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1 Introduction

The present paper1) is about a concept from analysis (named after the German scientist
Helmholtz) that can be translated into a similar concept in graph theory (also named after him).
The paper shows in some detail how this translation can be made. The rest of the paper explores
this translated concept in the world of graphs. In particular, several concrete examples are
considered in the present paper to obtain a better understanding of this concept. It turns out
that a method previously proposed by the present author in a totally different context, plays a
key role in this translated concept, as is also shown in the present paper.

The classical Helmholtz decomposition applies to vector fields. It is possible to decompose a
vector field into two components: one part which is defined by a potential (and hence is rotation
free) and another part which is derived from a vector potential (and hence is divergence free).
The decomposition is named after Hermann (von) Helmholtz (1821‐1894), a German physicist,
physician and philosopher, who derived it in [6].2)

A similar decomposition is possible for digraphs with valuations3) defined on their arcs and nodes
(v‐digraphs).4) It is possible to decompose the valuation in such a network in a similar way: one
part that has the property that, for each arc, the sum of the values associated with the arcs on a
cycle is zero; the other part has the property that the sum of the values of the ingoing arcs at a
node equals the sum of the values of the outgoing arcs, at that node. This means that the
notions of cycle and cut are important in the v‐digraph setting of the Helmholtz decomposition,
as will be shown in the sequel.

We show that this Helmholtz decomposition for v‐digraphs can be obtained by the cycle
method,5) which was developed for an entirely different purpose.6) The cycle method later also
proved to be useful in price index theory7) These can be viewed as examples of applications of
the Helmholtz decomposition of which the present author happens to have direct knowledge.

Applications of the Helmholtz decomposition are, however, not considered in the present paper.
We only briefly mention some examples here. For a more extensive treatment of some
applications see [10]. One application dealt with in [10] is about ranking problems. To determine
the ranking of individuals or teams typically tournaments8) are used, which consists of a cleverly
designed system of matches and rules. Each match has a winner and a loser, say, and yields an
insight into the relative stength of the contestants involved. As the (imagined) strengths of
players or teams are not constants but random variables, one may observe inconsistent
tournamant results: if 𝐴 has won from 𝐵 and 𝐵 from 𝐶, this does not necessarily imply that 𝐴 has

1) The author is grateful to Sander Scholtus who reviewed an earlier draft of this paper. His comments resulted in several
improvements.

2) Helmholtz, however, was largely anticipated by George Stokes in his paper “On the dynamical theory of diffraction”
which was presented and published in 1849 and 1856, respectively. For this and other interesting information on this
decomposition see https://en.wikipedia.org/wiki/Helmholtz_decomposition.

3) A valuation is a particular kind of function, to be explained later.
4) For earlier work in this area see, for instance, [8], [9] and [10], which also contains applications.
5) The present author later coined this name for the method.
6) The context was land surveying, more in particular leveling, cf. [11].
7) See [12], [13] and [14]
8) In the political or administrative environment one has ballots and polls, which serve a similar purpose of ranking

candidates, and in particular, to determine the one who has top rank.
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also won from 𝐶. If this happens, transitivity is said to be violated, and it is a manifestation of an
intransitivity.The Helmholtz decomposition can be used to produce a consistent (transitive) set of
results, with as few modifications of the original tournament results as possible.

This problem is comparable to a problem in official statistics, namely price index theory. The
problem concerns the modification of a set of intransitive price index numbers9) to a set of
transitive price index numbers, with minimal modifications. The cycle method can be used to
achieve these modifications. About the cycle method and its application to price index theory
see [11], [12], [13] and [14].

Another example of an application in statistics of the Helmholtz decomposition in networks is to
traffic data, where one may want to gain an insight into the amount of traffic passing through
and the amount of local traffic, that is basically only swirling around in the network.

The Helmholtz decomposition for v‐digraphs10)—the subject of the present paper—is another
application of the cycle method. The translation of the Helmholtz decomposition for vector fields
to a similar notion on v‐digraphs is quite natural, as will be shown, by using certain properties of
the original components of a vector field. In [9] another approach is used to obtain this
decomposition on v‐digraphs, namely one based on the Hodge decomposition, named after
W.V.D. Hodge.11) In the present paper we use a translation from the original Helmholtz
decomposition, which is pretty straightforward and which does not require the more elaborate
‘machinery’ of the Hodge decomposition.

The paper is organized as follows. In Section 2 we consider the classical Helmholtz
decomposition for vector fields. It roughly means that a vector field can be decomposed into two
components at every point in its domain: one component can be viewed as a vector field derived
from a potential function, whereas the other component can be viewed as the rotation of
another vector field. The first field is rotation free, the second field has zero divergence. What
this means is explained below. In Section 3 we introduce some key concepts to prepare for the
derivations to be made later on in the paper. Digraphs and their underlying graphs are
introduced, and also graphs and their orientations. Also spanning trees and spanning ditrees are
employed, which are used to compute bases in certain vector spaces, namely cycle spaces and
cut spaces. Also the equivalent of the Laplace operator in analysis will be introduced, called the
graph Laplacian. It is shown how it is related to the incidence matrix of a digraph or graph, which
in turn is closely related to the cut matrix. In Section 4 we review the concepts of cycles and cycle
spaces in digraphs on the one hand and cuts and cut spaces in digraphs on the other hand. They
are known to be related, as we will elucidate. These concepts are fundamental concepts for the
present paper. They are well‐known objects in algebraic graph theory. In Section 5 we discuss
two methods that can be used to actually compute the Helmholtz decomposition in a v‐digraph,
namely the cycle method and the cut method. The cycle method was developed by the present
author many years ago in a statistical context (land surveying, to be more precise, levelling).
Section 6, finally, presents the Helmholtz decomposition for v‐digraphs. It is shown how the cycle
method or the cut method can be used to compute it for a v‐digraph. So, as in the case of the
Helmholtz decomposition for vector fields, we not only have proved that the decomposition
exists, but we also have presented the methods to compute it. This section is the culmination of

9) In this case transitivity has a somewhat different, but similar, meaning from that in the context of tournaments.
10) The terminology is explained later in the present paper.
11) Hodge inaugurated a new and powerful homology method for analytic and algebraic manifolds, decribed in [7].
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the present paper. Section 7 closes the paper with a discussion of the main results and with
some ideas for future work, mainly directed at computational issues. The paper is concluded
with a list of references.

As to the notation used. This is fairly straightforward. We only mention the use of □ to mark the
end of examples or remarks.

2 Helmholtz decomposition for
vector ields

The original Helmholtz decomposition applies to vector fields in the area of vector calculus. Our
aim here is to give a general description of the decomposition leaving out all technical details
needed for an exact treatment of the subject. This is not needed for the motivational purposes
we have. However, the interested reader is referred to the literature on the subject for more
technical details. We assume here that the reader is acquainted with concepts like ‘potential’,
‘vector potential’, ‘rotation’ and ‘divergence’.

Let F be a vector field on a bounded domain of space ℝ3. Under certain fairly general conditions
it is possible to express F as follows

F = −∇Φ + ∇ × A, (1)

whereΦ is a potential and A = (𝐴𝑥 , 𝐴𝑦 , 𝐴𝑧) is a vector potential in Cartesian coordinates. Using
such a coordinate system forΦ as well, we have

∇Φ = (𝜕𝑥Φ, 𝜕𝑦Φ, 𝜕𝑧Φ), (2)

which is called the gradient ofΦ, where 𝜕𝑥Φ = 𝜕Φ
𝜕𝑥 , etc.

Furthermore

∇ × A =
�̂� �̂� �̂�
𝜕𝑥 𝜕𝑦 𝜕𝑧
𝐴𝑥 𝐴𝑦 𝐴𝑧

= (𝜕𝑦𝐴𝑧 − 𝜕𝑧𝐴𝑦 , 𝜕𝑧𝐴𝑥 − 𝜕𝑥𝐴𝑧 , 𝜕𝑥𝐴𝑦 − 𝜕𝑦𝐴𝑥), (3)

where | ⋅ | denotes a determinant, and �̂�, �̂� and �̂� the unit vectors in the 𝑥, 𝑦 and 𝑧 direction,
respectively. ∇ × A is called the rotation of A. The implicit understanding is that the
differentiation in (2) and (3) is allowed. This, in fact, means thatΦ and A are supposed to be
sufficiently smooth functions. Under fairly general conditions we have
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∇ × (∇Φ) = 0, (4)

∇ ⋅ (∇ × A) = 0. (5)

In words, the first identity (4) states that the rotation of the gradient ofΦ (see (2)) vanishes. The
second identity (5) states that the divergence of the rotation of A is zero. The divergence of a
vector field B, in Cartesian coordinates represented as (𝐵𝑥 , 𝐵𝑦 , 𝐵𝑧), is defined as

∇ ⋅ B = 𝜕𝑥𝐵𝑥 + 𝜕𝑦𝐵𝑦 + 𝜕𝑧𝐵𝑧 . (6)

Equation (4) holds, provided that

∇ × (∇Φ) = (𝜕𝑦𝜕𝑧Φ− 𝜕𝑧𝜕𝑦Φ, 𝜕𝑧𝜕𝑥Φ− 𝜕𝑥𝜕𝑧Φ, 𝜕𝑥𝜕𝑦Φ− 𝜕𝑦𝜕𝑥Φ) = 0 (7)

holds. This is the case if the order of the partial differentiations can be interchanged, as we shall
assume to hold.12) If we assume a similar property to hold for the components of A, we have

∇ ⋅ (∇ × A) = 𝜕𝑥(𝜕𝑦𝐴𝑧 − 𝜕𝑧𝐴𝑦) + 𝜕𝑦(𝜕𝑧𝐴𝑥 − 𝜕𝑥𝐴𝑧) + 𝜕𝑧(𝜕𝑥𝐴𝑦 − 𝜕𝑦𝐴𝑥) = 0. (8)

We want to stress that two observations are important, as they can be carried over naturally to
the ‘graph theory world’:

1. the component −∇Φ in (1) is derived from a potential function.
2. the component ∇ × A in (1) is divergence free.

In Section 6 we discuss how these properties can be carried over to graph theory, and thus how
to obtain the equivalent of a Helmholtz decomposition in this area. But in order to do that we
need some preparations in Section 3, where we introduce the necessary concepts to be able to
state the result.

