correction to the 'RW2MM' trends, allowing for differences between age classes. The contribution of the 'RW1AMM' effects to the overall signal turns out to be much smaller than that of the 'RW2MM' effects.
The component 'WN_MM' allows non-gradual time dependence at the mode-purpose level. It is modelled with a general covariance matrix among the modes. The motivation for this term is that it prevents the smooth 'RW2MM' component to become too volatile.
Finally, the white noise component named 'WN' in Table 5.1 accounts for remaining variation of the true average number of trip legs pppd over the domains and the years. For analyses that focus on long-term evolutions it can be useful to compute specific smooth trends by excluding non-gradual time-dependent components 'WN', 'WN_MM' as well as (perhaps) the explicit snowdays effects.

5.2 Time series multilevel model for distance per trip leg

For distance we model the log-transformed direct estimates of distance per trip leg, including bias correction, using the corresponding transformed and GVF-smoothed standard errors discussed in Section 3 to define the variance matrix Σ of the sampling
errors. The use of Student-t distributed sampling errors in this case succeeds in reducing the influence of outliers sufficiently. The degrees of freedom parameter of the Student-t distribution is assigned a weakly informative prior and is inferred from the data.
Similar to the model for number of trip legs pppd, only main effects and second order interaction effects are used in the fixed effects part of the selected model. In the updated model the following fixed effects components are included:

```
sex \(*\) ageclass + purpose \(*\) mode + mode \(* y r . c+b r \_o v i n \_w a l k i n g+\)
    \((\) purpose + mode \() *\left(b r \_o d i n+\right.\) covid + covid \(2021+\) covid 2022\()\)
```

The term mode * yr.c represents linear time trends by mode. The term br_ovin_walking represents a single OViN discontinuity fixed effect for mode 'Walking', and is included because the overall discontinuity for mode 'Walking' appears to be too large to model by random effects only. Compared to last year's model only the covid 2022 effects by purpose and by mode have been added.

Higher order interactions are modelled as random effects. The components included in the updated model are listed in Table 5.2.

Model Component	Formula V	Variance Structure	Factor A	Prior	Number of Effects
V_BR	$1+$ yr.c + br_mon + br_ovin + br_odin + covid + covid2021 + covid2022	unstructured	sex $*$ AR1(ageclass, 0.75) *purpose $*$ mode	Laplace	5600
RW2MM	purpose	unstructured	sex $*$ mode $* R W 2(y r)$	normal	1680
WN_MM	mode	unstructured	purpose $* y r$	normal	840
WN	1	scalar	sex $*$ ageclass $*$ purpose $*$ mode $* y r$	normal	16152

Table 5.2 Summary of the random effect components for the selected model for distance per trip leg. The second and third columns refer to the varying effects with covariance matrix V in (19), whereas the fourth and fifth columns refer to the factor variable associated with A in (19). The last column contains the total number of random effects for each term.

The only change made to the random effects components are the additional random coefficients for covid2022 in the 'V_BR' component. The components 'RW2MM', 'WN_MM' and 'WN' are the same as in Table 5.1. The distance model does not include a component for outliers, since there are no such extreme outliers in 2009 as in the series for number of trip legs. Moreover, any outliers in the distance estimates are dealt with by the Student-t sampling distribution. Also, the distance model does not include the 'RW1AMM' component of Table 5.1 to prevent overfitting the more noisy input series.

5.3 Trend estimation and derived estimates

The trend estimates of main interest are computed based on the MCMC simulation results as follows. First, simulation vectors of model linear predictions are formed, i.e.

$$
\begin{equation*}
\eta^{(r)}=X \beta^{(r)}+\sum_{\alpha} Z^{(\alpha)} v^{(\alpha, r)} \tag{21}
\end{equation*}
$$

where superscript r indexes the retained MCMC draws, and each $\eta^{(r)}$ is of dimension M. Consequently, the level break effects are removed or added, depending on the choice of
benchmark level.
Starting from last year, all trend estimates are computed at the measurement level of the most recent design, i.e. the ODiN design, which is in place since 2018. There are currently 5 years of ODiN data available, so it is expected that ODiN break effects can now be estimated with sufficient accuracy. However, the estimation of these effects is hampered by the Covid pandemic and the necessary introduction of Covid effects in the model, but we do not expect the ODiN break effect estimates to change by a large amount when new ODiN datasets become available. See Boonstra et al. (2022) for the results of a revision analysis that illustrates that the revisions of the predictions at ODiN measurement level are minor if the year 2021 is added to the input series.

Given the way the level break dummies are coded, benchmarking to the ODiN level means that we need to add all ODiN break effects to the predictions referring to the OVG, MON and OViN years, add the OViN effects to the predictions of pre-OViN years, and in addition need to remove the MON effects from the predictions referring to the MON years. Also, the dummy effects for outliers ('V_2009' component in the model for trip legs) are removed. Covid effects are not removed. We further note that the survey errors e in (16) are absent from the linear predictor (21). The simulation vectors of linear predictors thus obtained are

$$
\begin{equation*}
\tilde{\eta}^{(r)}=\tilde{X} \beta^{(r)}+\sum_{\alpha} \tilde{Z}^{(\alpha)} v^{(\alpha, r)}, \tag{22}
\end{equation*}
$$

where \tilde{X} and $\tilde{Z}^{(\alpha)}$ are modified design matrices that accomplish the stated correction for level breaks and possibly outlier effects. Back-transformation of these vectors to the original scale yields the MCMC approximation to the posterior distribution of the trends. For the square root transformation as used for modelling the number of trip legs pppd, the back-transformation amounts to

$$
\begin{equation*}
\theta^{(r)}=\left(\tilde{\eta}^{(r)}\right)^{2} . \tag{23}
\end{equation*}
$$

For the log transformation, as used in modelling distance per trip leg, back-transforming $\tilde{\eta}^{(r)}$ to the original scale yields the MCMC approximation to the posterior distribution of the distance trends. In this case, the back-transformation is

$$
\begin{equation*}
\theta^{(r)}=e^{\tilde{\eta}^{(r)}} \tag{24}
\end{equation*}
$$

The means over the MCMC draws $\theta^{(r)}$ are used as trend estimates, whereas the standard deviations over the draws serve as standard error estimates.

Recall that η and θ are vector quantities with components for all year-domain combinations. We have computed the trends at the most detailed level, but also for aggregates over several combinations of the domain characteristics. Aggregation of distance per trip leg involves the number of trip legs, and so requires combining the MCMC output for both target variables. By multiplying the distance per trip leg results by the number of trip leg pppd results we obtain the results for distance pppd. Aggregation amounts to simple summation over trip characteristics purpose and mode, and to population weighted averaging over person characteristics sex and age class. Inference for other derived quantities like total number of trip legs per day and total distance per day at different aggregation levels can also be readily conducted using the simulation results for the two modelled target variables.

