
Discussion Paper

Redistribution of mass and probabilities

Léon Willenborg

20 January 2023



1 Introduction

This paper1)2) is about optimal transportation, of mass (real) or probability mass (virtual). Not so
much about the solution of such problems, but about their formulation. Optimal transportation
models have been considered since quite some time, starting with a contribution by Monge (see
[12]), who considered the problem of transporting soil between several locations in an optimal
way. Later, in the 20𝑡ℎ century, Kantorovitch (see [8] and [9]) and Koopmans (see [10]) have
made important pioneering contributions to this area.

The area of optimal transportation has turned out to be a connection point between economics
and physics. In the latter area physical transport problems are studied in areas such as fluid
mechanics and plasma physics. The Boltzmann equation describes the motion of particles in a
fluid or a gas (a compressible fluid), and the Vlasov equation describes the motion of a plasma,
which is an electrically charged, hot gas. Both economics and physics have an interest in
transporting matter (goods in economics and mass in physics) in an optimal way, by minimizing
costs or energy, distance, time, etc., under certain constraints which are particular for the
problem at hand. See e.g. [19] and [20].

Applying similar ideas as in transporting real mass in an optimal way, one can also consider the
problem how to transform a probability on a certain space into another problem on the same
space. Probability mass is handled as if it is real matter. For theory and applications in this area
see [14] and [15].

We are now in the position to explain what our interest in the problem is. It is not necessarily
related to transportation economics (logistics) or physics. Our source of inspiration is (official)
statistics. In certain areas of official statistics one runs into the problem of disaggregating two (or
more) distributions. For example, two aggregate tables 𝑆 ≥ 0 and 𝐷 ≥ 0 are given and it is
necessary to find a 2𝑑‐table 𝑈 such that the marginals of 𝑈 are 𝑆 and 𝐷.

Assuming such a 𝑈 exists, it has the property that

𝑈(𝑖, ⋅) = 𝑆(𝑖),
𝑈(⋅, 𝑗) = 𝐷(𝑗), (1)

where ‘⋅’ denotes aggregation over appropriate categories.

To be consistent the sum of the elements of 𝑆 and 𝐷 need to be the same, which we express
symbolically as

𝑆(⋅) = 𝐷(⋅). (2)

1) The views expressed in this paper are those of the author(s) and do not necessarily reflect the policies of Statistics
Netherlands.

2) The author is grateful to Sander Scholtus for reviewing a mature draft of the paper. He made several suggestions to
improve the paper, which the author gladly accepted.
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In general, such a 𝑈 does not need to exist. And if it exists it does not need to be unique. Extra
conditions or requirements are then needed to imply a unique 𝑈.

In principle, the sizes of 𝑆 and 𝑇 – viewed as vectors – need not be the same. In the application
considered in the present paper they are the same, however. Not only the sizes of the vectors are
the same, also the meaning of the categories. In the applications we have in mind they can be
locations or sectors in the economy. In the first case, we are dealing with physical locations and
in the second one with abstract entities that cannot be naturally associated with a metric space.

In case there is a solution to our disaggregation problem, and there are in fact several solutions,
we wish to select a specific disaggregation method, based on the transportation model, which is
a standard problem from operations research (see e.g. [5]). But this presupposes that we should
have information about the (dis)similarity of the categories used in the model, or their distance.
As the transportation model itself is fairly standard, the focus of the attention should be on these
parameters in the model. In the present paper we consider several examples in which we try to
specify reasonable values for them.

In the approaches we describe we can distinguish two kinds of mass: physical mass and
probability mass. Changing the first requires transport of matter, so questions about doing this
efficiently are raised automatically. Changing the latter does not require any physical activity. In
this case we are dealing with information.

The remainder of the paper is organized as follows. In Section 2 transportation models are
presented. These can be used to ship goods from a number of locations to other locations at
minimal transportation costs. An important quantity in such models is the cost matrix, which
defines the cost of transporting a unit of the good considered from location 𝑖 to location 𝑗, for all
possible location pairs (supply location, demand location). In Section 3 some examples of such
cost matrices are shown. In Section 4 we use copulas as weight matrices. Copulas are devices
that express the interdependency of random variables. In Section 5 we discuss the application of
the well‐known technique of Iterative Proportional Fitting (IPF) to a 2D table to find the interior
of a table whose marginals are known, together with a weight matrix for the interior. In Section 6
there is a brief discussion of the approaches considered to solve the problem central in this
paper. The paper is completed with a list of references and two appendices, one on the IPF
method and the other on copula theory.
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2 Transportation models

2.1 Base model

We present here a special case of the well‐known optimization model from OR3), the
transportation model, in particular the Hitchcock transportation model4), named after the author
of [7]. This model is about optimally transporting a certain product from a number of factories to
a number of shops, with minimal costs. Let 𝑉 denote the set of factories and𝑊 the set of shops.
For factory 𝑖 and shop 𝑗 the cost to ship the product from 𝑖 to 𝑗 is 𝑐𝑖𝑗. Let 𝐶 = (𝑐𝑖𝑗) be the𝑚 × 𝑛
cost matrix, with 𝑐𝑖𝑗 denoting the cost of transporting one unit of the good from 𝑖 to 𝑗.

The transportation model can be formulated as the following optimization problem:

min෍
𝑖∈𝑉

෍
𝑗∈𝑊

𝑐𝑖𝑗𝑥𝑖𝑗 (3)

෍
𝑗∈𝑊

𝑥𝑖𝑗 = 𝑠𝑖 for 𝑖 ∈ 𝑉,

෍
𝑖∈𝑉

𝑥𝑖𝑗 = 𝑑𝑗 for 𝑗 ∈ 𝑊,

𝑥𝑖𝑗 ≥ 0 for (𝑖, 𝑗) ∈ 𝑉 ×𝑊

(𝑠1, … , 𝑠𝑚) ≥ 0, with𝑚 = |𝑉| is the vector of supplies and (𝑑1, … , 𝑑𝑛) ≥ 0 with 𝑛 = |𝑊| is the
vector of demands. We assume that total supply equals total demand , i.e.

෍
𝑖∈𝑉

𝑠𝑖 = ෍
𝑗∈𝑊

𝑑𝑗 = 𝑡, (4)

with 𝑡 > 0 denoting the common total.

