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Analysing business production networks is a pioneering field for national statistical
institutes. A combination of available data and reconstruction techniques makes it possible
to map out business relations between firms within a system. Given the limits of the
information that is available for the Netherlands, it is hard to map out these networks. The
application of network reconstruction methods are the main focus of this paper. These
reconstruction techniques are applied to the Dutch interfirm trade-network, i.e. the
commodity trading activity between firms in the Netherlands. The focus is networks from a
static point of view i.e. looking at the configuration of the networks at a certain pointin
time. Itis, however, also interesting to look at the time-dimension of such networks. For
these time-dependent netwaorks certain dynamical indicators can be investigated. This
way one can see the effects of changes to the network when links appear/disappear or
when weights get adjusted.
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Introduction

Analysing business production networks is a pioneering field for national statistical
institutes (NSIs), universities and other organisations. A combination of available data and
reconstruction techniques makes it possible to map out business relations between firms
within a system. Such a system consists of many actors and their interactions, often
resulting in an intricate structure, thus being referred to as a complex system. Viewing an
economic system as complex, allows one to formulate an alternative that sits somewhere
between the general equilibrium theory of neoclassical supply & demand economics and
the increasingly data-driven fields within econometrics.

Itisin the interest of Statistics Netherlands(SN) to have detailed knowledge on such
economic systems. It allows for the investigation of emergent behaviours and structure in
the system. These emergent patterns are not part of the system's data-input or model
assumptions, butis inherently and consistently generated by the structure of the network,
thus giving new insights in the networks' features. The direct application of such
knowledge is the ability to asses risks or predict the effect of shocks within the system.

A well known example for such a risk is the 2007/2008 financial crisis. It reached a tipping
point when investment bank Lehman Brothers declared bankruptcy, causing a cascade
effect on the banking sector. The recent ( February 2022) supply-chain issues are thought
to be (partially) caused by a few, but very vital bottlenecks, like the shortage of a single
computer-chip component or the blocking of one shipping strait. Viewing large-scale
economies as a network of relationships between firms and sectors, the configuration of
the network is very detailed, allowing zooming in at the level of individual firms. As such,
it can help locate such vulnerabilities within a system. Also, the impact of long-term
potential threats, such as e.g. climate change, can only be understood by tracing through
theirimpact on individual firms and investigate how central, in network terms, the role of
those firms is. Asmall impact on a firm with a very central role in the network may well
have far more significant consequences, than a big impact on a firm that is really
peripheralin terms of connections to other firms.

Itis not only shocks that originate from abroad and then propagate through the internal
Dutch economic system that are of interest. Also from within the Dutch internal market
system itself instabilities might arise, or cyclical behaviour, which has significantimpact on
aggregated properties such as economic growth, inflation, or innovation and productivity
of labour. These latter quantities are monitored as part of the National Accounts of the
Netherlands because of their macro-economic importance, but they are emergent
properties: generated by the conglomerate of many individual transactions and exchanges
of goods and services between individual firms. One could regard something like business
innovation as a ‘contagious’ property so that innovative businesses may have a tendency to
form more tightly connected subclusters within the overall network. Identifying such
communities, for instance to better target packages of stimulation programmes is of direct
policy relevance. A better understanding of the economy, and therefore improvements in
the ability for forecasting by the Dutch Bureau of Economic Policy Analysis (CPB), relies on
understanding the mechanisms that produce these emergent properties.

CBS | Discussion paper | June 2023 4



In neoclassical-economics the existence of rational agents is assumed, who make
informed decisions about actions in an economic system. It is thought that each actorin a
system will make the same rational choice regarding problems, and thus the system
moves towards; or rotates around a general equilibrium. While economists are generally
aware of this unrealistic expectation, it allows making relatively simple models to explain
economic systems on a macro scale without the requirement of microscopic details. On the
other hand, there is also a trend in using data-driven models where the conclusions are
drawn based on (large) data sets attained from empirical studies. However, these
methods are often limited to micro-economic or small-scale macro-economic research?).
In complexity economics there is an effort to strike a balance between simplistic macro
models and more data-driven micro scale models. The idea is to make a model that
captures the macro scale picture of a system that, at the same time, also allows zooming in
on the more individual micro scale level. This can be achieved through a combination of
available micro-data, and observed macro properties (Arthur, 2021).

Itis often hard to map out these networks when only limited information is available. The
application of such network reconstruction methods are the main focus of this paper.
These reconstruction techniques will be applied to the Dutch interfirm trade-network, i.e.
the commodity trading activity between firms in the Netherlands. The focus will be
networks from a static point of view i.e. looking at the configuration of the networks at a
certain pointin time. Itis, however, also interesting to look at the time-dimension of such
networks. For these time-dependent networks certain dynamical indicators can be
investigated. In this way one can see the effects of changes to the network when links
appear/disappear or when weights get adjusted. When analysing risks it would be of
interest, for instance, to analyse changes to the overall network topology when a link is
removed. If, as a result, the structure changes significantly it might signify a structural risk
in the system. It is not the goal of this paper to research dynamical indicators, but it will
serve as a motivation for the reconstruction itself. The hope of this particular research is to
accurately and confidently 'predict’ the configuration of the network based on partial
information. Thus providing a strong foundation for any subsequent investigation into
risk-assessment or other (dynamical) indicators of interest (Squartini et al., 2018). This
research builds on existing methods that have mostly been tested out on networks which
are slightly denser in terms of the links between firms, and where also a little more is
known about the links, such as interbank lending. The extension to the Dutch (internal)
trade network was first attempted in Rachkov et al. (2021) and is extended more
systematically here. In particular the aim is to perform a sensitivity analysis by various
techniques, and making use of the multilevel nature of the data, where firms can be
considered as (predominantly) operating within one or very few ‘layers' of the network,
where each layer is a sector. The approach is probabilistic rather than deterministic, such as
for example IPF/RAS, as is detailed in the next section because this makes more objective
use of subsamples where more details about the network are known. Just as in the
previous study, trade with firms that are registered outside of the Netherlands are excluded
from the system. While for the Dutch economy foreign trade is certainly important, its full
reconstruction is beyond the scope of feasibility for this research, whereas the structure of
interfirm trade activity within the Netherlands only is of interest by itself.

1) Forexample: The Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel 2021
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1.1 Deterministic and probabilistic methods

For trade-networks several layers of aggregation can be considered in the reconstruction
procedure. Forinstance, using the GDP of countries, an international trade-web could be
mapped out. On a lower level, it is possible to look at firms in certain industries (e.q.
agriculture, construction, finance etc) and the contribution of each to the total quantity or
value of goods or services and make an intercommodity-group network. Or, another layer
below, the trade between firms in a commodity group (e.g. wheat, architecture, banking
etc). Itis the latter layer that will be the focus point of this paper, but the relevant
reconstruction procedures can be carried out on any layer, if the necessary information is
available.

In the gathering of information to map out the commodity network, often privacy and
disclosure issues are at play, resulting in knowing only part of the network configuration.
In some countries, such as forinstance Japan or Belgium, tax requlations are such that for
every transaction between firms an electronic record is kept of the associated VAT owed.
Aggregates of such records are far more detailed than can be found in annual business
reports. In the Netherlands, such detailed information is not required and no such register
is available, so itis necessary to rely on a sample of businesses, which is somewhat biased
since the source available contains only business with large to very large turnovers, and
which are surveyed by a business (lending) risk assessor. The goal is to find suitable
models and estimators to reconstruct the networks using the limited information there is
available. For the interfirm trade case, for each firm the total ingoing and outgoing
trade-volume is known because SN has records of annual revenue and profits for each firm.
Moreover, on part of the network the amount of trading from a sample of the total
network is known. The samples on these activities are obtained by SN via an external
company. In the current model employed by SN, the network is constructed based on
relationships between the known information and the unknown pieces. The relationships
are empirically substantiated by having access to trade-networks from other countries
where this detailed information is available. It then rank-orders each firm from 'strong’ to
'weak' and predeterminedly distributes the available links in the system according to the
firms strength-level.

The downside of this deterministic method is that it only produces one answer, and by the
nature of model-misspecification almost surely that answer will be wrong. Any mistake in
the model assumptions, no matter how small, will result in a wrong output. It is therefore
in the interest of SN to try and use a more probabilistic method to reconstruct networks.
The main idea is that by using a probabilistic model, the output could be an entire
ensemble of possible configurations that adhere to the known information. As such, it
could likely still be the case that this ensemble does not contain the true configuration.
However, by taking in a probabilistic viewpoint, statistical tools can be used to evaluate
predictive power of the reconstructed network and ask common statistical questions. Is
the answer approximately correct? What is the chance of the ensemble containing the
correct answer? Is the model consistent?

To use a probabilistic model, a probability distribution needs to be found that assigns to
each pair of firms the probability of them trading with each other. This is opposed to the
algorithmic distribution of links in the deterministic method. To gain knowledge on a
system based on partial information, one often wishes to maximise the underlying
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1.2

likelihood to arrive at an estimator for the parameters in the model distribution. Using a
more general likelihood-maximisation method here is not desirable, as netwaorks are
often too heterogeneous to be inferred from the available information. Thus, the
likelihood is constrained w.r.t. the known information. In SN's case, only the trade
volumes or in-and out-strengths per node/firm are known and not the degree of each
node (the number of edges, or relations to other firms, it has). The constraints used in the
maximisation process (based on what is known) are often not sufficient statistics for the
likelihood-function of the netwaork as a whole (Parisi et al., 2020). Thus, leaning too much
on the density of the partial network results in bias for the estimator. To find the
likelihood, an entropy framework (based on information theory) can be used to
reconstruct networks constrained to known information. Shannon Entropy can be viewed
as a measure for (average) uncertainty. The more uncertainty there is about the
configuration of the network, the more information is needed for its reconstruction. If the
Shannon entropy of the system is maximised, conditional only on the available
information, one becomes maximally non-committal on unknown information. This will
resultin the least biased estimator for such a system. Lagrange optimisation is utilised to
derive a probability distribution/density function for the desired network. If the constraints
of the maximisation are only macroscopic moment information, the subsequent density
that arises from this method is from an exponential family.Thus, a theory using
Exponential Random Graphs(ERG) will be adopted where the existence and weights of
links is described via a distribution from an exponential family.

From this entropy maximisation theory, multiple methods for reconstructing the network
can be described. While some of these methods are deterministic in nature, others, like
the entropy-maximisation method using average constraints, are probabilistic. Various
methods can be used in both frameworks (Squartini et al., 2018).

Research Outline

The methods featured in this paper are extensively researched, discussed and applied in
(Rachkov et al., 2021; Squartini et al., 2018; Parisi et al., 2020; Cimini et al., 2015) and
many other papers, mainly involving maximum entropy configuration methods. There,
they are often applied to reconstruct the World Trade Web (WTW) or E-mid banking system
or similar systems. For the research reported here, these methods are applied to the Dutch
interfirm-trade network, which is different for several reasons. Mainly the amount of
known information is severely limited, and the number of acting nodes in the
interfirm-system is significantly higher than the WTW and E-mid systems. There are various
details that are different within each system that should be taken into consideration.

