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Summary 
Statistical output, e.g. totals or means of a target variable, are often published 

for subpopulations that are defined by categorical domain variables (such as 

categories of educational level, categories of economic activity, and so on). 

When these domain variables are constructed as a statistical register by 

combining various sources prone to errors, it is important to check the quality of 

these variables. A way to do this is to perform an audit on a sample of that 

population, that is representative with respect to the domain variable. When a 

possibly non-random sample (a non-probability sample) of units has already 

been audited earlier, it would be most efficient to re-use as many of these 

already audited units as possible. In order to achieve a sample that is 

representative with respect to the domain variable and containing as many 

previously audited units as possible, standard sampling techniques are not 

sufficient. In this paper, a method is introduced that selects an audit sample 

which re-uses previously audited cases by considering the selection of an audit 

sample that is representative with respect to domain variables as a constrained 

minimization problem. Furthermore, the performance of this method is 

evaluated by means of a simulation study, and the method is applied to draw an 

audit sample of establishments to evaluate the quality of the establishment 

register that is used to produce statistics on energy consumption per economic 

activity. 

 

Keywords 
Audit sample, validation sample, gold standard, non-probability sample, 

deviance, minimization procedure 
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1. Introduction 

Since the introduction of the sustainable development goals (UN General 

Assembly, 2015), the interest in statistics regarding energy consumption has 

increased substantially, including many statistics which have never been produced 

before. In the Netherlands, there has recently been interest in statistics on energy 

consumption per economic sector, which Statistics Netherlands aims to calculate 

by summing up the energy consumption of all establishments that operate within 

an economic sector. In order to produce such statistics, a statistical register is 

required that contains all establishments in the Netherlands, their energy 

consumption and the economic sector in which they operate. 

 
Table 1: Illustration of how energy connections, addresses and establishments can be related 

Address Energy connection Establishment 

Address 1 Connection 1 (gas) Establishment 1 

Address 1 Connection 2 (electricity) Establishment 1 

Address 2 Connection 3 (gas) Establishment 2 

Address 2 Connection 3 (gas) Establishment 3 

Address 2 Connection 4 (electricity) Establishment 2 

Address 2  Connection 4 (electricity) Establishment 3 

 

 

To construct such a statistical register, currently multiple (incomplete) 

administrative sources are combined on the unit level, where a unit is an energy 

connection. Note that one address can host multiple energy connections and 

multiple establishments, as illustrated in Table 1. These different statistical 

registers contain in addition information regarding the economic activity of the 

establishment, and the observed economic activity of an establishment can vary 

over the different administrative sources, as they are prone to error. The 

economic activity is classified according to the NACE rev. 2 codes (Eurostat, 2008) 

and is referred to as the ‘domain variable’ in the remainder of this manuscript.  

 

As the domain variable can contain errors (i.e. is error-prone), it is important to 

evaluate the quality of this classification variable in the newly constructed 

statistical register, which can for example be evaluated by means of an audit. In 

general, it is desired that such an audit takes place on a sample of the population 

register that is representative with respect to the domain variables, such as the 

economic sector, so that the quality can be assessed for the different sectors. An 

audit performed on a sample representative with respect to the domain variable 

allows us to estimate the quality of the statistical output created using this domain 

variable. In addition, an audit can help us to estimate the amount of 

misclassification present in the various administrative sources which contain this 

variable.  

 

Throughout the year, a subset of units is typically already audited for other 

purposes, and this subset is not representative with respect to the domain 
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variable, economic activity. Given that auditing an establishment is a burdensome 

and expensive exercise, it is desired to re-use as many as possible of the previously 

audited units in this new audit sample that is representative with respect to the 

distribution of economic sectors. To achieve this goal, we propose to approach the 

selection of an audit sample as a constrained minimization problem. In this paper, 

we propose a framework where an audit sample can be selected, representative 

with respect to domain variables, that re-uses as many earlier audited units as 

possible. In Section 2, notation and the proposed framework are introduced. In 

Section 3, it is illustrated how the framework can be used to re-use previously 

audited units. In Section 4, a simulation study is used to investigate the 

performance of the method under different conditions. Section 5 illustrates how 

the proposed method can be applied in practice using ready-made R scripts. 

Finally, section 6 concludes.  

 

Besides the field of energy statistics, auditing is a widely used method for quality 

improvement and is applied in many fields of research. Within the field of official 

statistics, audits have also been used to estimate the quality of administrative 

sources or of surveys by including an audit sample in a structural equation model 

(Scholtus et al., 2015; Sobel & Arminger, 1986). Furthermore, audits are used in 

the field of clinical research to evaluate the performance of diagnostic tests in 

comparison to a ‘gold standard’ test, see for example Chataway et al. (2004). In 

addition, organizations are often required by law to perform financial audits 

(TheWorldBank, 2019), see for example Derks et al. (2019) and Elder et al. (2013). 

When evaluating prediction models, validation samples are used to evaluate their 

performance, see for example Hernandez et al. (2014). Here, researchers 

sometimes deal with the issue of ‘sample selection bias’ (Zadrozny, 2004), see for 

example Klingwort et al. (2021). As researchers in these respective fields typically 

also deal with all sorts of challenges related to their audit sample, we hope that 

our solution can also be of relevance for them. 
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2. Background 

We are interested in auditing a sample that is representative with respect to the 

target population on a domain variable. When drawing the audit sample, an error-

prone measure of this domain variable is available for the complete target 

population. More specifically, it is the goal of the audit to estimate the error 

probabilities of this domain variable.  

 

In what follows, all variables are assumed to be categorical. The target population 

is denoted as 𝑈, with 𝑈 = 1, 2, … , 𝑁. The true variable of interest is denoted by 𝑊, 
with 𝑊𝑔 denoting the value of this variable for element 𝑔 in 𝑈. The aim is to 

estimate certain parameters of the distribution of 𝑊, for instance, its frequency 

distribution in the target population. It is assumed that 𝑊 is observed only inside 

the audit sample. For all units in the target population 𝑈, an error-prone version of 

the variable of interest is measured, which is denoted by 𝑋. The values of 𝑋 in the 

target population are denoted by 𝑋1, 𝑋2, … , 𝑋𝑁. In addition to estimating the 

distribution of 𝑊, a secondary aim may be to estimate the association between 𝑊 

and 𝑋, e.g., the error probabilities Pr(𝑋𝑔 = 𝑥|𝑊𝑔 = 𝑤). Knowledge of these error 

probabilities makes it possible to estimate the distribution of 𝑊 based on the 

target population, not just the audit sample, which is more efficient. In addition, 

these error probabilities may be of interest in their own right, as quality measures 

of the error-prone indicator 𝑋. In addition to 𝑋, we suppose that one or more 

covariates are available in the observed sample, collectively denoted as 𝑌, with 

values 𝑌1, 𝑌2, … , 𝑌𝑁. We assume that the joint distribution of 𝑌 is known (or 

previously estimated) for the target population and that covariate values are 

observed without measurement error. Let 𝑍 denote the selection indicator of the 
audit sample within 𝑈, where 𝑍𝑔 is the value for element 𝑔 with 𝑔 = 1, 2, … , 𝑁: 

𝑍𝑔 = 1 when the element is included in the sample and 𝑍𝑔 = 0 otherwise. The 

expected value of 𝑍𝑔 with respect to the sample design is denoted by 

 

𝜋𝑔  =  𝐸(𝑍𝑔) = Pr(𝑍𝑔 =  1). (1) 

 

The audit sample size, denoted by 𝑛, is equal to the sum of the values of 𝑍: 

 

𝑛 =  ∑ 𝑍𝑔

𝑁

𝑔=1

. (2) 

 

In order to make appropriate inferences with respect to the target population, it is 

important that the audit sample can be used to obtain (approximately) unbiased 

estimates of target population parameters. If this is possible, we will refer to the 

sample as representative for the purpose at hand. For any audit sample that is 
drawn by a random mechanism, in such a way that the probabilities 𝜋𝑔 from 

Equation (1) are known and positive for all units in the population, it is known 

from design-based sampling theory how to obtain an unbiased estimator; see, e.g., 

Cochran (1977) or Särndal et al. (1992). Here, we will focus on the more 

complicated situation that (initially) an audit sample is available for which the 
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probabilities 𝜋𝑔 are not known or not useful. This may occur, for instance, because 

we are given a sample of previously audited units that we did not draw ourselves, 

or because a non-random selection mechanism was used (e.g., selecting only the 

largest units in the population). The term non-probability sampling is often used 

for this situation (Baker et al., 2013). In general, a non-probability sample is not 

representative, since there is no available method that guarantees unbiased 

estimation of population parameters. There is a growing literature on methods 

that attempt to make valid inference from a given non-probability sample, 

sometimes by combining it with a probability sample; see, e.g., Elliott and Valliant 

(2017) and Rao (2021) for an overview. Here, we propose a different approach and 

try to adapt the initial audit sample, possibly by both adding and removing cases, 

to make it more amenable to design-based estimation.  

 

As a theoretical starting point to investigate whether the audit sample is 

representative with respect to the domain variables and covariates of the target 

population, the joint distribution of the variables (𝑊, 𝑋, 𝑌, 𝑍) in the target 

population is of interest. Here 𝑊 and 𝑋 represent the true domain variable and its 

error-prone observed version, 𝑍 indicates whether a unit is included in the audit 

sample and 𝑌 represents a covariate. We make the following simplifying 

assumption:  

 

Assumption A. There is no direct association between the true domain variable 𝑊 

and the audit inclusion indicator 𝑍, once 𝑋 and 𝑌 are accounted for. That is to say, 

 

Pr(𝑍𝑔 = 𝑧|𝑋𝑔 = 𝑥, 𝑌𝑔 = 𝑦, 𝑊𝑔 = 𝑤) = Pr(𝑍𝑔 = 𝑧|𝑋𝑔 = 𝑥, 𝑌𝑔 = 𝑦), 

 

for all possible values (𝑤, 𝑥, 𝑦, 𝑧). 

 

For any audit sample that we draw ourselves, we can ensure that this assumption 

is satisfied. However, if we are given a non-probability sample of previously 

audited units, the assumption may require that the right covariates are included in 

𝑌. The importance of this assumption which will be seen below is that it allows the 

representativeness of the audit sample to be investigated by analyzing the joint 

distribution of (𝑋, 𝑌, 𝑍) instead of (𝑊, 𝑋, 𝑌, 𝑍) (see the end of Section 2.1). In 

practice, the former distribution is known, whereas inference about the latter 

distribution becomes possible only once a representative audit sample has been 

obtained.  