Remark The cost matrix 𝐶 is not unique, in the sense that 𝜅𝐶 yields the same results, for any
𝜅 > 0. If we divide the supply and demand matrices by 𝑡 as in (4), we obtain two probability
densities:

𝜎𝑖 = 𝑠𝑖/𝑡,
𝛿𝑗 = 𝑑𝑗/𝑡. (5)

We need this extension to probability distributions in the sequel as well. 2

3) OR = operations research
4) Named after FrankHitchcock (1875–1957). More accurate is to call it theHitchcock‐Koopmans transportation problem,

as Tjalling Koopmans (1910–1985) was another pioneer of such models.
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Remark The implicit assumption in model (3) is that each supply location 𝑖 is connected to each
demand location 𝑗 and vice versa. However, this does not need to be the case in any application.
For instance, some sectors in an input output model of the economy may not be connected in the
sense that there is no flow of goods or services (and hence money) from sector 𝑖 to sector 𝑗. 2

2.2 Generalizations

The model presented in Section 2.1 can be generalized in several ways, depending on the
treatment of the masses, supplies, demands or transportation links. As to the masses it is
important to know whether they can be split or not. In the latter case the entire supply at one
site should be transported to another location (provided there is no demand at the supply site).
As for the demands at the various locations it is important to know whether deliveries at that
location should be equal to the demand at a location, or should not exceed the demand, or
should be at least as big as the demand.

An example of the latter case is when a certain amount of bricks is needed for building a house.
With less bricks supplied than required, the building work cannot be finished. But, although a
surplus (say of bricks) is required for a job to be finished at a site, it should not be too big, as this
counts as a loss. To require that demand and supply are exactly equal at a site, let alone at any
site, may be a tall order. Consider the situation of the bricks again: they may be delivered
pallet‐wise, with each pallet containing a fixed number of bricks, say several hundreds of bricks.
It is highly unlikely that the number of bricks supplied, pallet‐wise, is exactly equal to the number
required. Furthermore, the number supplied is preferably bigger than the number demanded, in
order to have some spare bricks, in case some may be get broken, or cut wrongly by a bricklayer.

The case in which the demand should not be exceeded can be of importance when the materials
distributed are quite expensive, and they are not needed all at once, but in due course, say during
a building or construction process. If not enough of the material needed has been delivered at a
particular time, the assumption is that additionally required materials can be ordered later. So in
this case the tuning of supply and demand is not done in a single step, but in several steps.

Likewise, looking at the supply side, there may be various constraints and objectives. There may
be a requirement that the entire supply at a location should be removed, as we mentioned
before. Or the supply is divided into various batches (e.g. bags of sand, or pallets of bricks) and
only entire numbers of discrete units are supplied to the demand sites. It may also be the case
that not all the goods / materials can be sold. The amount that is left is considered a loss. The
goal of each supplier is to minimize their loss.

The requirements of each supply location may be different. The same holds for each demand
location. And this is for a single application, at the micro‐level. The information as to which
requirements apply to each location may be lacking. In this case one can only work with a
simplified model, making assumptions about the requirements for the supply and demand sites.

We mention this variety of restrictions to indicate that the base model in Section 2.1 is an
example of a particular choice of models. In an OR context alternative constraints and or target
functions may be of interest. Such alternatives are, however, not so likely to be of importance for
the application we are considering in the present paper. The reason is that, in the applications
we consider, the problems are formulated at a macro‐level, whereas the constraints we consider
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(in the present section), are defined at a micro‐level. And the requirements of each supplier may
be different, even for each case at the micro‐level. Similarly for each demand site. This prevents
clear‐cut constraints at the macro‐level.

2.3 Wasserstein metric

The transportation model considered in 2.1 is discrete. However, the original model proposed by
Monge (in [12]) is continuous. We can extend the approach in 2.1 to the continuous case. This is
possible by using a Wasserstein metric, which yields a class of models parametrized by a
parameter 𝑝. The generalization to general metric spaces is conceptually straightforward but is
technically involved to ensure that certain quantities exist or converge. We do not wish to delve
into these technicalities, so we present the formulas involved and assume that the necessary
conditions have been imposed so that the quantities in which we are interested, exist.5)

Let 𝜎, 𝛿 be two probability measures defined on a metric space (𝑀, 𝑑). Let Γ(𝜎, 𝛿) be the set of
all measures in𝑀 ×𝑀 with marginals 𝜎 and 𝛿, which is called the set of all couplings of 𝜎 and 𝛿.
The 𝑝𝑡ℎ Wasserstein distance𝑊𝑝(𝜎, 𝛿) between 𝜎, 𝛿 is defined as

𝑊𝑝(𝜎, 𝛿) = ቆ inf
𝜇∈Γ(𝜎,𝛿)

න
𝑀×𝑀

𝑑(𝑥, 𝑦)𝑝 𝑑𝜇(𝑥, 𝑦)ቇ
1/𝑝

, (6)

where 𝜇 is a measure on𝑀 ×𝑀. The case 𝑝 = 1 can be viewed as a direct generalization of the
target function in (3):

𝑊1(𝜎, 𝛿) = inf
𝜇∈Γ(𝜎,𝛿)

න
𝑀×𝑀

𝑑(𝑥, 𝑦) 𝑑𝜇(𝑥, 𝑦). (7)

In the present paper we stick with discrete metric spaces. They are the ones that we need, which
is fortunate as they are a lot easier to handle. But it is interesting to note that their generalization
leads to (a specific case of) the Wasserstein metric.

2.4 Adopted model

For the application in the present paper we are interested in a special case of model (3), namely
that in which 𝑉 = 𝑊, so there is no distinction between factories and shops. Then, instead of
model (3) we have:

5) For a quick overview of the Wasserstein metric see https://en.wikipedia.org/wiki/Wasserstein_metric
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min
𝑛

෍
𝑖=1

𝑛

෍
𝑗=1

𝑐𝑖𝑗𝑥𝑖𝑗 (8)

𝑛

෍
𝑗=1

𝑥𝑖𝑗 = 𝑠𝑖 for 𝑖 = 1,… , 𝑛

𝑛

෍
𝑖=1

𝑥𝑖𝑗 = 𝑑𝑗 for 𝑗 = 1,… , 𝑛

𝑥𝑖𝑗 ≥ 0 for 𝑖, 𝑗 = 1,… , 𝑛.

with 𝑠𝑖 , 𝑑𝑖 ≥ 0 for 𝑖 = 1,… , 𝑛, ∑𝑛
𝑖=1 𝑠𝑖 = ∑𝑛

𝑗=1 𝑑𝑗 = 𝑡.