It is possible to give explicit expressions for the potentialΦ and the vector potential A. We state
them here, for completeness. They are not of any use in the graph theory context, where the two
components of the decomposition can also be stated explicitly, as will be shown. We present the
results for a special case, namely where the domain of an auxiliary vector field F13) is ℝ3 (and
hence also that of A). Then we have the following representations:

12) In practice this is often the case, so it is hardly a restriction.
13) With the additional technical requirement that 𝑟F → 0 as 𝑟 → ∞
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Φ(r) = 1
4𝜋 ℝ3

∇′ ⋅ F(𝑟′)
|r− r′| 𝑑𝑉

′ (9)

A(r) = 1
4𝜋 ℝ3

∇′ × F(𝑟′)
|r− r′| 𝑑𝑉′, (10)

where differentiation (via a gradient) with respect to r′ is denoted by ∇′ and integration by 𝑑𝑉′.
In case F is defined on a bounded domain V ⊆ ℝ3 the representations ofΦ(r) and A(r) are more
complex, consisting of two terms each.

3 Preparations

The goal of this section is to introduce the concepts and constructions needed voor the
Helmholtz decomposition defined for so‐called v‐digraphs, which are the graph theoretical
counterparts of vector fields. In particular we need the concepts of cycles and cuts in digraphs.

3.1 Underlying graph and orienting graphs

We sometimes need to link digraphs to related graphs, and vice versa. If we have a digraph �̄� we
sometimes need the underlying graph 𝐺. This is the graph with the same node set as 𝐺 but with
arcs (𝑎, 𝑏) replaced by edges {𝑎, 𝑏}. Obviously, several digraphs have the same underlying graph.
Sometimes we need the reverse operation: we start with a graph and we need to produce a
digraph from this structure. This can be done by replacing some edges {𝑎, 𝑏} by arcs: (𝑎, 𝑏) or
(𝑏, 𝑎). Edges that are not replaced are interpreted as a pair of arcs, as usual.

This operation can be called: edge orientation, resulting in arcs replacing (some) edges. In
another interpretation one can view this process as one of selecting arcs: an edge {𝑎, 𝑏} in fact
represents two arcs, (𝑎, 𝑏) and (𝑏, 𝑎), so edge orientation in fact amounts to selecting one of the
arcs (𝑎, 𝑏) or (𝑏, 𝑎) as a replacement for the edge {𝑎, 𝑏} = {(𝑎, 𝑏), (𝑏, 𝑎)}.

In the present paper we assume the underlying graphs to be connected, meaning that there is a
path connecting any two nodes in the graph. A path can be viewed as a sequence of nodes,
where each neighboring pair 𝑎, 𝑏 has {𝑎, 𝑏} is an edge in the underlying graph.

3.2 Spanning trees and ditrees

Let 𝐺 = (𝑉, 𝐸) be a graph, which we assume to be connected. A spanning tree for 𝐺 is a
subgraph 𝑇 = (𝑊, 𝐹) which is a tree,𝑊 = 𝑉 and 𝐹 ⊆ 𝐸. So 𝑇 has the same node set as 𝐺, and
its edges form a subset of those of 𝐺. A cycle is a closed path in which only the first and last
nodes are equal.14) 𝑇 has no cycles and is connected.

14) A path in a graph 𝐺 is a finite sequence of nodes in which successive nodes are adjacent, that is, are joined by an edge
in 𝐺. In a closed path the initial and final nodes are the same. It is also possible that other nodes on the path are the
same. So a cycle is a closed path, but a closed path need not be a cycle.
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In case �̄� is a digraph, we can also define a concept similar to that of a tree for graphs: a directed
tree, for short, a ditree. It is a digraph for which the underlying graph is a tree. So if �̄� is a
spanning ditree for digraph �̄� = (𝑉, �̄�), it implies that the underlying tree 𝑇 is a spaning tree for
the graph 𝐺 = (𝑉, 𝐸), where the edge set 𝐸 is derived from the arc set �̄� as described above.

3.3 Graph Laplacian

The graph Laplacian15) is a graph theoretical translation of the Laplace operator Δ in
mathematical analysis, which in cartesian coordinates can be expressed as the following second
order partial differential operator (in Cartesian coordinates) in 𝑛 dimensions:

Δ = ∇ ⋅ ∇ = div ⋅ grad = 𝜕2
𝜕𝑥21

+⋯+ 𝜕2
𝜕𝑥2𝑛

(11)

where ‘div’ is the divergence and ‘grad’ the gradient. For a function 𝑓 ∶ ℝ → ℝ𝑛 and a function
Φ ∶ ℝ𝑛 → ℝ, which satisfy the necessary differentiability criteria, we have

div(𝑓) = ∇ ⋅ 𝑓 = 𝜕𝑓
𝜕𝑥1

+⋯+ 𝜕𝑓
𝜕𝑥𝑛

, (12)

grad(Φ) = ∇(Φ) = ( 𝜕Φ𝜕𝑥1
, ⋯ , 𝜕Φ𝜕𝑥𝑛

) (13)

Intuitively, the divergence measures the flow of 𝑓 through an infinitesimal cube, whereas the
gradient is a vector indicating the local change ofΦ.

The graph Laplacian of a graph 𝐺 = (𝑉, 𝐸) is the following matrix

ℒ = D−𝒜, (14)

whereD is the degree matrix and𝒜 is the adjacency matrix of 𝐺. The degree matrix is a diagonal
matrix where the entry D𝑖𝑖 is the degree of node 𝑖, which is the number of edges incident with 𝑖.
The adjacency matrix of 𝐺,𝒜, is the 𝑛 × 𝑛 (0,1)‐matrix such that𝒜𝑖𝑗 = 1 if there is an arc (𝑖, 𝑗)
in 𝐺 and𝒜𝑖𝑗 = 0 if there is no such arc. Here 𝑛 is the number of nodes in 𝐺, i.e. |𝑉| = 𝑛, where
| ⋅ | is the function that counts the number of elements in a finite set.

Now we introduce another important matrix for graphs, namely the incidence matrix. Let
𝐺 = (𝑉, 𝐸) be a graph, with |𝑉| = 𝑛 and |𝐸| = 𝑚. The incidence matrix ℐ for 𝐺 is defined as
follows: It is a (0,1)‐matrix with ℐ𝑖𝑗 = 1 if node 𝑖 is incident with edge 𝑗, and ℐ𝑖𝑗 = 0 if this is not
the case.

Apart from the adjacency matrix𝒜 for 𝐺, the incidence matrix ℐ is a fundamental matrix that
defines 𝐺.

15) For more information on graph Laplacians and some of their properties see e.g. [2].
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The incidence matrix for the graph 𝐺 is related to the degree matrix and the adjacency matrix of
𝐺, but not quite the graph Laplacian of 𝐺 itself:

ℐℐ′ = D+𝒜, (15)

with D and𝒜 as defined in (14).

Before we proceed, we to introduce the incidence matrix of a digraph, more specifically of an
oriented graph. This is a digraph in which no arc has a counter‐arc. Likewise we can say, starting
with a graph 𝐺 that if we replace each edge {𝑎, 𝑏} by a single arc, either (𝑎, 𝑏) or (𝑏, 𝑎), we
obtain such a digraph �̄�. We view �̄� is an orientation of 𝐺 = (𝑉, 𝐸). Likewise, 𝐺 is the underlying
graph of �̄�. If 𝐺 has𝑚 edges there are 2𝑚 orientations of 𝐺. If (𝑎, 𝑏) is an arc in �̄�, we call 𝑏 the
head and 𝑎 the tail of this arc. We now define the incidence matrix ℐ̄ of �̄�. It is a
{−1, 0, 1}‐matrix with rows and columns indexed by nodes and arcs of �̄�. Let (𝑣, 𝑒) with 𝑣 ∈ 𝑉
and 𝑒 ∈ �̄�, the arc set of �̄�. Then

ℐ̄𝑣𝑒 =
−1 if 𝑣 = 𝑎
0 if 𝑣 ≠ 𝑎, 𝑣 ≠ 𝑏
1 if 𝑣 = 𝑏

(16)

1

2

3

4

5

a

e

b

f

d

g

c

Figure 3.1 A digraph with spanning ditree (arcs coloured green).

Example To illustrate this notion of an incidence matrix for digraphs consider the digraph in
Figure 3.1. The corresponding incidence matrix is presented in Table 3.1. □

node a b c d e f g
1 1 1 0 0 0 0 0
2 ‐1 0 0 0 ‐1 1 0
3 0 ‐1 1 1 1 0 0
4 0 0 0 ‐1 0 ‐1 ‐1
5 0 0 ‐1 0 0 0 1

Table 3.1 Incidence matrix of the digraph in Figure 3.1.

We can look at the incidence matrix in two ways: column‐wise and row‐wise. If we look
column‐wise we basically see how the arcs are defined in terms of the nodes incident to them.
Also is indicated, via the sign, if an arc starts at a node (‐ sign) or arrives at a node (no sign, but
actually signifying a + sign). If we look row‐wise, we see for each node which arcs depart from it
or arrive at it. This is exactly the sort of information we need for our application to the Helmholtz
decomposition of v‐digraphs. See Section 4.2.
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For the incidence matrix ℐ̄ of an oriented graph �̄� with underlying graph 𝐺 the following
important identity holds:

ℐ̄ℐ̄′ = D−𝒜 = ℒ, (17)

with ℒ the graph Laplacian of 𝐺, as defined in (14).16) The first equality in (17) holds irrespective
of the chosen orientation of 𝐺.

We illustrate (17) with an example.

Example In Figure 3.2 a graph 𝐺 is shown with 4 nodes and 5 edges. In Figure 3.3 a digraph �̄� is
shown which is an oriented version of the graph 𝐺 in Figure 3.2.17)

1

2

3

4

e

a

b

c

d

Figure 3.2 Graph 𝐺 with 4 nodes and 5 edges .

1

2

3

4

e

a

b

c

d

Figure 3.3 Digraph �̄� which is an oriented version of the graph 𝐺 in Figure 3.2.

We now specify the adjacency matrix𝒜, the degree matrix D and the incidence matrix ℐ of 𝐺
and the incidence matrix ℐ̄ of �̄�.