6 Results

The appendices contain a rather complete set of time series plots for the number of trip legs pppd (A.3), distance per trip leg (A.4), and distance pppd (A.5) at different aggregation levels, including the most detailed level, based on the models for the number of trip legs pppd and the distance per trip leg described in Section 5. In addition, trend estimates of total number of trip legs per day at overall, purpose and mode levels are shown in Figures A.1, A.2, and A.3, respectively, in Appendix A.1. For total distance per day, these plots are shown in Figures A.4, A.5, and A. 6 in Appendix A.2. The latter plots for (average) total trip legs and distance per day also involve the effects of changes in population sizes of all distinguished demographic subgroups (the sex, ageclass combinations) over the years.
In all these plots the black lines correspond to the series of direct estimates, the red lines to the model fit based on all model components, i.e. the back-transformation of (21), and green lines are derived from the trend series (23) or (24) at the level observed under the latest ODiN survey design. So the green lines correspond to the trends benchmarked to the ODiN level with the effect of some strong outliers for trip legs in 2009 removed, but including the Covid effects on mobility, as explained in Subsection 5.3. (Note that it would also be possible to compute 'Covid-corrected' trends by removing the Covid effects.) Finally, note that the vertical dashed lines in the plots indicate the years where survey redesigns took place.
In the following sub-sections, the trend estimates obtained for number of trip legs and distance are discussed.

6.1 Trip legs

Trend estimates of number of trip legs per person per day are given in Appendix A.3.
Almost all trend series show clear Covid effects in 2020. In 2022 the overall number of trip legs seem almost back at the pre-Covid level, see Figure A.7. However, this is not the case for purposes 'Work' and 'Education' and the public transport modes 'Train' and 'BTM', which are still at a lower level, while purpose 'Leisure' and mode 'Walking' show a higher level (Figures A. 8 and A.9).

MON discontinuities are visible most clearly in Figure A.8. The trend estimates correct for these relatively large and opposite discontinuities for purposes 'Leisure' and 'Other'. Apart from these large effects that suggest some sort of classification issue, MON discontinuities are generally smaller than OViN and ODiN discontinuities. This is consistent with the fact that the OVG and MON designs are largely the same except that they were carried out by different data collection organisations.
If we disregard the large drop due to Covid, the overall OViN level for number of trip legs is lower than the levels observed during MON, OVG and ODiN design periods, as is clear from Figure A.7. The lower OViN level is especially clear for modes "Car driver", "Train" and "Cycling", see Figure A.9.
There are some noteworthy differences in discontinuities between men and women trend lines, particularly for 30-39 and 40-49 age groups, see e.g. Figure A.23. In these particular cases the differences in the levels of the direct estimates between men and women are much larger during the OViN period. The particular OViN measurement errors for purpose "Education", female, age groups 30-39 and 40-49 are perhaps due to incorrect purpose assignment for mothers taking their children to school. The ODiN level
for these domains seems to revert to approximately the OVG-MON level. Relatedly, an opposite movement can be discerned for purpose "Other". From this perspective it is an improvement that the trend estimates are benchmarked to the ODiN instead of OViN level.

Since the trends are defined at the ODiN level, the outcomes during the preceding OVG, MON and OViN design periods are corrected for the discontinuities induced by the redesigns relative to the ODiN design. It implies that due to the uncertainty of the estimated discontinuities the standard errors for the trend estimates in these periods are larger than in the ODiN period. The standard errors of the trend estimates in especially OVG and MON periods are therefore often larger than the variances of the direct estimates, which only measure sampling variation. See for example Figure A. 7 for estimates at the overall level and Figures A. 8 and A. 9 for estimates by purpose and mode.

The input estimates for children, purposes "Shopping" and "Other" in 2009 are very different from those in other years, as can be seen from Figure A.19. There is a clear exchange between both purposes in 2009 for children, presumably due to systematic classification errors in the 2009 data. These effects have been captured by the random effect term 'V_2009' of the model for trip legs. The trend lines show that the 2009 'outliers' are indeed neutralized by excluding the 'V_2009' effects. This effect is even larger for the youngest children aged $0-5$, but as mentioned before this group is not modelled anymore because it is no longer observed under ODiN.
Tables 6.1, 6.2 and 6.3 list the posterior means and standard errors of several variance components of the trip leg model. It is to be noted from Table 6.1 that some correlation parameters are large and negative, i.p. between random intercepts and OViN break and (overall) covid effects, between linear random slopes (yr.c) and OViN, ODiN discontinuities as well as (overall) covid effect, between MON and ODiN discontinuities, and especially between overall covid and covid2022 effects. Some of these dependencies might indicate that it is not easy to disentangle the corresponding effects, which is to be expected of a series with relatively few observations per design period, and final years affected by the Covid pandemic. The estimated standard deviations indicate that the covid2021 effects are small compared to the overall covid effects, which seems reasonable as the covid2021 effects only capture the deviation from the already large covid effects in 2020. The scale of the covid2022 effects is only somewhat smaller than that of the overall covid effects, which together with the strong negative correlation suggests that the covid2022 effects to a large extent cancel out the overall covid effects.
Table 6.2 shows that the smooth trend components 'RW2MM' are most flexible for purpose 'Leisure'. Table 6.3 shows that the white noise component at purpose-mode level 'WN_MM' is most volatile for modes 'Walking', 'Cycling' and 'Car driver'. This model component can explain some of the irregularities of especially the walking and cycling series of direct estimates, which given their relatively small standard errors are not well described by smooth trends, see figures A. 9 and A.10. Note that we omitted the posterior summaries for the correlation parameters of the 'RW2MM' and 'WN_MM' components from Tables 6.2 and 6.3.

The differences in volatility by purpose and mode are clearly visible in Figure A. 10. Where the series for cycling and purpose 'Leisure' is highly volatile, which may be a real phenomenon caused e.g. by weather effects, other domains display more smooth trends despite volatile direct estimates, as for example 'Train' for purpose 'Leisure'. As the direct standard error estimates are much larger in this case, the model chooses a
smoother trend series.

	(Intercept)	yr.c	br_mon_SLO	br_ovin	br_odin	covid	covid2021	covid2022
(Intercept)	$7.7(0.3)$	$5.8(6.3)$	$23.2(8.9)$	$-47.3(4.5)$	$-23.7(5.7)$	$-58(4.2)$	$6.8(18.9)$	$56.4(6.9)$
yr.c		$1.3(0.1)$	$1.8(11)$	$-45.7(6.2)$	$-32.4(7.7)$	$-39(6.9)$	$-29.5(22.8)$	$2.2(13.2)$
br_mon_SLO		$1.3(0.1)$	$15(9.8)$	$-31.2(11.1)$	$-25.1(11.9)$	$24.9(23)$	$34.7(14.1)$	
br_ovin			$2.3(0.1)$	$11.5(8.4)$	$36.3(6.9)$	$20.5(24.6)$	$-22.6(12.1)$	
br_odin				$1.4(0.1)$	$32.7(8)$	$-3.6(21)$	$-22.6(11.9)$	
covid				$1.9(0.1)$	$4.1(26)$	$-69.4(8.7)$		
covid2021					$0.3(0.1)$	$27(26.5)$		
covid2022						$0.8(0.1)$		

Table 6.1 Estimated standard deviations and correlations ($\times 100$) for the 'V_BR' component. Numbers in parentheses are posterior standard errors.