The topic of this discussion paper is a continuation of earlier research done by Andrea
Rachkov at SN (see (Rachkov et al., 2021)). In this earlier work on the topic of interfirm
trade-networks, the deterministic SN method was directly compared to a maximum
entropy approach called the Fitness Model. Aside from a direct comparison, the
performance of first order, i.e. node/link specific, statistical indicators like accuracy and the
positive predictive value were evaluated for this Fitness Model.

The advantage of the fitness model is that it allows the production an ensemble of
configurations while not totally abandoning the known relationships used in the
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deterministic method. Moreover, in the setting of economic networks, it is assumed that
the netwaork features a good-get-richer phenomenon. This expresses an expectation that
firms with higher in/out-strength (e.q. firms with higher/lower revenue or turnover) are
thought to be more attractive to trade with for other firms. This will result in the forming of
so called k-stars (& referring to the degree) and clustering, i.e. the occurrence of triadic
motifs, in the resulting network (Kolaczyk, 2007). It has been shown that incorporating
such a phenomenon into the fitness model, will allow it to produce these higher order
attributes better than the deterministic method is able to (Rachkov et al., 2021; Cimini
etal., 2015).

The first goal of this paperis explaining and expanding the fitness model. therefore,
section 2 presents a detailed look at the derivation of the exponential random graph
distribution that is produced from maximising entropy which is itself a concept from
information theory. Moreover, this ERG-framework leads to the class of Configuration
models, to which the fitness model belongs. The logic behind the fitness model is
explained and why this specific model is chosen. Previous work is expanded upon by
adding weights (i.e. the trade-volume per link) to the reconstruction method. This leads to
a probabilistic method called the Conditional Reconstruction Method(CReM) that
accurately and consistently assigns weights in a probabilistic way.

In section 3 the choice of models is discussed, as well as how to asses their performance.
Finding out whether the reconstruction methods actually produces realistic results is
difficult, as SN has no exact knowledge of the true configuration of the network. In order
to asses the performance of a model it can be compared with other models as done
inRachkov et al. (2021). It could also be compared to the expectation of the model and its
model-specification(as seen in Squartini et al. (2018); Parisi et al. (2020); Cimini et al.
(2015)). Where possible results are compared with the theoretically expected or known
values of the network, but often these cause issues in the setting of large networks.
Therefore, a validation scheme is employed to asses the performance of the method and
determine its consistency and robustness.

Section 4 evaluates the ensemble outputs of the reconstruction procedure using these
methods. Several attributes of the resulting reconstructions are investigated, where often
the behaviour of the ensemble averages is investigated. The focus is on higher order
attributes, concerning not the nodes in the network itself but the patterns that arise in the
direct neighbourhood of nodes. A bit more information on first order attributes can be
found in appendix B, but a thorough investigation into their performance can be found in
Rachkov (2020).

To investigate sampling bias present in the Fitness model, a resampling scheme is utilised
to study the possibility of alleviating potential sampling bias even more. When samples
are too small to arrive at asymptotic normal confidence intervals, a bootstrap-scheme can
be used to arrive at suitable confidence intervals for most performance measures. Here, a
slightly altered studentised bootstrap-scheme is employed to construct confidence
intervals with small samples. Lastly, the results and possible future research are discussed.
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2.1

Theoretical background

Entropy is a concept from thermodynamics and from information theory, which is used to
quantify the information contained within certain observations by considering (i.e.
counting) bits of information. Entropy maximization is a well-knowvn fitting technique that
can also be used to reconstruct networks from limited available data?. To actually derive a
probability distribution from the entropy framework, a Lagrangian optimisation is used on
the network. In network theory the matrix representation of graphs is often used as a way
both to make large data sets less cluttered and to be able to use algebra on them. Then the
Lagrangian optimisation is used to maximise the entropy constrained w.r.t. known
information, that gives us an Exponential Random Graph (ERG) distribution, which will be
the framework for the models discussed here. Specifically, Shannon entropy is introduced.
Maximising it will make the analysis maximally non-committed to the unknown part of
the network, thus alleviating potential bias.

Network Representation

A network G is seen as a set of vertices V and edges E between vertices. However, in the
context of networks they are often called nodes and links respectively. In order to
effectively represent large netwaorks of thousands or more firms, networks are
conveniently summarised by their matrix representation. The Adjacency matrix of a graph
G with N vertices is denoted as A(G). Itis a square matrix with entriesa,;, i,j € {1, ..., N'}
such that
1 if (v;,0;) €E
= © 1
%ij {0 else. @
The number of direct links a node has is called the degree of a node. The set of all degrees
is called the degree sequence. The (link)-density d of a graph (without self-loops) is given
by the fraction of edges in a graph w.r.t. the total number of possible edges N(N — 1) ina
graph. If|[V| = N and |E| = Litis given by
L
= — 2
d N(N—-1) (2)
This is assuming the presence of directions, otherwise the number of possible edges is
%N(N — 1) so that the righthand side of (2) would need to be multiplied by a factor of 2.

The adjacency matrix can be enriched with weights w,; > 0 such that one can assign a
certain weight w,; > 0 for each edge (v;,v;) in the graph, and 0 otherwise. The resulting
matrix will be denoted as W and its weighted degree is called its strength. Each entry in
the matrix represents a (weighted) edge between two nodes. The set of all the nodes'
strengths is called the strength sequence.

2) petailed and more general descriptions can also be found in Squartini et al. (2018); Kolaczyk (2007); Squartini
and Garlaschelli (2017)
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2.2 Entropy maximisation Framework

In information theory, Shannon Entropy is used to quantify how many 'bits’ of information
are obtained from an observation. The main idea is two-fold. First, itis used to measure
how flat a probability distribution is. The closer the distribution is to uniform the higher the
entropy will be. It can thus be seen as the Kullback-Leibler divergence from the uniform
distribution. Secondly, it can quantify how many possibilities there are in general for a
given outcome.

The idea is then to have a measure on the variability of the system of interest. Forinstance,
given that a portion of a network is known, how does one expect the rest of the network
to be configured? If the network has a low measure of variability, it is expected that the
total network resembles the known portion. Conversely, for a high variability it may be
expected that the rest of the network is different from the known portion. Without extra
assumptions the unknown portion is thus considered to be as uniformly distributed as
possible, to translate the notion of being uninformed. So the question is, how much
information is gained from observing a part of the network?

An obvious candidate for variability might be the variance. However, the variance
measures the proportional spread of outcomes, and as such the variability measured by
thevariance is heavily influenced by the relative proportion of the different eventsin the
sample space. With network reconstruction (and specifically link-incidence reconstruction)
the quantity of interest is the variability in a topological sense. In other words, the quantity
should say something about the number of different possible configurations, where no
configuration is 'more different’ than any other. For this purpose, a so called information
measure is introduced.

Given arandom variable X and a realisation x, a measure of uncertainty I, or information
needed to describe a system, is given as

Ix(z) = —log (P({X = z}) (3)

Note that I (z) is 0 if the event has probability 1. This implies that, when there is complete
certainty of an outcome there is 0 uncertainty, i.e no new information is gained by the
outcome. On the other hand, for an event that has probability approaching 0, the
uncertainty will tend to infinity so such an outcome reveals a lot about the system. The
natural logarithm functions as a base for the quantity of information. This information
measure can be averaged out over all outcomes to arrive at a definition for Shannon
Entropy:

S(X)

Z Py (z)Ix(x)

{X=x}eQ

= - Z Px(z)log Py () (4)

{X=x}eQ

The notation is simplified by omitting subscript X, writing I(x) = — log p(z) and
S =—>__p(z)logp(z). Asthe input of the Shannon-entropy is often obvious from context
(the system of interest) it is simply denoted as S.

A problem regularly encountered with real-world networks, or at least those relevantin
this paper, is that they are sparse with high-degree clusters. The implication is that they
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feature (fully) connected subgroups of vertices of high degree nodes, and have
low-degree ‘out-lying’' nodes elsewhere. With standard sampling techniques the resulting
reconstruction will possibly be heavily biased. This is where Shannon entropy comes into

play.

Intuitively, Shannon entropy can be seen as the expected degree of surprise. If a given
event is totally expected, that is has likelihood = 1, its occurrence provides no new
information: p(z) = 1 = S = 0. If, on the other hand, that event was very unexpected, its
occurrence will give a lot of information: p(x) | 0 = S 1 co. Entropy can thus also be
viewed as a measure of how confident one is to predict new outcomes. Maximising
entropy, constrained by what is known, makes one maximally non-committed to what is
unknown. l.e. the known (observed) portion of the system gives as little information as
possible. The belief is that when using this idea, the estimates and predictions contain the
smallest amount of bias. The reason one would want to adopt this maximisation has to do
with the lack of projectivity in the system of interest (Clauset et al., 2009). When using
partial information to reconstruct the whole, a lack of projectivity means that this partial
information tells us nothing about the configuration of the rest of the system. Thus, using
the partial information as a predictor for the rest of the system can be seen as inducing
bias. Instead, the partial information is used as constraints on the systems configuration
whilst maximising its entropy given these constraints. This takes the heterogeneity of the
system into account and thus does not project a selective part on the whole.

The known constraints are often, in the reconstruction framework, particular aggregates of
information on the system. For this framewaork the known constraints are defined as the
available moment information. A set of moment functions f,,(x) are used to derive one or
more constraints

Zp ), form =1,..., M. (5)

To maximise entropy constrained w.r.t. the available moment information, a Lagrange
optimisation problem, of which a detailed derivation and explanation can be found in
Kelly and Yudovina (2014), is defined:

maximise S = —Zp )logp(x

subjectto Ef, (X) Zp Jform=1,.,M (6)

For normalisation purposes, the constraint is added that f, = 1 and Ef,(X) = 1. This will
ensure that the resultis in fact a properly normalised probability distribution. This setup
produces the Lagrangian

= —Zx:p( log p(x (ZP ) (7)
—ikm (Zp Efon (X ))

with ), the Lagrange-multiplier corresponding to moment-information/constraint f,,,.
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‘fiigff = 0 w.r.t. each marginal probability p(z). That means:

dL(p(x))
i) — (logp(x) ZA fn(
SN A @)
pe) = o (8)

The normalisation condition, from dealing with probabilty distributions, as a constraint
means thatit musthold that > ©_ p(z) = 1, which in fact sets the value of the Lagrange
multiplier A,. Since e)‘OH must enforce this constraint,

PAotl — Ze i A fon (@) (9)

The resulting solution produces the probability distribution defined by:

e Tt A Fon (@)

T) = 10
p() S e T A (10)

where ), denotes the Lagrange multiplier corresponding to the m-th moment
information constraint.

This distribution has the form of an Exponential random graph(ERG) distribution with
(general) distribution function

07T (@)

e(0)

where #7' is a tuning parameter, ¢ a normalising constant and 7" some statistic.