 

It does not matter if the distribution of 𝑍 depends on 𝑋, as long as differences in 

probabilities to be included in the audit are completely related to the covariates in 

𝑌 for which the distribution in the target population is known:  

 

Pr(𝑍𝑔 = 1|𝑋𝑔 = 𝑥, 𝑌𝑔 = 𝑦) = Pr(𝑍𝑔 = 1|𝑌𝑔 = 𝑦). (3) 

 

From a missing data perspective, it can be said that if the distribution of 𝑍 depends 

on 𝑋, this is not problematic as long as the audit exclusion pattern is Missing At 

Random (MAR) (Rubin, 1976). However, if the distribution of 𝑍 depends on 𝑋 and 

this dependence is not explained by 𝑌, this can be problematic, in particular when 

the error probabilities Pr(𝑋𝑔 = 𝑥|𝑊𝑔 = 𝑤) are of interest. Then, it can be said that 
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the audit exclusion pattern is Missing Not At Random (MNAR) (Rubin, 1976). 

Therefore, our goal is to select a final audit sample in such a way that Equation (3) 

holds; we refer to this as the MAR requirement of representativeness. 

2.1 Deviance as a criterion for representativeness 

We propose to test whether a given audit sample meets the MAR requirement of 

representativeness (3) by analyzing the joint distribution (𝑋, 𝑌, 𝑍) in the observed 

target population using a non-saturated log-linear model (𝑋𝑌)(𝑌𝑍). Note that the 

difference between the non-saturated model and a saturated model is that the 

direct association (𝑋𝑍) and the three-way interaction (𝑋𝑌𝑍) are excluded. In the 

non-saturated model it is assumed that 𝑋 and 𝑍 are conditionally independent 

given 𝑌, i.e. the observed domain characteristic and the audit inclusion probability 

are conditionally independent given the covariates under consideration. 

Therefore, we refer to it as the conditional independence (CI) model. 

 

We remark that the CI model is equivalent to condition (3). In terms of 

probabilities the CI model assumes that 

 

Pr(𝑍𝑔 = 𝑧, 𝑋𝑔 = 𝑥|𝑌𝑔 = 𝑦) = Pr(𝑍𝑔 = 𝑧|𝑌𝑔 = 𝑦) Pr(𝑋𝑔 = 𝑥|𝑌𝑔 = 𝑦). 

 

Furthermore, it holds in general that, for all (𝑥, 𝑦) with Pr(𝑋𝑔 = 𝑥, 𝑌𝑔 = 𝑦) > 0, 

 

Pr(𝑍𝑔 = 𝑧|𝑋𝑔 = 𝑥, 𝑌𝑔 = 𝑦) =
Pr(𝑍𝑔 = 𝑧, 𝑋𝑔 = 𝑥, 𝑌𝑔 = 𝑦)

Pr(𝑋𝑔 = 𝑥, 𝑌𝑔 = 𝑦)
 

=
Pr(𝑍𝑔 = 𝑧, 𝑋𝑔 = 𝑥|𝑌𝑔 = 𝑦)

Pr(𝑋𝑔 = 𝑥|𝑌𝑔 = 𝑦)
. 

 

Under the CI assumption, the latter expression reduces to  

 

Pr(𝑍𝑔 = 𝑧|𝑋𝑔 = 𝑥, 𝑌𝑔 = 𝑦) = Pr(𝑍𝑔 = 𝑧|𝑌𝑔 = 𝑦). 

 

It follows that the CI model implies condition (3) and vice versa. Hence, a test of 

the CI model is also a test of condition (3). 

 
The actual number of observations in cell (𝑋 = 𝑖, 𝑌 = 𝑗, 𝑍 = 𝑘) is denoted as 𝑛𝑖𝑗𝑘 

and the number of observations estimated by the CI model is denoted as 𝑛̂𝑖𝑗𝑘. The 

fit of the CI model can be measured by the likelihood ratio test statistic or 
deviance (𝐷) comparing it to the saturated model where 𝑛̂𝑖𝑗𝑘 = 𝑛𝑖𝑗𝑘  (Agresti, 

2013): 

 

𝐷 =  2 ∑ 𝑛𝑖𝑗𝑘  log 𝑛𝑖𝑗𝑘

𝑖,𝑗,𝑘

− 2 ∑ 𝑛𝑖𝑗𝑘  log 𝑛̂𝑖𝑗𝑘

𝑖,𝑗,𝑘

, (4) 

 

where 𝐷 ≥ 0. Throughout this paper, we use the convention that 0 log 0 = 0. 
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A larger value for 𝐷 indicates a stronger conditional dependence between 𝑋 and 𝑍 

given 𝑌 in the observed data-set, which means that the problem of not having a 

representative audit sample is more substantive. This suggests that an audit 

sample should be selected for which 𝐷 is 'sufficiently small'. For the CI model, the 
estimated value for 𝑛̂𝑖𝑗𝑘 can be calculated directly, without the use of an iterative 

algorithm, as  

 

 𝑛̂𝑖𝑗𝑘 =
𝑛𝑖𝑗+ 𝑛+𝑗𝑘

𝑛+𝑗+
 , (5) 

 
see for example Agresti (2013) or Bishop et al. (1975). Here, 𝑛𝑖𝑗+ = ∑ 𝑛𝑖𝑗𝑘𝑘 ,  

𝑛+𝑗𝑘 = ∑ 𝑛𝑖𝑗𝑘𝑖  and 𝑛+𝑗+ = ∑ 𝑛𝑖𝑗𝑘𝑖,𝑘 .  

 

The definition of 𝐷 can be expressed alternatively by incorporating (5):  

 

𝐷 = 2 ∑ 𝑛𝑖𝑗𝑘  log 𝑛𝑖𝑗𝑘

𝑖,𝑗,𝑘

− 2 ∑ 𝑛𝑖𝑗+  log 𝑛𝑖𝑗+

𝑖,𝑗

−  2 ∑ 𝑛+𝑗𝑘  log 𝑛+𝑗𝑘

𝑗,𝑘

+ 2 ∑ 𝑛+𝑗+  log 𝑛+𝑗+

𝑗

 

= 𝐶 + 2 ∑ 𝑛𝑖𝑗𝑘  log 𝑛𝑖𝑗𝑘

𝑖,𝑗,𝑘

− 2 ∑ 𝑛+𝑗𝑘  log 𝑛+𝑗𝑘

𝑗,𝑘

, 

(6) 

 

where  

 

𝐶 = 2 ∑ 𝑛+𝑗+  log 𝑛+𝑗+

𝑗

− 2 ∑ 𝑛𝑖𝑗+  log 𝑛𝑖𝑗+

𝑖,𝑗

 (7) 

 

is a constant term which depends only on the distribution of (𝑋, 𝑌) and therefore 

will be the same for every possible choice of audit sample. For the second term in 
the first line of Equation (6) we used that ∑ 𝑛𝑖𝑗𝑘𝑖,𝑗,𝑘 log 𝑛𝑖𝑗+ = ∑ 𝑛𝑖𝑗+𝑖,𝑗 log 𝑛𝑖𝑗+; 

for the third and fourth term alike.  

 

Recall that the full (unobserved) distribution of interest is (𝑊, 𝑋, 𝑌, 𝑍). We will 

now show that under Assumption A (there is no direct association between 𝑊 and 

𝑍), the selectivity of the audit sample can be analysed using the deviance defined 

in Equation (6), which is based on the observed distribution (𝑋, 𝑌, 𝑍). 

 
Let 𝑛ℎ𝑖𝑗𝑘

′  denote the number of observations in cell (𝑊 = ℎ, 𝑋 = 𝑖, 𝑌 = 𝑗, 𝑍 = 𝑘), 

with 𝑛𝑖𝑗𝑘 = 𝑛𝑖𝑗𝑘
′  = ∑ 𝑛ℎ𝑖𝑗𝑘

′
ℎ . Under Assumption A, the maximal hierarchical log 

linear model for 𝑛ℎ𝑖𝑗𝑘
′  is (𝑊𝑋𝑌)(𝑋𝑌𝑍). For this model, the predicted values 

𝑛ℎ𝑖𝑗𝑘
′  can also be obtained directly:  

 

𝑛̂ℎ𝑖𝑗𝑘
′ =  

𝑛ℎ𝑖𝑗+
′  𝑛+𝑖𝑗𝑘

′

𝑛+𝑖𝑗+
′ =  

𝑛ℎ𝑖𝑗+
′  𝑛𝑖𝑗𝑘

𝑛𝑖𝑗+
;  

 

see Bishop et al. (1975).  
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Hence, the deviance that compares this model to the saturated model with 
𝑛̂ℎ𝑖𝑗𝑘

′ =  𝑛ℎ𝑖𝑗𝑘  can be written analogously to Equation (6) as 

 

𝐷𝑊,𝑚𝑎𝑥 = 2 ∑ 𝑛ℎ𝑖𝑗𝑘
′  log 𝑛ℎ𝑖𝑗𝑘

′

ℎ,𝑖,𝑗,𝑘

−  2 ∑ 𝑛ℎ𝑖𝑗+
′  log 𝑛ℎ𝑖𝑗+

′

ℎ,𝑖,𝑗

 

               − 2 ∑ 𝑛𝑖𝑗𝑘  log 𝑛𝑖𝑗𝑘

𝑖,𝑗,𝑘

+ 2 ∑ 𝑛𝑖𝑗+  log 𝑛𝑖𝑗+

𝑖,𝑗

. 
 

 

The maximal model contains a direct association between 𝑋 and 𝑍, pointing to the 

fact that the audit sample is not representative with respect to the domain 

variable. The analogue of the CI model for (𝑊, 𝑋, 𝑌, 𝑍) is given by the log linear 

model (𝑊𝑋𝑌)(𝑌𝑍). For this model, the predicted values satisfy:  

 

𝑛̂ℎ𝑖𝑗𝑘
′ =  

𝑛ℎ𝑖𝑗+
′  𝑛++𝑗𝑘

′

𝑛++𝑗+
′ =  

𝑛ℎ𝑖𝑗+
′  𝑛+𝑗𝑘

𝑛+𝑗+
;  

 

see Bishop et al. (1975). 