Work	Shopping	Education	Leisure	Other
$0.021(0.015)$	$0.028(0.02)$	$0.035(0.017)$	$0.083(0.02)$	$0.043(0.021)$

Table 6.2 Estimated standard deviations ($\times 100$) for the 'RW2MM' component. Numbers in parentheses are posterior standard errors.

Car driver	Car passenger	Train	BTM	Cycling	Walking	Other
$0.63(0.08)$	$0.46(0.06)$	$0.15(0.07)$	$0.21(0.08)$	$0.66(0.08)$	$0.74(0.09)$	$0.13(0.07)$

Table 6.3 Estimated standard deviations $(\times 100)$ for the 'WN_MM' component. Numbers in parentheses are posterior standard errors.

6.2 Distance

Plots of trend estimates of mean distance per trip leg and mean distance per person per day are given in Appendices A. 4 and A.5, respectively.
The direct estimates of distance per trip leg are rather volatile, even at the most aggregated level, see Figure A. 88 (note the scale of the y-axis though). The distance variable is also more affected by outliers, which occur in all years, and usually for domains with few observed trips. Therefore a Student-t distribution is used to fit the (log-transformed) distance variable. The posterior mean of the degrees of freedom parameter of the t distribution is 3.9 with a standard error of about 0.1.
Due to the noisier data, it is harder to detect fine changes in the underlying distance trends. In order to avoid overfitting, the model for distance is more parsimonious than that for the number of trip legs. One exception is that the distance model includes a fixed effect for the OViN discontinuity for mode 'Walking'. This effect was required to capture the very pronounced discontinuity in 2010 for mode 'Walking', as shown in Figure A.90, and is most likely due to the fact that from 2010 onwards walks are more often classified as single tours instead of consisting of a go and return trip.
Tables 6.4-6.6 list some parameter estimates (posterior means and standard errors) for the fit of the selected model described in Subsection 5.2. The 'V_BR' component containing varying coefficients by domain for intercept, linear slope over time, MON, OViN and ODiN breaks, and Covid effects, displays, as in the trip legs model, several negative correlations. There is also a strong positive correlation among ODiN discontinuities and overall covid effects. This may indicate that it remains difficult to disentangle these effects. The diagonal values of Table 6.4 show that the variation of OViN and ODiN discontinuities is large relative to that of the MON discontinuities and Covid effects. The 'RW2MM' component has a relatively large variance component for purpose 'Other' (Table 6.5). Table 6.6 shows that the mode-dependent scales of the of
the 'WN_MM' effects are quite diverse. These effects are most pronounced for mode 'Other'. Note that we omitted the posterior summaries for the correlation parameters of the 'RW2MM' and 'WN_MM' components from Tables 6.5 and 6.6.

	(Intercept)	yr.c	br_mon	br_ovin	br_odin	covid	covid2021	covid2022
(Intercept)	$17.2(1)$	$20.4(12)$	$15.5(19.5)$	$-27.1(9.5)$	$-20.6(9.5)$	$-20.8(13.3)$	$-5.5(27)$	$-1.2(23)$
yr.c		$4.2(0.7)$	$34.3(26.5)$	$-40.3(14)$	$-19.8(17)$	$-48.7(16.8)$	$-4.2(38)$	$4.8(33.9)$
br_mon		$1.7(0.8)$	$-16.1(25.3)$	$-33.6(28.5)$	$-42.6(31.4)$	$-1.6(41)$	$15.1(38.7)$	
br_ovin			$10.1(1.1)$	$-7.7(15)$	$11.8(20)$	$-5.8(32)$	$8.9(29)$	
br_odin				$8.7(0.9)$	$62.8(15)$	$6.3(42)$	$-44.5(31.6)$	
covid					$4.8(0.9)$	$3.9(47)$	$-42.4(36.1)$	
covid2021					$1(0.7)$	$7.2(40)$		
covid2022						$1.7(0.9)$		

Table 6.4 Estimated standard deviations and correlations ($\times 100$) for the 'V_BR' component. Numbers in parentheses are posterior standard errors.

Work	Shopping	Education	Leisure	Other
$0.189(0.123)$	$0.137(0.104)$	$0.15(0.121)$	$0.103(0.081)$	$0.802(0.245)$

Table 6.5 Estimated standard deviations $(\times 100)$ for the 'RW2MM' component. Numbers in parentheses are posterior standard errors.

Car driver	Car passenger	Train	BTM	Cycling	Walking	Other
$1.71(0.52)$	$2.66(0.72)$	$1.09(0.76)$	$4.07(1.1)$	$0.73(0.41)$	$3.11(0.53)$	$9.19(1.33)$

Table 6.6 Estimated standard deviations ($\times 100$) for the 'WN_MM' component. Numbers in parentheses are posterior standard errors.

6.3 Model alternatives

In this subsection a few of the alternative model specifications that have been attempted are summarized.

First, given that the number of Covid infections was very low in 2022 except for the first few months, a model without covid effects for 2022 was attempted. This did not work well because there are still many domains with clear differences in mobility level compared to pre-covid years 2018 and 2019. These differences may partly be due to structural, i.e. lasting effects, which may prolong also after 2022. Several models with fewer Covid effects for 2022 were then tried, but in the end the best models turned out to be those in which covid 2022 effects are included in the same way as covid and covid2021 effects.

We also tried a model in which the Covid stringency indicator (Hale et al., 2021), aggregated by year, was used as a quantitative covariate. It was used as a replacement of the overall covid variable in the model, replacing the value 1 for each of the years 2020-2022 by the stringency values for the Netherlands' Covid measures imposed, which amount to 1 as a base value for 2020, and 1.15 for 2021 and 0.41 for 2022. This did not lead to a better model fit or more plausible trend estimates, and it appears that the Covid stringency indicator is not a very good measure for Covid effects on mobility, at least at an annual frequency. In addition, we tried to fit a model with separate structural (lasting) and transient Covid effects. This could be interesting for the estimation of trends that control for the transient Covid effects, but not for the structural ones, for example. However, since 2022 still had a (short) period of high Covid infection rates, the separation of these effects relies on quite strong assumptions. Therefore we postpone further attempts to distinguish between structural and transient Covid effects to next year.