P(X = z|0) =

This probability distribution function is the main workhorse for the reconstruction methods
discussed here. The exponent of the ERG is the Hamiltonian H (G|X) which represents the
chosen constraints with Lagrange-multipliers ), thus giving:
e—H(GIN)

c(A)

where c(\) = 3, e H(EN),

p(G[A) = (12)

Note that, when the Shannon entropy is maximised without constraints, the resulting
solution is the uniform distribution p(G) = 1/{# of possible configurations of G}. Thisisin
line with a property of the Shannon entropy, that it attains its maximum when
unconstrained. Moreover, this reinforces the view of the Shannon entropy as the
Kullback-Leibler divergence from the uniform distribution. Kullback-Leibler divergence
(Kullback and Leibler, 1951) is an information-based measure of disparity among
probability distributions. Given distributions P and Q defined over X, with Q absolutely
continuous with respect to P, the Kullback-Leibler divergence of Q from P is the
P-expectation of — log, {P/Q}, or:

Dy = /X—log2 [gg] dp (13)

Lastly, the constraints are given as {Ef,,,(G)}M_, for A = (A, ..., \,,,) in an optimal way>).

3} Where G can be seen as the random variable with possible realisation (configuration) G.
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By the Maximum Likelihood Estimator(MLE)-method the suitable parameters are set.
Recall that

Ef(§) =D P(GINf,(G). (14)
G

With the MLE, the desired result is acquired via the log-likelihood. So for each m and
observed G*:

ey A Fn(G)
f(G) = Yoo fml )ecw

=Efn(9) (15)

The nice result here is that, as can be seen here, the most likely Lagrange-multipliers w.r.t.
a given configuration are in full agreement with the desired constraints arising from the
entropy optimisation. These constraints are encoded within the Hamiltonian. Often they
are taken as the (known) degree and strength sequences. Given a network G represented
byan N x N adjacency matrix 4, the in/out-degrees of a node i are denoted as k" resp.
k¢ut and the in/out-strength of a node i as si” resp. s?* . Defined as

N

k" = E aj;, 5
J=1

s

7t
1
N N
kz‘out = Zam gut — sz‘j
j=1 j=1
Notice that Ea,; = p,; with p;; being the probability there exists a link between node i and
j- Via the adjacency matrix, also a link-incidence probability matrix P with entries p, ; is
obtained.

N
(16)

in _
i—gw
7

J

Example 1. Asmall example can give anintuitive understanding of the method employed.
Consider a network with nodes ¢ = 1, 2, 3. This system has the following possible network
configurations D,:

D5 DG D7 D8
If there is no information on the system, the best possible guess would be a uniform
random guess. The probability of getting the right configuration is then % The

corresponding entropy is

8

S = - ZP(Di) log D,

i=1

= 8x (—é log é) = log 8 ~ 2.079442. (17)
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2.3

However, as assumed in the case of inter-firm networks, a firm is only active in the
network if it has at least one link with another firm. As such, it can be deduced that the
system is connected and will have at least 2 links. This excludes Dy, D, D, Dy as possible
choices for a prediction, making the probability of being correct i. The corresponding
entropy is then

S = log4
= 1.386294 (18)

Thus, the more uncertainty there is about the possible configuration of the network, the
higherits entropy.

Configuring Networks

The fitness model from the introduction is based on a family of models called Configuration
Models which mainly use information like degrees or weights to randomly generate
networks. Configuration Models and their workings are discussed here. For a complete
and detailed motivation and derivation of the weighted configuration see appendix B.

The idea of many of the models in this section is to estimate entries a;; (or wij] via some
probability p,; derived from the maximising entropy framework, while using the
knowledge of information like the degree and strength sequences which is encoded into
the Hamiltonian i.e. exponent H(G|\) of the numerator of the expression in eq. (12). The
parameters )\ inside the Hamiltonian will then have to be estimated, which is done via a
maximum likelihood method. Using the MLE on just the Hamiltonian allows estimating the
system constraint applied only to the known portion of the network, while the rest of the
system is still assumed to be as uniform as possible.

Using information on both the degree and strength sequences, one can reconstruct a
network via the Directed Enhanced Configuration Model(DECM). Foran NV x N weighted
network W and parameters «, 3, v, and A the Hamiltonian takes the form

N
H(Wla, 8,7,0) = Y (kg + Bk 4 4,594 + 6,50 . (19)
=1
When plugging this Hamiltonian into the ERG formula, giving weight w € N to the link
between node i and j with probabilty ¢, i.e.

N
P(Wla,8,7,6) = [[IIa5"M (w) (20)
i=1 ity
gPECM () = - ngCM _ _ ifw=0
J ngCNI(y?uty;n)wfl(l o yfuty;n) else

in which the shorthand is used:

e = Ty
efﬁa = I;n (2 1)
e Vi — y;)uf

o
S
Il
&
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the resulting weighted link-incidence probability takes the form

—a; =B =y p—b
pDECM e e Pie Mie %
v 1+e eiﬂje*%‘ ef‘sj — e Vi 675-7
out .in,out, in
Ty T Yy Y
out ,.in, 0ut,in out,in ’
1+ xf LYy Y — Y Y

i

further details can be found in Squartini et al. (2018).

To find suitable parameters for this model, the Maximum Likelihood Estimation method
can be used on the Hamiltonian. This requires solving a system of 4V coupled equations
which might prove computationally inefficient for larger networks. For Statistics
Netherlands, the strength sequences are quantities known through sales and purchasing
volumes. However, often due to privacy concerns, the degree sequences are not directly
available. To address these issues a separate topological and weighted reconstruction
method are used.

The DECM can be disentangled into seperate topological and weighted versions. For the
topological part, the result is the simpler Directed Binary Configuration Model (DBCM). The
DBCM uses only the in/out-degrees to reconstruct the link-incidence of (binary) network A
with the Hamiltonian

N

H(Alo, B) =Y (okg"t + B;ki™) (23)

=1
which leads to (marginal) link-incidence probability
C(aia Bj)

e e P

pi[;BCM = P(aij = 1|%‘aﬁj) =

14 e e P

To solve the problem of not knowing the node degrees, a 'Fitness Ansatz' is used: Itis
assumed that the topological attributes of a node are summed up by some node-intrinsic
quality called 'fitness'. This relation has been observed in real-world trade networks,
where a strong correlation between the constraints on the in/out-degrees w.r.t. certain
non-topological in/out-fitnesses have been documented (Rachkov et al., 2021; Squartini
etal., 2018; Cimini et al., 2015). This leads to the Fitness Model from the introduction, in
the context of configuration models, it is called the fitness induced Directed Binary
configuration Model(FiCM).

Let z2** and =™ quantify some intrinsic quality correlating to outgoing and ingoing
connection preference. Specifically, say that there is a correlation between the degree
sequences k and a certain predefined fitness x, then there exist linear functions f, g such
thate @ = f(z¢")and e % = g(zi"),i.e. e~ = Jax?"* and e~ % = /bxi™ for certain a, b.
Therefore, define a new parameter = = v/ab. The FiCM then has link-incidence probability

out
FiCM _ i T (25)

pi] out .in *
L+ zaf"

By another Maximum Likelihood argument it is possible to estimate the parameter z via
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the number of links L in the network. By the constraint L = EL it follows that

EL = ZZ[Ea ZZszCM (26)

i=1 j#i i=1 j#i
and thus z can be found by solving

t

L= ZZ 1 + ZIOUt (27]

However, the aggregate information on the number of links L in the network is also
unavailable for Statistics Netherlands. Luckily, if one can sample on the number of links L
in a subset of the network, say G, C G, where |G| = I. The estimator z could then be
found via

Z Z 1+ Zxout (28]

i€l j#iel

Note that finding this parameter only requires one equation to be solved, as opposed to
the 2NV equations of the DBCM. While being forced to use the FiCM as a result of limited
information, in return a bit of computation time is won.

Using fitnesses for assigning links is not the only way of dealing with the unknown degree
sequences, but unlike other configuration methods dealing with this lack of unavailable
information, the FiCM incorporates a good-get-richer phenomenon. This will ensure that
more attractive firms will be more likely to trade with eachother, resulting in clustering in
the network. Forinstance, in Japan (Watanabe et al., 2013), because of less strict privacy
rules the information on the degree sequences, associated with clustering, is more readily
available. There it is found that the degree sequences are distributed according to a
power-law. The FiCM incorporating a good-get-richer heuristic allows the configuration to
reproduce the power-laws found in known networks.

Itis often the case that strength sequences are a good approximation such that the sales
and purchasing volumes could serve well as a general fitness (Squartini et al., 2018; Barrat
et al., 2004).However, these fitnesses can incorporate other aspects as well. Statistics
Netherlands has reasons to believe that lower relative distance between firms also adds to
a higher connection probability (Dhyne and Duprez, 2016). Furthermore, SN has
information on hard constraints that indicate wether certain industries trade with each
other through input and output tables. A useful feature of the FiCM is that such additional
ansatze can relatively easily be incorporated into the model.

Another component of the disassembled DECM, is calibrating the weighted network V.
The Directed Weighted Configuration Model (DWCM) is a way to assign weights w € N to
each link according to a geometric distribution. If we take as the Hamiltonian in the
ERG-model

N
H(W|v,0) Z ST+ 0;80") . (29)

i=1

then the weight of the link-incidence is assigned according to the probability distribution

Q(W1v,6) HHqDWCM (30)
=1 i#j
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2.4

where the marginal probabilities are
gOWOM (1) = (e e % )w(1 — e ie ). (31)

There are a few ways this configuration method is expanded upon. First, the (weighted)
configuration will be carried out conditional on the chosen binary configuration A4,
resulting in probability distribution Q(W |y, d, A). Secondly, the DWCM causes the
distribution of the weights to depend solely on the strength sequences. In the spirit of the
FiCM, it might be the case that other (empirical) properties also play a role in the weight
distribution. As a national statistics institute, SN has access to a lot of auxiliary micro-data.
Therefore, having the fitness feature in its toolkit is a considerable advantage. As such,
another ansatz feature isimposed in the model. The Hamiltonian, carrying the information
on our system will be defined by some target weights w;; (carrying any ansatze) and
corresponding Langrange Multipliers/parameters ¢:

H(WIC) = i Wi (32)

Thirdly, we opt to use continuous weights w € R. . Together, this will result in the
distribution being exponential and defined by

gij(wla;; =1) = Cije{ijw (33)
The parameter ( is determined via a generalized likehood method and given by
Di;
Cij = Tj (34)
w

()

with p;; the chosen binary marginal probability. This weighted configuration model is
called the Conditional Reconstruction Method (CReM) (Parisi et al., 2020). As to choosing a
target weight, many options are available. Exotic fitnesses are an option, but as with the
binary fitness method, the strength sequences are still a reasonable starting point. As an
example, take the Gravity Model as target weight distribution. This model is a
deterministic method of assigning weights in a network as a proportion of their total
strength. This method performs poorly when taking any topological features into account
but generally performs well on the weighted configuration. Using the Gravity Model
results in the following equation to be solved

Wopij

S?utS;n

in which W is the total strength of the system. Notice that this system requires the
solution of O(IN?) decoupled equations. In other words, by the nature of this configuration
the parameters can be calculated in tandem with the assignment of links in the binary
configuration method. This results in a relatively low computational load on the total
reconstruction.

Cz‘j = (35)

dynamic network reconstruction

The reconstruction of a network at repeated instances in time could in principle be done by
independently applying the method to every time-slice, assuming complete
independence. This is unrealistic because a trade relation being present at time 1 partly
determines the probability that this connection exists at time 2. In other words some level
of persistence is to be expected in the links.
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One possible approach is to treat the constraints themselves as fundamentally constant for
the two (or more) timeslices, but each is subject to some measurement error. This means
that for all time slices the values of the aggregated quantities that serve as constraint are
averaged, and those average constraints are then used to generate realisations. For every
time slice a realisation is picked. This may produce some correlation or persistence of links
between subsequent slices. Given the freedom that the constraints still allow for the
reconstruction, the persistence of links, expecially for the lower strength nodes, will be
very low.