𝒜 =
0 1 1 0
1 0 1 1
1 1 0 1
0 1 1 0

, (18)

D =
2 0 0 0
0 3 0 0
0 0 3 0
0 0 0 2

, (19)

16) See [4], Lemma 8.3.2 on p. 168.
17) Alternatively expressed: the graph in Figure 3.2 is the underlying graph of the digraph in Figure 3.3.
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ℐ =
1 0 0 0 1
1 1 1 0 0
0 1 0 1 1
0 0 1 1 0

, (20)

ℐ̄ =
1 0 0 0 −1

−1 −1 1 0 0
0 1 0 1 1
0 0 −1 −1 0

. (21)

Now we can compute ℐℐ′ and ℐ̄ℐ̄′ and express the results in terms of𝒜 and D, as given in (18)
and (19), respectively:

ℐℐ′ =
2 1 1 0
1 3 1 1
1 1 3 1
0 1 1 2

= D+𝒜, (22)

ℐ̄ℐ̄′ =
2 −1 −1 0

−1 3 −1 −1
−1 −1 3 −1
0 −1 −1 2

= D−𝒜 = ℒ, (23)

which is the graph Laplacian of �̄�.

Suppose that another orientation of 𝐺 would have been chosen, for instance the one in Figure
3.4.

1

2

3

4

e

a

b

c

d

Figure 3.4 Digraph ̄�̄� which is another oriented version of the graph 𝐺 in Figure 3.2.

The incidence matrix ̄ℐ̄ for the digraph in Figure 3.4 is

̄ℐ̄ =
−1 0 0 0 −1
1 −1 1 0 0
0 1 0 −1 1
0 0 −1 1 0

. (24)

We have
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̄ℐ̄ ̄ℐ̄
′
=

2 −1 −1 0
−1 3 −1 −1
−1 −1 3 −1
0 −1 −1 2

= D−𝒜 = ℒ, (25)

which is the same result as (23), showing that the difference in orientation of 𝐺 does not affect
the result.

Suppose that the values 𝑥1, 𝑥2, 𝑥3, 𝑥4 are associated with the nodes 1, 2, 3 and 4, respectively.18)
Write 𝑥 = (𝑥1, 𝑥2, 𝑥3, 𝑥4)′. Then

𝑥′ℒ𝑥 = 𝑥′ℐ̄ℐ̄′𝑥 = (ℐ̄′𝑥)′(ℐ̄′𝑥)
= (𝑥1 − 𝑥2)2 + (𝑥1 − 𝑥3)2 + (𝑥2 − 𝑥3)2 + (𝑥2 − 𝑥4)2 + (𝑥3 − 𝑥4)2, (26)

where ℒ is as in (23) and ℐ̄ as in (21).19) (26) can be interpreted as an elastic energy of a network,
as defined in [15]. □

Remark The graph Laplacian is related to the cut method and (hence) also to the Helmholtz
decomposition in v‐digraphs, as is explained in Section 5.3. This is the reason why the graph
Laplacian is discussed in the present section. □

4 Cycles and cuts

4.1 Cycles

In Section 3.2 we already encountered to notion of cycle in graphs, when we introduced trees
and ditrees. However, there is more to say about this notion. It is in fact a key notion for the
present paper. A large portion of the section can be explained for graphs, but is applicable to
digraphs as well. This is what we need for the Helmholtz decomposition.

4.1.1 Cycle space
Let 𝐺 be a graph, which is not a tree, so it has cycles. A cycle in 𝐺 is a connected subgraph of 𝐺
such that each of its nodes has degree 2.

First we remark dat it is possible to define an algebraic structure on the set of cycles in 𝐺 . This
allows us to combine (‘add’ or ‘sum’) two cycles, and the result is another cycle. The sum⊕ is
defined in such a way that adding two cycles with a common edge, the result is a combined cycle
with the common edge removed. Symbolically, 𝑒 ⊕ 𝑒 = 0, for any edge 𝑒 of 𝐺.

18) Put differently, they define a valuation on the node set of 𝐺.
19) Instead of ℐ̄ we could have taken ̄ℐ̄ just as well. This shows that the orientation of two digraphs with the same under‐

lying graph yields the same result.
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Example In Figure 4.1 two cycles in a graph are shown and their sum. The cycles have a common
edge, 𝑏, which is eliminated as a result of the addition, yielding a new cycle. The remaining edges,
which are unique in the two cycles, are maintained and therefore appear in the resulting cycle. □

1

2

3

2

3

4 1

2

3

4

e

a

b ‐b

c

d e

a
c

d

Figure 4.1 Adding two (non‑oriented) cycles in a graph:
{𝑎, 𝑏, 𝑒} ⊕ {𝑏, 𝑐, 𝑑} = {𝑎, 𝑐, 𝑑, 𝑒}.

It can be shown that the cycles in a graph form a vector space: one can add or subtract cycles
and get cycles as a result. The scalar field is not ℝ or ℂ as usual, but the finite field 𝔽2 consisting
only of the elements 0 and 1 and with two operations addition⊕ and multiplication ⋅, defined as
follows:

0⊕ 0 = 1⊕ 1 = 0,
0⊕ 1 = 1⊕ 0 = 1. (27)

There is no need to define multiplication, as we do not need it in our applications.

So the cycle space of a graph 𝐺 is a vector space over 𝔽2. As more well‐known vector spaces it
has a basis consisting of base cycles, or elementary cycles as we prefer to call them. These are a
subset of all the cycles of 𝐺 that can be used to generate any of the cycles in 𝐺. In fact, there are
typically more bases to the cycle space of a graph, as is the case in ‘ordinary’ vector spaces over
ℝ or ℂ. Computing a cycle basis, or equivalently, a set of elementary cycles, of a graph 𝐺 can be
done with the help of a spanning tree. This is further explained in Section 4.1.2.

Now we turn to cycle addition in digraphs which is a bit different from that in graphs. The
following example illustrates it.

Example Consider the digraph in Figure 3.4. Now we are dealing with arcs (which are directed)
rather than with edges (which are not). Now it may be necessary to use a reversed arc. If an arc
has a label, say 𝑏, then we use the label −𝑏 to indicate the counter arc; the minus sign in the
label indicates opposite orientation. So in Figure 3.4 𝑏 represents the arc (2, 3) and −𝑏 the
counter‐arc (3, 2), with reversed orientation. Now the idea is that if we have a cycle we orient it,
so that we can traverse it in the direction of its orientation, starting at some node and ending
there as well, after having traversed the cycle. So if we consider the cycle containing the nodes 1,
2 and 3 we may represent the cycle as either {𝑎, 𝑏, −𝑒} or as {𝑒, −𝑏,−𝑎}. The order of the arcs in
each set is irrelevant (as they are sets). If we consider a second cycle, for instance the one
containing the nodes 2, 3 and 4, we have either the oriented cycle {𝑏, 𝑑, 𝑐} or its reversely
oriented counterpart {−𝑏,−𝑐, −𝑑}. We assume that we can combine two (oriented) cycles if the
underlying (non‐oriented) cycles have edges in common, and, viewed as a pair of arcs, one arc
belongs to one of the (oriented) cycle and its counter‐arc to the other (oriented) cycle. 20) For

20) If an arc is indicated by a label 𝑎 its counter‐arc has label −𝑎.
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instance, for the two cycles just indicated, if the first cycle is represented as {𝑎, 𝑏, −𝑒} and the
other as {−𝑏,−𝑐, −𝑑}, this is the case: arcs 𝑏 and −𝑏 cancel each other, and what is left is the
set {𝑎, −𝑒,−𝑐, −𝑑}, which is indeed also a cycle traversed in a particular way. Symbolically we
write the combination of the two (oriented) cycles as a sum

{𝑎, −𝑒,−𝑐, −𝑑} = {𝑎, 𝑏, −𝑒} + {−𝑏,−𝑐,−𝑑} (28)

If we take the opposite orientation of the first cycle {−𝑎,−𝑏, 𝑒} and the opposite orientation of
the second one {𝑏, 𝑐, 𝑑}, we can again combine them to a cycle {−𝑎, 𝑒, 𝑑, 𝑐}, which, of course, is
the resulting cycle we found previously, but oriented in the opposite direction. Symbolically we
can write this combination of two (oriented) cycles as

{−𝑎, 𝑒, 𝑑, 𝑐} = {−𝑎,−𝑏, 𝑒} + {𝑏, 𝑐, 𝑑} (29)

Obviously, the orientations of both cycles can be incompatible, in the sense that no pair of arc
and counter‐arc occurs in the two cycles, and no new cycle can be formed. The addition of such
incompatible (oriented) cycles is not defined.

The addition (‘+’) of oriented cycles is an operation that is commutative (𝑎 + 𝑏 = 𝑏 + 𝑎) and
associative ((𝑎 + 𝑏) + 𝑐 = 𝑎 + (𝑏 + 𝑐)). Adding a cycle 𝑑 and its counterpart −𝑑 (with opposite
orientation) yields the 0‐cycle which is actually the empty set (𝑑 + (−𝑑) = 0). □
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Figure 4.2 Adding two (oriented) cycles in a digraph: {𝑎, 𝑏, 𝑒} + {−𝑏, 𝑐, 𝑑} = {𝑎, 𝑐, 𝑑, 𝑒}.

The labels associated with the arcs of the digraphs should be thought of as numbers (say
elements of ℝ) instead of as symbolic labels as they were in the case of graphs. That is how they
will be used later on in this paper, when v‐digraphs are introduced and used.

4.1.2 Computing elementary cycles
We consider an example to show how to compute a cycle space. Consider the digraph in Figure
3.1, in which also a spanning tree is indicated (green arcs). We use the spanning tree to compute
a basis of the cycle space, which is a set of elementary cycles. We explain below how the
spanning tree is used for this purpose.

The arcs not situated on the spanning tree in Figure 3.1, that is, 𝑒, 𝑓 and 𝑔, are coloured black.
They are important for the generation of a set of elementary cycles: each one of those arcs
generates such a cycle. We start with the spanning tree and then consecutively add each of the
black arcs, 𝑒, 𝑓 and 𝑔. So we start with arc 𝑒 and add it to the spanning tree. This yields

CBS | Discussion paper | 7 April 2023 13



1

2

3

4

5

a

e

b

d

c

Figure 4.3 Arc 𝑒 is added, generating elementary cycle {𝑎, −𝑏,−𝑒}.

elementary cycle {𝑎, −𝑏,−𝑒}. See Figure 4.3. The arcs 𝑐 and 𝑑 as well as the nodes 4 and 5
should be discarded, as they are not part of the elementary cycle.