 

Hence, the deviance that compares this CI model to the saturated model for 
(𝑊, 𝑋, 𝑌, 𝑍) can be written as  

 

𝐷𝑊 = 2 ∑ 𝑛ℎ𝑖𝑗𝑘
′

ℎ,𝑖,𝑗,𝑘

log 𝑛ℎ𝑖𝑗𝑘
′ −  2 ∑ 𝑛ℎ𝑖𝑗+

′

ℎ,𝑖,𝑗

log 𝑛ℎ𝑖𝑗+
′  

                      − 2 ∑ 𝑛+𝑗𝑘  

𝑗,𝑘

log 𝑛+𝑗𝑘 + 2 ∑ 𝑛+𝑗+ 

𝑗

log 𝑛+𝑗+ . 
 

 

However, under Assumption A the saturated model is too large, and it makes more 

sense to compare the fit of the CI model to that of the above maximal model. This 

can be done using the conditional deviance for nested models (Bishop et al., 1975), 

which in this case is given by:  

 

𝐷𝑊 − 𝐷𝑊,𝑚𝑎𝑥 = 2 ∑ 𝑛𝑖𝑗𝑘  log 𝑛𝑖𝑗𝑘

𝑖,𝑗,𝑘

−  2 ∑ 𝑛𝑖𝑗+  log 𝑛𝑖𝑗+

𝑖,𝑗

 

                      − 2 ∑ 𝑛+𝑗𝑘  log 𝑛+𝑗𝑘

𝑗,𝑘

+ 2 ∑ 𝑛+𝑗+  log 𝑛+𝑗+

𝑗

. 
 

 
Clearly, 𝐷𝑊 − 𝐷𝑊,𝑚𝑎𝑥 = 𝐷 in Equation (6). Hence, under Assumption A, to analyze 

the fit of the CI model compared to the maximal model for the full distribution 
(𝑊, 𝑋, 𝑌, 𝑍), it suffices to analyse the fit of the model (𝑋𝑌)(𝑌𝑍) for the observed 

distribution (𝑋, 𝑌, 𝑍). 
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3. Method 

In this section, we introduce how an audit sample can be selected that is 

representative with respect to domain variables by using the deviance defined in 

Equation (6) as a criterion for representativeness. The proposed method has three 

main advantages. First, the auditor can determine a maximum number of units to 

be audited. Here, the proposed method will provide an audit sample that is as 

representative as possible given that maximum number. Second, if some units 

have already been audited or the auditor is planning to include specific units in the 

audit sample, the method attempts to include as many of these units into the final 

audit sample as possible, given the constraint that this final sample should be 

sufficiently representative. Third, the number of units to be audited can also be 

limited by setting a deviance-value as a boundary. 

3.1 Basic optimization problem 

Let 𝑛𝑖𝑗𝑘  denote the number of observations in cell (𝑋 = 𝑖, 𝑌 = 𝑗, 𝑍 = 𝑘) prior to 

applying the method in this section. If previously audited units are available, these 
have 𝑍 = 1 and so it holds that 𝑛𝑖𝑗1 > 0 for certain cells. If the selection of the 

audit sample starts with a 'blank canvas', then 𝑛𝑖𝑗1 = 0 and 𝑛𝑖𝑗0 = 𝑛𝑖𝑗+ for all 𝑖 

and 𝑗. We consider the general situation where additional units may be selected 

for auditing (moved from 𝑍 = 0 to 𝑍 = 1) and previously selected units may be 

excluded (moved from 𝑍 = 1 to 𝑍 = 0). When applying the method, the user 

should specify a maximum number of additional units to include in the audit 

sample (𝑀+) and a maximum number of previously audited units to exclude (𝑀−). 

Special cases are obtained by setting one of these bounds to zero. Moreover, in 

the case of no previously audited units, it automatically holds that 𝑀− = 0 and 𝑀+ 

indicates the maximal size of the audit sample. After applying the method, the 
adjusted number of units in cell (𝑋 = 𝑖, 𝑌 = 𝑗, 𝑍 = 𝑘) is denoted as 𝑚𝑖𝑗𝑘. We write  

 
𝑚𝑖𝑗1 =  𝑛𝑖𝑗1 + 𝛿𝑖𝑗

+ −  𝛿𝑖𝑗
−,  (8) 

 
where 𝛿𝑖𝑗

+ and 𝛿𝑖𝑗
− indicate the number of additional units to audit and the number 

of previously audited units to exclude with (𝑋 = 𝑖, 𝑌 = 𝑗), respectively. Note that 

during this procedure, values in the marginal table (𝑋, 𝑌) are not adjusted, only 
units are transported from 𝑍 = 0 to 𝑍 = 1 and vice versa. Hence, 𝑚𝑖𝑗+ =  𝑛𝑖𝑗+ for 

all 𝑖 and 𝑗.  

 

Now, the goal is to sample the (additional) units from different cells of table 
(𝑋, 𝑌, 𝑍) in such a way that 𝐷 defined in Equation (6) is minimized. This is a 

minimization problem for which the target function can be written as:  

 

𝐷(𝑚) = 𝐶 + 2 ∑ 𝑚𝑖𝑗𝑘  log 𝑚𝑖𝑗𝑘

𝑖,𝑗,𝑘

− 2 ∑ 𝑚+𝑗𝑘  log 𝑚+𝑗𝑘

𝑗,𝑘

, (9) 
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since 𝐶 remains equal to Equation (7), as 𝑚𝑖𝑗+ = 𝑛𝑖𝑗+ and 𝑚+𝑗+ = 𝑛+𝑗+. 

Therefore, 𝐶 can be ignored when minimizing 𝐷(𝑚). 

 

When minimizing 𝐷(𝑚), a number of constraints apply. First, the user-specified 

bounds on the number of additional units to include (𝑀+) and the number of units 

to exclude (𝑀−) lead to the following constraints:  

 

∑ 𝛿𝑖𝑗
+

𝑖,𝑗

≤ 𝑀+; (10) 

∑ 𝛿𝑖𝑗
−

𝑖,𝑗

≤ 𝑀−. (11) 

 

Second, for each combination (𝑋 = 𝑖, 𝑌 = 𝑗), the number of units in- and excluded 

in the audit sample should add up to the known marginal value:  

 
𝑚𝑖𝑗1 + 𝑚𝑖𝑗0 = 𝑛𝑖𝑗+, 𝑖 = 1, … , 𝐼; 

                                               𝑗 = 1, … , 𝐽, 
(12) 

 

where 𝐼 is the number of categories in 𝑋 and 𝐽 is the number of categories in 𝑌. 
Together with 𝑚𝑖𝑗1 defined in Equation (8), this restriction implies that 

 
𝑚𝑖𝑗0 = 𝑛𝑖𝑗0 − 𝛿𝑖𝑗

+ + 𝛿𝑖𝑗
−.   (13) 

 
Third, for each combination (𝑋 = 𝑖, 𝑌 = 𝑗), there exist bounds on 𝛿𝑖𝑗

+ and 𝛿𝑖𝑗
− based 

on the initial counts 𝑛𝑖𝑗𝑘, since no more units can be moved from 𝑍 = 0 to 𝑍 = 1 

or vice versa than are initially available:  

 
0 ≤ 𝛿𝑖𝑗

+ ≤ 𝑛𝑖𝑗0, 𝑖 = 1, … , 𝐼; 

                                     𝑗 = 1, … , 𝐽; 
(14) 

0 ≤ 𝛿𝑖𝑗
− ≤ 𝑛𝑖𝑗1, 𝑖 = 1, … , 𝐼; 

                                     𝑗 = 1, … , 𝐽. 
(15) 

 
In combination with the other restrictions, these bounds imply that 𝑚𝑖𝑗𝑘 ≥ 0 for 

every value. In practice, it is desirable to let at most one of 𝛿𝑖𝑗
+ and 𝛿𝑖𝑗

− be non-zero 

for each combination of 𝑖 and 𝑗; we will return to this point in Section 3.3. 

 

The minimization procedure can now be written as follows:  

 

min {𝐶 + 2 ∑ 𝑚𝑖𝑗𝑘  log 𝑚𝑖𝑗𝑘

𝑖,𝑗,𝑘

− 2 ∑ 𝑚+𝑗𝑘  log 𝑚+𝑗𝑘

𝑗,𝑘

} (16) 

 

under constraints  

 
𝑚𝑖𝑗1 = 𝑛𝑖𝑗1 + 𝛿𝑖𝑗

+ − 𝛿𝑖𝑗
−;  

𝑚𝑖𝑗0 = 𝑛𝑖𝑗0 − 𝛿𝑖𝑗
+ + 𝛿𝑖𝑗

−; 

∑ 𝛿𝑖𝑗
+

𝑖𝑗

≤ 𝑀+;  
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∑ 𝛿𝑖𝑗
−

𝑖𝑗

≤ 𝑀−;   

0 ≤ 𝛿𝑖𝑗
+ ≤ 𝑛𝑖𝑗0;  

0 ≤ 𝛿𝑖𝑗
− ≤ 𝑛𝑖𝑗1.  

 

This is a non-linear minimization problem with linear constraints which can be 

solved by standard software, for instance using the R function ‘constrOptim’ (R 

Core Team, 2023). Note that optimization (16) is carried out with respect to the 
variables 𝛿𝑖𝑗

+ and 𝛿𝑖𝑗
−. The target function depends on these variables through 

Equation (8) and Equation (13) according to the first two lines of constraints. To 

find the optimal value efficiently, it is useful to have the gradient of the objective 

function 𝐷(𝑚), i.e., the vector of partial derivatives with respect to the free 
parameters 𝛿𝑖𝑗

+ and 𝛿𝑖𝑗
−. For the elements of this gradient, we find (using Equations 

(8) and (13) and some standard calculus):  

 
𝜕𝐷(𝑚)

 𝜕𝛿𝑖𝑗
+ = 2(log 𝑚𝑖𝑗1 − log 𝑚𝑖𝑗0 − log 𝑚+𝑗1 + log 𝑚+𝑗0); (17) 

𝜕𝐷(𝑚)

 𝜕𝛿𝑖𝑗
− = 2(log 𝑚𝑖𝑗0 − log 𝑚𝑖𝑗1 − log 𝑚+𝑗0 + log 𝑚+𝑗1); (18) 

 

The above optimization problem can be extended in a natural way to a situation in 

which different costs apply to adding or removing units to the sample in different 

strata. In some applications these costs might represent the actual financial costs 

involved in auditing a unit, but in other applications they could reflect user 

preferences for auditing more or fewer units in certain strata. Within the stratum 
(𝑋 = 𝑖, 𝑌 = 𝑗), let 𝑐𝑖𝑗

+ > 0 and 𝑐𝑖𝑗
− > 0 denote the costs of, respectively, adding one 

unit to or removing one unit from the audit sample. The bounds 𝑀+ and 𝑀− are 

now used to denote the total budgets that are available for, respectively, adding 

units to the sample and removing units from the sample. Instead of constraints 

(10) and (11), we now use the following constraints:  

 

∑ 𝑐𝑖𝑗
+𝛿𝑖𝑗

+

𝑖,𝑗

≤ 𝑀+; 

∑ 𝑐𝑖𝑗
−𝛿𝑖𝑗

−

𝑖,𝑗

≤ 𝑀−. 
 