In OR applications the matrix 𝐶 is supposed to be known and all the effort is devoted to solving
the optimization problem. However, the choice of a suitable cost matrix is in a sense the key part
of our problem. Solving the resulting optimization model is considered ‘routine’, given the
knowledge available in the literature, the software available to solve such problems as well as the
enormous experience in practice with such models.

We now consider the 𝐶‐matrix in more detail. We assume that for any cost matrix that we
consider in this paper the diagonal elements are all 0:

𝑐𝑖𝑖 = 0 for 𝑖 ∈ 𝑉, (9)

because shipping a good from a location to the same location does not require any shipping at all
and so the shipping costs are then 0.

In practice (9) could be an over‐idealization, as the categories could be small areas (instead of
points) and the transportation distance within an area could be nonzero, although small, so that
(9) has to be replaced by 𝑐𝑖𝑖 = 𝜁𝑖 for 𝑖 ∈ 𝑉, where the 𝜁𝑖 > 0 are small values, that is, small
compared to the off‐diagonal elements of 𝐶. Furthermore, 𝐶 ≥ 0, that is, 𝑐𝑖𝑗 ≥ 0 for 𝑖, 𝑗 ∈ 𝑉. 𝐶
defines a metric if 𝑐𝑖𝑗 = 0 implies 𝑖 = 𝑗 and vice versa (which is true because of (9)).

From the discussion above it is clear that cost functions and metrics are closely linked. The use of
a cost matrix in the models we consider implies that the categories for which it is defined is a
metric space if we adopt (9).

3 Examples of cost matrices

We now consider two examples. They differ in the choice of the cost matrix. 𝐶. In the first
example it is a very crude distance matrix that only distinguishes between the same location or
not. In the second example the distance matrix is more refined. Here, some locations are more
distant than others to a given location. In fact, the distance matrix we consider corresponds to
equidistant locations.
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In both examples considered in the present section we use the situation as depicted in Figure
3.1. There are 6 locations and for each location (node) there is a supply (in red) of some stuff (say
sand)6) as well as a demand (in blue). Note that the total supply equals the total demand (100
units of sand). The goal is to redistribute the sand so that supply equals demand in each location,
in such a way that the transportation costs are minimized. The difference between the examples
is the cost matrices that are used. A cost matrix specifies the cost of transporting 1 unit of sand
from location 𝑖 to location 𝑗.

Figure 3.1 The locations with the supply (red) and demand (blue) of sand per
location, measured in tons.

The problems in the Sections 3.1 and 3.2 can be solved with LP software, using the simplex
algorithm. However, that is somewhat of an overkill as they can easily be solved by hand, which
gives more insight in these kind of problems.

The aim of the first step in both examples is to simplify the problem by looking at supply and
demand at each location and make sure that as much mass is kept ‘in situ’ to satisfy the local
demand. This does not involve any costs. This gives a new picture of locations and adjusted
supplies and demands. The next step is to eliminate those nodes (in the supply or demand set of
locations) for which the adjusted supply or the demand is 0. Such locations cannot supply the
good, nor do they demand this good, so they are of no interest anymore when the redistribution
of the good is involved.

We present a solution in each example in a number of steps. At each stage we show the current
vector of supplies (first row) and demands (second row), for all locations. Below each step we
mention the amount of mass moved. Some steps could be carried out simultaneously. But we are
not interested in that aspect, at the moment; only the transportation costs count. But movement
of masses from different locations are occasionally combined into a single step, for the sake of
brevity of description. We compute the transportation costs at the end of each procedure, using
the cost matrix (16) and the total transported mass between the various locations.

3.1 Example 1: discrete metric

In this case we consider the distance matrix in (10). It favours not to transport any goods, and if
stuff has to be transported it does not matter to which location it is transported, as the
transportation costs are equal for all destinations from any (other) supply location.

6) We consider sand to be a continuous good, that can be divided in arbitrary portions.
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𝐶 =
⎛
⎜
⎜

⎝

0 1 1 1 1 1
1 0 1 1 1 1
1 1 0 1 1 1
1 1 1 0 1 1
1 1 1 1 0 1
1 1 1 1 1 0

⎞
⎟
⎟

⎠

(10)

Below we give a number of steps showing the state of affairs after some sand has been
transported. We give several such steps in order to better show how the sand is actually moved
between locations. In fact all these steps could have been combined in a single step. But then
one does not see how the sand has actually been moved.

We start with:

ቆ 6 4 10 20 40 20
17 3 15 9 26 30 ቇ (11)

The mass that can remain in the same location is handled first, which means that supply and
demand per location should be met as well as possible, as no transportation costs are involved.
This means that if we denote demand and supply at a particular location as 𝑑 and 𝑠, respectively,
we have the following ‘zero cost’ adjustments:

𝑑 ← 𝑑 −min{𝑑, 𝑠} (12a)

𝑠 ← 𝑠 −min{𝑑, 𝑠}, (12b)

Applying (12) to (11) yields:

ቆ 0 1 0 11 14 0
11 0 5 0 0 10 ቇ (13)

The supply of sand in locations 2, 4 and 5 has to be redistributed in such a way that the demands
in locations 1, 3 and 6 are satisfied. This can be done in many ways, which all yield the same
transportation costs. For instance, we can ship 1 unit of sand from location 2 to location 6, and
11 units from location 4 to location 1. We then get the situation

ቆ 0 0 0 0 14 0
0 0 5 0 0 9 ቇ (14)

In the next step we transport 5 units of sand from location 5 to location 3, and 9 units from
location 5 to location 6, and we are finished. That it is possible to split a load of sand to be
transported to different locations should be admissible.

We can summarize the totality of transportations in the following matrix:
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𝑈 =
⎛
⎜
⎜

⎝

6 0 0 0 0 0
0 3 0 0 0 1
0 0 10 0 0 0
11 0 0 9 0 0
0 0 5 0 26 9
0 0 0 0 0 20

⎞
⎟
⎟

⎠

(15)

Remark In this example the amounts transported are taken to be integer, because it is
convenient computationwise. But there is no need to do so. The transported amounts could just
as well be values inℚ+. 2

Remark The first step, like the one in the present example resulting in (13), can often be made as
an allowable step.7) It simply gets rid of ‘auto‐supplying’, where part of the goods are used at the
same location. In such cases one may assume that the starting position for the transportation
problem is such that for each location either supply or demand are non‐zero, not both. 2

3.2 Example 2: equidistant locations

The present example is a bit more elaborate than the one in Section 3.1, in that it distinguishes in
transportation costs between different locations. So if a good has to be transported from one
location to another, one has to consider which pairs of (suppply, demand)‐locations are the most
cost effective ones. In the example in Section 3.1 transporting to any other location is equally
expensive, so one only has to consider the demand and supply constraints.