For the next elementary cycle we add arc 𝑓 to the spanning tree. This yields elementary cycle
{𝑎, −𝑏,−𝑑, 𝑓}. See Figure 4.4. Arc 𝑐 and node 5 are not part of this elementary cycle and should
therefore be discarded.
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Figure 4.4 Arc 𝑓 is added, generating elementary cycle {𝑎, −𝑏,−𝑑, 𝑓}.

The last arc to add to the spanning tree is arc 𝑔. It yields elementary cycle {−𝑐, −𝑔, 𝑑}. See
Figure 4.5. In this case the arcs 𝑎 and 𝑏 as well as nodes 1 and 2 should be discarded as not being
part of the elementary cycle.
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Figure 4.5 Arc 𝑔 is added, generating elementary cycle {−𝑐, −𝑔, 𝑑}.

In this case we have generated a cycle basis using the spanning tree with arcs 𝑎, 𝑏, 𝑐, 𝑑. A
different choice of spanning tree would have yielded another basis of elementary cycles. As in
more familiar vector spaces, like ℝ2 or ℝ3, a basis is not unique.21) You can pick any that you
want: they all span the same cycle space, which is what we need in the present paper.22)

21) Provided there are sufficient cycles in the digraph at hand, of course.
22) So theoretically all these cycle space bases are equivalent. Computationally it is perhaps another matter. A particular

basis may be more attractive than another one, especially for big digraphs.
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4.1.3 Cycle matrix
We can describe the set of elementary cycles for a digraph 𝐺 = (𝑉, 𝐸) with the help of a cycle
matrix. This is a (‐1,0,1)‐matrix of order 𝑐 × 𝑚, where 𝑐 is the number of elementary cycles in 𝐺
and𝑚 the number of edges in 𝐺. To illustrate this consider the digraph in Figure 3.1. It has three
elementary cycles as we have seen in Section 4.1.2, with the following cycle matrix:

𝐶 =
1 −1 0 0 −1 0 0
1 −1 0 −1 0 1 0
0 0 −1 1 0 0 −1

. (30)

Remark In case 𝐺 is a graph it should be noted that the cycle matrix is a (0,1)‐matrix: we only
need two values to indicate whether an edge is present (value= 1) or absent (value = 0). It
should be remembered that the field to be used is 𝔽2, not ℝ. But as for the present paper, we
need digraphs and not graphs, so we need not to worry about this case. □

4.1.4 Changing cycle basis
The row vectors of a cycle matrix for a digraph 𝐺 span the cycle space. Typically there are several
bases that span this space. If we start with another spanning for 𝐺 we find another basis.
Suppose we have two cycle matrices 𝐶1 and 𝐶2 for 𝐺. It is possible to express each elementary
cycle for the second basis in terms of the elementary cycles in the first basis using the⊕
operation (and vice versa). This amounts to

𝐶2 = Ω𝐶1, (31)

where Ω is a 𝑐 × 𝑐 invertible matrix, where 𝑐 are the number of elementary cycle= dimension of
the cycle space of 𝐺.

4.2 Cuts

Intuitively a cut in a digraph is about partitioning the nodes into two (disjunctive) sets and
consider the arcs incident to nodes from one set and nodes from the other set. These nodes
partitioning sets are called shores.

Remark In the area of Operations Research there is a well‐known theorem about cuts and flows
in a flow network: max flow = min cut. This means that the maximum flow through a flow
network cannot exceed the total capacity of the most restrictive bottleneck of the flow network.
This is its minimum cut. □

As in the case of cycles we can talk of a vector space called the cut space, with a basis consisting
of elementary cuts that span the cut space. In fact, typically, a cut space has several bases. As in
the case of cycle space spanning trees can be used to compute a basis for the cut space.23)

23) See [4], Section 14.1.
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However, there is a simple way to find a basis for the cut space of a graph or digraph, namely via
the incidence matrix, which we shall use.

Now consider the incidence matrix in Table 3.1. Note that the sum of its rows is the 0‐vector.
Hence the row rank is less than 5. In fact it is 4, as some manipulation of the rows shows. So if
we leave out one row, say the last one, the remaining rows are independent. We then obtain the
cut matrix 𝐷 in (32). The rows of 𝐷 form a basis of the cut space of the digraph in Figure 3.1.

𝐷 =
1 1 0 0 0 0 0

−1 0 0 0 −1 1 0
0 −1 1 1 1 0 0
0 0 0 −1 0 −1 −1

(32)

We want to illustrate the basis of the cut space defined by the rows in matrix 𝐷 in (32), induced
by nodes 1, 2, 3 and 4 of the digraph in Figure 3.1. We start with node 1, and then consider
nodes 2, 3 and 4 consecutively. In each case we consider the cut set generated. The results are
shown in Figures 4.6, 4.7, 4.8 and 4.9, respectively.

It should be noted that this is not the only way to find a basis for the cut space. It can also usually
done with the help of a spanning tree, as is illustrated in Section 4.2.1 by an example.
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Figure 4.6 Red and blue shores induced by node 1. The cut set is {𝑎, 𝑏}.
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Figure 4.7 Red and blue shores induced by node 2. The cut set is {−𝑎,−𝑒, 𝑓}.
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Figure 4.8 Red and blue shores induced by node 3. The cut set is {−𝑏, 𝑐, 𝑑, 𝑒}.
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Figure 4.9 Red and blue shores induced by node 4. The cut set is {−𝑑,−𝑓,−𝑔}.

4.2.1 Using a spanning ditree to ind a basis of the cut space
As in the case of finding a cycle basis, we use a spanning ditree to find a basis for the cut space of
a digraph. So let 𝐺 = (𝑉, 𝐸) be a digraph, and let 𝑇 be a spanning ditree of 𝐺. Let 𝑉 = 𝑉1 ∪ 𝑉2 be
a partition of 𝑉. This means that 𝑉1 ≠ ∅ and 𝑉2 ≠ ∅ and 𝑉1 ∩ 𝑉2 = ∅. 𝑉1 and 𝑉2 are called
shores. The arcs in 𝐸 can be partitioned into two groups: arcs connecting nodes in the same
shore and arcs connecting nodes in different shores. The latter type of arcs have our interest in
defining cut sets.

Now we use a spanning ditree to find a basis of the cut space. We illustrate this with the graph in
Figure 3.1, where the arcs 𝑎, 𝑏, 𝑐 and 𝑑 define the spanning ditree. We consider each of these
arcs separately and in each case we color the head node red and the tail node blue. We also
color the nodes at the same side of the spanning ditree as the head node red. Similarly, the
nodes at the same side of the spanning ditree as the tail node are colored blue. Then we obtain
two shores, the blue shore and the red shore. Then we consider the arcs connecting nodes on
different shores.

We start with arc 𝑎. In Figure 4.10. Node 1 is the head node of 𝑎 and hence is colored red and 2
is the tail node of 𝑎 and is therefore colored blue. Nodes 3, 4 and 5 are on the same side of the
spanning ditree as the head node and therefore are all colored red. Node 2 is the only node in
the other shore. So the arcs with nodes in different shores are 𝑎, 𝑒 and 𝑓. As 𝑓 is pointing from
the red shore to the blue one, we take its counter‐arc −𝑓 to add to the cut set, which in this case
is {𝑎, 𝑒, −𝑓}. The next arc on the spanning tree is 𝑏. In this case the red and blue shores as well
as the resulting cut set {𝑏. − 𝑒, 𝑓} are shown in Figure 4.11. Then we have arc 𝑐. The red and blue
shores as well as the cut set in this case is {𝑐, −𝑔} are shown in Figure 4.12, where we took the
counter‐arc −𝑔 of 𝑔 so to have an arc pointing from the blue to the read shore. The final arc on
the spanning tree to consider is 𝑑. Figure 4.13 shows the two shores as well as the cut set
{𝑑, 𝑓, 𝑔} that result in this case.
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Figure 4.10 Red and blue shores induced by arc 𝑎 in the spanning tree. The cut set is
{𝑎, 𝑒, −𝑓}.
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Figure 4.11 Red and blue shores induced by arc 𝑏 in the spanning tree. The cut set is
{𝑏, −𝑒, 𝑓}.
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Figure 4.12 Red and blue shores induced by arc 𝑐 in the spanning tree. The cut set is
{𝑐, −𝑔}.

So the cut sets generated by the arcs situated on the spanning tree in Figure 3.1 lead to a
representation of the cut matrix 𝐷 shown in Table 4.1.

It should be noted that any spanning tree of the digraph in Figure 3.1 has all but three arcs, as it
has three elementary cycles: for each elementary cycle 1 arc is missing. This implies that in the
cut matrix associated with a particular spanning tree the columns corresponding to these ‘left
out’ arcs have entries equal to 0.

4.3 The relationship between cycles and cuts

Let 𝐷 be a cut matrix of some digraph 𝐺. The cycle space is formally defined as the orthogonal
complement of 𝐷, that is all (−1, 0, 1)‐vectors 𝑐 such that 𝐷𝑐 = 0. It is easy to see that 𝑐 is
actually a cycle. This is the case because for each arc which enters a node (or exits it) there should
be another arc, exiting this node (or entering it). This is precisely what a cycle ‘does’ for each of
the nodes that are part of it. So if 𝐶 is a cycle matrix for 𝐺 and 𝐷 a cut matrix for 𝐺, we have
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Figure 4.13 Red and blue shores induced by arc 𝑑 in the spanning tree. The cut set is
{𝑑, 𝑓, 𝑔}.
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no. a b c d e f g
1 1 0 0 0 1 ‐1 0
2 0 1 0 0 ‐1 1 0
3 0 0 1 0 0 0 ‐1
4 0 0 0 1 0 1 1

Table 4.1 Cut matrix derived from the spanning tree in Figure 3.1.