Another approach is to determine a maximally correlated network for subsequent
timeslices of the network. The notation for in- and out-degrees at two times ¢, ¢, is
Kin(ty), koU(ty), kin(ty), k9! (t,), and as well the definitions are used:

EM— o min (K (), ki (ty))
EMeut - —min (k9 (1), kO (ty)) (36)

K2

as the minimum of the in- and out- degrees for node ; of time ¢, and ¢,. Similarly the
minimal strengths s are defined as:

ST = min (s (1), 817 (1))

ST i (s (1), 597 (1)) 7)

K2

Now it is possible to reconstruct a network based on these minimal in- and out-degrees
using the standard fitness approach. This step creates a base network to which further links
can be added for either of the two times. The implicit assumption is that there is maximal
persistence of links in the dynamic network. Forinstance if a node has degree 4 attime 1
and degree 2 at time 2 then the minimal degree is 2. This method makes sure that the
persistent degree is also 2. In other words the 2 links present at time 2 are also present at
time 1. The rest of the network then needs to be filled out for either of the two times. This
can be achieved by:

K ) = k() — KM form = 1,2
KoM= et (t, ) — KO form =1,2 (38)

as the differences, compared with the minimal values, of the in- and out- degrees for node
1 of time ¢, and ¢,. Similarly the difference strengths s are determined:

Sqif,in(tm) — Szn(tm) o S;ﬂin,in form = ].7 2

K2 (2

= s0ut(f, ) — s™MOU form = 1,2 (39)

Stijif,out ;
These are then used in a similar way to augment the networks at ¢, and ¢, appropriately. In
some sense this maximally persistent approach is the other extreme of the independent
approach where any persistence of edges occurs purely by chance and therefore the
persistence is as low as it can be. The actual realisation of the network will have to fall
somewhere in-between. One can take that one step further by assuming for instance a
characteristic time scale 7(s) for correlation decay: The strengths used to reconstruct the
common sector of two time slices is then:

min,in

i
min,out
[

= min (si"(ty), s (ty)) e lt2=tl/7(s)
= min (3;?“t (t1)7 S?Ut (t2>) e_‘tz—t1|/7'(s> (40]
Just as is done above the two time slices of the network are then augmented with

additional edges in order to satisfy the actual network constraints for each slice.
Application of these procedures is deferred to future work.
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Methods and Measures

Lacking direct knowledge on the degree sequences but having access to large amounts of
micro-data for firms by SN, makes any kind of fitness model a natural candidate for
reconstruction. While many reconstruction methods mostly only require input on the
degree and strength sequences, fitness models allow for the input of augmented
sequences carrying information about (assumed) underlying structure in the true network.

To justify the choice of models, it is good to point out that an important reason for using the
fitness model comes from a heuristic argument, which is empirically substantiated,
combined with a restriction of the available information. For example, the true network is
expected to be sparse and have degree sequences distributed according to a power-law.
These are attributes that can be incorporated in the fitness models, without direct access to
the degree sequences.

In general, if two models would heuristically both be good candidates, the Akaike
Information Criterion (AIC) can be used to compare their performances. The AIC is defined

by
AIC,, =2d, —2log L, (41)

where m is the relevant model, d the number of parameters that need estimating for
modelm, and £,, the likelihood of the configuration probabilities. The idea behind the AIC
is that adding extra parameters to the likelihood would increase its explanatory power
w.r.t. the input data, but might lead to overfitting: explaining potential noise away by
adding more parameters. The AIC is a trade-off between these two inputs, and the smaller
the score the better the balance between numbers of parameters used, and explanatory
power. The AIC represents a commonplace trade-off within statistical modelling where
one wants to have relatively simple models, i.e. with few parameters, while also having
good explanatory/predictive power.

It has been shown that for the World Trade Web (WTW) and the electronic Market for
Interbank Deposits (e-MID) the DBCM should yield the best AIC score for the topological
reconstruction of the network. The DBCM would also adhere to the heuristic requirements
listed before, seemingly making it an ideal choice. However, the degree-sequences are
unknown for the dutch business network. The use of this model, for the purposes of the
interfirm trade network, is therefore infeasible(Squartini et al., 2018; Parisi et al., 2020).

Furthermore, SN divides the dutch firms into 650 commodity groups that can each consist
of over 10.000 firms. This would result in a network described by a matrices with far more
than 100 million entries. As such, the overall interfirm network of interest is presumably
much larger than the bank or world trade networks. Therefore, there might be a
considerable computational advantage in the use of the fitness model, as one only has to
estimate a single parameter for the binary configuration instead of the coupled 2N
equations the DBCM needs to solve.

Just as with the FiCM, SN's deterministic model also uses many assumptions based on

correlations found in comparable networks. It derives the node degrees from a similar
fitness, which is composed of the purchasing/sales volumes, certain industry scores, and a
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measure of distance. Then it uses an empirical relationship between the in/out fitnesses
and the in/out degrees of firms. The configuration is then carried forward by 'handing’ out
firm degrees in order of the firm strengths. A general overview of the method is found in
appendix A and a detailed description can be found in Hooijmaaijers and Buiten (2019);
Rachkov (2020); Buiten et al. (2021).

The method of deriving degrees is similar to the use of the Fitness Ansatzin the
Fitness-model. Furthermore, the required input-data for the Fitness model is available to
SN. A detailed comparison of the deterministic method versus the Fitness model has
already been carried out in previous research by SN (Rachkov et al., 2021). Furthermore,
the performance of first order measures like the True Positive/Negative Rate, and the
accuracy and specificity are looked into. The main goal of this Paper is not to directly carry
out a comparison with the deterministic method again, but to try and improve upon the
performance of probabilistic reconstruction methods by themselves when applied to a
network of trading firms. As one is generally blind to the real configuration of the system,
in comparing the methods there is no true exact knowledge about what attributes are
preferred over the other. Itis, of course, still fruitful to do such comparisons. There is
wisdom in knowing the differences of attributes produced by the different methods, as
one can then choose the model that would be expected to better predict the truth. Forthe
present case however, the reconstruction is mostly tested for its robustness and
consistency, while also trying to improve its sampling scheme.

Algorithm 1: FiCM combined with CReM.

Data: si, sout, L d;; forallfirms 4, j in the desired commodity groups; Known links L
on asample of each commoditygroupa =1,..., M

fora=1,..., M do

N =#firmsinq;

R = |Qa|]i[

WO = Zizl ‘S;n'

forr=1,...,Rdo
Solve L, = Y1 | 3=, M tofind 2.;

J
Let A be an empty N x N-matrix;
forj=1,...,Ndo

fori #+ jdo
b _ piF;iCJMWO .

gingout 1

draw ¢ from an exp(b) distribution;
a,; < g with probability p5ie;

QM = A;

Result: Ensemble 2, of configurations for each commodity groupa =1, ..., M

In earlier work, the fitness was chosen to be in line with the deterministic SN method,
using the same distances d,; and input/output tables 7;; in conjunction with the sales and
purchasing volumes, which will also serve as in/out-strengths. As such the resulting
fitnesses are given by

ngmsz'n ij/dij

1+ zsf“tsénlij/dij

FiCM __
b =
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3.1

The first addition, w.r.t. the previous work with the Fitness-model, is assigning weights,
via the CReM method, to the network as well. The diagram ‘Algorithm 1’ above shows the
algorithmic pseudo-code for these combined methods. To summarise, the idea of a fitness
is to correlate some intrinsic node-specific quantity to its degrees. With this method, a
good-get-richer phenomenon is incorporated in the produced networks. Fitter nodes
would result in the corresponding firm to be more attractive for other firms to trade with.
To tune the probability distribution that configures the network, the number of links in the
network are estimated, according to a sample available to SN.

Network properties

One of the main advantages of using the FiCM is the emergence of certain higher order
topological attributes being produced by the method. Certain patterns are seen in known
networks like financial systems or other trade networks (Squartini et al., 2018; Cimini
etal., 2015; Watanabe et al., 2013; Serra, 2020). One of these attributes is the earlier
mentioned good-get-richer phenomenon, where the nodes with a higher fitness/strength
are expected to be more attractive for other nodes to link with. One of the direct
consequences of this, is that the degree distributions are expected to follow a certain
power-law, such that there are a few nodes of very high degree and a lot with very low
degree. More intricate, higher order®, attributes can also be investigated. Given the
good-get-richer phenomenon, the average degree of the nearest neighbour (ANND)
might also be relatively high. Since most nodes will connect to one of the high degree
nodes, relatively fewer nodes will have a low ANND. Furthermore there are intricate webs
of high density for a part of the network where the nodes of high degree are considered:
the idea being that high degree nodes want to link themselves with other high degree
nodes, producing a clustering of nodes. In the spirit of validation described in section 3.3 it
can not only be verified whether these patterns arise, but also check if these patterns arise
consistently, such that the output mostly produces the same distribution for these
attributes. This would mean that, if the model is well-specified, these emergent attributes
are inherent to the system, not merely arising by pure chance.

In order to analyse the various patterns certain statistics are defined. As a reminder, in
general A is the notation used for the adjacency matrix with entries a,; and W is the
corresponding weighted matrix, with entries w; ;. The degree distributions are then simply
given by the degree sequences such that they correspond to the values givenin (16).
Furthermore, suppose the observed adjacency matrix is A* and its corresponding
weighted matrix W* and links L*. This results in

- The average nearest neighbour degree (ANND) of node ¢ is the average degree of all ¢'s
directly connected nodes given by
gonnd( 4%y — 254 9iK5 _ 2 s Dogery Y (43)
’ k: Zj:,ei arj .

4 Higher order including properties not only conditional on the node itself, but also its neighbours or other ob-
jectsin the graph.
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- The average nearest neighbour strength (ANNS) is the ANND using the node strengths
instead of degrees
s (1) — ZJ#*&”SJ _ iy fzjw;k. (44)
ki Z#i @i
- The local clustering coefficient quantifies the fraction of ‘triadic motifs', i.e. the number
of triads (groups of 3 nodes that are connected) that are fully connected w.r.t. all triads.
Itis given by

2 Dokt ViU _ quéi 2kpi g Vi
k:(k: - 1) Zj Zk#z] aijaki
- Thereis also a global variant of the clustering coefficient that calculates that number of
closed triangles as a fraction of the total number of triplets. It is given by
Z i,k a:ja;ka’}kcz
> ki(ki —1)
- The weighted (local) clustering coefficient is the the clustering coefficients weighted
counterpart given by
Zﬁgi Zk#,j wrjw;kai _ Zﬁei Zkﬁgi,j wjgw;szz
k:‘(k: - 1) Zj Zk#i.j a;ja;;i
where the exponentis used to normalise the coéfficient.
- Foradirected network the reciprocity is the fraction of nodes 4, j that have both a;; = 1
and aj; = 1. Itis given by

Z Zﬁh ij ]1
L~ '

(45)

c; (A7) =

Cz'(A*) -

(46)

¢; (W) = (47)

r(A*) =

One can specifically look at the directed versions of the ANNS and the ANND, by using

s?ut /st instead of s;, and k2“! /ki™ instead of k,. The ANND/ANNS and local clustering
statistics give a value for each node in the system per realisation, whereas the global
clustering and reciprocity are a single value per reconstructed network. It should be noted
that the definition of the weighted versions of these higher order attributes is arbitrary.
Consider the case when the weights are discrete , then the graph can be viewed as a
‘multigraph’ where each weighted edge between nodes : and j of weight £ € N can be
viewed as k (binary) edges between nodes. The subsequent binary higher order attributes
are then taken as the weighted versions. However, the implication here is that more
importance is assigned towards higher volume edges. But who is to say that a weighted
property is just a numerical multiplier of a topological property? The relative value of a
weighted triadic motif w.r.t. a binary triadic motif should be dependent on the situation,
therefore there are many possible versions of weighted higher order attributes. In the case
of this paper a weighted version is chosen such that if all the weights would be equal to 1,
their non-weighted counterparts would be retrieved.