We also continued our search for improved GVF models for smoothing input variance estimates. A shortcoming of the current GVF models is that the smoothed variances for a domain with 0 trip leg observations in a certain year are sometimes smaller than the smoothed variances for the same domain in another year with at least one observation. This is counterintuitive at least, and may sometimes put too much weight on zero trip leg estimates. Fortunately, such domains have little influence on trend estimates at more aggregate levels, but it would nevertheless be better to improve the GVF models in this respect. We tried several GVF models where the covariate $\log \left(m_{t i j k l}+1\right)$ in (9) is replaced by $\log \left(m_{t i j k l}+\epsilon\right)$ with $\epsilon=1 / 2$ or $\epsilon=1 / 4$. We also varied the values of λ in (11) to get different amounts of smoothing for the direct estimate covariate. These different values did not change much and somehow gave rise to a somewhat larger negative bias for the distance model estimates. We also tried GVF models including more covariates like age class and mode. This resulted in slightly better fits of the GVF models, but again did not improve the trend estimates.

One of the model diagnostics that has been used in comparing various models is the set of PSIS-LOO shape parameters, or LOO k-values in short. Here PSIS-LOO is an aproximation of leave-one-out cross-validation based on Pareto-smoothed importance sampling (Vehtari et al., 2017, 2015), as implemented in R package loo (Vehtari et al., 2023). The LOO k-values can be interpreted as a measure of influence of each observation, in our case the combination of a transformed direct input estimate and its GVF-smoothed variance estimate, on the model-fit. Some improvements with regard to the LOO k-values have been observed for a model for distance where the input variances are modelled by inverse-chi-square-distributed scale factors centered around 1 with degrees of freedom determined by the number of person-level observations divided by the estimated design-effect. This amounts to using a Student-t sampling distribution with varying numbers of degrees of freedom, different from the currently used equal (though inferred) number of degrees of freedom. We intend to explore such potential model improvements further next year when a new year of ODiN data is included.

7 Discussion

In Boonstra et al. $(2019,2021)$ and Boonstra et al. (2022) multilevel time series models have been developed to estimate mobility trends based on the Dutch Travel Survey (DTS). This report provides an update on the model development as well as on the resulting trend estimates. Compared to the previous report, data over 2022 have been added, which means that the length of the time series has increased to 24 years, of which the last five years correspond to data observed under the latest ODiN implementation of the DTS.

The last three years of ODiN mobility data are strongly influenced by the Covid pandemic. It turned out (Boonstra et al., 2021) necessary to add explicit Covid effects to the model, to avoid that the large changes (mostly declines) in mobility in 2020 do not adversely affect the 2018 level break estimates associated with the transition to ODiN. Last year, separate Covid effects for 2021 were added to allow modelling the differences between the effects on mobility in both years. In the current update with ODiN 2022 data it turns out that the model also needs to include components to account for still a different impact of Covid on mobility in 2022.

For most domains the Covid effects are largest in 2020, the most clear exception being
leisure walking trips, which is at a much higher level in 2021 and 2022. The Covid effects on mobility are generally smallest in 2022, as only the first few months were affected by high numbers of cases and measures imposed to counter spreading. However, for many domains mobility levels have not (yet) returned to their pre-Covid levels, and it was necessary to add separate Covid effects for 2022 to the model. In the end, these effects have been included in exactly the same way as the overall Covid effects and the specific 2021 effects, in both the model for trip legs and the model for distance.

As before, the target variables modelled are the number of trip legs per person per day and the distance per trip leg for domains that are defined by a cross-classification of sex, age, purpose, and transport mode at a yearly frequency. Estimation takes place in two stages. In the first stage direct estimates as well as their standard errors are compiled from the DTS data by means of the general regression estimator. The direct estimates are the input for the time series models and are first transformed to better meet normality assumptions. For the number of trip legs a square-root transformation is used and for distance a log transformation. The standard error estimates are also transformed and subsequently smoothed using a generalized variance function (GVF) model. In the second stage, the resulting direct estimates at the level of the aforementioned cross-classification are used as input for the multilevel time series models, which are fitted using MCMC simulations.

The models account for discontinuities due to three redesigns: the change-over from OVG to MON in 2004, the change-over from MON to OViN in 2010 and the change-over from OViN to ODiN in 2018. Discontinuities are predominantly modelled as random effects to reduce the risk of overestimation. The DTS time series are also affected by outliers. The model for trip legs contains random effects to absorb the most dominant outliers in 2009, while the model for distances assumes a Student-t distribution for the sampling errors. The models further contain random intercepts (levels) and time slopes, as well as several trend components at different levels of the hierarchy defined by the sex, age, purpose and mode variables. Some of the random effects are assigned non-normal priors to induce a stronger form of regularization while also allowing occasional larger effects. Fixed effects included in the models consist of main effects and some second-order interactions of the domain variables sex, age, purpose and mode, as well as an effect for the annual number of snow days in the model for trip legs.

As mentioned above, the models have only changed in that covid effects for 2022 have been added. All Covid effects, i.e., overall effects, deviation effects for 2021, and deviation effects for 2022, are modelled as before in the same way as the ODiN discontinuities. Fixed main effects by mode and separately by purpose capture some of the large effects at these aggregate levels, while strongly regularised random effects are included at the most detailed level. Moreover, fixed Covid effects for mode 'Walking' in combination with purposes 'Shopping' and 'Leisure' accomodate some large interaction effects, especially the high number of leisure walking trips in 2021 and 2022.

Model predictions and trends for the number of trip legs per person per day, distance per trip leg and distance per person per day are obtained at different aggregation levels of the cross-classification by aggregating the model predictions and trends at the most detailed level. Until 2021 (when the series extended up to 2020), the trends have been estimated at the OViN measurement level. From last year on, trends are instead estimated at the ODiN measurement level. This means that trends are derived from the model predictions including ODiN discontinuities and excluding the MON and OViN discontinuities. Whereas the trend estimates are adjusted to th measurement level of

ODiN, the Covid effects on mobility are real and so the trends are not corrected for them. Nevertheless, the explicit modelling of Covid effects allows to estimate covid-corrected trends, i.e. trends that would likely have resulted if there were no pandemic. It might also be possible to correct only for temporary Covid effects, leaving its structural effects as part of the trends, but this would currently rely on strong assumptions, as 2022 was still also affected by temporary effects, albeit much less than 2020 and 2021.

Measured by the estimated standard errors, the trend series are most accurately estimated for the design period whose measurement level is used as the benchmark level. As discussed, this is now the ODiN level. The standard errors of the trend estimates during the preceding OVG, MON and OViN periods are larger, as a result of the uncertainty of ODiN discontinuities. This is especially true for OVG and MON periods as some large OViN discontinuity estimates also add to their uncertainty. Often, the standard errors in these periods are even larger than the design-based standard errors of the direct (untransformed) input estimates. This is because the latter do not account for (relative) measurement errors.

It is uncertain at this point how the modelling of Covid effects should be changed or extended next year, when data over 2023 will be added to the input series. 2023 will likely be a year without periods of high Covid rates and without specific counter-measures that affect mobility. However, it is quite plausible that some effects will last, for example because many employees keep working from home more often than before. It may be possible to distinguish between temporary and structural Covid effects, but this has to be further investigated next year. In future work we will investigate how the model can be adapted to accommodate these dynamic covid-effects. In parallel we will explore potential model improvements using LOO k-values as an additional model diagnostic.