𝐷𝐶′ = 0. (33)

Actually, (33) is a very important identity, with crucial consequences. For instance, it says that the
vectors associated with the elementary cycles in 𝐶, spanning the cycle space, are orthogonal to
the vectors associated with the elementary cuts, spanning the cut space. So consequently, the
cycle space and the cut space of a (di)graph are orthogonal complements, for short
orthoplements. Together they span ℝ𝑚, where𝑚 is the number of arcs in the digraph.
Summarizing, the following properties hold:

cycle space of𝐺 ⟂ cut space of𝐺
ℝ𝑚 = cycle space of𝐺 ⊕ cut space of𝐺,
𝑐 = dim cycle space,

𝑚 − 𝑐 = dim cut space,

where ‘⊕’ is the direct sum of vector spaces, and ‘dim’ is an abbreviation of ‘dimension’ (of a
vector space). It is assumed that the underlying graph of 𝐺 = (𝑉, 𝐸) is connected, and |𝐸| = 𝑚.
From the above, we can also conclude that the decomposition ofℝ𝑚 for a digraph 𝐺 is unique.24)

Example To illustrate (33) we consider the matrices 𝐶 and 𝐷 given in (30) and (32) that both
belong to the digraph in Figure 3.1.

𝐷𝐶′ =
1 1 0 0 0 0 0

−1 0 0 0 −1 1 0
0 −1 1 1 1 0 0
0 0 0 −1 0 −1 −1

⋅
⎛
⎜⎜⎜⎜

⎝

1 1 0
−1 −1 0
0 0 −1
0 −1 1

−1 0 0
0 1 0
0 0 −1

⎞
⎟⎟⎟⎟

⎠

=
0 0 0
0 0 0
0 0 0
0 0 0

, (34)

as should be the case, as a specific case of a general property. □

24) Anticipating on the sequel, it also implies that the Helmholtz decomposition for a given v‐digraph is unique.
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Equality (33) is important for the sequel, i.c. the cycle method and the cut method. It is at the
heart of the Helmholtz method for v‐digraphs, as will be shown.

5 Cycle method and cut method

In the present section we discuss two methods that can be used to rectify valuations on digraphs:
the cycle method and the cut method. The cycle method makes sure that the adjusted valuation
has the property that if the adjusted valuations are summed over any cycle, the result is 0. For
the adjustment of the valuations by the cut method it holds at each node, the sum of what goes
into the node also comes out; there is no accumulation at the node.

The cycle method was derived in a statistical context.25) Using similar ideas that led to the cycle
method, the cut method was actually derived for the first time in the present paper. Both
methods are explained below in separate subsections.

As it turned out both the cycle method and the cut method can be used to achieve the Helmholtz
decomposition. But that will be explained in Section 6.

5.1 v‑digraphs

In the preparations (Section 3) we only looked at graphs and digraphs. They were all that were
needed to discuss, cycles, cuts, etc. But now we want to look at richer structures, namely
digraphs with valuations on arcs and nodes, for short v‐digraphs.26) More formally a v‐digraph is
a quadruple 𝐺 = (𝑉, 𝐸, 𝑓𝑉 , 𝑓𝐸), where

– 𝐺 = (𝑉, 𝐸) a digraph,
– 𝑓𝑉 ∶ 𝑉 → ℝ a function, a valuation defined on the set of nodes of 𝐺,
– 𝑓𝐸 ∶ 𝐸 → ℝ a function, a valuation defined on the set of arcs of 𝐺,
– 𝑓𝑉 and 𝑓𝐸 are linked through a connecting equation, which we explain below.

We are not interested in developing a general theory about v‐digraphs and admissable
connecting equations, as our goal is much more limited in the present paper. We only need
connecting equations of the type

𝑓𝐸(𝑣, 𝑤) = 𝑓𝑉(𝑤) − 𝑓𝑉(𝑣), (35)

if (𝑣, 𝑤) ∈ 𝐸. Note that if arc (𝑤, 𝑣) is added, we can extend 𝑓𝐸 by defining

25) In an area of land surveying, called levelling. The problem is to adjust measured height differences in such a way that
the height difference between any two points in the measuring network is independent of the way it is computed,
that is by summing the adjusted height differences for the arcs on a path connecting the two points. See [11], [12] for
additional background information. Later is was applied in the context of price indices, to derive transitive price index
values from nontransitive ones. See [13] or [14].

26) Valuations are real‐valued functions on the set of arcs and nodes, which are mutualy related in a specific way.
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𝑓𝐸(𝑤, 𝑣) = −𝑓𝐸(𝑣, 𝑤), (36)

In the present paper we are only interested in connecting equations such as (35), but it should be
borne in mind that other choices for connecting equations are of use, such as the following
example presents.

Example In the context of price indices (see for example [12], [13] and [14]) the following
connecting equation is used:

𝑓𝐸(𝑣, 𝑤) = 𝑓𝑉(𝑤)/𝑓𝑉(𝑣), (37)

where 𝑓𝑉(𝑥) > 0 for all 𝑥 ∈ 𝑉. (37) can also be expressed as

log 𝑓𝐸(𝑣, 𝑤) = log 𝑓𝑉(𝑤) − log 𝑓𝑉(𝑣), (38)

which is more convenient in computations using the cycle method. The computations aim at
adjusting price index values computed with a nontransitive price index formula to obtain values
that are transitive. See the references cited if one should be interested in this application. □

Note that if 𝑓𝑉 has been defined, 𝑓𝐸 can be derived using the connecting equation, like (35), (37)
or (38). But not the other way round. In fact, it may even be the case the 𝑓𝐸 is defined in such a
way that no 𝑓𝑉 exists. This is the case when it is not true that for every cycle the sum of the
values of the arcs in this cycle is 0, which we call the 0‐cycle condition. It may be possible to
adjust the values of 𝑓𝐸 such that the 0‐cycle condition holds for the adjusted values. In fact, that
was the aim of the cycle method (see Section 5.2). And even in case the 𝑓𝐸 form a consistent set
(in the sense that they satisfy the 0‐cycle condition), there is no unique 𝑓𝑉 that is implied. It is
easy to see that for any 𝑓𝑉 that satisfies (35), (37) or (38), so does 𝑓𝐸 + ℎ for any constant ℎ ∈ ℝ,
or ℎ𝑓𝐸 for ℎ > 0. This is a gauge property, which one also encounters in physics, for example in
electromagnetism and in the classical theory of gravity.

It is only in case 𝑓𝑉 and 𝑓𝐸 are consistent that it is possible to define a v‐digraph based on these
valuations. However, it is possible to start with a valuation 𝑓𝐸 defined on the arcs of 𝐺, which is
not consistent, in the sense that the 0‐cycle property does not hold. This is equivalent to the
existence of a pair (𝑣, 𝑤) ∈ 𝑉 × 𝑉 such that no derived value of 𝑓𝐸 exists, which is independent
of the path connecting 𝑣 to 𝑤. Given a path 𝛾 in 𝐺 connecting 𝑣 to 𝑤, viewed as a set / sequence
of arcs, we can define

𝑓𝛾𝐸 (𝑣, 𝑤) =
𝑒∈𝛾

𝑓𝐸(𝑒). (39)

If this value is independent of path 𝛾 we can define
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𝑓𝐸(𝑣, 𝑤) =
𝑒∈𝛾

𝑓𝐸(𝑒), (40)

for any path 𝛾 connecting 𝑣 to 𝑤. In case the 0‐cycle property does not hold, there is a pair of
nodes (𝑣∗, 𝑤∗) and two paths 𝛾1, 𝛾2 connecting 𝑣∗ to 𝑤∗, such that 𝑓𝛾1𝐸 (𝑣∗, 𝑤∗) ≠ 𝑓𝛾2𝐸 (𝑣∗, 𝑤∗).
In this case one cannot define an 𝑓𝐸(𝑣∗, 𝑤∗).

We call a digraph with a triple 𝐺 = (𝑉, 𝐸, 𝑓𝐸), such that

– 𝐺 = (𝑉, 𝐸) a digraph,
– 𝑓𝐸 ∶ 𝐸 → ℝ a function (valuation), not consistent, in the sense that the 0‐cycle property does
not hold,

a pre‐v‐digraph. This means that the valuation of two nodes (𝑣, 𝑤) is not defined, as the result
depends of the path in 𝐺 connecting 𝑣 and 𝑤. The cycle method (see Secion 5.2) can be defined
to produce a v‐digraph from a pre v‐digraph. In [11] this is explained.

To present a concrete example of a v‐digraph and its valuations, consider the following example.

ExampleWe consider an example from land surveying, i.e. levelling. The problem is to measure
the height difference between two points at the earth’s surface. Let 𝐺 = (𝑉, 𝐸) be a leveling
network, which is a digraph, where the set of nodes correspond to points from which height
(difference) measurements have been made and 𝐸, the set of arcs corresponds to height
difference measurements.27) Let 𝑎 = (𝑎1, 𝑎2) be an arrow. Its tail, 𝑎1, indicates from which point
a height (difference) measurement was made. Its head 𝑎2 indicates which point was the target of
the measurement. The valuation 𝑓𝐸 on 𝐸 are measured height differences. For arrow 𝑎 this
would be 𝑓𝐸(𝑎). So far we only dealt with height differences. But if the height of a selected node
is given, say at sea level, then the heights of the nodes in 𝑉 could be given, provided the height
differences are consistent. This means that the height between two nodes should be
independent of the way two nodes in 𝐺 are connected by a path which is a sequence of arcs, for
which height difference are associated. Typically this is not the case with measured height
differences. But applying the cycle method to the measured height differences yields a
consistent set of adjusted height differences. That was precisely the aim of the cycle method (see
Section 5.2). This allows one to associate a height to each of the nodes 𝑣 in 𝑉: for node 𝑣 this
would be 𝑓𝑉(𝑣). The height differences and heights are connected: for an arc 𝑎 = (𝑎1, 𝑎2) we
have 𝑓𝐸(𝑎) = 𝑓𝑉(𝑎2) − 𝑓𝑉(𝑎1). This connection between the valuations 𝑓𝑉 and 𝑓𝐸 shows that
only height differences matter not absolute heights: if the node chosen initially at sea level
would in fact be at a height ℎ, we simply need to add this value to the heights of the remaining
nodes to get a consistent set of heights, that is in agreement with the (measured and adjusted
height differences) and the height of a particular node in the network.28) □

It may be tempting to think of a valuation as a flow and the v‐digraph as a flow network. But this
is very misleading—if not plain wrong—as there are major differences. A flow network has a
source (a node with only outflow) and a sink (a node with only inflow), the flows on each arc may
be restricted in (absolute) size by a capacity (or upper bound), the inflow and outflow at each

27) Or averages thereof in case multiple measurements were made for an arc.
28) This addresses the issue of gauge invariance in physics, which also applies to potentials.
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node are equal (except for the source and the sink). For a v‐digraph such restrictions do not
necessarily hold, alhough it may possess some of these properties.