Another statistic of interest is the cosine similarity measure ¢,,. This is a first order weighted
comparison measure. For a pair of weighted matrices W and Wy it is computed via
I(WeoWg)IT

Wl IWl,
where I is the identity matrix, - denotes entry-wise multiplication, and | .|, is the
entry-wise L, norm. This can be seen as looking at the outcomes as a vectorin an
N(N — 1)-dimensional plane and measure how much they pointin the same direction by

g = (49)
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3.2

looking at theirinner-product. Therefore, it is a suitable way of comparing the
performance of first order weighted properties of a network, without considering any
topological features.

Sampling densities

One should be careful to derive estimates of the total network from a sample on part of
the network. As mentioned earlier, exponential random graphs lack projectivity (Clauset
et al., 2009). This means that the probability distribution on a sample will not be
representative of the entire network. In the ERG setup the Hamiltonian A encodes various
motifs into the network. Often such motifs incorporate a lot of conditional dependenciesin
the system. Any dyad i.e. any pair of vertices with or without an edge joining them, is not
independent on the presence of other dyads in the system. To illustrate this, consider the
good-get-richer phenomenon in the Fitness-model. The assumption is that the probability
of a link-incidence is higher for nodes that already posses several connections to other
nodes. Then these already existing links have a probability dependent on other nodes as
well. The resulting dependency structure gets very complicated for bigger graphs. The
consequence of this dependency problem is that the Hamiltonian is not a sufficient statistic
for the probability distribution on the entire netwaork.

This should make the sampling scheme, employed to tune the fitness model, suspect to
potential bias. Aside from theoretical suspicions, SN has reason to believe the data they
possess on the density contains a bias. The data on the business activities on part of the

network originates from the commercial data provider Dun & Bradstreet. The concern is
that the sample at hand overestimates the actual density of a network, mainly because

bigger firms are more likely to be present in these kind of surveys.

Algorithm 2: Resampling scheme

Data: Areconstructed matrix W*, desired number of resamples B, size of subset of
firms n.
Let D be a zero-vector of size B;
fori=1,...,Bdo
randomly sample an n x n block W,, from the matrix W*;
d = Linksin W, .
- n(n-1) '
D, =d

Result: Avector D of resampled densities

In Musmeci et al. (2013) an empirical study is performed on deriving topological
properties from an ERG using sampling. Resampling on a network, and taking averages
leads to an accurate estimation of the density of a network. Of course, samples on density
are not easy to obtain®), thus one can not hope to endlessly acquire (re)samples on a
network. When confronted with a lack of samples often bootstrap techniques are
employed where one takes resamples from the available data. While this method can be
computationally demanding, if the available sample is representative of the population or

5)  As exhibited by SN's use of a commercial dataset.
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3.3

system, bootstrap attains accurate statistical results. In the case of the FiCM's density
(re)sampling method, the problem of bootstrapping is in its suspected bias.

Nevertheless, there is some investigation possible on the sampling scheme, where
adjustments could be made to detect or alleviate biases present in the sample available. A
test on the sampling scheme can be simulated by constructing a single network using the
FiCM and SN-data. Then, the sampling scheme can be performed on the network and,
together with the SN-data, an ensemble can be produced from which the densities can be
analysed. The idea is that resamples or 'bootstrap samples’ may simulate a survey taken
amongst firms about their possible activities within the business network. The size of the
sample is then denoted as n. The scheme looks as shown in the pseudocode above
(Algorithm 2).

Note that these tests are very empirical in nature. Indeed, there is as of yet little asymptotic
theory available when it comes to ERGs. An overview of the state-of-play is (Kolaczyk,
2007), and in the decade since that book has come out there has been some incremental
progress in this regard, but nothing sufficiently substantial yet. As such, this resampling
scheme is mostly a tool of inquiry for surprising/unsurprising results from the model and to
further test some consistency features (albeit empirically). Little hard mathematical theory
can be used to show results as the therefore necessary theoretical quantities are unknown.

Testing against the unknown

After running the reconstruction procedure, its performance is evaluated. Whilst many
statistical indicators are available, there is little topological information about the real
configuration for testing. This is a frequently encountered problem of reconstructing
networks, which is of course the cause for wanting to use reconstruction methods in the
first place. Earlier applications of the FiCM/CReM have been on the World Trade Web or
Financial banking services, where more information is available. Also in some other EU
countries, transactions data are registered for tax purposes so that methods could be
better tested in future. In these situations it is possible to construct the matrix P containing
all link/weight-probabilities p, ;. The usual method of testing the reconstruction is to
compare the reconstructed networks against their theoretical quantities derived from the
probabilities p, ;. This way one would learn about the robustness, consistency and accuracy
of the method. In the present case, this method is computationally demanding since the
method has to deal with commodity groups of more than 10.000 nodes, and the only
reason it is possible to create small ensembles with relatively small memory is because the
matrices are sparse. This sparsity is not of help in the computation of P, or the derivation of
its attributes, as each probability needs to be calculated and assigned to an entry in the
matrix, making it slow while also requiring a lot of memory. To still be able to make any
inferences concerning the consistency, some ideas from non-parametric statistics and
machine-learning can be borrowed.

In machine-learning the notions of recognition, fitting, and prediction of patterns in data
are central. There, the goal is often to 'predict’ or identify specific sought after patterns.
The models are trained on data, and (part of) the art of machine-learning is to teach a
model how to recognise patterns whilst simultaneously not over-fitting it on the available
data. In order to test against new information one employs a method called validation.
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Here, the available data is split into a training and a validation/holdout set. The idea being
that the model is trained on the training data, and then tested on the validation data
(Shalev-Shwartz and Ben-David, 2014).

This validation idea is adopted, whilst being mindful of the differences between
machine-learning and the Exponential Random Graph context. Firstly the data should
contain patterns. One could think of for instance the fraction of closed triangles compared
to the maximum number of possible closed triangles given the number of links, or the
fraction of stars, or other such substructures, but exactly which patterns should be
observed is unkown. Secondly, similarly to many machine-learning cases, there are a lot of
data available ¢, but the heterogeneity of the systems of interest makes any kind of
over-fit (or bias) unwanted. The very point of using entropy maximisation is to not
exacerbate any 'prediction’ bias present in the input-data.

As such, when carrying out a validation on the ensemble of configurations presented as
matrices Q € Q7) produced by the chosen model. Qp will be split up into training set Qr4
and validation set Q ,. If the model is well-specified, Q2 consists of multiple possible
truths, while hopefully also containing the actual real-world true configuration, albeit
within some bandwidth. Now, one can take any contextually useful quantitative statistic T
and regard T'(§2p, ;) as the hypothetical true quantity of this statistic. Then it can be tested
how well the set 2 , performs w.r.t. the hypothetical truth Q , i.e. how close T'(Q2p 5)
and T'(Qp ) are.

However, at this point it is important to be clear about what exactly is gained in
knowledge. If Q, , is performing well in this scenario, that only means that it performs
similarlyto Qp ;. SoifQp , isawrong output, the only lesson learned is that 2, , is equally
wrong. However, here equality is actually useful information. When the split up-sets are
similarin behaviour it means that the configuration method is robust, i.e. giving us
consistent outcomes. This is why it is important for the model to be well-specified. If the
model contains the true distribution/configuration of reality and if the model produces
robust, low variance and consistent outcomes, then the model will have a high probability
of producing an ensemble containing something close to the real network configuration.

Results

Here some highlights of the research will be showcased. A detailed description and
investigation of the results can be found in Kayzel (2022). The results are acquired from
producing ensembles of reconstructions from 5 different commodity groups and analysing
them. Due to computational constraints the number of groups to be investigated is
limited, but the groups chosen are somewhat diverse such that it can be assessed how well
the reconstruction performs on a wide variety of commodity groups. Furthermore, the size
of the chosen commodity groups is reduced by leaving out any firm with a sales or
purchasing volume smaller than €10.000.

6) In case of the strengths, one could say SN possesses the knowledge of the entire population.
) Here Q2 denotes the relevant sample space of the probability space enveloping the reconstruction procedure.
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4.1

The commodity groups are considered as closed systems, such that the in/out-volumes are
the same. If s°“¢ = s, then the direction with the bigger total volume is reduced by a
fraction f = min{s"", s°“*} / max{s'", s°“*}, making their total strengths equal. Since the
method requires assigning likelihoods proportional to the strengths it is required that
there is a normalisation so that the sum of all likelihoods is 1. This holds separately for
in-strengths and out-strengths, which in practice implies a need for multiplying by this
factor so that the requirement can be met.

There are several reasons why such a difference can arise between input and output sales
volume in the data at all. First of all the cutoff for low sales volumes can generate such a
discrepancy if for instance there are many more firms with small sales volumes than there
are with small purchase volumes, or vice versa. Such asymmetries will balance out over
the full dataset, but not a dataset where a cutoff is applied. Secondly, trade with firms
outside of the country is normally not explicitly accounted for, which can cause similar
asymmetries as well. Thirdly, if a transaction is near the beginning or end of any given
accounting period (a month, a quarter, a year, or any other time frame) either the sale or
the purchase of a commodity might have been or will become registered in the adjoining
time frame so that there is an apparent discrepancy in sales and purchasing volumes.

For each commodity group a = 1, ..., 5, the reconstruction procedure of the FiCM and the
CReMis carried out R = 20 times, giving an ensemble Q¢,, where |Q%| = R = 20 for all a.
Most of the time the ensemble is splitted and validated, i.e. computing averages of the
statistic of interest and compare the outcomes for each half of the ensemble. In some
cases, the topological and weighted performance are separately evaluated, but in cases
like ANNS or the weighted clustering coefficient, the observed quantity says something
about both.

First and second order attributes

The weighted reconstruction by the CReM can be evaluated by plotting the produced
strength sequences against the known strength sequences. Below this is shown for the
commodity group Barley.

.

True out-str
.

True in-str .

36407 08400 16407

Reconstructed out-Str

Reconstructed in-Str

Figure 4.1 Commodity group 1 (Barley): reconstructed strengths per node by CReM model
of a single realisation vs the known true values, with the 45° line plotted for reference.