For simplicity, the 6 locations are supposed to be situated on a line, equally spaced, the
neighboring locations 1 distance unit (say 1 km) apart. As a suitable cost matrix8) we can take the
distance matrix:

𝐶 =
⎛
⎜
⎜

⎝

0 1 2 3 4 5
1 0 1 2 3 4
2 1 0 1 2 3
3 2 1 0 1 2
4 3 2 1 0 1
5 4 3 2 1 0

⎞
⎟
⎟

⎠

(16)

The goal is to redistribute the sand between locations in an economical way, that is with minimal
transportation costs.

As in the previous example we start with:

ቆ 6 4 10 20 40 20
17 3 15 9 26 30 ቇ (17)

7) But not in cases when loads can be broken up into smaller ones. In such cases onemay be forced to obtain a load from
elsewhere while not using the load at the location.

8) A cost matrix is not unique: if we have such a matrix and wemultiply all entries by the same factor 𝜆 > 0we also have
a cost matrix. And one that yields similar results as the initial one (𝜆 = 1).
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The mass that can remain in the same location is handled first, which means that supply and
demand per location should be met as well as possible, as no transportation costs are involved.
Applying the adjustments in (12) to (17) yields:

ቆ 0 1 0 11 14 0
11 0 5 0 0 10 ቇ (18)

Now we transport a mass 1 from location 2 to location 1, and mass 10 from location 5 to location
6. So in this step a total mass of 11 is transported with total costs 11 ⋅ 1 = 11. We then have the
following new situation:

ቆ 0 0 0 11 4 0
10 0 5 0 0 0 ቇ (19)

In the next step we move a mass 10 from location 4 to location 1 at cost 10 ⋅ 3 = 30, a mass 4
from location 5 to location 3 at cost 4 ⋅ 2 = 8, so a total cost of 38 in this step. We then obtain:

ቆ 0 0 0 1 0 0
0 0 1 0 0 0 ቇ (20)

In the final step we move a mass 1 at location 4 to location 3, at cost 1 ⋅ 1 = 1.

We can summarize the total mass being transported between the various locations in matrix
form as:

𝑈 =
⎛
⎜
⎜

⎝

6 0 0 0 0 0
1 3 0 0 0 0
0 0 10 0 0 0
10 0 1 9 0 0
0 0 4 0 26 10
0 0 0 0 0 20

⎞
⎟
⎟

⎠

(21)

Note that summing row‐wise yields the supply vector, and column‐wise the demand vector.

Multiplying 𝐶 and𝑊 element‐wise (⊙) yields the following total cost matrix 𝑇:

𝑇 = 𝐶 ⊙𝑈 =
⎛
⎜
⎜

⎝

0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
30 0 1 0 0 0
0 0 8 0 0 10
0 0 0 0 0 0

⎞
⎟
⎟

⎠

(22)

Adding the entries in 𝑇 yields the total cost: 50, as we found above when adding the costs found
in each step.
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Remark In this example we again have chosen for transported values to be in ℕ, for
computational ease. However, the values could have been chosen to be inℚ+ or ℝ+ just as well.
2

3.3 Hierarchy of categories

In some application the categories can be thought of as hierarchically ordered. This hierarchy can
be used as a means to measure the distance between categories. In other words the hierarchy
turns the set of categories into a metric space.

Figure 3.2 Categories ordered in a tree.

A simple metric associated with the (directed) tree in Figure 3.2 is that based on path length.
Between each pair of nodes there is a unique path. Each arc is assumed to have length 1.9) When
traversing the tree we do not care about the direction of the arc.10) In Table 3.1 a distance table
for this (di)tree is shown, assuming that the distance between adjacent nodes is 1.

a b c d e f g h i j k l
a 0 1 1 2 2 2 2 3 3 3 3 3
b 1 0 2 1 1 3 3 2 2 2 4 4
c 1 2 0 3 3 1 1 4 4 4 2 2
d 2 1 3 0 2 4 4 3 3 3 5 5
e 2 1 3 2 0 4 4 1 1 1 5 5
f 2 3 1 4 4 0 2 5 5 5 3 3
g 2 3 1 4 4 2 0 5 5 5 1 1
h 3 2 4 3 1 5 5 0 2 2 6 6
i 3 2 4 3 1 5 5 2 0 2 6 6
j 3 2 4 3 1 5 5 2 2 0 6 6
k 3 4 2 5 5 3 1 6 6 6 0 2
l 3 4 2 5 5 3 1 6 6 6 2 0

Table 3.1 Distance table for the (di)tree in Figure 3.2.

9) This is an assumption for simplicity’s sake.
10) The direction of the arrows is of no importance when determining the distance. The arrows indicate a semantic rela‐

tionship.
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If we assume that only the leaves of the (di)tree in Figure 3.2 are the ones that ‘count’, that is
nodes 𝑑, 𝑓, ℎ, 𝑖, 𝑗, 𝑘, 𝑙, we are dealing with a subtable of Table 3.1, which is represented in Table
3.2. These leaves correspond to the most detailed categories.

d f h i j k l
d 0 4 3 3 3 5 5
f 4 0 5 5 5 3 3
h 3 5 0 2 2 6 6
i 3 5 2 0 2 6 6
j 3 5 2 2 0 6 6
k 5 3 6 6 6 0 2
l 5 3 6 6 6 2 0

Table 3.2 Distance table for the leaves of the (di)tree in Figure 3.2.