5.2 Cycle method

In this section we discuss the cycle method briefly. Only results will be given, no derivations, as
these can be found elsewhere.

We start with a pre v‐digraph (𝑉, 𝐸, 𝑓𝐸), where we shall use 𝑥 instead of 𝑓𝐸 . 𝑉 is a (finite) set of
nodes, 𝐸 a (finite) set of arcs (‘directed edges’), and 𝑥 ∶ 𝐸 → ℝ a valuation. A concrete example
of such a pre v‐digraph is the following one.

ExampleWe consider a land surveying application, or more specifically, a levelling application,
which aims at measuring the height difference between two points on the surface of the earth.
The distance between these points is not so large that the curvature of the earth has to be taken
into account, but also big enough so that the height difference between these points cannnot be
measured directly. Instead intermediate points have to be used to measure their height
differences. Using these intermediate measurements, the idea is that the height difference
between the target points can be determined. But unfortunately, the intermediate height
difference measurements are afflicted with measurement errors. The network 𝐺 = (𝑉, 𝐸)
consists of intermediate points (elements of 𝑉) which are reference points involved in
measurements of height differences. An arc (𝑣, 𝑤) ∈ 𝐸 indicates that the height difference
between 𝑣 and 𝑤 has been measured, and that the measurement was made from the point 𝑣. □

A second example of the use of the cycle method is quite different, in the sense that the method
does not correct measurement errors but adjusts particular kinds of imperfections in certain
estimates (of price index numbers).

Example In case of price indices a problem may exist which is not due to measurement errors in
the data, but stems from the fact that the price index formula used is not transitive. For a
transitive price index 𝑃𝑖,𝑗 comparing the base period 𝑖 with a reference period 𝑗 it holds that, if 𝑘
is another period, it holds that 𝑃𝑖,𝑘 = 𝑃𝑖,𝑗𝑃𝑗,𝑘. So for a nontransitive (or intransitive) price index,
there are periods 𝑖, 𝑗, 𝑘 such that 𝑃𝑖,𝑘 ≠ 𝑃𝑖,𝑗𝑃𝑗,𝑘. This in fact shows that direct comparison on
periods 𝑖 and 𝑗 does not yield the same result as comparing 𝑖 and 𝑗 indirectly, via an intermediate
period 𝑘. This in fact means that the comparison of periods 𝑖 and 𝑗 depends on the path to link
period 𝑖 to period 𝑗. It holds more generally, with paths consisting of several intermediate
periods. Price indices that are not transitive are also said to show drift.29) So transitivity is a highly
desirable property of price indices. However, not all price indices are transitive. Even well‐known
price indices such as those named after Paasche, Laspeyres and Fisher are not transitive. □

The adjustment method employed to correct for measurement errors (as in case of land
surveying) or to ‘transitivize’ intransitive price index numbers is the cycle method.30) The cycle

29) When comparing the price levels in different countries, onemay have the same problem. In fact Hill’s method (see [1],
p. 256) tackles this problem by specifying for each pair of countries a single path which should be used to compare
them. This does indeed avoid inconsistencies, but these is no substantive reason why only these particular paths
should be used.

30) It should be noted that the notation used here is slightly different from that used in [12], [13] or [14].
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method uses a weight matrix𝑊, defined on the arcs of the digraph 𝐺31) that the user can use to
control the degree of adjustment applied to the original values. However, in the applications of
the cycle method to the Helmholtz decomposition in 𝑣‐digraphs,𝑊 is chosen to be an identity
matrix (of the appropriate order). The matrix 𝐶 is the cycle matrix, defined in Section 4.1.3. We
have

�̂� = 𝑥 −𝑊𝐶′(𝐶𝑊𝐶′)−1𝐶𝑥 = 𝑃𝑊𝑥, (41)

where

𝑃𝑊 = 𝐼 −𝑊𝐶′(𝐶𝑊𝐶′)−1𝐶. (42)

We put

𝑄𝑊 = 𝑊𝐶′(𝐶𝑊𝐶′)−1𝐶. (43)

Both 𝑃𝑊 and 𝑄𝑊 are projections, or equivalently, symmetric and idempotent matrices, that is,
𝑃′𝑊 = 𝑃𝑊, 𝑄′𝑊 = 𝑄𝑊 and 𝑃2𝑊 = 𝑃𝑊, 𝑄2𝑊 = 𝑄𝑊.

Remark In the Helmholtz decomposition in v‐digraphs𝑊 = 𝐼, where 𝐼 is the identity matrix of
the appropriate order. Taking𝑊 = 𝐼 is crucial for the Helmholtz decomposition for v‐digraphs. In
fact, if we would use a𝑊 ≠ 𝐼 chances are that such a decomposition does not exist, as the
condition 𝐶𝑊𝐷′ = 0 would have to be satisfied. This, however, is not likely to be the case since
in the cycle method𝑊 is a matrix based on subjective choices of a user of the method. In
contrast 𝐶 and 𝐷 are ‘objective’ matrices, derived from the v‐digraph. So in the context of the
Helmholtz decomposition𝑊 = 𝐼 is the only option for𝑊 . □

So with𝑊 = 𝐼, with 𝐼 the𝑚 ×𝑚 identity matrix, we have:

𝑃 = 𝐼 − 𝐶′(𝐶𝐶′)−1𝐶, (44)

𝑄 = 𝐶′(𝐶𝐶′)−1𝐶. (45)

where, we have written 𝑃 and 𝑄 instead of 𝑃𝐼 and 𝑄𝐼, to simplify the notation.

The cycle matrix is typically computed using a spanning tree. We now want to consider the effect
of the formulas (44) and (45) if another spanning ditree would have been used. Clearly, this is
about the change of the basis of the cycle space of the digraph 𝐺. So suppose we have two cycle

31) The arcs in 𝐺 indicate which nodes are compared, in measurements, periods, countries, etc. As a digraph it allows
to distinguish (𝑎, 𝑏) from (𝑏, 𝑎), to indicate from which point a measurement was made (say to measure a height
difference) or which is the base period and which is the comparison period (in price index applications). In other
applications ismay also be necessary to use the asymmetric role played by the nodeswhen they are compared directly.
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matrices 𝐶1 and 𝐶2 produced for a digraph 𝐺, as a result of choosing two different spanning
ditrees. In (31) it is shown how they are connected via a nonsingular matrix Ω: 𝐶2 = Ω𝐶1. Let 𝑄1
be the expression for (45) using 𝐶 = 𝐶1. Likewise we define 𝑄2 using 𝐶 = 𝐶2. Now we find, using
(45)

𝑄2 = 𝐶′2(𝐶2𝐶′2)−1𝐶2 = (Ω𝐶1)′((Ω𝐶1(Ω𝐶1)′)−1Ω𝐶1
= 𝐶′1Ω′(Ω′)−1(𝐶1𝐶′1)−1Ω−1Ω𝐶1 = 𝐶′1(𝐶1𝐶′1)−1𝐶1 = 𝑄1. (46)

So (46) shows that 𝑄 in (45) is independent of the choice of a particular basis for the cycle space
of 𝐺. Likewise 𝑃 in (44), of course. Put differently, (44) and (45) are invariant under the
transformation indicated in (31).

We now take a closer look at the matrix Γ = 𝐶𝐶′ which appears in the cycle method, in particular
in the matrices 𝑃 in (44) and 𝑄 in (45). In particular we want to better understand the meaning of
its entries. These can be divided into two groups: those on the main diagonal, and those not on
the main diagonal. Γ𝑖𝑖 is the length of the i‐th elementary cycle in the cycle matrix 𝐶, which is
measured by counting the number of arcs it contains. Γ𝑖𝑗 is a measure for the overlap of the two
elementary cycles 𝑖 and 𝑗. The overlap may by 0 (no arcs in common), negative (with arc pairs in
the respective elementary cycles, that is an arc and its counter‐arc) or positive (arcs in common).
Concisely expressed:

Γ𝑖𝑗 = 𝜎(�̄�𝑖 , �̄�𝑗)|𝛾𝑖 ∩ 𝛾𝑗|, (47)

where 𝜎(�̄�𝑖 , �̄�𝑗) is the sign of the overlap of �̄�𝑖 and �̄�𝑗 taking the relative orientations of the arcs
in the overlap into account, and where |𝛾𝑖 ∩ 𝛾𝑗| denotes the number of edges in common of the
undirected cycles 𝛾𝑖 and 𝛾𝑗 , corresponding to �̄�𝑖 and �̄�𝑗 , respectively. We have

𝜎(�̄�𝑖 , �̄�𝑗) =
−1 ∶ when the overlap has opposite orientation,
1 ∶ when the overlap has the same orientation, (48)

where the overlap is considered for the undirected cycles 𝛾𝑖 and 𝛾𝑗.32)

|Γ𝑖𝑗| = |𝛾𝑖 ∩ 𝛾𝑗| is the number of common arcs, or pairs of arcs and counter‐arcs, that is, edges.
We have the following (crude) inequalities

0 ≤ |Γ𝑖𝑗| ≤ min{|Γ𝑖𝑖|, |Γ𝑗𝑗|}, (49)

as the overlap of two elementary cycles cannot exceed the length of the smallest of the two.

In fact, we33) can sharpen the lower bound of |Γ𝑖𝑗| in (49):

32) It appears to be impossible that in an overlap of twoelementary cycles in a digraph somearcs have the sameorientation
and others have the opposite orientation, but we have no proof of this statement.

33) As pointed out by Sander Scholtus.
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max{0, |Γ𝑖𝑖| + |Γ𝑗𝑗| − 𝑚} ≤ |Γ𝑖𝑗|. (50)

where𝑚 is the number of edges in 𝐺. This follows from

𝑚 ≥ |𝛾𝑖 ∪ 𝛾𝑗| = |𝛾𝑖| + |𝛾𝑗| − |𝛾𝑖 ∩ 𝛾𝑗| = |Γ𝑖𝑖| + |Γ𝑗𝑗| − |Γ𝑖𝑗| (51)

We now consider an example to illustrate how elementary cycles can intersect in a digraph.