 

The rest of minimization problem (16) remains the same as before. 

3.2 A procedure for optimizing the audit sample 

In practice, it turns out that the objective function defined in Equation (16) is 

difficult to minimize, because it has many local minima. To ensure that a global 

minimum is found, multiple starting values have to be tried in the optimization 

algorithm. 

 



 

 

CBS | Discussion Paper | August 2023 14 

 

Algorithm 1: Optimize the audit sample 
 

input: 

1: 

 

2: 

3: 

 

4: 

5: 

 

 

 

 

 

 

 

 

6:  

 

7: 

 

 

8: 

9: 

 

output: 

The number of observations 𝑛𝑖𝑗𝑘  (𝑖 = 1, . . . , 𝐼;  𝑗 = 1, . . . , 𝐽;  𝑘 = 0,1). 

Initialize 𝐷𝑏𝑒𝑠𝑡 (the best deviance found so far) as the value of 

𝐷 for the original counts 𝑛𝑖𝑗𝑘. 

Determine the bounds 𝑀+ and 𝑀−. 

Determine 𝑁attempts, the maximal number of attempts to search for 

the best solution. 

for 1:𝑁attempts do 

Select random starting values for the solution: 

- Draw a value 𝑀̃+ from a uniform distribution on [𝑙+𝑀+, 𝑢+𝑀+], 

  where 𝑙+ and 𝑢+ are chosen constants with 0 ≤ 𝑙+ < 𝑢+ ≤ 1. 

- Assign random starting values δ𝑖𝑗
+ inside their feasible           

  intervals such that ∑ δ𝑖𝑗
+

𝑖,𝑗 = 𝑀̃+.  

- Draw a value 𝑀̃− from a uniform distribution on [𝑙−𝑀−, 𝑢−𝑀−],      

  where 𝑙− and 𝑢− are chosen constants with 0 ≤ 𝑙− < 𝑢− ≤ 1. 

- Assign random starting values δ𝑖𝑗
− inside their feasible        

  intervals such that ∑ δ𝑖𝑗
−

𝑖,𝑗 = 𝑀̃−. 

Run the optimization algorithm to solve (16) with these 

starting values. 

Compute 𝐷(𝑚) for the current solution. If 𝐷(𝑚)  <  𝐷𝑏𝑒𝑠𝑡, then set 

𝐷𝑏𝑒𝑠𝑡 ∶=  𝐷(𝑚) and store the current solution. Otherwise, discard 

the current solution. 

end for 

If 𝐷𝑏𝑒𝑠𝑡  is still considered too large, return to step 2 and 

change the bounds 𝑀+ and/or 𝑀−. 

The number of additional units to audit δ𝑖𝑗
+   and remove from the 

audit sample δ𝑖𝑗
− (𝑖 = 1, . . . , 𝐼;  𝑗 = 1, . . . , 𝐽) found for the best solution, 

as well as the value of 𝐷𝑏𝑒𝑠𝑡. 

 

 

For solving Equation (16), we propose the practical procedure found under 

Algorithm 1. In step 5 of this algorithm, the constants 𝑙+, 𝑢+, 𝑙− and 𝑢− can be 

used (optionally) to ensure that random starting values are generated for which 
∑ 𝛿𝑖𝑗

+
𝑖,𝑗  and ∑ 𝛿𝑖𝑗

−
𝑖,𝑗  lie within more limited ranges than their full feasible intervals 

[0, 𝑀+] and [0, 𝑀−].1 We found that this can help in practice to reduce the number 

of attempts that are needed before the optimal solution is found, because often 
this optimal solution has ∑ 𝛿𝑖𝑗

+
𝑖,𝑗  and ∑ 𝛿𝑖𝑗

−
𝑖,𝑗  closer to the upper limits of their 

feasible intervals than to 0. 

 

 

 
1 Note that step 5 of the algorithm takes into account the requirement of the R function 'constrOptim' that the 

starting values have to satisfy all constraints of the optimization problem. It would also be possible to use a 
different optimization method that does not require the starting values to represent a feasible solution. In 
that case, another useful choice of starting values may be to set, for each 𝑗, 𝑚𝑖𝑗1/𝑚+𝑗1 and 𝑚𝑖𝑗0/𝑚+𝑗0 both 

proportional to the same distribution, say the observed distribution 𝑛𝑖𝑗0/𝑛+𝑗0 in the original data. This 

choice is based on the observation that 𝐷(𝑚) = 0 if 𝑚𝑖𝑗𝑘 satisfies the CI model, which occurs in particular 

when Pr(𝑋𝑔 = 𝑥|𝑌𝑔 = 𝑦, 𝑍𝑔 = 1) = Pr(𝑋𝑔 = 𝑥|𝑌𝑔 = 𝑦, 𝑍𝑔 = 0) for all (𝑥, 𝑦). (Thanks to Jeroen Pannekoek for 

this remark.) 
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To help decide when the best deviance value 𝐷𝑏𝑒𝑠𝑡 should be considered ‘too 

large’ in step 9, it may be noted that under the CI model (𝑋𝑌)(𝑌𝑍) the deviance 

asymptotically follows a chi-square distribution with 𝐽 × (𝐼 − 1) degrees of 

freedom (Agresti, 2013). Hence, the (1 − 𝛼) × 100% percentile 𝜒𝐽(𝐼−1)
2 (1 − 𝛼) of 

this distribution (e.g., with 𝛼 =  .05) could be used as a cut-off point: we accept 

the current solution in step 9 when 𝐷𝑏𝑒𝑠𝑡 ≤ 𝜒𝐽(𝐼−1)
2 (1 − 𝛼). (A possible drawback 

of using this criterion will be discussed in Section 5.) 

 
Once the optimal values 𝛿𝑖𝑗

+ and 𝛿𝑖𝑗
− have been obtained, a representative audit 

sample can be obtained by applying the following two steps (in parallel) to each 

stratum (𝑋 = 𝑖, 𝑌 = 𝑗):  
– If 𝛿𝑖𝑗

+ > 0, draw a simple random sample without replacement of size 𝛿𝑖𝑗
+ from 

the 𝑛𝑖𝑗0 units in this stratum with 𝑍 = 0. These units are selected for additional 

auditing, so moved to 𝑍 = 1.  
– If 𝛿𝑖𝑗

− > 0, draw a simple random sample without replacement of size 𝛿𝑖𝑗
− from 

the (original) 𝑛𝑖𝑗1 units in this stratum with 𝑍 = 1. These previously audited 

units are removed from the audit sample, so moved to 𝑍 = 0.  

Once these steps have been run, the final audit sample consists of all units with 

𝑍 = 1. 

3.3 Minimizing the deviance while maximizing the number of 
re-used cases 

The approach introduced in Section 3.2 uses deviance as a primary criterion to 

select an audit sample, where the sample is selected with the smallest value for 

deviance. Recycling units that have been in the initial audit sample is considered as 

a secondary criterion. However, in practice a deviance that is as small as possible is 

not always essential, and recycling as many cases as possible can be more 

important. Depending on sample size and number of categories in 𝑌 a critical value 

for deviance can be determined and all selected samples with a deviance smaller 

than the critical value can be considered as being representative with respect to 𝑌.  

 

More formally stated, the specification of the optimization problem in (16) allows 
that the optimal solution contains combinations (𝑖, 𝑗) where 𝛿𝑖𝑗

+ > 0 and δ𝑖𝑗
− > 0 

simultaneously. This corresponds to a solution where in the same stratum some 

units are added to the audit sample while other, previously audited units, are 

removed from the audit sample. This seems inefficient from a practical point of 
view, since we are (partly) removing units for which 𝑊𝑔 is already known and 

replacing them by units from the same stratum for which 𝑊𝑔 still has to be 

obtained by auditing. 

 

It is easy to correct this after the solution has been found, by moving to an 

equivalent solution with  

 

𝛿𝑖𝑗,𝑎𝑙𝑡
+ = max{0, 𝛿𝑖𝑗

+ − 𝛿𝑖𝑗
−}, 

𝛿𝑖𝑗,𝑎𝑙𝑡
− = max{0, 𝛿𝑖𝑗

− − 𝛿𝑖𝑗
+}. 
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Clearly, 𝛿𝑖𝑗,𝑎𝑙𝑡
+  − 𝛿𝑖𝑗,𝑎𝑙𝑡

−  = 𝛿𝑖𝑗
+ − 𝛿𝑖𝑗

−, so this corresponds to the same solution in terms 

of 𝑚𝑖𝑗𝑘, but now it holds that 𝛿𝑖𝑗,𝑎𝑙𝑡
+ 𝛿𝑖𝑗,𝑎𝑙𝑡

− = 0 in all cases, as desired. However, it 

would be preferable to avoid this type of inefficient solution altogether.  

 

A possible solution is to replace the objective function 𝐷(𝑚) of the minimization 

problem defined in Equation (16) by one of the following alternatives:  

 

𝐹1(𝑚) = 𝐷(𝑚) + 𝜆 ∑(𝛿𝑖𝑗
+ + 𝛿𝑖𝑗

−)

𝑖,𝑗

; (19) 

𝐹2(𝑚) = 𝐷(𝑚) + exp {−
𝐷(𝑚)

𝜅
} ∑(𝛿𝑖𝑗

+ + 𝛿𝑖𝑗
−)

𝑖,𝑗

. (20) 

 

where 𝜆 is a small positive constant (e.g., 𝜆 = 0.01) and 𝜅 is a positive constant 

such that 𝐷(𝑚)/𝜅 is larger than, say, 10 for any candidate solution with a deviance 

value for which the CI model would be rejected (as discussed in Section 3.2). 