Table 3.1 can also be derived from the adjacency matrix of the underlying tree of the ditree in
Figure 3.2 which is given in Table 3.3. If we denote the adjacency matrix in Table 3.3 by 𝐴 and the
matrix in Table 3.1 by 𝒯, we have that 𝒯𝑖𝑗 = min𝑞(𝐴𝑞)𝑖𝑗 > 0. The exponent 6 is the largest
distance between any two points in the underlying tree of the ditree in Figure 3.2, as inspection
of Table 3.1 shows. In other words, the diameter of the underlying tree is 6.

a b c d e f g h i j k l
a 0 1 1 0 0 0 0 0 0 0 0 0
b 1 0 0 1 1 0 0 0 0 0 0 0
c 1 0 0 0 0 1 1 0 0 0 0 0
d 0 1 0 0 0 0 0 0 0 0 0 0
e 0 1 0 0 0 0 0 1 1 1 0 0
f 0 0 1 0 0 0 0 0 0 0 0 0
g 0 0 1 0 0 0 0 0 0 0 1 1
h 0 0 0 0 1 0 0 0 0 0 0 0
i 0 0 0 0 1 0 0 0 0 0 0 0
j 0 0 0 0 1 0 0 0 0 0 0 0
k 0 0 0 0 0 0 1 0 0 0 0 0
l 0 0 0 0 0 0 1 0 0 0 0 0

Table 3.3 Adjacency matrix of the underlying tree of the ditree in Figure 3.2.

An assumption underlying the distance table in Table 3.2 is that the arcs in the ditree are all of
the same length 𝑇. What does this mean? It is obviously not a distance function in the ordinary
sense of the word. It can be interpreted as a dissimilarity measure of the corresponding
categories. Such measures are also called proximities. See e.g. [4]. Chapter 6 of this book is
devoted to obtaining proximities in practical applications.

One of these methods is to associate a number of variables with a classification. The categories
in such a classification correspond with certain scores on these variables. These vectors of scores
can be used to define a distance function of the set of categories in the classification. One could
take a Hamming distance, for instance. Obviously, this distance depends on the variables chosen
as well as the categorization for each variable. However it is a more refined method of obtaining
a metric than the one used in Table 3.1 which assumes unit length for each arc. So we can define
the Hamming distance Δ𝐻:

Δ𝐻(𝑣𝑎 , 𝑣𝑏) = ∣ {𝑖 ∈ {1, … , 𝑙}|𝑣𝑎𝑖 ≠ 𝑣𝑏𝑖 } ∣ , (23)
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where 𝑣𝑎 and 𝑣𝑏 are two vectors with characteristics of length 𝑙, and where ∣ ⋅ ∣ denotes the
count operator. The distance Δ𝑎𝑏 between categories 𝑎 and 𝑏 would then be measured by (23)

Δ𝑎𝑏 = Δ𝐻(𝑣𝑎 , 𝑣𝑏), (24)

which, as the notation reflects, depends on the choice of the characteristic vectors 𝑣𝑎 and 𝑣𝑏.

A distance table for the ditree in Figure 3.2 based on the Hamming distance is presented in Table
3.4.

a b c d e f g h i j k l
a 0 Δ𝑎𝑏 Δ𝑎𝑐 0 0 0 0 0 0 0 0 0
b Δ𝑏𝑎 0 0 Δ𝑏𝑑 Δ𝑏𝑒 0 0 0 0 0 0 0
c Δ𝑐𝑎 0 0 0 0 Δ𝑐𝑓 Δ𝑐𝑔 0 0 0 0 0
d 0 Δ𝑑𝑏 0 0 0 0 0 0 0 0 0 0
e 0 Δ𝑒𝑏 0 0 0 0 0 Δ𝑒ℎ Δ𝑒𝑖 Δ𝑒𝑗 0 0
f 0 0 Δ𝑓𝑐 0 0 0 0 0 0 0 0 0
g 0 0 Δ𝑔𝑐 0 0 0 0 0 0 0 Δ𝑔𝑘 Δ𝑔𝑙
h 0 0 0 0 Δℎ𝑒 0 0 0 0 0 0 0
i 0 0 0 0 Δ𝑖𝑒 0 0 0 0 0 0 0
j 0 0 0 0 Δ𝑗𝑒 0 0 0 0 0 0 0
k 0 0 0 0 0 0 Δ𝑘𝑔 0 0 0 0 0
l 0 0 0 0 0 0 Δ𝑙𝑔 0 0 0 0 0

Table 3.4 Hamming distances for neighboring nodes of the ditree in Figure 3.2. The
matrix is supposed to be symmetric.

From Table 3.4 we can compute (by employing matrix algebra) the distance matrix for any pair of
categories. If 𝒯𝐻 denotes the matrix in Table 3.4, the distance table derived from this for any pair
of nodes is 𝒯𝑑

𝐻,𝑖,𝑗 = min𝑞{𝑞 ∣ 𝒯𝑞
𝐻,𝑖,𝑗 > 0}. Note that any node in the ditree in Figure 3.2 can be

reached from any other node in at most six steps.

Figure 3.3 Hamming distances deϐined for the category tree in Figure 3.2.

In Figure 3.3 the distances in Table 3.4 have been associated to the arcs in Figure 3.2. The
understanding is that these distances are equal for an arc as well as its counter‐arc:
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Δ(𝑥,𝑦) = Δ(𝑦,𝑥) for arc (𝑥, 𝑦). So the distance between 𝑏 and 𝑓 equals Δ𝑏𝑎 + Δ𝑎𝑐 + Δ𝑐𝑓, and the
distance between ℎ and 𝑙 is: Δℎ𝑒 + Δ𝑒𝑏 + Δ𝑏𝑎 + Δ𝑎𝑐 + Δ𝑐𝑔 + Δ𝑔𝑙. It should be borne in mind
that in a tree there is a unique path between any pair of nodes, which is, trivially, also the
shortest one for these nodes.

4 Using copulas as weight matrices

4.1 What are copulas?

The basic idea guiding copula theory is the separation of marginal distributions of a multivariate
distribution and the dependence structure of derived variables. A theorem of Sklar (see [16]) is
the basis for this separation. See also Appendix B.

Copulas11) are used to describe the dependence of random variables. A copula is a multivariate
cumulative distribution function for which the marginal probability distribution of each variable is
uniform.12) In fact, the copula approach is directly usable if the marginal tables can be viewed as
realizations of some random process. However, in the applications that we consider this is usually
not the case. But still the basic idea of copula theory can be used if we are able to use a suitable
dependency structure that can be used to redistribute the marginal values over the interior table.

In this approach, there are two steps to estimate the interior matrix. In the first step a so‐called
copula is estimated by applying IPF on the basis of available information about which nodes are
connected. This copula is used as an approximation for the interior matrix. It is used in the
second step, which consists of an IPF procedure with the two given univariate distributions as
marginal distributions.