To quantify this similarity the Pearson correlation coefficient is used. This is a good
measure of correlation when the relationship is assumed to be linear. In most cases the

CBS | Discussion paper | June 2023 26



Pearson correlation coefficients for the strengths versus the reconstructed strengths are
very close to 1. The exceptions to this rule are the in-strengths of the commodity groups
Water and Steel. In the case of steel, this could be caused by the presence of a high
strength outlier in the group, causing discrepancies. In the case of water it might be due to
the relatively small number of suppliers in this group.
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Figure 4.2 Distributions of a realisation of the commodity group 3 (books), blue and red
are in/out direction resp. whereas yellow indicates no direction.
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Figure 4.3 Second order attributes of the commodity group videogames, results for the
splitted samples X and Y plotted against each other. Top left: the average nearest neighbour
degree, bottom left, the average nearest neighbour strength, top right: the average clustering
coefficient, bottom right: the weighted average clustering coefficient. Red dots indicate an

out-direction, blue is in, orange is undirected (for clustering).
Recall that from earlier research it is known that the power-law degree distributions are

observed when using the FiCM as the binary reconstruction method. This distribution has
been observed in real-work interfirm netwaorks and it is attempted to recreate this
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4.2

observation through the use of the Fitness Ansatz. So as expected, it can be observed in the
reconstruction of the commodity groups investigated here, as seen in figure 4.1. While
these histograms only show the distributions of a single realisation, these patterns can be
observed across all commodity groups investigated.

Perhaps more unexpected is the behaviour of the higher order properties. If these are also
consistently reproduced in the reconstruction method then these reconstructed
distributions could be compared to those observed in real networks to see if they
match.Remember that the theoretical values for the higher order properties are
unavailable, since calculating the corresponding attributes of expected values into a
matrix PFi“M consisting ofpf;iCM is too costly due to memory allocation limitations. This
is where the splitting and validation scheme described in section 3.3 comes into play. If the
higher order quantities of two splitted ensemble halves are high correlated, there is
justification for the hypothesis that they consistently reproduce these properties. In Figure
4.3 these relationships are plotted out for the commodity group of video-games.

Itis expected that the weighted properties would display more volatility. As mentioned,
the weighted attributes are also carrying topological information, thus the resulting
weighted higher order properties will always be less consistent than their mere
topological counterparts. What is remarkable is the relatively consistent reconstruction of
these higher order properties in the networks. Note that the sampling scheme carries with
it very little information about the systems topology, but the fitnesses used to recreate the
good-get-richer phenomenon does translate higher order properties into this
configuration.

Sampling

To evaluate the sampling methods used in the FiCM a single realisation W from the
reconstruction procedure will serve as a synthetic known network to perform the
statistical procedures on and compare them to the synthetic truth. The statistic of interest is
the density. In the chosen method a sampled density is used for the tuning of the
parameter > used in the reconstruction. When simulating this for the synthetic network,
does this procedure induce a lot of bias, or is the influence on the resulting construction
manageable?

As a synthetic network the first realisation of the ensemble from the commodity group
videogames is taken, consisting of 3237 firms. This commodity group is chosen in particular,
because itis one of the more consistently performing ensembles. Also, it is relatively small,
so easier to simulate on. For the purpose of the density, the focus on one realisation is
sufficient since the constraints on the links enforce that these values will be reconstructed
with very little variance. For example, in the case of the videogames ensemble

- With 17216 links the standard deviation of the links in the ensemble is 117, which
indicates relatively minor variation on a network of 10474932 possible links. The
resulting density d* is then given by

dr = NN - 0.001643543.
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Figure 4.4 Left: the histogram of the densities obtained from resampling 1000 times on a
synthetic network W* (drawn from the commodity group Videogames). Right: histogram of
the total true strengths of the samples.

- The sample used for the reconstruction is of size (i.e. the number of possible links)
26866, in which L* = 131 links where found giving us an implied density of

Ty = 0.004876051%1.
What stands out is that the implied density is almost 3 times higher than in the resulting
reconstruction. So does the model receive little influence from this sample, or does a
lower implied density result in an even lower realised density? To test this, view the
reconstruction W* as a true (synthetic) network and employ the resampling procedure,
described in section 3.2. A subsample of the firms of size n = /26866 ~ 163 is taken and
resampled B = 1000 times. This resultsin a list D of 1000 sampled densities where the
min D = 0.000265, min D = 0.006286 with mean D = 0.00168. Performing the FiCM
reconstruction with parameter > tuned by this lower density resulsts in a network with
1405 links, whereas z tuned by the higher density produces a network with 22080 links. So
the density of the sample does matter quite a bit in the resulting configurations.

Itis then problematic that, as seenin figure 4.5, the sampled densities vary a lot. However,
taking the mean of D results in a density fairly close to the true density of the network. This
isin agreement with both the constrained reconstruction method and the random
sampling scheme proposed in section 3.2 and Blagus et al. (2017). This result also
accurately approximates the true density when the number of resamples is drastically
reduced to B = 50, giving a mean density of 0.0016784. When lowering the desired
number of samples and considering confidence intervals a studentised bootstrap is used to
verify the accuracy of the resampling schemes means (Asmussen and Glynn, 2007). For
instance, when only resampling 10 times a mean of 0.001348 is achieved, but when
considering its confidence intervals the resulting mean would be quite inaccurate.
However, even these inaccurate confidence intervals already give a closer approximation
of the true density of the synthetic network than the SN sample, obtained from Dun &
Bradstreet, does. Detailed results of various density estimations and resamples can be
found in table A.

Some notes on Table C:

- Forlarge sized resampling, reliable asymptotic confidence-intervals can be computed
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Table C n=5 n=20 n=50 n=163
B=10 no links 0.00289 0.00139 0.00128
Cl-st.bootstrap sampled [-.00334,.00913] [-.00203,.00399] [.00002,.00248]
B=20 no links 0.0025 0.00141 0.00176
Cl-st.bootstrap sampled [-.00886,.0103] [-.00344.00486] [.00016,.00322]
B=50 0.004 0.00189 0.00152 0.00181
Cl-st.bootstrap [-.047,0.0033] [-.00527,0.00756] [-.00151,.00435] [.00003,.00349]
B=1000 0.00155 0.00154 0.00168 0.00165
Asymp. Cl [.00085,.00224] [.00136,.00172] [.00156,.00179] [.0159,.0171]

as those sets contain enough values for good approximation. However, in reality
acquiring this many samples is unfeasible.

- Note that this table also illustrates a pitfall of using a studentised bootstrap. Sometimes
the lower bounds of the density goes below zero, which is nonsensical. This is due to
the methods assumption that these negative outliers have not yet been realised while
in fact these outliers are simply impossible events. This could also happen with
asymptotic intervals, but in this case, when the resamples B are large enough for the
asymptotic Cl to be effective the bandwidths are narrow enough for it not to be aniissue.

- Especially when using a low number of resamples on a smaller sampling size, these
confidence intervals should be taken with a large grain of salt. But notable
improvements are made by merely increasing the sample-sizes.

- Acquiring samples for commodity groups is no small feat, but with the unavailability of
the node-degrees, a random sampling scheme might be a solution to alleviating biases
present when using only one sample. A trade-off could be made for using smaller
sample-sizes but applying the random selection scheme from Blagus et al. (2017).
Note that the sampled density of the actual subset used in the reconstruction
overestimates the density of the system by quite a bit, even relative to some alternative
sampling schemes proposed here.

Discussion

The overall goal of the methods described in this paper is to reconstruct an interfirm
trade-network, using partial information. Previous methods employed by SN to achieve
this involve assumptions backed up by empirical studies. Using these assumptions to infer
on the network, may lead to unwanted biases, which was shown in a previous study on
this topic (Rachkov et al., 2021). Furthermore, these methods are deterministic, leaving
room for only one inferred reconstruction. Since the reconstructions are an example of
mass-imputation, in this case of the existence of links, all the problems associated with
such efforts have been the subject of intense debate within SN in the past. Relying on only
one method, and only one realisation of a reconstruction is particularly undesirable, so
even if the deterministic reconstructions might appear plausible, itis very important to
augment those results with alternative valid reconstructions.

Probabilistic methods exist that produce entire ensembles of possible configurations,
while alleviating biases. Configuration models, employing maximum entropy, configure
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the network using the available information but remaining maximally random about the
unknown part of the network. These methods have been applied and tested on banking
and international trading networks (Squartini et al., 2018; Cimini et al., 2015). In limited
ways it has also been tested on interfirm trade-networks. For the specific purpose of
reconstructing the network of a commodity group, the FiCM and CReM can combine the
maximum entropy ideas with the assumption made in the deterministic method. The
assumptions are used to base inferences on the known parts of the network, while trying
to maintain maximally (uniformly) random on the rest. A sample of the network is used, to
tune the parameter in the probabilistic configuration.

Itis the aim of this discussion paper to build stronger foundations on these maximum
entropy methods. In configuring networks, the topological reconstruction is a harder
problem than the weighted reconstruction, partly because there is less information about
the topology of the network. For the weighted reconstruction, often a degree corrected
gravity model or Iterative Proportional Fitting is employed. This is a deterministic way to
distribute weights conditional on some binary configuration of the network, and they
have generally good performance (Squartini et al., 2018). Here it is proposed to use the
probabilistic method CReM, that distributes weights conditional on some binary
configuration using a exponentially distributed link weight. While reconstructing the
weighted allocation of a network is not the hard part of the problem of producing business
production networks, itis good to have an option to allocate weights that can naturally
work with auxiliary data input. Using these probabilistic methods, ensembles of possible
configurations are produced and evaluated, while limiting computational requirements.

Networks as production statistics

Itisimportant to note that the employed models accurately reproduce the known
information in the network, but often for the unknown part there is little knowledge on
the desired output. Studies have been performed on the trading networks in Belgium and
Japan that see a power-law emerging in the degree distributions of these netwaorks, and
these power-laws can also be seenin our outcomes. However, for many higher order
properties no empirically validated knowledge on their distributions is available.
Ultimately, the Fitness Ansatz used to infer on the structure of the system tries to encode a
preferential attachment process called the good-get-richer phenomenon that causes this
power-law of the degree distribution to appear. The somewhat indirect consequence of
this is that some higher order properties seem to be consistently reproduced as well. The
fact that these structures appear indicates there are emergent properties present in the
system. Itis currently unknown whether the structures that emerge from this model
coincide with the structures observed in the real world trading networks of Belgium and
Japan (or other known interfirm trade-networks). The question remains then if these
observed higher order structures are a true indirect emergent property of the model, and if
they are suitable for the prediction of the network dynamics.

With the power-laws resulting from the preferential attachment, it is expected that a few
firms attract a relatively large part of the connections in the system. As such, it can be seen
that the network has some high activity in the tails of its distribution. When looking at
higher order properties the activity surrounding nodes is analysed, instead of the nodes
themselves. Presumably, there will be a few neighbourhoods or clusters of nodes that also
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have a relatively high activity w.r.t. the rest of the system. As such one could hypothesise
that these properties will also contain high activity in their tails. Even more so, since the
activity registered involves a whole cluster of nodes, the tails will be fatter than with the
first order attributes. These fatter tails can be observed in the case for the
commodity-group networks reconstructed in chapter 4. In truth, it is necessary to
empirically validate such hypotheses, in order to draw any substantial conclusions, but it is
reassuring to see the model behaves as expected.