 

Both alternative objective functions penalize candidate solutions with large total 

numbers of additional units to audit and previously audited units to remove (i.e., 
large values of ∑ (𝛿𝑖𝑗

+ + 𝛿𝑖𝑗
−

𝑖,𝑗 ). This should make any candidate solution with  

𝛿𝑖𝑗
+𝛿𝑖𝑗

− > 0 unattractive, because the value of 𝐹1(𝑚) or 𝐹2(𝑚) can be reduced by 

replacing (𝛿𝑖𝑗
+, 𝛿𝑖𝑗

−) by (𝛿𝑖𝑗,𝑎𝑙𝑡
+ , 𝛿𝑖𝑗,𝑎𝑙𝑡

− ) as above. The exponential term in 𝐹2(𝑚) is 

supposed to ensure that the penalty term becomes relevant only for candidate 

solutions with small (i.e., acceptable) values of 𝐷(𝑚), since achieving an 

acceptable deviance value remains our primary objective. For large values of 

𝐷(𝑚), it holds that 𝐹2(𝑚) ≈ 𝐷(𝑚). The same can be achieved with 𝐹1(𝑚), 

provided that the constant 𝜆 is chosen with some care. 

 

The problem of minimizing (16) with the target function replaced by (19) or (20) 

can be solved by the same procedure as outlined in Section 3.2. To obtain the 

gradient values for 𝐹1(𝑚), we simply add a term 𝜆 to (17) and (18). For 𝐹2(𝑚) we 

obtain:  

 

𝜕𝐹2(𝑚)

 𝜕𝑥
=

𝜕𝐷(𝑚)

 𝜕𝑥
+ exp {−

𝐷(𝑚)

𝜅
} {1 −

1

𝜅

𝜕𝐷(𝑚)

 𝜕𝑥
∑(𝛿𝑖𝑗

+ + 𝛿𝑖𝑗
−)

𝑖,𝑗

},  

 
where 𝑥 = 𝛿𝑖𝑗

+ or 𝑥 = 𝛿𝑖𝑗
−. 

3.4 Inference based on the final audit sample 

Once the final audit sample has been selected as described at the end of Section 
3.2 and observed values 𝑊𝑔 have been obtained for all units in this sample, the 

next step is to use these data to estimate one or more parameters of the target 

population. For ease of exposition, suppose first that the target parameter is the 

number of units in the population with 𝑊 = 𝑤: 𝜃𝑤
𝑊 = ∑ 𝐼(𝑊𝑔 = 𝑤)𝑁

𝑔=1 .  
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The CI model (𝑊𝑋𝑌)(𝑌𝑍) is equivalent to a logistic regression model for 𝑍 that, 

besides the constant term, uses only 𝑌 as a predictor; cf. Agresti (2013, Section 

9.5.1). Hence, under the assumption that the CI model holds for the final audit 
sample, the probability 𝜋𝑔 that unit 𝑔 is included in this sample depends only on 

the value of 𝑌𝑔. That is to say, 𝜋𝑔 = 𝑛𝑦/𝑁𝑦 for all units with 𝑌𝑔 = 𝑦, where 𝑛𝑦 and 

𝑁𝑦 denote the number of units with 𝑌𝑔 = 𝑦 in the audit sample and the target 

population, respectively. According to standard design-based sampling theory, an 

unbiased estimator of 𝜃𝑤
𝑊 is therefore given by 𝜃𝑤

𝑊 = ∑ 𝑑𝑔𝑍𝑔𝐼(𝑊𝑔 = 𝑤)𝑁
𝑔=1 , with 

the sampling weight 𝑑𝑔 = 1/𝜋𝑔 = 𝑁𝑦/𝑛𝑦 for all units with 𝑌𝑔 = 𝑦. In this context, 

this is a model-based estimator, in the sense that its unbiasedness relies on the CI 

model — and in particular Assumption A — being true.  

 
In general, the sample size 𝑛𝑦 per stratum will be a random variable. However, it 

follows from the above logistic regression model for 𝑍 that the distribution of 𝑛𝑦 

does not depend on the target parameter 𝜃𝑤
𝑊: the sample sizes 𝑛𝑦 are ancillary 

statistics with respect to these target parameters. As discussed by Holt and Smith 

(1979), inference should be done conditionally on ancillary statistics. In particular, 

it is preferable to evaluate the variance of an estimated parameter conditional on 

any ancillary statistics. Hence, in our case the variance of 𝜃𝑤
𝑊 should be evaluated 

conditional on the realized sample sizes 𝑛𝑦. Since under the CI model all units in 

the same stratum based on 𝑌 have the same (final) inclusion probability, 
therefore, when the realized sample sizes 𝑛𝑦 are treated as fixed, it makes sense 

(in the absence of more information) to consider the design of the audit sample as 

equivalent to a stratified simple random sample. We therefore propose to 

approximate the variance of 𝜃𝑤
𝑊 by its design-based variance under stratified 

simple random sampling; see, e.g., Cochran (1977), Särndal et al. (1992) or the 

examples in the next section. 

 

This approach to inference extends straightforwardly to other target parameters 

that can be written as a continuously differentiable function of one or more 

population totals based on 𝑊 and 𝑋. Replacing each population total in this 
function by a weighted estimate using the sampling weights 𝑑𝑔 then leads to an 

approximately unbiased estimator. The design-based variance of this estimator 

under stratified simple random sampling can be approximated using Taylor 

linearization. We refer to Sarndal et al. (1992) for more details. 

 

4. Simulation study 

4.1 Simulation approach for deviance and bias  

To empirically evaluate the performance of the audit sample selection procedure, 

we conducted a simulation study using R (R Core Team, 2023). The code used for 

the simulation study is available here and a small illustrative example of the code 

applied to one situation is available here.  

https://github.com/lauraboeschoten/audit_2021
https://github.com/lauraboeschoten/audit_2021/tree/master/reproducible_example
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The main simulation study consists of three sets of conditions. For each set, 

theoretical populations with varying relationships between 𝑊, 𝑋, 𝑌 and 𝑍 are 

generated, where 𝑋 and 𝑌 have three categories and 𝑍 has two categories by 

design. The first set investigates how the performance of the proposed procedure 

might be affected by the strength of the relationship between 𝑋 and 𝑍 before the 

start of the optimization procedure, varying from no relationship to a strong 

relationship. The second set investigates how the performance might be affected 

by the strength of the relationship between 𝑊 and 𝑋, varying from a perfect 

relationship (meaning that observed variable 𝑋 is a perfect measurement of the 

outcomes after audit 𝑊) to an imperfect and asymmetrical relationship (meaning 

that observed variable 𝑋 contains measurement error and that the probability of 

an incorrect score differs for different scores of the audit variable 𝑊). The third set 

investigates how the performance of the procedure might be affected by the 

strength of the relationship between 𝑊 and 𝑌, varying from a strong relationship 

to a weak relationship. Note that for each set, the conditions are ordered from 

most desired situation to least desired situation. Each set contains four conditions 

resulting in a total of twelve simulation conditions, which can all be found in Table 

2. Note that when the different relationships between 𝑋 and 𝑍 are investigated, 

the first conditions listed in Table 2 for (𝑊, 𝑋) and (𝑊, 𝑌) are selected and similar 

approaches are used when investigating (𝑊, 𝑋) and (𝑊, 𝑌) to investigate the main 

effects of these relationships. In the last part of the study, the interactions 

between the selected relations are investigated by taking the most desired and 

least desired condition for each relation, and investigating their combinations in a 

full factorial design.  

 

In all conditions, a joint probability density is generated by multiplying the 

probabilities listed in Table 2. The probabilities generated here follow the log-

linear model (𝑊𝑋)(𝑊𝑌)(𝑋𝑍). This model is contained within the previously 

discussed maximal model (𝑊𝑋𝑌)(𝑋𝑌𝑍) and it contains a term (𝑋𝑍) that cannot 

be found in the CI model (𝑊𝑋𝑌)(𝑌𝑍). Because of this term, it is expected that this 

model results in a large value for the deviance and it would therefore be beneficial 

to adjust the audit sample via the proposed minimization procedure. For each of 

the described conditions, 1000 data-sets of size 𝑁 = 10 000 are sampled from the 

generated joint probability density. The expected size of the audit sample is 300 in 

all conditions, as follows also from the proportions described in Table 2. 

 
Table 2: Overview of the bivariate relationships used to generate data for the simulation study 

Simulation condition number 

 X Z  W X  Y 

0 1 1 2 3 1 2 3 

1 1 .323 .010 1 .333 .000 .000 .267 .033 .033 

2 .323 .010 2 .000 .333 .000 .033 .267 .033 

3 .323 .010 3 .000 .000 .333 .033 .033 .267 

 

2 1 .323 .012  1 .267 .033 .033  .200 .067 .067 

2 .323 .010 2 .033 .267 .033 .067 .200 .067 

3 .323 .008 3 .033 .033 .267 .067 .067 .200 
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3 1 .323 .015  1 .333 .000 .000  .300 .017 .017 

2 .323 .010 2 .017 .300 .017 .033 .267 .033 

3 .323 .005 3 .033 .033 .267 .050 .050 .233 

 

4 1 .323 .018  1 .300 .017 .017  .267 .033 .033 

2 .323 .010 2 .033 .267 .033 .067 .200 .067 

3 .323 .002 3 .050 .050 .233 .100 .100 .133 

 

Per condition, the procedure as described in Section 3.2 is applied on each 

generated data-set. The bounds 𝑀+ and 𝑀− that should be determined at step 2 

of Algorithm 1 are set at 100 and 10 respectively and the maximal number of 

attempts for the optimization procedure to search for a solution at step 3 is set at 
𝑁𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠 = 200. Note that step 9 (adjusting the bounds 𝑀+ and 𝑀− if the 

obtained value for the deviance is considered too large) is left out to appropriately 

compare the results under different conditions. The settings described here 

remain consistent for all simulation conditions. 