Other potential model improvements could come from improvements to the GVF model for the smoothing of input variances. A shortcoming of the current GVF model is that variance estimates for zero trip leg estimates sometimes appear to be too small. This hardly affects aggregate level estimates, but it may further improve trend series for some domains with few observations. One option that might be explored is to smooth input estimates and their variance estimates simultaneously in a single model as in Parker et al. (2023).
Finally, we note that there is also interest in trend series for the trip duration, another variable observed in the DTS. Therefore, we intend to develop trend series for the average duration per trip leg or per kilometer travelled, by domain, in the same way as for number of trip legs and distance per trip leg. In addition, there is demand for a breakdown of the mobility trends for number of trip legs and distance per trip leg by other characteristics, in particular by the distinction of weekdays and weekend days. Such detail may be added to the mobility trends after having developed the new series for duration.

Acknowledgements

We wish to thank Bingyuan Huang and Hans Wüst for useful suggestions and discussions, and for their help in evaluating the results based on various models.

References

Bollineni-Balabay, O., J. van den Brakel, F. Palm, and H. J. Boonstra (2017). Multilevel hierarchical bayesian versus state space approach in time series small area estimation: the dutch travel survey. Journal of the Royal Statistical Society: Series A (Statistics in Society) 180(4), 1281-1308.

Boonstra, H. J. (2021). momcsae: Markov Chain Monte Carlo Small Area Estimation. R package version 0.7.0.

Boonstra, H. J. and J. van den Brakel (2018). Hierarchical bayesian time series multilevel models for consistent small area estimates at different frequencies and regional levels. Statistics Netherlands Discussion Paper, December 4, 2018.

Boonstra, H. J., J. van den Brakel, and S. Das (2018). Computing input estimates for time series modeling of mobility trends. CBS report.

Boonstra, H. J., J. van den Brakel, and S. Das (2019). Multi-level time series modeling of mobility trends - final report. Statistics Netherlands Discussion Paper, 30 October 2019.

Boonstra, H. J., J. van den Brakel, and S. Das (2021). Modeling of mobility trends - 2020 update including new odin data and level breaks. Statistics Netherlands Discussion Paper, February 2021.

Boonstra, H. J., J. van den Brakel, S. Das, and H. Wüst (2021). Modelling mobility trends update including 2020 odin data and covid effects. Statistics Netherlands Discussion Paper, November 2021.

Boonstra, H. J., J. van den Brakel, and H. Wüst (2022). Modelling mobility trends - update including 2021 odin data and covid effects. Statistics Netherlands Discussion Paper, October 2022.

Brezger, A., L. Fahrmeir, and A. Hennerfeind (2007). Adaptive gaussian markov random fields with applications in human brain mapping. Journal of the Royal Statistical Society: Series C (Applied Statistics) 56(3), 327-345.

Carter, C. K. and R. Kohn (1996). Markov chain monte carlo in conditionally gaussian state space models. Biometrika 83(3), 589-601.

Carvalho, C. M., N. G. Polson, and J. G. Scott (2010). The horseshoe estimator for sparse signals. Biometrika 97(2), 465-480.

Datta, G. S. and P. Lahiri (1995). Robust hierarchical bayes estimation of small area characteristics in the presence of covariates and outliers. Journal of Multivariate Analysis 54(2), 310-328.

Fabrizi, E., M. R. Ferrante, and C. Trivisano (2018). Bayesian small area estimation for skewed business survey variables. Journal of the Royal Statistical Society Series C 67(4), 861-879.

Fabrizi, E. and C. Trivisano (2010). Robust linear mixed models for small area estimation. Journal of Statistical Planning and Inference 140(2), 433-443.

Fay, R. and R. Herriot (1979). Estimates of income for small places: An application of james-stein procedures to census data. Journal of the American Statistical Association 74(366), 269-277.

Gelfand, A. and A. Smith (1990). Sampling based approaches to calculating marginal densities. Journal of the American Statistical Association 85, 398-409.

Gelman, A. (2006). Prior distributions for variance parameters in hierarchical models. Bayesian Analysis 1(3), 515-533.

Gelman, A. and J. Hill (2007). Data analysis using regression and multilevel/hierarchical models. Cambridge University Press.

Gelman, A. and D. Rubin (1992). Inference from iterative simulation using multiple sequences. Statistical Science 7(4), 457-472.

Geman, S. and D. Geman (1984). Stochastic relaxation, gibbs distributions and the bayesian restoration of images. IEEE Transactions on pattern analysis and machine intelligence 6, 721-741.

Hale, T., N. Angrist, R. Goldszmidt, B. Kira, A. Petherick, T. Phillips, S. Webster, E. Cameron-Blake, L. Hallas, S. Majumdar, et al. (2021). A global panel database of pandemic policies (oxford covid-19 government response tracker). Nature human behaviour 5(4), 529-538.

Juárez, M. A. and M. F. J. Steel (2010). Model-based clustering of non-gaussian panel data based on skew-t distributions. Journal of Business and Economic Statistics 28(1), 52-66.

Konen, R. and H. Molnár (2007). Onderzoek verplaatsingsgedrag - methodologische beschrijving. Statistics Netherlands.

Lang, S., E.-M. Fronk, and L. Fahrmeir (2002). Function estimation with locally adaptive dynamic models. Computational Statistics 17(4), 479-500.

Molnár, H. (2007). Mobiliteitsonderzoek nederland - methodologische beschrijving. Statistics Netherlands.

O’Malley, A. and A. Zaslavsky (2008). Domain-level covariance analysis for multilevel survey data with structured nonresponse. Journal of the American Statistical Association 103(484), 1405-1418.

Park, T. and G. Casella (2008). The bayesian lasso. Journal of the American Statistical Association 103(482), 681-686.

Parker, P. A., S. H. Holan, and R. Janicki (2023). Conjugate modeling approaches for small area estimation with heteroscedastic structure. Journal of Survey Statistics and Methodology, smad002.

R Core Team (2015). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.

Rao, J. and I. Molina (2015). Small Area Estimation. Wiley-Interscience.
Rue, H. and L. Held (2005). Gaussian Markov Random Fields: Theory and Applications. Chapman and Hall/CRC.

Särndal, C.-E., B. Swensson, and J. Wretman (1989). The weighted residual technique for estimating the variance of the general regression estimator of the finite population total. Biometrika 76, 527-537.

Särndal, C.-E., B. Swensson, and J. Wretman (1992). Model Assisted Survey Sampling. Springer.

Spiegelhalter, D., N. Best, B. Carlin, and A. van der Linde (2002). Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society B 64(4), 583-639.