What can be investigated, is whether the model produces these second order results
consistently. In general, especially the binary configuration seems to be fairly consistently
produced. The varying results are presumed to be caused by the commodity-specific
structure encountered in each. For example the commodity group water is unique because
it has very few suppliers, and low link-reciprocity which might cause inconsistency in the
clustering. Moreover, the commodity-group of steel performs relatively mediocre at
consistently producing most attributes. This commodity group contains one very strong
firm, that seems to be causing issues. While no hard conclusions can be drawn, it is
promising to see that the FiCM+CReM seems to produce some notion on the structure of
higher order attributes. This is an advantage over a deterministic method, which lack the
emergence of these structures.(Cimini et al., 2015). A detailed study of higher order
behaviour of the network constructed using the rule-based method of SN is yet to be
carried out.

Lastly, with the simulations run on the sampling scheme, some alternatives are proposed
to the current sampling method employed. Statistics Netherlands is aware that the
available sample on the number of links in the system, from Dun & Bradstreet, is biased.
The firms that are included more regularly in samples to be surveyed are the firms that in
macroeconomic terms matter more to the Dutch economy, i.e. larger firms with a large
turnover or with many employees. The available sample similarly contains predominantly
large firms. One might therefore hypothesise that such samples show stronger clustering
than the population as a whole. Even so, merely due to the lack of projectivity inherentin
the ERG-framework, any single random sample would be biased with high probability.
Ultimately it would be ideal if the node-degrees were known. However, this would
require highly detailed information on firms' activity, which is an administrative burden to
collect unless itis also required for, for instance, taxation purposes as is the case in Belgium
forinstance. While samples are hard to collect, table C shows that it might be feasible to
perform relatively small surveys with 400 — 2500 firms in a system, and do this multiple
times for a randomly chosen group of nodes. For example, when conducting surveys of
size 2500 and doing it 10 times, in the end the number of firms surveyed is 25000, which is
still less than the sample used in the commodity group of Video-games, which used 26886
firm-relations as a sample. With the random sampling scheme the average density would
be a closer approximation of the true density of the network than the single large sample
would imply. For SN, it will be interesting to consider such options. However, they are
limited in acquiring these samples. The samples are acquired from an external company,
Dun & Bradstreet, and it might not even be feasible to conduct that many surveys due to
cost limitations. Furthermore, it is easier to survey a few large firms with many links, than
to survey a lot of small firms with few links. In spite of the probable lack of alternatives, it
is stillimportant to investigate the biases present in the current available sample.
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5.2 Limitations and Future research

An important and as of yet unsolved problem is the current closed nature of the interfirm
trade network. The configuration models work on the assumption that they are closed
systems, meaning that the ingoing and outgoing links' total weight should be the same.
The models uses this fact often when deriving the link-incidence probabilities or maximum
likelihood constraints. In reality the strength sequences derived from the supply/use and
input/output tables by SN often lack this property.

It should also be stated that the use of a Fitness Ansatz in combination with link-sampling
is done by necessity, instead of effectiveness®. In the end, the FiCM tries to approximate
the degrees in the system, and then uses the marginal probabilities of the DECM/DBCM to
assign links. As such, it would resultin a better performance if these degrees where exactly
known. As stated earlier, it is unrealistic to assume that this information would be
available. It is shown in Squartini et al. (2018); Parisi et al. (2020); Cimini et al. (2015) that
if one were to sample the in/out-degrees of a subset of firms (instead of the links) it would
also be sufficient to reconstruct the networks. In the case of banking and international
trade-networks it seems that this method outperforms the link-sampling method.
However, the banking and commodity trade networks are very different so it would be
wise to not draw conclusions on these performance differences too hastily.

Even so, the current sampling method could be improved by slightly adapting the way the
sample is acquired. If such practical solutions prove to be unavailable, one could also try
and alleviate the sampling bias by inferring some structure on the distribution of links on
the network as proposed in Squartini et al. (2017). The sample could then be readjusted
according to this structure. While only the available strength of a sample might not be
sufficient to arrive at such a structure, further research can be done to for the pursuit of
such a structure. Perhaps the fitnesses themselves can prove to be better predictors of the
link-structure.

As for the weighted reconstruction, there are other weighted configuration methods to be
investigated. The CReM seems to work well with the Fitness model on a (admittedly)
heuristic level, but other models might prove to give better results. Even when sticking to
the CReM model, one could investigate if other target distributions than the gravity model
give different outcomes, and which role auxiliary data could play in the improvement of
this method.

The research done on commodity-groups so far only focuses on each individual group. It
would be of great interest to SN to also look at the network from a multiplex perspective
where multiple commodity-groups are considered as part of high-layer of industries or
countries etc. For this, it is of import to consistently predict that a link between two firms in
a commodity-group remains the same when seen from a different layer.

For all its supposed merits there are some important shortcomings unique to the
probabilistic method. First, they do not always produce connected configurations. Each

node in a system should have at least one link, otherwise their activity in the system is
nonsensical. This problem can be alleviated by considering an ensemble. Each individual

8)  Although it does provide some computational advantage.
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realisation may contain links that are disconnected, yet over the entire ensemble there is
always a realisation to be found where that firm does contain a link. However, this is
where the deterministic method of SN has an advantage, as it distributes links in a way
that ensures each node gets assigned at least one link. Secondly, due to the probabilistic
nature of the method it currently requires more computation time than the deterministic
method. This is partly due to the fact that the method has to produce multiple networks to
compose an ensemble, which is needed for any statistical inference. Lastly, SN argues that
the probabilistic nature of the FiCM and CReM make the method inconsistent and therefore
unsuitable for the use of production statistics (Buiten et al., 2021). While there is some
truth in this, itis important to point out that the constraints used in these methods make
the outcomes probabilistically consistent. That is to say that the ensemble averages
converge in probability to their theoretical expectations. Furthermore, there are
inaccuracies in both probabilistic and deterministic methods that make any point estimate
very unlikely to represent the real world scenario. It could then prove advantageous to not
speak about a single point estimate, but to speak in terms of bandwidths and confidence
intervals, that could contain the truth with high probability.

As a final note it should be stated that the reasons for pursuing a reconstruction of
configuration of these networks is only briefly alluded to in the introduction. The entire
analysis of dynamics in time, risks, centrality or vulnerability (to name a few) is not
discussed extensively here, although some initial steps in this direction are presented in
section 2.4. This is the subject of further research that is still in progress. In order to
perform these analyses on a network, it is of greatimportance that the networks
considered are grounded in some truth. Therefore, the reconstruction procedure should be
considered as an important first step when trying to infer information about a system's
structure. Itis then interesting to consider that the ensembles produced by these methods
contain possibilities of the configuration, and because of this it is possible to ascertain the
risk of many possible scenario’s instead of being restricted to only one determined world.

References

Arthur, W. (2021). Foundations of complexity economics. Nature Reviews Physics 3,
136-145.

Asmussen, S. and P. Glynn (2007). Stochastic Simulation: Algorithms and Analysis. Springer.

Barrat, A., M. Barthélemy, R. Pastor-Satorras, and A. Vespignani (2004). The architecture of
complex weighted networks. PNAS 101(11), 3747-3752.

Blagus, N., L. Subelj, and M. Bajec (2017). Empirical comparison of network sampling: How
to choose the most appropriate method? Physica A: Statistical Mechanics and its
Applications 477, 136-148.

Buiten, G., E. de Jonge, G. Mooijen, S. Hooijmaaijers, and P. Bogaart (2021). Reconstruction
method for the dutch interfirm network including a breakdown by commodity for 2018
and 2019. Technical report, Statistics Netherlands (CBS).

Cimini, G., T. Squartini, D. Garlaschelli, and A. Gabrielli (2015, October). Systemic risk
analysis on reconstructed economic and financial networks. Scientific Reports 5.

CBS | Discussion paper | June 2023 34



Clauset, A., C. R. Shalizi, and M. E. J. Newman (2009, nov). Power-law distributions in
empirical data. SIAM Review 51(4), 661-703.

Dhyne, E. and C. Duprez (2016). Three regions, three economies. Technical report, National
Bank of Belgium.

Gandy, A. and L. A. Veraart (2016, oct). A bayesian methodology for systemic risk
assessment in financial networks. Management Science 63(12), 3999-4446.

Gandy, A. and L. A. Veraart (2019, jul). Adjustable network reconstruction with applications
to cds exposures. Journal of Multivariate Analysis 172, 193-209.

Hooijmaaijers, S. and G. Buiten (2019, April). A methodology for estimating the dutch
interfirm trade network, including a breakdown by commodity. Technical report,
Statistics Netherlands (CBS).

Kayzel, J. (2022). Network reconstruction: Producing ensembles of possibilities. Technical
report, University of Amsterdam.

Kelly, F. and E. Yudovina (2014). Stochastic Networks. Cambridge University Press.
Kolaczyk, E. (2007). Statistical Analysis of Network Data. Springer.
Kullback, S. and R. Leibler (1951). On information and sufficiency. Ann Math Stat 22, 79-86.

Musmedci, N., S. Battiston, G. Caldarelli, and M. Puliga (2013). Bootstrapping topological
properties and systemic risk of complex networks using the fitness model. Journal of
Statistical Physics 151, 720-734.

Parisi, F., T. Squartini, and D. Garlaschelli (2020). A faster horse on a safer trail: generalized
inference for the efficient reconstruction of weighted networks. New Journal of
Physics 22.

Rachkov, A. (2020). Bias in non-entropy-maximizing network reconstruction methods.
Technical report, Leiden University.

Rachkov, A., F. Pijpers, and D. Garlaschelli (2021). Potential biases in network
reconstruction methods not maximizing entropy. Technical report, Statistics Netherlands
(CBS).

Serra, P. (2020). Lecture notes non-parametric statistics. Technical report, Tech.Univ.
Eindhoven.

Shalev-Shwartz, S. and S. Ben-David (2014). Understanding Machine Learning: From
Theory to Algorithms. Cambridge University Press.

Squartini, T., G. Caldarelli, G. Cimini, A. Gabrielli, and D. Garlaschelli (2018, October).
Reconstruction methods for networks: The case of economic and financial systems.
Physics Reports 757, 1-47.

Squartini, T., G. Cimini, A. Gabrielli, and D. Garlaschelli (2017, January). Network
reconstruction via density sampling. Applied Network Science 2(1).

Squartini, T. and D. Garlaschelli (2017). Maximum-Entropy Networks Pattern Detection,
Network Reconstruction and Graph Combinatorics. Springer.

Watanabe, H., H. Takayasu, and M. Takayasu (2013, feb). Relations between allometric
scalings and fluctuations in complex systems: The case of japanese firms. Physica A:
Statistical Mechanics and its Applications 392(4), 741-756.

CBS | Discussion paper | June 2023 35



Appendix
The deterministic SN-method

To setup input data of firms with their trade volumes there are numerous steps involved.
The firms are selected from the Statistical Business Register, and supply and use volumes
are classified per commodity to arrive at a firm to firm input and output per commodity. A
detailed review of the reconstruction method employed by SN can be found in Rachkov

et al. (2021); Hooijmaaijers and Buiten (2019); Buiten et al. (2021), but an overview of the
way the binary configuration is acquired is given here. Some of the scores defined here are
also utilised in the fitnesses of the FiCM?).