Example Consider the digraph pictured in Figure 5.1. There are four arcs not on the spanning
ditree: (1, 2), (4, 6), (6, 7) and (6, 5). Adding each of them yields an elementary cycle:

adding arc (1, 2) ∶ elementary cycle (1, 2, 3) = {(1, 2), (2, 3), (3, 1)}
adding arc (4, 6) ∶ elementary cycle (3, 4, 6) = {(3, 4), (4, 6), (6, 3)}
adding arc (6, 7) ∶ elementary cycle (3, 6, 7) = {(3, 6), (6, 7), (7, 3)}
adding arc (6, 5) ∶ elementary cycle (3, 4, 5, 6) = {(3, 4), (4, 5), (5, 6), (6, 3)}

1

2

3

4 5

67
Figure 5.1 A graph with spanning tree (edges coloured green).

If we consider elementary cycles (1, 2, 3) and (3, 4, 6) we see that there is no overlap of arcs,
irrespective of the orientation. If we consider elementary cycles (3, 4, 6) and (3, 6, 7) we see
there is arc (6, 3) in the first elementary cycle and arc (3, 6), its counter‐arc, in the second
elementary cycle, which correspond to the common edge {3, 6}. If we consider elementary
cycles (3, 4, 6) and (3, 4, 5, 6), we see that they have the arcs (3, 4) and (6, 3) in common. So
this example has all three possible types of intersecting cycles. □

We now consider 𝐶𝐶′. This is a symmetric matrix and hence diagonalizable. So there is an
orthogonal matrix 𝐹𝐶 such that

𝐹′𝐶𝐶𝐶′𝐹𝐶 = Λ𝐶 , (52)

where Λ𝐶 is a diagonal matrix. In fact, the columns of 𝐹𝐶 are the eigenvectors of 𝐶𝐶′. As
𝐹𝐶𝐹′𝐶 = 𝐹′𝐶𝐹𝐶 = 𝐼, so that 𝐹−1𝐶 = 𝐹′𝐶 , it follows from (52) that
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𝐶𝐶′ = 𝐹𝐶Λ𝐶𝐹′𝐶 . (53)

As 𝐶𝐶′ is positive definite, that is, 𝑥′𝐶𝐶′𝑥 > 0 for 𝑥 > 0, we conclude that its eigenvalues 𝜆 are
positive, i.e. 𝜆 > 0.

Now we consider 𝑄 as defined in (45)

𝑥′𝑄𝑥 = 𝑥′𝐶′(𝐶𝐶′)−1𝐶𝑥 = 𝑥′𝐶′(𝐹𝐶Λ𝐶𝐹′𝐶)−1𝐶𝑥 = 𝑥′𝐶′𝐹𝐶Λ−1𝐶 𝐹′𝐶𝐶𝑥
= (𝐹′𝐶𝐶𝑥)′Λ−1𝐶 (𝐹′𝐶𝐶𝑥) = 𝑦′Λ−1𝐶 𝑦 ≥ 0, (54)

where

𝑦 = 𝐹′𝐶𝐶𝑥. (55)

(54) shows that 𝑄 is positive semi‐definite. But in fact 𝑄 is positive definite, that is, 𝑥′𝑄𝑥 > 0 if
𝑥 > 0.

ExampleWe consider the matrix 𝐶 in (30) and compute the eigenvalues of 𝐶𝐶′:

𝐶𝐶′ =
3 2 0
2 4 −1
0 −1 3

. (56)

We find34)

Λ𝐶 =
5.791 0 0
0 3 0
0 0 1.209

, (57)

where the entries on the main diagonal (that is, the eigenvalues) have been rounded to 3
decimal places, and the corresponding orthogonal matrix

𝐹𝐶 =
0.559 0.447 −0.698
0.780 0.000 0.625

−0.280 0.894 0.349
, (58)

where the entries have also been rounded to 3 decimal places. □

34) Using the eigen() function in the statistical package R, which computes both the eigenvalues and the eigenvectors of
a matrix.
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5.3 Cut method

The cut method is of more recent origin than the cycle method. In fact it was developed when
the present paper was written. Both methods are linked.

The cycle method was originally intended to correct for measurement errors in height difference
measurements. ‘Height’ plays the role of potential. The cut method can be seen as a method to
correct a kind of flow in a network, where there is inflow and outflow at each node. This may not
be in balance. Suppose that our v‐digraph represents a street network, with traffic flow in each
street as the ‘valuation’. Suppose furthermore that these traffic flows per street have been
measured independently of each other. At each node we would like to have that the total
inflowing traffic equals the total outflowing traffic. As we are dealing with measurements this
may not be the case with the measured data, at all nodes. So there is an incentive to mend such
inconsistencies and demand that Kirchhoff’s law (‘inflow = outflow’) holds at each node. Using
linear regression analysis in a similar way as for the cycle method, we can formulate a
constrained linear regression method, with linear constraints, this time dictated by the inflow
and outflow requirements at each node. These constraints can be expressed using a matrix 𝐷
instead of the matrix 𝐶. 𝐷 is obtained from the incidence matrix ℐ by deleting a single row, for
instance the last one. If we assume the weight matrix to be equal to the identity matrix, we can
write down the solution as

�̌� = 𝑥 − 𝐷′(𝐷𝐷′)−1𝐷𝑥 = (𝐼 − 𝐷′(𝐷𝐷′)−1𝐷)𝑥 = 𝑅𝑥, (59)

by looking at the result for the cycle method and by simply replacing 𝐶 by 𝐷, where

𝑅 = 𝐼 − 𝐷′(𝐷𝐷′)−1𝐷. (60)

In analogy to 𝑄 we define

𝑆 = 𝐷′(𝐷𝐷′)−1𝐷. (61)

Now the adjusted values �̌� as defined in (59) satisfy

𝐷�̌� = 0, (62)

which is a formal ‘translation’ of Kirchhoff’s law for each node in 𝐺.

As in case of the cycle method (see (46)), we can show that the choice of basis of the cut space of
𝐺 does not affect 𝐷: the expression 𝐷′(𝐷𝐷′)−1𝐷 remains invariant.

The matrix Θ = 𝐷𝐷′ is related to the graph Laplacian associated with the underlying graph of the
v‐digraph involved. The row space of 𝐷 is equal to that of its incidence matrix ℐ. The difference is
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that the rows in 𝐷 are independent and hence form a basis of that space. In case of ℐ the row
vectors are dependent. It follows that the eigenvalues of Θ are eigenvalues of ℐℐ′ as well, which
is the graph Laplacian (see (17)). These eigenvalues are positive.35)

We now have a closer look at Θ, which is the counter‐part of Γ = 𝐶𝐶′ (see the end of Section
5.2). Again as with 𝐶𝐶′ we make a distinction between the entries on the main diagonal, Θ𝑖𝑖 and
the off‐diagional entries Θ𝑖𝑗 with 𝑖 ≠ 𝑗. Θ𝑖𝑖 is the number of ingoing arcs plus the number of
outgoing arcs of node 𝑖, which is the same as the degree of node 𝑖 of the underlying graph of 𝐺.
In case of Θ𝑖𝑗 we make a distinction between adjacent nodes 𝑖 and 𝑗 and non‐adjacent ones. In
the first case Θ𝑖𝑗 = −1 as there is arc (𝑖, 𝑗) or its counter‐arc (𝑗, 𝑖), with opposite orientation. Arc
(𝑖, 𝑗) can be viewed as an arc leaving 𝑖 and entering 𝑗. For arc (𝑗, 𝑖) the opposite is the case. So in
both cases we have different signs, ‘+’ and ‘−’, resulting in entries Θ𝑖𝑗 = −1 and Θ𝑗𝑖 = −1. In
case 𝑖 and 𝑗 are non‐adjacent, Θ𝑖𝑗 = 0, as there is no arc starting in 𝑖 and ending in 𝑗, or vice
versa. Concisely

Θ𝑖𝑗 =
degree(𝑖) ∶ 𝑖 = 𝑗

−1 ∶ (𝑖, 𝑗) ∈ 𝐸 or (𝑗, 𝑖) ∈ 𝐸
0 ∶ (𝑖, 𝑗) ∉ 𝐸 and (𝑗, 𝑖) ∉ 𝐸

(63)

We now consider an example that can be compared to the one at the end of Section 5.2, but this
time with the focus on 𝐷 instead of 𝐶.

ExampleWe consider the matrix 𝐷 in (32) and compute the eigenvalues of

𝐷𝐷′ =
2 −1 −1 0

−1 3 −1 −1
−1 −1 4 −1
0 −1 −1 3

. (64)

We find

Λ𝐷 =
4.890 0 0 0
0 4.208 0 0
0 0 2.493 0
0 0 0 0.409

, (65)

where the entries have been rounded to 3 decimal places.

The corresponding orthogonal matrix is

35) As ℐ is not of full row rank, so ℐℐ′ is not of full rank, implying that the kernel of ℐℐ′, i.e. Ker ℐℐ′, is a linear subspace of
dimension at least equal to 1.
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𝐹𝐷 =
0.264 0.268 −0.695 −0.613
0.107 −0.802 0.214 −0.547

−0.870 0.210 0.129 −0.428
0.403 0.490 0.675 −0.376

, (66)

where the entries have also been rounded to 3 decimal places. □

5.4 Relationship between cycle method and cut method

5.4.1 Identity matrix as weight matrix
The cycle methode and the cut method are intimately related. We have the following key
matrices associated with these methods, introduced earlier in the text (see (44), (45), (60) and
(61):

𝑃 = 𝐼 − 𝐶′(𝐶𝐶′)−1𝐶
𝑄 = 𝐶′(𝐶𝐶′)−1𝐶.
𝑅 = 𝐼 − 𝐷′(𝐷𝐷′)−1𝐷,
𝑆 = 𝐷′(𝐷𝐷′)−1𝐷.

Identity (33) is an important one connecting the cycle method and the cut method. Using the
identities (44), (45), (60), (61) and (33) we can derive others, several of which have been collected
in Table 5.1. Other algebraic properties of these matrices have been added as well. Note that all
matrices involve only simple rational operations to compute them from the matrices 𝐶 or 𝐷.