This approach first focuses on the dependence structures and then considers the redistribution
of the probability mass. The dependence structure is assumed to be determined by an adjacency
matrix only. This adjacency matrix is assumed to be provided by a specialist, in which case it can
be assumed as subjective information. Take National Accounts as an example. In this case this
0 − 1matrix 𝐴 specifies which sector is related to which other sectors through the delivery of
goods or services.13) Suppose the vertices correspond to sectors in an economy. An arc pointing
from sector 𝑖 to 𝑗 indicates that services or goods from 𝑖 to 𝑗 are offered.14) If (𝑖, 𝑗) is an arc, so
node (say, sector) 𝑖 is connected to node (say, sector 𝑗), and if there is no such arc we have
𝐴𝑖𝑗 = 0.

In Section 4.2 we consider methods to estimate copulas using the user specified adjacency
matrix as well as the two marginal distributions. These marginal distributions are not used

11) ‘Copula’ is used here as a concept from probability theory and statistics. It is unrelated to a concept with the same
name in linguistics. The Latin word ‘copula’, means ‘link’ or ‘tie’.

12) For a quick introduction to copulas see https://en.wikipedia.org/wiki/Copula_(probability_theory). This
entry also contains references in case one want to pursue the subject in more depth. In Appendix B some of this
information is presented as well for easy reference.

13) This implies a reverse relationship of money flowing in the opposite direction, as payments for the goods and services
delivered.

14) Or if one focuses on the payments: there is an arc in the opposite direction, from 𝑗 to 𝑖.
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directly. They are used to derive different marginals that are used in an IPF procedure to yield
copulas. These copulas can then in turn be used as weight matrices in an IPF procedure to
estimate a 2𝐷‐table with given marginals. See Section 5.1 for details.

4.2 Estimating copulas

We start with an 𝑛 × 𝑛 adjacency matrix 𝐴, estimated by a user, and two 1𝐷 marginals, vectors
𝜋𝑐 ≥ 0 and 𝜋𝑟 ≥ 0 of length 𝑛 and with the same totals, i.e. 𝜋𝑐 ⋅ 𝜄 = 𝜋𝑟 ⋅ 𝜄. First we order the
elements of these marginals in increasing order and obtain 𝜋𝑐 and 𝜋𝑟. This implies permutations
𝑝𝑐 and 𝑝𝑟 of the columns and the rows, respectively. Apply 𝑝𝑐 and 𝑝𝑟 to the columns and rows of
𝐴, resulting in the doubly sorted matrix 𝐴.

Now we generate two random vectors 𝜌𝑐 and 𝜌𝑟 of length 𝑛, in which each entry is
independently drawn from the uniform distribution 𝑈 on [0, 1]. Then sort the entries of these
random vectors in increasing order, obtaining 𝜌𝑐 and 𝜌𝑟, respectively.

Next, apply IPF to 𝐴, 𝜌𝑐 and 𝜌𝑟, resulting in the copula 𝐶. Apply the inverses of 𝑝𝑐 and 𝑝𝑟, that is
𝑝−1𝑐 and 𝑝−1𝑟 , to the columns and rows of 𝐶 respectively, to obtain the copula 𝐶𝜌𝑐𝜌𝑟 ,
corresponding to 𝐴, where 𝜌𝑐 and 𝜌𝑟 correspond to the unsorted 𝐴, 𝜌𝑐 and 𝜌𝑟.15)

If we wish, we can repeat this procedure many times, and average the resulting copulas, to
obtain a new, averaged copula. We obtain a copula by repeatedly (say 𝑛 times) drawing pairs of
𝜌𝑐 and 𝜌𝑟 vectors, and average the resulting 𝐴(𝑖)𝜌𝑐 ,𝜌𝑟 :

𝐵
(𝑛)
𝜌𝑐 ,𝜌𝑟 =

1
𝑛

𝑛

෍
𝑖=1

𝐴(𝑖)𝜌𝑐 ,𝜌𝑟 . (25)

It should be remarked, that we can also use these results to obtain bootstrap estimates of the
variance of the sampled copulas.

5 Using IPF in a 2𝐷 table

In Section 4 we used IPF to estimate copulas. These in turn are used in an approach described in
Section 5.1 which is used to compute a 2𝐷‐matrix which can be seen as the result of two
marginal 1𝐷 tables smeared out over the interior. In this case a copula is used as the weight
matrix. This approach, which is a two‐step procedure, is inspired by the copula approach
described in Section 4. Typical for this approach is that first the dependence structure is
estimated (see 4.2), which in turn is used as weight matrix for the second step, in which the
marginal distributions are spread over the 2𝐷‐table. As input for the first step the adjacency
matrix is used that is the result of an assessment of the user as to the interconnection of the
sectors (in case of a national accounts example).

15) Or rather, by applying 𝑝−1𝑐 and 𝑝−1𝑟 to 𝜌𝑐 and 𝜌𝑟, respectively.
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The second approach we describe in the present section uses a one step IPF procedure to obtain
a 2𝐷 table. It is described in Section 5.2. It uses the same ingredients as the two‐step procedure
(viz adjacency matrix 𝐴, marginal distributions 𝜋𝑐 and 𝜋𝑟) but in a different, more direct way.

Using notation introduced in Section 4.2 it is possible to succinctly describe the results of the
methods treated in Sections 5.1 and 5.2, and immediately see the differences, not numerically
but symbolically. In Section (5.3) some properties of both approaches are brought forward.

5.1 Two‑step procedure

The first step of this approach is the estimation of a suitable weight matrix𝑊, for instance the
one described in Section 4.2, which is a copula. In the second step𝑊 is used as a weight matrix
to distribute the marginal distributions 𝜋𝑐 and 𝜋𝑟 over the interior of a 2D‐matrix using IPF.

So we assume two marginal distributions of an unknown 2𝐷‐distribution to be given. In the first
step we focus on the estimation of the dependence structure, using the adjacency matrix 𝐴 as a
weight matrix.

In the two‐step approach we deal with the copula. The input for this is the adjacency matrix. The
marginals are the random vectors 𝜌𝑐 and 𝜌𝑟, where each of their entries are drawn from a
uniform distribution. With the drawing procedure we should consider the order of the entries of
𝜋𝑐 and 𝜋𝑟. So use independent drawings from the uniform distribution and sort according to the
distributions of 𝜌𝑐 and 𝜌𝑟. Using IPF16) we can find a copula, which we denote by 𝐴𝜌𝑐 ,𝜌𝑟 . This is
used as the weight matrix for the second step, where it serves to guide the distribution of the
marginals 𝜋𝑐 and 𝜋𝑟 over the interior. We then have the result 𝐵𝜋𝑐 ,𝜋𝑟 , where 𝐵 = 𝐴𝜌𝑐 ,𝜌𝑟 is the
weight matrix obtained in the first step.