For the reconstruction method used by SN, consider a single commodity group «. The
firm-level marginal strengths are derived from industry level marginals. There, the
volume (in euros ) of a product sold or purchased in a certain industry within a commodity
group is given by D2“* and D", The strength of the firm is then calculated as a portion of
its net turnover relative to this volume

net turnover firm ¢

S(_)ut out

he total net turnover industry ¢

. net turnover firm ¢ )

n = . Dir Al
Sia total net turnoverindustry ¢ (A1)

From these strengths, scores are calculated to assign the most links to the highest scoring
firms. Each firm gets a company score C; , between 0 and 1 given by

60 = max; (logsy') — log sout
o
S (A.2)

The highest scoring firm in a commodity group will have a company score of 1, denoting a
high preference from other firms to link to it.

Then a distance score d,; is given, derived from the relative geographical coordinates (z, y)
between each pair of firms. It is given by

S = |w; =zl + |y — oyl
g = P (A3)
* max; ®;;

The last score used is the NACE-score [;;. This is an industry score indicating wether or not
the using firm's industry actually trades with the supplying firm's industry. Since this is
known at industry level from national accounts, the absence of trade between industries
to which a given supplier and user belong can be used to give a penalty to such links. Itis
given as

(A.4)

7= 0 if NACE groups of user j and supplier: do trade
CANN | else

9  Namely the strength/turnover, distance and NACE scores.
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Atotal score is then made by combining the previous scores into an overall score for
link-incidence between firm ¢ and j in commodity group « given by

scoref. = BC; , + (1= B)(1 —d;;) + ;. (A.5)

The 3 determines the relative importance of each score and can be seen as the tuning
parameterin this model. The same value is used across all commodity groups, and chosen
tobe s =0.7.

After the score value, the SN also estimates the number of ingoing and outgoing links
through their strengths, i.e. the degrees. The in-degrees are given by

n
kin, = (log si", —minlog si" ) (A.6)

1,0

The 7 is assumption-based and chosen to be = 0.5. The &;", is then rounded down, since
degrees are discrete. The out-degrees are then computed via the in-degrees since
Zj k;’{‘a = Zi kffgf together with another empirical assumption that a firms degree and its

turnover share a powerlaw relation.

turnoveri = T(kP%)Y

(turnoveri ) 5 . (A7)

r
The v is chosen to be 1.3, the resulting powerlaw-relation can be viewed as a parallel to
the fitness Ansatz used in the FiCM, as it also embodies an empirical relation between a
firms fitness-score and its degrees. The relationship between the degrees and I is not
continuous and rounding down will sometimes result in degrees!® of 0. To estimateI" a
bracketing and bisection method is used with an initial estimate:

5>, turnover( /7

out  _
ki,(x -

With both the scores and degrees defined, the reconstruction procedure distributes the
available connections in the network, ordered via the scores. To be brief, suppose that
commodity group « contains N,, users and N, suppliers. Then, first the users are ordered
according to their strength, hence the first user 1 is the one with the highest purchasing
volume. This user then has ki = m incoming links to distribute, where the suppliers are
also ordered according to their scores. Thus suppose firm j has the highest score then

j = max; score, ;. The m highest scoring firms are chosen to make an ingoing connection to
firm 7 and those firms have 1 subtracted from their degree, i.e. k;’“t = k;’“t — 1. Once these
links are assigned, the next user is chosen and the procedure is repeated, until all links
have been distributed.

Suppose the procedure is carried out for commodity groups {1, ..., C'} then the algorithmic
procedure is given below

10) Note that the assumption is that the network is connected, thus all nodes have a degree of atleast 1.
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Algorithm 3: Deterministic SN-method.

fora=1,...,Cdo
order users from largest to smallest according to theirvolume forj = 1, ..., N,, do
m= k:j" selecttop T' = min{NN,, m} suppliers based on the ordered score where
out-degreeisatleastlfori=1,...,7do
| Assignlinki — j k"t = k9“t — 1

Deriving CReM

The degree-correct gravity model may use a probabilistically obtained adjacency matrix
but the method in itself is deterministic, since the analytical values of any potential
configuration model p,; are used. Furthermore, the possible weights one can assign are
usually assumed to be natural numbers. In the derivation of the Directed Weighed
Configuration Model (DWCM) this assumption is used to conclude that the weight are
geometrically distributed. However, as seen in Parisi et al. (2020), the weights can also be
taken as continuous random variables. In doing so one ends up with an exponential
distribution for weights. This should be of no surprise, as the exponential distribution is a
continuous version of the geometric distribution. Contrary to the DWCM however, it is
applied in a 2-step reconstruction procedure. The disentanglement of the DECM allows it to
first reconstruct the topological adjacency matrix, and then the weighted configuration. As
such, the goal is to find the conditional (on a certain topological configuration P(A))
distribution of the weights Q(W) that take the reconstructed links P(A) as input. Whilst
the quest for a conditional distributions give rise to some small technicalities, the
derivation can be viewed as a continuous derivation of the DWCM.

Start by looking for the conditional probability of the weights, given the adjacency matrix
A as Q(W|A) with marginals qvij(wi,-la,-j)' The resulting method is called the Conditional
Reconstruction Method(CReM). In order to find the distribution, first reconsider the
optimisation of entropy in a continuous setting. Similarly to the discrete setup the
following Lagrangian optimisation problem is encountered:

maximise S(W|A) = —ZP(A)/ Q(W|A)log Q(W|A)dW (B.1)
AeQ Wa
subjectto Ef, (W) = f,, forallm (B.2)
1 = Q(W|A)dW
Wa

As most clearly illustrated by the presence of an integral, the same setup asin section 2.2 in
a continuous way. In order to do so, a lot of notation is (re)introduced. Thus, to quickly
summarise.

- From earlier S is the Shannon-Entropy, €2 the sample space of the binary configurations
A, and f,, the (now continuous) weighted constraints for any m , representing the
available information about the network.

- Aand W are the corresponding random variables of the adjacency and weighted
networks.
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- The continuoussetW , = {W : ©(W) = A} over which is integrated. Here © is the
binary projection of W onto A.
- Itholdsthat}> , , P(4) [, Q(W|A)f,,(W)dW = Ef,, (W), and Fon = fn (W) with W
the true weighted matrix of the network.

- The Lagrangian constraints with multipliers A, and p for all m.

The normalisation of the conditional probability also ensures that the unconditional
probability Q(W) is normalized

/Q(WdW = / > Qw|AP
w W AeQ
= > P(A)=1 (B.3)
AeQ
This leads to the following Lagrangian
L=SWIA)+ D p (1 — Q(W|A)dW> + Z A (Fon = Efa(W)). (B.4)
AeQ Wa
Then take a derivative w.r.t. Q(W]A) and solve the root
L
_— = — P(A)Q(W|A)logQ(W]A) + QW|A
dOWIA) A;z [A) (W] AEEZQAL |4) —
mef ) > P(A)Q(WIA)
AeQ
logQ(W|4) = Z (W
AeQ
efzm A (W)
QW) = (8.5)

6_ZAEQ /LP<A)
Here it is tacitly assumed that
=0 ifa.=0
(w.la. i B.6
qz](w1j|a1j> {> 0 If aij -1 ( )

Note that, with the right »,, the denominator is a normalising constant 7, , such thatit can
be denoted as

e~ acaFP(A) — Zyy= / e~ 2m Am I W) g7 (B.7)
W

Doing so leads to the Exponential random graph form again (with Hamiltonian constraint
function H(W|A) = >, o, A [ (W)

e HWIN)

QUWIA) =~

(B.8)

To continue the analogy with the deterministic method, it remains to figure out a way of
choosing the right constraint parameters \. Earlier this was done via a maximum
likelihood argument where the MLE-estimator for the system was exactly the parameter
that would enforce the desired constraints. For the continuous set-up something similar is
happening in a conditional probability setting. In this setup there is no clearly defined
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adjacency matrix A1), As such a more comprehensive likehood is required. For this Parisi
etal. (2020) uses the (in the introduction abandoned) generalised likelihood GL()).
which is the log-likelihood of Q(W|A) w.r.t. to the unconditional expectation of IW. The
ideais that now it is fine to use a generalised likelihood, as we have full knowledge on the
strength degrees conditional on some binary configuration, so no biases are induced on
the weights by using it.

GL(\) = — Z P(A)logZ, . (B.9)
AeQ
If the obtained expression of the conditional probability Q(W|A) = Vs plugged
into the Lagrangian it follows that
Lo.wiay =SW[A) g, wiay = — Z P(A)logQ(W|A)
AeQ
= Z P(A) (log Zaxt Z)\mfm<W)>
AeQ
= Y P4 logZAA—#Z)\ Fon (W)
AeQ
= —GL()) (B.10)

for any I such that our constraints Ef,, (W) = £, (W) are satisfied. Thus, if A = \* it would
satisfies our desired constraints, where this \* will also maximise the general likelihood.
Furthermore, mostly using linear constraints are used. Thus, the form of constraints is
limited and can consider (for some node :) the Hamiltonian H(W|\) = Zl 1 Z#l i Wi
The marginals of Q(W|A) are determined as follows

N
e int 2 NijWij

Q(W4) 7

T
jw e A77“’71dw

= 1]#1

I
7)\ W

— )\ije”‘ij“’ (B.11)

qij(w|aij =1 =

The idea behind this specific Hamiltonian is that it can constrain the entire set of expected
weights to some given target weights @, ;. This nets a generalized likehood of the form

GLopen = — Zlg Aij Wi +pijl09)‘ij) (B.12)

where p, ; is the binary configuration of choice and maximising it gives
Pij

J )\” J
Ny = Dij (B.13)
w.

11) As one wants to be able to use the model for multiple topological reconstructions.
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The actual target weights i, ; are unknown quantities. In the same vein as the Fitness
Ansatz, one can make another ansatz about the relationship between link weights and
their node strengths. InParisi et al. (2020) the ansatz of choice is the standard gravity
model from section 2.1 for target weights, i.e. {w}/”},_,. The corresponding parameter
Aisthen

A= g (B.14)

where W is the known total weight of the network. The standard gravity model actually
performs quite well when only the weights are taken into account. However, this method
also allows for the possible incorporation of other weighted configuration like Iterative
Proportional Fitting (IPF). Meanwhile, the CReM allows for a probabilistic assignment of
continuous link-weights, while only requiring the resolution of O(N?) decoupled
equations.

The Ansatz invoked here is not a necessary component of CReM, one can also use the
Hamiltonian H(W|\) = ZL > i (Agutsout 4 Xinsin) and arrive at a similar probability
distributions but when deriving the corresponding constraint parameters one needs to
solve 2N coupled equations. In the reconstruction of large networks this would take
significant chunk of extra calculation time, while also combining less nicely with the
Fitness model.

Also here, the use of a fitness or rather the target distribution, opens up a possibility of
looking at the reconstruction method through a Bayesian lens. While in the CReM case one
can choose a deterministic distribution as the target, it could also be another probability
distribution to then arrive at a posterior distribution. One can use the Monte-Carlo Markov
Chain method or a Gibbs-sampler with this target distribution to arrive at another way of
reconstructing links in a probabilistic way. The details for this method will not be discussed
but they can be found in Gandy and Veraart (2016, 2019).
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