 

We considered two types of target parameters to estimate in this simulation 
study: the true proportion of units in the population with 𝑊𝑔 = 𝑤 for each 

category 𝑤,  

 

𝑃𝑤
𝑊 =

1

𝑁
∑ 𝐼(𝑊𝑔 = 𝑤)

𝑁

𝑔=1

, (21) 

 
and the proportion of units in the population with true category 𝑊𝑔 = 𝑤 that are 

observed in category 𝑋𝑔 = 𝑥 (measurement error probabilities): 

 

𝑃𝑥|𝑤
𝑋|𝑊

=
∑ 𝐼(𝑊𝑔 = 𝑤, 𝑋𝑔 = 𝑥)𝑁

𝑔=1

∑ 𝐼(𝑊𝑔 = 𝑤)𝑁
𝑔=1

. (22) 

 

Under the assumption that the CI model holds, 𝑃𝑤
𝑊 defined in Equation (21) can be 

estimated without bias from the audit sample by  

 

𝑃̂𝑤
𝑊 = ∑ 𝑃𝑦

𝑌
∑ 𝐼(𝑊𝑔 = 𝑤, 𝑌𝑔 = 𝑦)𝑛

𝑔=1

∑ 𝐼(𝑌 = 𝑦)𝑛
𝑔=1𝑦

≡ ∑ 𝑃𝑦
𝑌𝑝𝑤|𝑦

𝑊|𝑌

𝑦

. (23) 

 
where 𝑃𝑦

𝑌 is the (known) proportion of units with 𝑌𝑔 = 𝑦 in the population and 

𝑝𝑤|𝑦
𝑊|𝑌

 denotes the (unweighted) observed proportion of cases with 𝑌𝑔 = 𝑦 in the 

audit sample that also have 𝑊𝑔 = 𝑤. (Here, for convenience it is assumed that the 

audit sample consists of the first 𝑛 units.) Similarly, 𝑃𝑥|𝑤
𝑋|𝑊

 defined in Equation (22) 

can be estimated consistently from the audit sample by: 

 



 

 

CBS | Discussion Paper | August 2023 20 

 

𝑃̂𝑥|𝑤
𝑋|𝑊

=

∑ 𝑃𝑦
𝑌

∑ 𝐼(𝑊𝑔 = 𝑤, 𝑋𝑔 = 𝑥, 𝑌𝑔 = 𝑦)𝑛
𝑔=1

∑ 𝐼(𝑌 = 𝑦)𝑛
𝑔=1

𝑦

∑ 𝑃𝑦
𝑌

∑ 𝐼(𝑊𝑔 = 𝑤, 𝑌𝑔 = 𝑦)𝑛
𝑔=1

∑ 𝐼(𝑌 = 𝑦)𝑛
𝑔=1

𝑦

≡
∑ 𝑃𝑦

𝑌𝑝𝑤𝑥|𝑦
𝑊𝑋|𝑌

𝑦

∑ 𝑃𝑦
𝑌𝑝𝑤|𝑦

𝑊|𝑌
𝑦

. (24) 

 

Equations (23) and (24) are examples of the weighted estimation approach 

discussed in Section 3.4. In particular, note that (24) is a special case of the so-

called combined ratio estimator (Cochran, 1977). We investigate the bias of 𝑃̂𝑤
𝑊, 

𝐵(𝑃̂𝑤
𝑊) = 𝐸(𝑃̂𝑤

𝑊 − 𝑃𝑤
𝑊), and of 𝑃̂𝑥|𝑤

𝑋|𝑊
, 𝐵(𝑃̂𝑥|𝑤

𝑋|𝑊
) = 𝐸(𝑃̂𝑥|𝑤

𝑋|𝑊
− 𝑃𝑥|𝑤

𝑋|𝑊
), while 

selecting only 𝑍 = 1 both before and after the procedure and compare these 

results. 

4.2 Simulation approach for variance  

As discussed in Section 3.4, under the assumption that the CI model holds, we 

propose to estimate the variances of 𝑃̂𝑤
𝑊 and 𝑃̂𝑥|𝑤

𝑋|𝑊
 by treating the audit sample as 

a stratified simple random sample with 𝑌 as a stratifying variable. For 𝑃̂𝑤
𝑊 this 

yields the following variance estimator, assuming for simplicity that the sampling 

fraction in each stratum is small enough so that finite population corrections can 

be neglected:  

 

var̂(𝑃̂𝑤
𝑊) = ∑

(𝑃𝑦
𝑌)2

𝑛𝑦
𝑦

𝑝𝑤|𝑦
𝑊|𝑌

(1 − 𝑝𝑤|𝑦
𝑊|𝑌

), (25) 

 
where 𝑛𝑦 denotes the number of units with 𝑌𝑔 = 𝑦 in the audit sample. Similarly, 

under the same assumptions the approximate variance of 𝑃̂𝑥|𝑤
𝑋|𝑊

 can be derived 

from expression (6.51) in Cochran (1977). Assuming that 𝑁𝑃𝑦
𝑌 ≫ 1 for all 𝑦, we 

obtain the following variance estimator:  

 

var̂(𝑃̂𝑥|𝑤
𝑋|𝑊

) =
1

(𝑃̂𝑤
𝑊)2

∑
(𝑃𝑦

𝑌)2

𝑛𝑦
𝑦

{𝑝𝑤𝑥|𝑦
𝑊𝑋|𝑌

(1 − 𝑝𝑤𝑥|𝑦
𝑊𝑋|𝑌

)

+ (𝑃̂𝑥|𝑤
𝑋|𝑊

)
2

𝑝𝑤|𝑦
𝑊|𝑌

(1 − 𝑝𝑤|𝑦
𝑊|𝑌

)

− 2𝑃̂𝑥|𝑤
𝑋|𝑊

𝑝𝑤𝑥|𝑦
𝑊𝑋|𝑌

(1 − 𝑝𝑤|𝑦
𝑊|𝑌

)}. 

(26) 

 

Note that these design-based variances treat the target population of size 𝑁 as 

fixed. To evaluate the performance of these variance estimators, a separate set of 

simulations was run. Combining the least desired condition of (𝑊, 𝑋) in Table 2 

(i.e., the fourth condition) with each of the four conditions of (𝑊, 𝑌), four fixed 

target populations of size 𝑁 = 10 000 were generated. From each of these 

populations, 1000 initial audit samples were generated according to the least 

desired condition of (𝑋, 𝑍) in Table 2. Again, the procedure from Section 3.2 was 

applied to each audit sample, with the same settings as before. For each final audit 

sample, we computed 𝑃̂𝑤
𝑊 and 𝑃̂𝑥|𝑤

𝑋|𝑊
 as well as the associated variance estimates 
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from (25) and (26). This allowed us to compare the estimated variances with the 

empirical variances of 𝑃̂𝑤
𝑊 and 𝑃̂𝑥|𝑤

𝑋|𝑊
 across 1000 simulation rounds. 

4.3 Results 

4.3.1 Deviance 
 

 
Figure 1: Results in terms of relative deviance (see text). Boxplots demonstrate the spread of the 
1000 relative deviance values obtained per simulation condition. The three panels represent the 
three sets of bivariate relationships specified in the study, and the four columns per panel 
illustrate the four alternative strengths of those relationships specified (see Table 2). 

Figure 1 illustrates the different values obtained for relative deviance under the 

different simulation conditions. By relative deviance we mean the deviance after 

applying the optimization procedure as a proportion of the deviance before 

applying the procedure, so a value close to zero means that a new audit sample is 

drawn that substantially improves the representativity of the audit. In the left 

panel, the results are shown for the four different 𝑊𝑋 relationships under which 

the initial sample was drawn. As representativity is defined with respect to 𝑌, not 

with respect to 𝑊, differences in relative deviance between these 𝑊𝑋 conditions 

are not expected and this is confirmed here. In the middle panel, the results are 

shown for the four different 𝑊𝑌 relationships under which the initial sample was 

drawn. The (lack of) differences between these boxplots illustrates that the 

proposed method is able to perform in situations where the relationship between 

domain variables and the variable of interest in the audit sample is strong and 

possibly also unbalanced. In the right panel, results are shown for the four 

different 𝑋𝑍 relationships under which the initial audit sample was drawn. Here, a 

small increase in average relative deviance can be detected when inclusion in the 

initial audit sample relates more strongly to scores on 𝑋, while the spread of the 

results becomes drastically smaller. This is likely to be caused by the fact that the 

deviance of the initial model was more substantive. 
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Figure 2: Results in terms of relative deviance (see text). Boxplots demonstrate the spread of the 
1000 relative deviance values obtained per simulation condition for eight different combinations 
of different strengths of relationships between the variables (𝑾𝑿), (𝑾𝒀) and (𝑿𝒁) (see Table 2). 

Figure 2 illustrates the different values obtained for relative deviance under 

interactions between the different simulation conditions. As indicated by the 

boxplot labels, for each boxplot, the starting dataset is generated under a different 

combination of conditions, for which the complete overview can be found in Table 

2. These boxplots illustrate that the scores for relative deviance are stable over 

different data-generating conditions. It is particularly noteworthy that a strong 

relationship for (𝑋𝑍) apparently has the most substantial influence on scores for 

relative deviance. 

4.3.2 Bias in 𝑾 
 

 
Figure 3: Boxplots of the bias distribution of the estimated proportions of 𝑾, based on 1000 
replicates per simulation condition. The three panels represent the three sets of bivariate 
relationships specified in the study, and the four columns per panel illustrate the four strengths of 
those relationships (see Table 2). 

Figure 3 illustrates the different values obtained for bias under the different 

simulation conditions compared to when the initial audit sample would have been 

used directly. Only the results for 𝑊 = 1 are shown as the results for 𝑊 = 2 and 

𝑊 = 3 behaved very similarly. In the left panel, the results are shown for the four 

different 𝑊𝑋 relationships under which the initial sample was drawn. In the first 

condition 𝑊 = 𝑋. As X is the observed target variable of interest and W its true 

version, it is expected that no bias is present in results for W if 𝑊 = 𝑋. In 

conditions 2-4, 𝑊 ≠ 𝑋 and small increases in spread can be detected as a 

consequence. However, it can also be seen that if the procedure is not applied in 
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such cases, bias is induced in the results for W. In the middle panel, the results are 

shown for the four different 𝑊𝑌 conditions. Similar to the results found for the 

deviance, it can be concluded that the relationship between the variable of 

interest and domain variables does not affect the bias in 𝑊. However, bias is also 

not detected before the procedure was applied, so a correction procedure is not 

required in such situations. In the right panel, results are shown for the four 

different 𝑋𝑍 conditions. Here, a small increase in bias can be detected when 

inclusion in the initial audit sample relates more strongly to scores on 𝑋, i.e. the 

procedure finds it more difficult to obtain a sample that is unbiased with respect 

to 𝑊 if inclusion in the initial sample becomes more unbalanced with respect to 𝑋. 