Tang, X., M. Ghosh, N. S. Ha, and J. Sedransk (2018). Modeling random effects using global-local shrinkage priors in small area estimation. Journal of the American Statistical Association, 1-14.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society B, 267-288.
van den Brakel, J., X. Zang, and S.-M. Tam (2020). Measuring discontinuities in time series obtained with repeated sample surveys. International Statistical Review 88, 155-175.

Vehtari, A., J. Gabry, M. Magnusson, Y. Yao, P.-C. Bürkner, T. Paananen, and A. Gelman (2023). loo: Efficient leave-one-out cross-validation and waic for bayesian models. R package version 2.6.0.

Vehtari, A., A. Gelman, and J. Gabry (2017). Practical bayesian model evaluation using leave-one-out cross-validation and waic. Statistics and computing 27, 1413-1432.

Vehtari, A., D. Simpson, A. Gelman, Y. Yao, and J. Gabry (2015). Pareto smoothed importance sampling. arXiv preprint arXiv:1507.02646.

Watanabe, S. (2010). Asymptotic equivalence of bayes cross validation and widely applicable information criterion in singular learning theory. Journal of Machine Learning Research 11, 3571-3594.

Watanabe, S. (2013). A widely applicable bayesian information criterion. Journal of Machine Learning Research 14, 867-897.

West, M. (1984). Outlier models and prior distributions in bayesian linear regression. Journal of the Royal Statistical Society B, 431-439.

Willems, R. and J. van den Brakel (2015). Methodebreukcorrectie ovin. PPM 210514/12, Statistics Netherlands.

Wolter, K. (2007). Introduction to Variance Estimation. Springer.

Appendix

A Time series plots model-based and direct estimates

A. 1 Total number of trip legs per day

Total number of trip legs per day

Figure A. 1 Direct estimates (black), model fit (red) and trend estimates (green) for total number of trip legs per day with approximate 95% intervals.

Figure A. 2 Direct estimates (black), model fit (red) and trend estimates (green) for total number of trip legs per day by purpose with approximate 95% intervals.

Figure A. 3 Direct estimates (black), model fit (red) and trend estimates (green) for for total number of trip legs per day by mode with approximate 95% intervals.

A. 2 Total distance per day

Figure A. 4 Direct estimates (black), model fit (red) and trend estimates (green) for total distance per day with approximate 95\% intervals.

Total distance per day by purpose

Figure A. 5 Direct estimates (black), model fit (red) and trend estimates (green) for total distance per day by purpose with approximate 95\% intervals.

Total distance per day by mode

Figure A. 6 Direct estimates (black), model fit (red) and trend estimates (green) for total distance per day by mode with approximate 95\% intervals.

A. 3 Number of trip legs per person per day

Total number of trip legs pppd

Figure A. 7 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Number of trip legs pppd by purpose

Figure A. 8 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Figure A. 9 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Number of trip legs pppd by mode and purpose

Figure A. 10 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Number of trip legs pppd by purpose, for mode Car driver

Figure A. 11 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Number of trip legs pppd by purpose, for mode Car passenger

Figure A. 12 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Number of trip legs pppd by purpose, for mode Train

Figure A. 13 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Number of trip legs pppd by purpose, for mode BTM

Figure A. 14 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Number of trip legs pppd by purpose, for mode Cycling

Figure A. 15 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Number of trip legs pppd by purpose, for mode Walking

Figure A. 16 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Number of trip legs pppd by purpose, for mode Other

Figure A. 17 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Number of trip legs pppd by ageclass and sex

Figure A. 18 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Figure A. 19 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Number of trip legs pppd by purpose and sex, age 12-17

Figure A. 20 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Number of trip legs pppd by purpose and sex, age 18-24

Figure A. 21 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Number of trip legs pppd by purpose and sex, age 25-29

Figure A. 22 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Number of trip legs pppd by purpose and sex, age 30-39

Figure A. 23 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Number of trip legs pppd by purpose and sex, age 40-49

Figure A. 24 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Number of trip legs pppd by purpose and sex, age 50-59

Figure A. 25 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Number of trip legs pppd by purpose and sex, age 60-64

Figure A. 26 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Number of trip legs pppd by purpose and sex, age 65-69

Figure A. 27 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Number of trip legs pppd by purpose and sex, age 70+

Figure A. 28 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Figure A. 29 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Number of trip legs pppd by mode and sex, age 12-17

Figure A. 30 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Number of trip legs pppd by mode and sex, age 18-24

Figure A. 31 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Number of trip legs pppd by mode and sex, age 25-29

Figure A. 32 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Number of trip legs pppd by mode and sex, age 30-39

Figure A. 33 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Figure A. 34 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Number of trip legs pppd by mode and sex, age 50-59

Figure A. 35 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Number of trip legs pppd by mode and sex, age 60-64

Figure A. 36 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Number of trip legs pppd by mode and sex, age 65-69

Figure A. 37 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Number of trip legs pppd by mode and sex, age 70+

Figure A. 38 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Number of trip legs pppd by mode and sex, Work, age 12-17

Figure A. 39 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Number of trip legs pppd by mode and sex, Work, age 18-24

Figure A. 40 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Number of trip legs pppd by mode and sex, Work, age 25-29

Figure A. 41 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Number of trip legs pppd by mode and sex, Work, age 30-39

Figure A. 42 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Number of trip legs pppd by mode and sex, Work, age 40-49

Figure A. 43 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Number of trip legs pppd by mode and sex, Work, age 50-59

Figure A. 44 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Number of trip legs pppd by mode and sex, Work, age 60-64

Figure A. 45 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Number of trip legs pppd by mode and sex, Work, age 65-69

Figure A. 46 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Number of trip legs pppd by mode and sex, Work, age 70+

Figure A. 47 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Figure A. 48 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Number of trip legs pppd by mode and sex, Shopping, age 12-17

Figure A. 49 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Number of trip legs pppd by mode and sex, Shopping, age 18-24

ләлир леэ

Figure A. 50 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Number of trip legs pppd by mode and sex, Shopping, age 25-29

Figure A. 51 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Number of trip legs pppd by mode and sex, Shopping, age 30-39

Figure A. 52 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Number of trip legs pppd by mode and sex, Shopping, age 40-49

Figure A. 53 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Number of trip legs pppd by mode and sex, Shopping, age 50-59

Figure A. 54 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Number of trip legs pppd by mode and sex, Shopping, age 60-64

Figure A. 55 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Number of trip legs pppd by mode and sex, Shopping, age 65-69

Figure A. 56 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Figure A. 57 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Figure A. 58 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Number of trip legs pppd by mode and sex, Education, age 12-17

Figure A. 59 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Number of trip legs pppd by mode and sex, Education, age 18-24

Figure A. 60 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Number of trip legs pppd by mode and sex, Education, age 25-29

Figure A. 61 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Number of trip legs pppd by mode and sex, Education, age 30-39

Figure A. 62 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.
Number of trip legs pppd by mode and sex, Education, age 40-49

Figure A. 63 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Figure A. 64 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Figure A. 65 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Figure A. 66 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Figure A. 67 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Figure A. 68 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Figure A. 69 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Number of trip legs pppd by mode and sex, Leisure, age 18-24