𝑃2 = 𝑃 𝑄2 = 𝑄 𝐷𝑅 = 0 𝑅𝐷′ = 0
𝑅2 = 𝑅 𝑆2 = 𝑆 𝐷𝑆 = 𝐷 𝑆𝐷′ = 𝐷′

𝑃 + 𝑄 = 𝐼 𝑅 + 𝑆 = 𝐼 𝐶𝑆 = 0 𝑆𝐶′ = 0
𝑃𝑄 = 0 𝑄𝑃 = 0 𝐷𝑄 = 0 𝑄𝐷′ = 0
𝑅𝑆 = 0 𝑆𝑅 = 0 𝐷𝐶′ = 0 𝐶𝐷′ = 0
𝑃′ = 𝑃 𝑄′ = 𝑄 𝑄𝑆 = 0 𝑆𝑄 = 0
𝑅′ = 𝑅 𝑆′ = 𝑆 𝑃𝑆 = 𝑆 𝑆𝑃 = 𝑆
𝐶𝑃 = 0 𝑃𝐶′ = 0 𝑅𝑄 = 𝑄 𝑄𝑅 = 𝑄
𝐶𝑄 = 𝐶 𝑄𝐶′ = 𝐶′ 𝑃𝑅 = 𝑅 − 𝑄 𝑅𝑃 = 𝑃 − 𝑆
𝐷𝑃 = 𝐷 𝑃𝐷′ = 𝐷′ 𝐶𝑅 = 𝐶 𝑅𝐶′ = 𝐶′
𝑃 = 𝑆 𝑄 = 𝑅

Table 5.1 Algebraic identities for matrices related to the cycle method and the cut
method.

The identities 𝑃 = 𝑆 and the equivalent 𝑄 = 𝑅 at the bottom line of Table 5.1 result from
observations about the cycle space and cut space of a digraph 𝐺 in Section 4.3. These identities
plus the identities 𝐷𝐶′ = 0 and the equivalent 𝐶𝐷′ = 0 require insight into the construction and
meaning of the cycle space and cut space of a digraph. The remaining identities in this table
follow from simple algebraic computations.

No attempt was made in Table 5.1 to list all possible identities of the matrices involved in the
definition of the cycle method and the cut method. Nor was it attempted to look for a minimum
set of identities, from which the remaining ones can be derived.
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Now 𝑃 = 𝑆 (or 𝑄 = 𝑅) implies the remarkable identity:

𝐼 = 𝐶′(𝐶𝐶′)−1𝐶 + 𝐷′(𝐷𝐷′)−1𝐷. (67)

Identity (67) can in turn be used to derive the related equalities 𝐷𝐶′ = 0 (see (33)) and 𝐶𝐷′ = 0.

6 Helmholtz decomposition for
v‑digraphs

In Section 2 the Helmholtz decomposition of a vector field was shown. It consisted of two
components, one that was rotation free and one that had zero divergence. In the present section
we explore such a decomposition for v‐digraphs using the cycle method and the cut method,
which actually allow one to compute the two components.

In this case we consider any digraph with arc valuation 𝐺 = (𝑉, 𝐸, 𝑥), with 𝑥 ∶ 𝐸 → ℝ a valuation
associated with the arcs of 𝐺. We consider a transform of 𝑥, inspired by the cycle method:

�̂� = 𝑃𝑥 = (𝐼 − 𝐶′(𝐶𝐶′)−1𝐶)𝑥, (68)

We do not use a weight matrix𝑊 as in the cycle method. Or, more precisely, we assume it equals
𝐼, the identity matrix (of the appropriate order, depending on the application at hand).

Now (68) leads to a decomposition of the valuation 𝑥 into two components:

𝑥 = 𝑥 − 𝐶′(𝐶𝐶′)−1𝐶𝑥 + 𝐶′(𝐶𝐶′)−1𝐶𝑥 = 𝑃𝑥 + 𝑄𝑥 = �̂� + 𝑄𝑥, (69)

Our aim is to show that decomposition (69) is the equivalent of the Helmholtz decomposition for
a vector field, but now applied to a v‐digraph: 𝑃𝑥 is the component derived from a potential
function defined on the nodes of the digraph, whereas 𝑄𝑥 is the ‘divergence free’ component,
which means that it has no sources (‘only values out’) or sinks (‘only values in’) at any node of the
digraph. Phrased differently, it means that for each node the total of the values into a node equal
the total of the values out of the node (Kirchhoff’s law from electrical circuit theory).

It follows that for the component 𝑃𝑥 holds

𝐶�̂� = 𝐶𝑃𝑥 = 0, (70)
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which states that for any elementary cycle the sum of the values associated with its arcs is zero.
This implies that this ‘zero sum’ property actually holds for any cycle in 𝐺.

Remark In vector analysis (in particular in applications such as electricity or gravitation) this
means that the integral of a closed path at any point in the field is zero.36) Characteristic for a
conservative field is that it implies the existence of a potential function from which the field (𝜑)
can be derived by taking the gradient (in fact, −∇𝜑). The reverse is also true: if a field is derived
from a potential, it is conservative. In the digraph case, 𝑃𝑥 can be compared to the field derived
from a potential function defined on the nodes of 𝐺 (cf. [12]). □

We now consider the second component in the final expression in (69), i.e. 𝑄𝑥. We want to show
that the v‐digraph equivalent of the divergence of 𝑄𝑥 is zero, which means that inflow equals
outflow at each node ( i.e. Kirchhoff’s law). In fact, because 𝐷𝐶′ = 0 (see identity (33), it follows
that

𝐷𝑄𝑥 = 0, (71)

which proves our contention.

With (70) and (71) we have obtained the defining properties of the components 𝑃𝑥 and 𝑄𝑥: 𝑃𝑥
is the component which can be derived from a potential function defined on the nodes, and 𝑄𝑥
is the divergence free component, for which inflow = outflow at each node. So (69) is the
Helmholtz decomposition for v‐digraphs that we were looking for. And the cycle method
produces it.

But so does the cut method. Using (59) we have the following decomposition

𝑥 = 𝐼 − 𝐷′(𝐷𝐷′)−1𝐷 𝑥 + 𝐷′(𝐷𝐷′)−1𝐷𝑥 = 𝑅𝑥 + 𝑆𝑥, (72)

where 𝑅 and 𝑆 are as defined in (60) and (61).

Because 𝑃 = 𝑆 and 𝑄 = 𝑅 (cf. Table 5.1) the decomposition (72) is also a Helmholtz
decomposition, this entirely defined in terms of 𝐷 instead of 𝐶.

We now give an example of a Helmholtz decomposition to illustrate this identity by direct
computation.

ExampleWe consider the matrices 𝐶 and 𝐷 as given in (30) and (32), which are both associated
with the digraph in Figure 3.1. We then find

36) Such a field is called conservative. The gravitational field and the electric field arewell‐known examples of conservative
fields.
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𝑄 = 𝐶′(𝐶𝐶′)−1𝐶

≈
⎛
⎜⎜⎜⎜

⎝

0.381 −0.381 −0.048 −0.095 −0.238 0.143 −0.048
−0.381 0.381 0.048 0.095 0.238 −0.143 0.048
−0.048 0.048 0.381 −0.238 −0.095 −0.143 0.381
−0.095 0.095 −0.238 0.524 −0.19 −0.286 −0.238
−0.238 0.238 −0.095 −0.19 0.524 0.286 −0.095
0.143 −0.143 −0.143 −0.286 0.286 0.429 −0.143

−0.048 0.048 0.381 −0.238 −0.095 −0.143 0.381

⎞
⎟⎟⎟⎟

⎠

. (73)

and

𝑆 = 𝐷′(𝐷𝐷′)−1𝐷

≈
⎛
⎜⎜⎜⎜

⎝

0.619 0.381 0.048 0.095 0.238 −0.143 0.048
0.381 0.619 −0.048 −.095 −0.238 0.143 −0.048
0.048 −0.048 0.619 0.238 0.095 0.143 −0.381
0.095 −0.095 0.238 0.476 0.19 0.286 0.238
0.238 −0.238 0.095 0.19 0.476 −0.286 0.095

−0.143 0.143 0.143 0.286 −0.286 0.571 0.143
0.048 −0.048 −0.381 0.238 0.095 0.143 0.619

⎞
⎟⎟⎟⎟

⎠

, (74)

where all entries have been rounded to 3 decimal places.

Indeed, 𝑄 + 𝑆 = 𝐼 (apart from rounding errors), as (67) requires.37) For a valuation 𝑥 on the arcs
of 𝐺 the components of the Helmholtz decomposition are: 𝑄𝑥 (‘divergence = 0 component’)
and 𝑆𝑥 (‘component derived from a potential’). □

Remark Identity (67) can be used to determine the cycle estimator. We can use 𝐷 obtained from
the incidence matrix ℐ by extracting a basis for the row space of ℐ. This avoids calculating a basis
for the cycle space (and hence computing 𝐶) using a spanning tree. Unfortunately this ‘trick’ can
only be used in case𝑊 = 𝐼, as is the case with the Helmholtz decomposition. □

This concludes the present paper: we have shown in this paper how to translate the Helmholtz
decomposition in a vector field to a similar construct on a v‐digraph. We also have shown that
the decomposition exists for such finite structures and that it is unique for a v‐digraph, how it
depends on its topology (cycle structure) and how it can be computed using the cycle method or
the cut method. The cycle method was known long before the present paper was written (in a
very different context). The cut method was developed as part of the work on the present paper.

7 Discussion
In this paper it was shown how the Helmholtz decomposition for vector fields can be translated
to v‐digraphs in a natural way. Also it was shown how the cycle method and the cut method can

37) If the numbers in (73) and (74) had been stated in greater precision, rounding errors would probably have appeared,
although they would have been very small.
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be used to compute the decomposition in the graph theoretical setting. The cycle method was
developed by the author many years ago in a completely different setting and was applied by him
in another area of statistics, namely price index numbers. The cut method was developed in the
present paper as a complement to the cycle method.

In the present application the cycle method is applied in a specific way, with the weight matrix
𝑊 = 𝐼, where 𝐼 the identity matrix of the same order as𝑊. In fact this is necessary for the
required decomposition to hold. It follows that the Helmholtz decomposition for digraphs only
depends on the cycle matrix 𝐶 and the cut matrix 𝐷. These are (topological) properties of the
v‐digraph used. In the general cycle method the weight matrix is a choice of the analyst applying
the method.

If a tool would be available that is an implementation of the cycle method and/or the cut‐method
then this tool could be used to compute the Helmholtz decomposition in v‐digraphs (among
other things). For the present paper computational issues are outside its scope. However,
development of such a tool is highly desirable. It makes live much easier for the users, as its
implementation requires knowledge that is somewhat specialized and not part of the skill set of
the average statistician. Also, such a tool would be useful for price index applications (to
transitivize nontransitive price index figures.
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