However, not applying the procedure in such situation results in very substantive 

amounts of bias in 𝑊.  

 

 
Figure 4: Boxplots of the distribution of the bias of the estimated proportions of 𝑾, based on 1000 
replicates per simulation condition for eight combinations of different strengths of relationships 
between the variables (𝑾𝑿), (𝑾𝒀) and (𝑿𝒁) (see Table 2) 

Figure 4 illustrates the different values of bias in 𝑊 after applying the method 

under interactions between the different simulation conditions. As indicated by 

the boxplot labels, for each boxplot, the data is generated under a different 

combination of conditions. These boxplots illustrate that although the bias present 

in estimates of 𝑊 can be caused by both a weaker relationship in (𝑊𝑋) or a 

stronger relationship in (𝑋𝑍), the combination of these conditions do not result in 

a multiplication in the effect in terms of bias after applying the procedure. 

Furthermore, deviations in (𝑊𝑋) result in a wider spread while deviations from CI 

between 𝑍 and 𝑋 result in more systematic bias. In addition, these boxplots again 

illustrate that in situations of an imbalance in 𝑋𝑍, applying a procedure to obtain a 

representative audit sample is essential. 

4.3.3 Bias in 𝑿𝑾 
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Figure 5: Boxplots of the distribution of the bias of the estimated proportions of 𝑿 conditional on 
𝑾, based on 1000 replicates per simulation condition. The three panels represent the three sets of 
bivariate relationships specified in the study, and the four columns per panel illustrate the four 
alternative strengths of those relationships specified (see Table 2). 

Figure 5 illustrates the different values obtained for bias in 𝑋|𝑊. Only the results 

for (𝑋 = 1|𝑊 = 1) are shown as the results for other proportions were very 

similar. In the left panel, the results are shown for the four different 𝑊𝑋 

relationships. Similarly as when evaluating the bias for 𝑊, 𝑋 is the observed target 

variable of interest and 𝑊 its true version. It is therefore expected that no bias is 

present in results for 𝑋|𝑊 if 𝑊 = 𝑋. In conditions 2 and 4, 𝑊 ≠ 𝑋 and small 

increases in bias can be detected as a consequence, while in condition 3 there is 

also no bias present due to the fact that here 𝑊 = 𝑋 for 𝑋 = 1. Similarly, no bias 

is present in 𝑋|𝑊 under the different simulation conditions for 𝑊𝑌 and 𝑋𝑍, as 

under these conditions 𝑊 = 𝑋 as well. In cases of observed bias, the spread of the 

bias is smaller when the procedure is applied compared to when the procedure is 

not applied. 

 

 
Figure 6: Boxplots of the distribution of the bias of the estimated proportions of 𝑿 conditional on 
𝑾 before and after applying the procedure, based on 1000 replicates per simulation condition for 
eight combinations of different strengths of relationships between the variables (𝑾𝑿), (𝑾𝒀) and 
(𝑿𝒁) (see Table 2). 

In Figure 6 it is illustrated that if 𝑊 ≠ 𝑋, generally more bias is present, although 

the amount of bias remains limited if the audit sampling procedure is applied. 

Furthermore, it is shown that combinations of measurement error in 𝑊 (𝑊 ≠ 𝑋), 

different strengths of 𝑊𝑌 and selectivity in the initial audit sample, 𝑋𝑍, do not 

cause for more substantive bias in 𝑋|𝑊 than already caused by 𝑊𝑋. Again, in such 
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cases the bias is more substantive if the audit sample procedure has not been 

applied. 

4.3.4 Variance estimation 
 
Table 3: Estimated true standard deviation (true sd) and se-sd ratio based on 1000 simulations for 
the estimated proportions of 𝑾. Rows refer to different simulation conditions, columns to 
different categories of 𝑾. (* = no optimization.) 

 True SD SE-SD ratio 

Condition 𝑤=1 𝑤=2 𝑤=3 𝑤=1 𝑤=2 𝑤=3 

WX4,WY1,XZ4 .012 .013 .013 1.24 1.23 1.18 

WX4,WY2,XZ4 .012 .014 .014 1.49 1.36 1.34 

WX4,WY3,XZ4 .011 .014 .014 1.26 1.14 1.19 

WX4,WY4,XZ4 .012 .014 .014 1.41 1.36 1.34 

WX4,WY1,XZ1* .019 .020 .019 1.03 0.99 1.03 

 
Table 4: Results in terms of se-sd ratio based on 1000 simulations for the estimated proportions of 
𝑿 conditional on 𝑾. Rows refer to different simulation conditions, columns to different 
combinations of categories of 𝑾 and 𝑿. (* = no optimization.) 

 𝑤=1 𝑤=2 𝑤=3 

Condition 𝑥=1 𝑥=2 𝑥=3 𝑥=1 𝑥=2 𝑥=3 𝑥=1 𝑥=2 𝑥=3 

WX4,WY1,XZ4 1.18 1.12 1.17 1.26 1.29 1.33 1.31 1.43 1.46 

WX4,WY2,XZ4 1.12 1.08 1.06 1.14 1.20 1.20 1.25 1.21 1.37 

WX4,WY3,XZ4 1.19 1.19 1.16 1.20 1.28 1.34 1.22 1.30 1.35 

WX4,WY4,XZ4 1.12 1.14 1.11 1.19 1.22 1.15 1.17 1.18 1.23 

WX4,WY1,XZ1* 0.99  0.98 0.95 1.02 1.02 0.97   1.00 1.01 1.02 

 

 

Table 3 and Table 4 summarize the results of the separate simulation study 

mentioned in Section 4.2, to evaluate the performance of the variance estimators 

defined in Equation (25) and Equation (26) for a fixed target population. Each se-sd 

ratio in these tables represents the ratio of the average standard error (se) of the 

1000 simulations and the empirical standard deviation (sd) across 1000 

simulations, for a particular condition and target parameter 𝑃𝑤
𝑊 (Table 3) or 𝑃𝑥|𝑤

𝑋|𝑊
 

(Table 4). Ideally, this se-sd ratio would be equal to 1.  

 

For the estimated 𝑃𝑤
𝑊 the empirical sd is also shown in Table 3. It is seen that the 

sd values were similar for all four conditions where the initial audit sample was not 

representative with respect to domain variables. For the estimated 𝑃𝑥|𝑤
𝑋|𝑊

 the 

empirical sd values are omitted here to save space; again, these values were 

similar across all four conditions. 

 

It is seen that for all conditions where the initial audit sample was not 

representative with respect to domain variables, the variance estimators as 

defined in Equation (25) and Equation (26) tended to overestimate the true 

variance; the overestimation in terms of standard error varied between 6% and 

49%, which in practice could be considered a moderate bias. As a benchmark, we 

also included a condition where (𝑋𝑍) is given by the first matrix in Table 2, so that 
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the initial audit sample already satisfied the CI model. In this case we did not apply 

the optimization procedure to alter the initial sample. Here it is seen that both 

variance estimators performed much better (last line in Tables 3 and 4). Thus, for a 

truly random sample from a population that satisfies the CI model, our variance 

estimators are approximately correct, and the overestimation of the variance for 

the other conditions is due to the optimization procedure. Apparently, by 

minimizing the deviance, the distribution of possible audit samples obtained by 

this procedure is more restricted than a stratified simple random sampling design, 

and this is not reflected by Equation (25) and Equation (26).  

 

Within the conditions where the audit sample was not representative with respect 

to 𝑊, it is seen that the degree of overestimation in both tables differs between, 

on the one hand, the first and third condition and, on the other hand, the second 

and fourth condition of (𝑊𝑌). From Table 2, it is seen that this distinction 

corresponds to associations between 𝑊 and 𝑌 that are relatively strong and 

relatively weak, respectively. For the estimated proportions 𝑃̂𝑤
𝑊, the 

overestimation by variance estimator (25) in Table 3 appears to be smaller when 

the association between W and Y is stronger. Surprisingly, for the estimated error 

probabilities 𝑃̂𝑥|𝑤
𝑋|𝑊

 and variance estimator (26), the opposite effect is seen in Table 

4. 

5. Application 

We used the proposed framework to select an audit sample that can be used for 

the production of statistics on energy consumption. The combined statistical 

register that we used for this application consists of 2 037 088 units (as illustrated 

in Table 1) in the Netherlands in 2019. 174 214 of these units were either 

previously audited manually, or the NACE codes were equal over three or more 

separate registers and therefore considered to be correct. (Note that the vast 

majority of audited units belonged to the second group; only a small minority was 

audited manually.) However, these audited units were not distributed in a 

representative manner with respect to the domain variable 𝑋 and covariate 𝑌, 

where domain variable 𝑋 consists of 21 economic sectors (listed with the first digit 

NACE codes) and covariate 𝑌 consists of six categories:  

– SG: Small gas consumption  

– MG: Middle gas consumption  

– LG: Large gas consumption  

– LV: Low voltage  

– HV: High voltage  

– OPC: other profiles 
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Figure 7: Heatmap of the proportion of establishments per economic sector for different profile 
categories: for the combined administrative data set (upper panel), for the original audit sample 
(middle panel) and for the audit sample adjusted with the proposed procedure (lower panel). Note 
that we excluded the category ‘OPC’ as it highly affected the interpretability of the heatmap. 

The upper heat map of Figure 7 illustrates the observed proportions of economic 

sectors 𝑋 per profile category 𝑌. The purpose of the intended audit is to 

investigate the quality of these economic sector codes. In this heatmap we for 

example see that in the category of large gas consumers, most units are in the 

agricultural sector (“A”) followed by manufacturing (“C”). In the category of small 

gas consumers, most units are in the sector wholesale and retail (“G”).  