Like in Section 4.2 it is possible to extend the method to obtain a copula in the first step, is by
repeatedly drawing pairs of 𝜌𝑐 and 𝜌𝑟 vectors and average the resulting 𝐴(𝑖)𝜌𝑐 ,𝜌𝑟 , to obtain the
expression (25).

5.2 One‑step procedure

The approach we consider in the present subsection is direct: it uses the adjacency matrix as a
crude approximation of the interior matrix. IPF is used to spread the marginal distributions over
the interior, respecting the information in the adjacency matrix. This means that zero cells
remain zero cell and only non‐zero cells can acquire mass.

In this approach we directly use the univariate distributions as the marginals to be fitted, with
the adjacency matrix as an initial proxy for the bivariate distribution we want to estimate. Again
IPF is applied to compute the result.

Example If 𝐴 is the 𝑛 × 𝑛 ‘all 1 matrix’

16) See Appendix A.
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𝐴 = ቌ
1 ⋯ 1
⋮ ⋮
1 ⋯ 1

ቍ . (26)

Then the resulting weight matrix is as follows:

𝑊 = ቌ
𝜋𝑐1𝜋𝑟1 ⋯ 𝜋𝑐𝑛𝜋𝑟1
⋮ ⋮

𝜋𝑐1𝜋𝑟𝑛 ⋯ 𝜋𝑐𝑛𝜋𝑟𝑛
ቍ = 𝜋𝑐 ⋅ (𝜋𝑟)′. (27)

where 𝜋𝑐 is the column marginal represented as a column vector and and (𝜋𝑟)′ is the row
marginal represented as a row vector (the prime ′ denotes transposition).

The solution (27) is also obtained if the maximum entropy principle is used (see e.g. [3], Section
3.4). It represents a solution that corresponds to independence of the marginals (when they are
normalized so that they can be viewed as random variables). 2

5.3 Properties of the two approaches

Before we start with considering the properties of the two approaches in more detail, we
introduce some useful notation.

Symbolically we can write the computation of a 2𝐷‐table starting with a weight matrix𝑊 ≥ 0
and marginals 𝜋𝑟 > 0 and 𝜋𝑐 > 017), where 𝑟 refers to ‘rows’ and 𝑐 to ‘columns’, as a mapping

(𝑊, 𝜋𝑟 , 𝜋𝑐) ↦ 𝑊𝜋𝑟 ,𝜋𝑐 , (28)

assuming that the value of this mapping exists, that is, is an element of𝕄𝑛,𝑛, the set of 𝑛 × 𝑛
real‐valued matrices. To be consistent, the marginal vectors need to add to the same total
𝜋𝑐 ⋅ 𝜄 = 𝜋𝑟 ⋅ 𝜄.

It is interesting to consider some properties of this mapping. An easy property to verify is that for
any scalar 𝛾 > 0 it holds that𝑊𝛾 𝜋𝑟 ,𝛾 𝜋𝑐 = 𝑊𝜋𝑟 ,𝜋𝑐 . In view of this property we may also assume
that 𝜋𝑐 ⋅ 𝜄 = 𝜋𝑟 ⋅ 𝜄 = 1, although we do not always choose to do so.

The next set of properties concern the iteration of the IPF operation. Let 𝜏𝑟 and 𝜏𝑐 be other row
and column vectors. A purely mathematically motivated question is about the commutativity of
the mapping: are (𝑊𝜋𝑟 ,𝜋𝑐)𝜏𝑟 ,𝜏𝑐 and (𝑊𝜏𝑟 ,𝜏𝑐)𝜋𝑟 ,𝜋𝑐 the same or are they different? A general
answer cannot be given, depending on the choice of the marginal vectors and the weight matrix.

17) The requirement is actually weaker: 𝜋𝑟 ≥ 0 and 𝜋𝑐 ≥ 0. But the rows and columns corresponding to 0‐values
can be skipped. This leads to a reduced matrix and correspondingly reduced marginal vectors with strictly positive
components. So without loss of generality we may assume that the original row and columns vectors are strictly
positive. But then the number of rows and columns may be different.
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If 𝜋𝑟 = 𝛾𝜏𝑟 and 𝜋𝑐 = 𝛾𝜏𝑐 for some constant 𝛾 > 0 the results are the same. Also we have
(𝑊𝜋𝑟 ,𝜋𝑐)𝜋𝑟 ,𝜋𝑐 = 𝑊𝜋𝑟 ,𝜋𝑐 , for all marginal vectors 𝜋𝑟 , 𝜋𝑐 > 0 of size 𝑛.

We can describe our one‐step IPF procedure in term of this mapping as

(𝐴, 𝜋𝑟 , 𝜋𝑐) ↦ 𝐴𝜋𝑟 ,𝜋𝑐 . (29)

and our two‐step procedure as

– step 1: (𝐴, 𝜄𝑟 , 𝜄𝑐) ↦ 𝐴𝜄𝑟 ,𝜄𝑐 , where 𝜄𝑟 = (1,… , 1) the all one vector of size 𝑛 and 𝜄𝑐 = 𝜄′𝑟.
– step 2: (𝐴𝜄𝑟 ,𝜄𝑐 , 𝜋𝑟 , 𝜋𝑐) ↦ (𝐴𝜄𝑟 ,𝜄𝑐)𝜋𝑟 ,𝜋𝑐

The resulting doubly stochastic matrix 𝐴𝜄𝑟 ,𝜄𝑐 is a copula. It is used as a weight matrix in a second
IPF application, but this time with the supply and demand vectors 𝜋𝑟 and 𝜋𝑐, respectively
(possibly normalized, i.e. such that 𝜄𝑟 ⋅ 𝜋𝑟 = 𝜄𝑐 ⋅ 𝜋𝑐 = 1, where ‘⋅’ denotes the standard inner
product in ℝ𝑛). In general, 𝐴𝜋𝑟 ,𝜋𝑐 ≠ (𝐴𝜄𝑟 ,𝜄𝑐)𝜋𝑟 ,𝜋𝑐 .