Figure A. 70 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Number of trip legs pppd by mode and sex, Leisure, age 25-29

Figure A. 71 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Number of trip legs pppd by mode and sex, Leisure, age 30-39

Figure A. 72 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Number of trip legs pppd by mode and sex, Leisure, age 40-49

Figure A. 73 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Number of trip legs pppd by mode and sex, Leisure, age 50-59

Figure A. 74 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Number of trip legs pppd by mode and sex, Leisure, age 60-64

Figure A. 75 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Number of trip legs pppd by mode and sex, Leisure, age 65-69

Figure A. 76 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Figure A. 77 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Figure A. 78 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Number of trip legs pppd by mode and sex, Other, age 12-17

Figure A. 79 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Figure A. 80 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Number of trip legs pppd by mode and sex, Other, age 25-29

Figure A. 81 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Number of trip legs pppd by mode and sex, Other, age 30-39

Figure A. 82 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Number of trip legs pppd by mode and sex, Other, age 40-49

Figure A. 83 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Number of trip legs pppd by mode and sex, Other, age 50-59

Figure A. 84 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Number of trip legs pppd by mode and sex, Other, age 60-64

Figure A. 85 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Number of trip legs pppd by mode and sex, Other, age 65-69

Figure A. 86 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Figure A. 87 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

A. 4 Average distance per trip leg

Overall average of distance per trip leg

Figure A. 88 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Distance per trip leg by purpose

Figure A. 89 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Distance per trip leg by mode

Figure A. 90 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Figure A. 91 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Distance per trip leg by purpose, for mode Car driver

Figure A. 92 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Distance per trip leg by purpose, for mode Car passenger

Figure A. 93 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance per trip leg by purpose, for mode Train

Figure A. 94 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Distance per trip leg by purpose, for mode BTM

Figure A. 95 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Distance per trip leg by purpose, for mode Cycling

Figure A. 96 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Distance per trip leg by purpose, for mode Walking

Figure A. 97 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Distance per trip leg by purpose, for mode Other

Figure A. 98 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Distance per trip leg by ageclass and sex

Figure A. 99 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Distance per trip leg by purpose and sex, age 6-11

Figure A. 100 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance per trip leg by purpose and sex, age 12-17

Figure A. 101 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance per trip leg by purpose and sex, age 18-24

Figure A. 102 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance per trip leg by purpose and sex, age 25-29

Figure A. 103 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance per trip leg by purpose and sex, age 30-39

Figure A. 104 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance per trip leg by purpose and sex, age 40-49

Figure A. 105 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Distance per trip leg by purpose and sex, age 50-59

Figure A. 106 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Distance per trip leg by purpose and sex, age 60-64

Figure A. 107 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance per trip leg by purpose and sex, age 65-69

Figure A. 108 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance per trip leg by purpose and sex, age 70+

Figure A. 109 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance per trip leg by mode and sex, age 6-11
Male

 ィə6uәssed леう

Figure A. 110 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Distance per trip leg by mode and sex, age 12-17

Figure A. 111 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Distance per trip leg by mode and sex, age 18-24

Figure A. 112 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance per trip leg by mode and sex, age 25-29

Figure A. 113 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance per trip leg by mode and sex, age 30-39

ләлир леэ

Figure A. 114 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance per trip leg by mode and sex, age 40-49

Figure A. 115 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance per trip leg by mode and sex, age 50-59

Figure A. 116 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance per trip leg by mode and sex, age 60-64

Figure A. 117 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance per trip leg by mode and sex, age 65-69

Figure A. 118 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Distance per trip leg by mode and sex, age 70_{+}

Figure A. 119 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Distance per trip leg by mode and sex, Work, age 12-17

Figure A. 120 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance per trip leg by mode and sex, Work, age 18-24

Figure A. 121 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance per trip leg by mode and sex, Work, age 25-29

Figure A. 122 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance per trip leg by mode and sex, Work, age 30-39

Figure A. 123 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance per trip leg by mode and sex, Work, age 40-49

Figure A. 124 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Distance per trip leg by mode and sex, Work, age 50-59

Figure A. 125 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance per trip leg by mode and sex, Work, age 60-64

Figure A. 126 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance per trip leg by mode and sex, Work, age 65-69

Figure A. 127 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance per trip leg by mode and sex, Work, age 70+

Figure A. 128 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Distance per trip leg by mode and sex, Shopping, age 6-11

Figure A. 129 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance per trip leg by mode and sex, Shopping, age 12-17

Figure A. 130 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Distance per trip leg by mode and sex, Shopping, age 18-24

Figure A. 131 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Distance per trip leg by mode and sex, Shopping, age 25-29

Figure A. 132 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance per trip leg by mode and sex, Shopping, age 30-39

Figure A. 133 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.
Distance per trip leg by mode and sex, Shopping, age 40-49

Figure A. 134 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Distance per trip leg by mode and sex, Shopping, age 50-59

Figure A. 135 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance per trip leg by mode and sex, Shopping, age 60-64

Figure A. 136 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance per trip leg by mode and sex, Shopping, age 65-69

Figure A. 137 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance per trip leg by mode and sex, Shopping, age 70+

Figure A. 138 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance per trip leg by mode and sex, Education, age 6-11

Figure A. 139 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance per trip leg by mode and sex, Education, age 12-17

Figure A. 140 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance per trip leg by mode and sex, Education, age 18-24

Figure A. 141 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance per trip leg by mode and sex, Education, age 25-29

Figure A. 142 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Distance per trip leg by mode and sex, Education, age 30-39

Figure A. 143 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance per trip leg by mode and sex, Education, age 40-49

Figure A. 144 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance per trip leg by mode and sex, Education, age 50-59

Figure A. 145 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance per trip leg by mode and sex, Education, age 60-64

Figure A. 146 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance per trip leg by mode and sex, Education, age 65-69

Figure A. 147 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Figure A. 148 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Distance per trip leg by mode and sex, Leisure, age 6-11

Figure A. 149 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance per trip leg by mode and sex, Leisure, age 12-17

Figure A. 150 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Distance per trip leg by mode and sex, Leisure, age 18-24

 ィə6uəssed ıеう

Figure A. 151 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance per trip leg by mode and sex, Leisure, age 25-29

Figure A. 152 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance per trip leg by mode and sex, Leisure, age 30-39

Figure A. 153 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance per trip leg by mode and sex, Leisure, age 40-49

Figure A. 154 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance per trip leg by mode and sex, Leisure, age 50-59

Figure A. 155 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance per trip leg by mode and sex, Leisure, age 60-64

Figure A. 156 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance per trip leg by mode and sex, Leisure, age 65-69

Figure A. 157 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Figure A. 158 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Distance per trip leg by mode and sex, Other, age 6-11