 

Of all units shown in the upper heat map of Figure 7, a subset has previously been 

audited, and the final economic sector codes for these units are known and can be 

found in the middle heat map of Figure 7. By comparing the two heat maps, it can 

be clearly seen that given certain profiles certain sectors have been more 

thoroughly audited than others. For example, units in the economic sector “human 

health and social work activities” (“Q”) have been audited relatively thoroughly, 

while audits for sectors such as water and waste (“E”), construction (“F”), finance 

(“K”), real estate (“L”), science (“M”) and administration (“N”) are relatively scarce.  
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To obtain an audit sample that is more representative in terms of the economic 

sectors and with respect to the covariate, we applied the methodology introduced 

in this manuscript. We first applied the methodology discussed in Section 3. Here, 

we applied the method multiple times using audit sample sizes 500, 1000, 1500 

and 2000 (𝑀+), and for each sample size we varied the number of cases to exclude 

from the initial sample (𝑀−). The size of 𝑀− was specified as a factor with respect 

to 𝑀+, and we used the values of 50, 100 and 120 for this factor, as there were a 

lot of units already audited. Here, we investigated the resulting deviance values 

and concluded that we would probably be able to obtain a representative audit 

sample of a size between 1000 and 1500 and we concluded that we would need to 

increase the factor for removing cases. Therefore, we started with an audit sample 

of 1500 and were able to reduce the sample size to 1200. We tried to reduce the 

sample size even further to 1100 but this did not result in a representative sample 

by using our deviance criterion.  

 

Now that we knew that we were able to obtain a representative sample by 

sampling approximately 1200 new cases, we applied the adjusted procedure for 

the objective function 𝐹2 as described in Section 3.3 to ensure that all additionally 

sampled cases were indeed not in the initial audit. To assess the deviance value, as 

suggested in Section 3.2, we compared it to a chi-square distribution with 𝐽 ×
(𝐼 − 1) degrees of freedom, where 𝐼 and 𝐽 are the number of categories of 𝑋 and 

𝑌, respectively, Here, with 𝐼 = 21 and 𝐽 = 6, we used a chi-square distribution 

with 120 degrees of freedom. Choosing 𝛼 = .05, we found a value of 147 as an 

approximate cut-off point. Thus, if we could draw an audit sample with a deviance 

lower than 147, we would find this acceptable in terms of representativity.  

 

Additionally, we tried to reduce the sample size even further, but this was not 

successful. Finally, we selected a sample of 1200 and we removed 144000 of the 

units from the initial audit sample (multiplication factor of 120), with a deviance of 

117.27. It should be noted that a cut-off point based on the chi-square distribution 

is not ideal as a criterion for accepting or rejecting an audit sample. It is known 

that, for a given lack of fit of the CI model in terms of Pr(𝑋𝑔 = 𝑥, 𝑌𝑔 = 𝑦, 𝑍𝑔 = 𝑧), 

the expected value of the deviance increases with the number of observations in 

the data (see, e.g., Agresti, 2013, Section 16.3.5). Hence for large populations, the 

deviance is sensitive to minor deviations from the CI model and a cut-off value of 

147 might be unnecessarily restrictive.  

 

The last heat map in Figure 7 (lower panel) illustrates the selected audit sample. 

This audit sample is a combination of units from the initial audit (middle heat 

map), and additionally selected units for audit (1200 units). In this heat map, it can 

be seen that certain economic sectors that were underrepresented in the initial 

audit are now more prominently present, such as water and waste, construction, 

finance and administration (“F”, “J”, “K” and “N”). Economic sectors real estate 

and science (“L” and “M”) are still underrepresented. However, overall it can be 

concluded that the distribution of the final audit sample is more similar to the 

distribution in the combined administrative data set compared to the initial audit 

sample, while the final audit comprises a smaller selection of units (31 414). 
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6. Conclusion 

In this paper, we introduced a method that can be used to efficiently adjust an 

audit sample to make it more representative for a target population with respect 

to domain variables, when the initial audit sample was not. More specifically, our 

method uses the joint distribution between the domain variable of interest, 

covariates and an indicator for initial audit inclusion. Furthermore, the method 

assumes that there is no direct association between the true domain variable of 

interest and the initial audit inclusion pattern, conditional on the observed 

variable of interest and the covariates. Here, we can analyze the previously 

mentioned joint distribution using a conditional independence model with respect 

to the domain variables. The fit in terms of deviance of this model can be 

compared to that of the saturated model. Our method then numerically searches a 

new solution that minimizes the deviance by including new cases and excluding 

already audited cases.  

 

The simulation study illustrated that particularly when there is measurement error 

in the observed domain variable, biased estimates of target parameters by domain 

can occur if the audit sample selection procedure is not applied to obtain a more 

representative audit sample. In addition, the study illustrated that without 

applying the procedure, biased estimates of target parameters per domain are 

obtained in situations where inclusion in the initial audit is related to the scores of 

the domain variable of interest. This conclusion is particularly relevant, as there is 

in practice often a relation between the scores on the target variable and initial 

audit inclusion. With financial audits, the largest companies are for example often 

audited by default. Furthermore, we conclude from our simulation study that the 

variance estimator based on stratified simple random sampling is often 

overestimating the true variance, due to the fact that by minimizing the deviance, 

the distribution of possible audit samples is more restricted than the distribution 

of stratified simple random samples would be.  

 

The reason why we developed this procedure was that we wanted to perform an 

audit on establishments to investigate whether classification errors occurred in 

economic sector. This domain variable is used to publish statistics on energy 

consumption stratified by economic sector. In this application a non-probability 

audit sample was already available, but this sample was not representative in the 

sense that not all economic sectors had the same inclusion probability. Therefore 

we developed, investigated and applied the method introduced in this paper. By 

applying this method, we were able to select an audit sample that was more 

representative with respect to the economic sectors, that utilized as many of the 

cases that were already audited as possible and we had control over the size of the 

new audit sample. As a result, we are now able to estimate the quality of the 

statistical output created using the domain variable economic sector. In addition, 

we are now able to estimate the proportion of misclassifications present in the 

various administrative sources that measure economic sector.  
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We expect that the method is also interesting for other applications. For instance, 

assume that we have trained and tested a supervised machine learning model to 

derive a new variable. For instance, Tollenaar et al. (2018) describes that they 

were interested to predict whether potential crimes in police records concern 

cybercrime or not. Unfortunately, the annotated set that was used to train and 

test the model was not representative with respect to domain variables, because 

keywords were used to search for cases likely to be cybercrime rather than taking 

a randomized sample. Consequently, the model prediction error in the test set 

might not be representative for the true prediction error in the population. The 

police records also contain covariates (𝑌) that relate to the target variable, such as 

crime type and whether the case has been declared by a victim or not. One could 

then use the predicted cybercrime in all police records by the originally trained 

machine learning model as a proxy (𝑋) for the true cyber variable (𝑊) which is 

available only in the set that was not representative with respect to domain 

variables. Next, one could apply the procedure to select additional units to 

generate a test set that is more representative for the target population. The 

additionally selected units could then be manually annotated to obtain W. Finally, 

one could use this adjusted test set to obtain a more reliable estimate of the 

prediction error of the model.  

 

In the current paper we illustrated that the method can be used in different ways. 

For example, an audit sample can be selected that truly has the lowest deviance, 

or a trade-off can be made between obtaining an acceptable value for the 

deviance and maximizing the amount of cases from the initial audit to be re-used. 

When applying the method in practice, the auditor should be aware of the 

practical implications when selecting a certain amount of cases to leave out or 

additional cases to include, particularly because including more cases in the audit 

will improve the probability to meet the deviance criterion on the one hand, but 

are also combined with increasing costs to perform the audit in practice on the 

other hand.  

 

Further research should give more insight in how the method performs when 

different implementations of the method are chosen. In our application, we 

compared the deviance to a cut-off point from a chi-square distribution as a simple 

criterion to decide whether an audit sample was sufficiently representative, but it 

may be useful to develop more refined criteria that, for instance, also take the 

number of available observations into account. In addition, more practical 

applications should provide insight into what further improvements are interesting 

for researchers. For example, are users of the method typically interested in 

selecting a certain audit sample of a maximum size that is within their budget? Or 

is this often more flexible and are users more interested in an optimal combination 

of smallest sample size and appropriate representativity? Finally, the results in 

terms of variance invite for a more thorough investigation if the audit samples 

drawn using this method will also be used to draw conclusions in terms of variance 

of estimates.  

 

Besides further investigating the method as proposed, it would also be interesting 

to see if and how the method can be adjusted to handle other challenging audit 

situations. A first example of such a situation is when the aim is not to match the 
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distribution of certain domain variables, but to oversample certain subgroups. A 

second example of such a situation is when adding and/or dropping of specific 

units is a requirement, meaning that the deltas are both positive.  

 

While our proposed method can be applied in a variety of situations, for some 

applications other, more specialized methods may be preferable. In the special 

case where an audit sample is to be selected ‘from scratch’, with no previously 

audited units available, the method of Falorsi and Righi (2015) may provide a more 

direct solution to optimize the design of the audit sample. A further comparison of 

these two approaches may be interesting. Future research could also focus on 

comparing our proposed method to other available approaches for handling non-

probability samples, such as pseudo-weighting and superpopulation modeling 

(Elliott & Valliant, 2017; Rao, 2021). 
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Appendix 

 

 
Figure 8: Alternative version of the heatmap of the proportion of establishments per economic 
sector for different profile categories: for the combined administrative data set (upper panel), for 
the original audit sample (middle panel) and for the audit sample adjusted with the proposed 
procedure (lower panel). In this alternative version we included the category ‘OPC’. Here it can be 
seen that this highly affects the interpretability of the heatmap. 

 
  



 

 

CBS | Discussion Paper | August 2023 35 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Colophon 
 

Publisher 

Centraal Bureau voor de Statistiek 

Henri Faasdreef 312, 2492 JP Den Haag 

www.cbs.nl 

 

Prepress 

Statistics Netherlands, CCN Creation and visualisation 

 

Design 

Edenspiekermann 

 

Information 

Telephone +31 88 570 70 70, fax +31 70 337 59 94 

Via contactform: http://www.cbs.nl/information 

 

© Statistics Netherlands, The Hague/Heerlen/Bonaire 2018. 

Reproduction is permitted, provided Statistics Netherlands is quoted as the source. 

http://www.cbs.nl/
http://www.cbs.nl/information