Figure A. 159 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Figure A. 160 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Figure A. 161 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance per trip leg by mode and sex, Other, age 25-29

Figure A. 162 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance per trip leg by mode and sex, Other, age 30-39

Figure A. 163 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance per trip leg by mode and sex, Other, age 50-59

Figure A. 165 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Figure A. 166 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance per trip leg by mode and sex, Other, age 65-69

Figure A. 167 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Figure A. 168 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

A. 5 Average distance per person per day

Figure A. 169 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Figure A. 170 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Figure A. 171 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Figure A. 172 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance pppd leg by purpose, for mode Car driver

Figure A. 173 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance pppd leg by purpose, for mode Car passenger

Figure A. 174 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance pppd leg by purpose, for mode Train

Figure A. 175 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance pppd leg by purpose, for mode BTM

Figure A. 176 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance pppd leg by purpose, for mode Cycling

Figure A. 177 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Distance pppd leg by purpose, for mode Walking

Figure A. 178 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Distance pppd leg by purpose, for mode Other

Figure A. 179 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance pppd by ageclass and sex

Figure A. 180 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Figure A. 181 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance pppd by purpose and sex, age 12-17

Figure A. 182 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance pppd by purpose and sex, age 18-24

Figure A. 183 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance pppd by purpose and sex, age 25-29

Figure A. 184 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance pppd by purpose and sex, age 30-39

Figure A. 185 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance pppd by purpose and sex, age 40-49

Figure A. 186 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance pppd by purpose and sex, age 50-59

Figure A. 187 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance pppd by purpose and sex, age 60-64

Figure A. 188 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance pppd by purpose and sex, age 65-69

Figure A. 189 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance pppd by purpose and sex, age $70+$

Figure A. 190 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Figure A. 191 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance pppd by mode and sex, age 12-17

Figure A. 192 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Distance pppd by mode and sex, age 18-24

Figure A. 193 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance pppd by mode and sex, age 25-29

Figure A. 194 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance pppd by mode and sex, age 30-39

distance pppd

Figure A. 195 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Distance pppd by mode and sex, age 40-49

Figure A. 196 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance pppd by mode and sex, age 50-59

Figure A. 197 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance pppd by mode and sex, age 60-64

Figure A. 198 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Distance pppd by mode and sex, age 65-69

Figure A. 199 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Figure A. 200 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Distance pppd by mode and sex, Work, age 12-17

Figure A. 201 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance pppd by mode and sex, Work, age 18-24

Figure A. 202 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance pppd by mode and sex, Work, age 25-29

Figure A. 203 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance pppd by mode and sex, Work, age 30-39

Figure A. 204 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance pppd by mode and sex, Work, age 40-49

Figure A. 205 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance pppd by mode and sex, Work, age 50-59

Figure A. 206 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Distance pppd by mode and sex, Work, age 60-64

Figure A. 207 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance pppd by mode and sex, Work, age 65-69

Figure A. 208 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance pppd by mode and sex, Work, age 70+

Figure A. 209 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance pppd by mode and sex, Shopping, age 6-11

Figure A. 210 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Distance pppd by mode and sex, Shopping, age 12-17

Figure A. 211 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance pppd by mode and sex, Shopping, age 18-24

Figure A. 212 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance pppd by mode and sex, Shopping, age 25-29

Figure A. 213 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance pppd by mode and sex, Shopping, age 30-39

Figure A. 214 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance pppd by mode and sex, Shopping, age 40-49

Figure A. 215 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance pppd by mode and sex, Shopping, age 50-59

Figure A. 216 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance pppd by mode and sex, Shopping, age 60-64

Figure A. 217 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance pppd by mode and sex, Shopping, age 65-69

Figure A. 218 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance pppd by mode and sex, Shopping, age 70+

Figure A. 219 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Distance pppd by mode and sex, Education, age 6-11

Figure A. 220 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance pppd by mode and sex, Education, age 12-17

Figure A. 221 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance pppd by mode and sex, Education, age 18-24

Figure A. 222 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance pppd by mode and sex, Education, age 25-29

Figure A. 223 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance pppd by mode and sex, Education, age 30-39

Figure A. 224 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance pppd by mode and sex, Education, age 40-49

Figure A. 225 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance pppd by mode and sex, Education, age 50-59

Figure A. 226 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance pppd by mode and sex, Education, age 60-64

Figure A. 227 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance pppd by mode and sex, Education, age 65-69

Figure A. 228 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance pppd by mode and sex, Education, age 70+

Figure A. 229 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance pppd by mode and sex, Leisure, age 6-11

Figure A. 230 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance pppd by mode and sex, Leisure, age 12-17

Figure A. 231 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Figure A. 232 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance pppd by mode and sex, Leisure, age 25-29

Figure A. 233 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance pppd by mode and sex, Leisure, age 30-39

Figure A. 234 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance pppd by mode and sex, Leisure, age 40-49

Figure A. 235 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance pppd by mode and sex, Leisure, age 50-59

Figure A. 236 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance pppd by mode and sex, Leisure, age 60-64

Figure A. 237 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance pppd by mode and sex, Leisure, age 65-69

Figure A. 238 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance pppd by mode and sex, Leisure, age 70+

Figure A. 239 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance pppd by mode and sex, Other, age 6-11

Figure A. 240 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance pppd by mode and sex, Other, age 12-17

Figure A. 241 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance pppd by mode and sex, Other, age 18-24

Figure A. 242 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance pppd by mode and sex, Other, age 25-29

Figure A. 243 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance pppd by mode and sex, Other, age 30-39

Figure A. 244 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance pppd by mode and sex, Other, age 40-49

Figure A. 245 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance pppd by mode and sex, Other, age 50-59

Figure A. 246 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance pppd by mode and sex, Other, age 60-64

Figure A. 247 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Distance pppd by mode and sex, Other, age 65-69

Figure A. 248 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95% intervals.

Distance pppd by mode and sex, Other, age 70+

Figure A. 249 Direct estimates (black), model fit (red) and trend estimates (green) with approximate 95\% intervals.

Colophon
Publisher
Statistics Netherlands
Henri Faasdreef 312, 2492 JP The Hague
www.cbs.nl

Prepress

Statistics Netherlands, Grafimedia

Design
Edenspiekermann

Information

Telephone +31 8857070 70, fax +31 703375994
Via contact form: www.cbs.nl/information
© Statistics Netherlands, The Hague/Heerlen/Bonaire 2023.
Reproduction is permitted, provided Statistics Netherlands is quoted as the source

[^0]: ${ }^{1)}$ This means that there is at most one unit (person or household) in a specific sex, age class domain, who reported a trip leg for a specific purpose, mode combination.
 ${ }^{2)}$ In case of 0 or 1 contributing units we have defined deff to equal 1 .