6 Discussion

In this paper several methods were considered to derive a 2𝐷 measure given two 1𝐷 measures.
Different approaches yield different solutions. There is no way to tell which of these methods is
the best one. Which model can be applied depends on the problem at hand, and the information
available.

The best approach to a problem of the type discussed is to try several methods and see how
much (or little) their solutions differ. This gives a good indication of model selection variability (or
sensitivity). This is actually an approach that is commendable in many applications.

The 1𝐷 measures are assumed to be known, exactly or approximately. In case they can be
viewed as realizations of a random process, they can be replicated. For each combination of such
uni‐variate distributions one can compute a 2𝐷 solution. This gives an idea of the sensitivity of
the result (the 2𝐷 measure) on these quantities, for a chosen model.

To produce good estimates of the 2𝐷 distribution, one should use as much prior information
about such a measure as is available, in particular about the 0 cells, the structural zeroes.
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Appendix
A IPF

According to Wikipedia: Iterative Proportional Fitting (IPF) is an iterative algorithm for estimating
cell values of a contingency table such that the marginal totals remain fixed and the estimated
table decomposes into an outer product. 18). It is an algorithm that is known for a long time.
Convergence in practice of IPF is usually not a problem. However, to provide necessary and
sufficient conditions for convergence in case the contingency table has 0‐cells is not so easy. Such
conditions are known and are of relative recent origin, compared to the age of the IPF‐algorithm
(see [6] and [13]). It was used by the Cambridge economist Richard Stone as a tool in
input‐output analysis. See also [1].

It should be remarked that an R package is available for solving multivariate IPF problems: mipf
(see [2] on the CRAN website). But to write an IPF script in R is not such a difficult task,
particularly not for a 2𝐷‐table.

IPF appears in different guises, which we discuss below.19) In some cases we assume that the
variables used in the algorithm have a particular probability distribution (like a Poisson or
multinomial distribution). But generally such an assumption is not made, nor necessary.

In fact we are especially interested in those case where some of the cells of the 2𝐷‐matrix are 0,
as this is often the case in practice. These are beyond the traditional scope of the problem when
proving convergence. However [13] has results on this case, which appears quite often in
practice. In Section A.4.2 this issue is discussed in the context of Sinkhorn’s theorem.

A.1 Classical IPF

Given a two‐way (𝐼 × 𝐽)‐table of counts 𝑥𝑖𝑗, where the cell values are assumed to be Poisson or
multinomially distributed, we wish to estimate a decomposition 𝑚̂𝑖𝑗 = 𝑎𝑖𝑏𝑗 for all 𝑖 and 𝑗 such
that 𝑚̂𝑖𝑗 is the maximum likelihood estimate (MLE) of the expected values𝑚𝑖𝑗 leaving the
marginals 𝑥𝑖+ = ∑𝑗 𝑥𝑖𝑗 and 𝑥+𝑗 = ∑𝑖 𝑥𝑖𝑗 fixed. The assumption that the table factorizes in such a
manner is known as the ’model of independence’ (I‐model). Written in terms of a log‐linear
model, we can write this assumption as log 𝑚𝑖𝑗 = 𝑢 + 𝑣𝑖 +𝑤𝑗 + 𝑧𝑖𝑗, where𝑚𝑖𝑗 = 𝔼(𝑥𝑖𝑗),
∑𝑖 𝑣𝑖 = ∑𝑗 𝑤𝑗 = 0 and the interaction term vanishes, that is 𝑧𝑖𝑗 = 0 for all 𝑖 and 𝑗.

Choose initial values 𝑚̂(0)
𝑖𝑗 = 1 (different choices of initial values may lead to changes in

convergence behavior), and for 𝜂 ≥ 1 set

18) See: https://en.wikipedia.org/wiki/Iterative_proportional_fitting
19) The discussion is almost verbatim taken from the Wikipedia page https://en.wikipedia.org/wiki/Iterative_

proportional_fitting on this item.
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𝑚̂(2𝜂−1)
𝑖𝑗 =

𝑚̂(2𝜂−2)
𝑖𝑗 𝑥𝑖+

∑𝐽
𝑘=1 𝑚̂

(2𝜂−2)
𝑖𝑘

, (A.1a)

𝑚̂(2𝜂)
𝑖𝑗 =

𝑚̂(2𝜂−1)
𝑖𝑗 𝑥+𝑗

∑𝐼
𝑘=1 𝑚̂

(2𝜂−1)
𝑘𝑗

. (A.1b)

Notes:

– Convergence does not depend on the actual distribution. Distributional assumptions are
necessary for inferring that the limit 𝑚̂𝑖𝑗 = lim𝜂→∞(𝑚̂(𝜂)

𝑖𝑗 ) is an MLE indeed.
– IPF can be manipulated to generate any positive marginals by replacing 𝑥𝑖+ by the desired

row marginal 𝑢𝑖 (analogously for the column marginals).
– IPF can be extended to fit the ’model of quasi‐independence’ (Q‐model), where𝑚𝑖𝑗 = 0 is

known a priori for (𝑖, 𝑗) ∈ 𝑆. Only the initial values have to be changed: Set 𝑚̂(0)
𝑖𝑗 = 0 if

(𝑖, 𝑗) ∈ 𝑆 and 1 otherwise.

A.2 Factor estimation

Assume the same setting as in Section A.1. Alternatively, we can estimate the row and column
factors separately: Choose initial values 𝑏̂(0)𝑗 = 1, and for 𝜂 ≥ 1 set

𝑎̂(𝜂)𝑖 = 𝑥𝑖+
∑𝑗 𝑏̂

(𝜂−1)
𝑗

, (A.2a)

𝑏̂(𝜂)𝑗 =
𝑥+𝑗

∑𝑖 𝑎̂
(𝜂)
𝑖

(A.2b)

Setting 𝑚̂(2𝜂)
𝑖𝑗 = 𝑎̂(𝜂)𝑖 𝑏̂(𝜂)𝑗 , the two variants of the algorithm are mathematically equivalent (can

be seen by formal induction).

Notes:

– In matrix notation, we can write (𝑚̂𝑖𝑗) = 𝑎̂𝑏̂𝑇, where 𝑎̂ = (𝑎̂1, … , 𝑎̂𝐼)𝑇 = lim𝜂→∞ 𝑎̂(𝜂) and
𝑏̂ = (𝑏̂1, … , 𝑏̂𝐽)𝑇 = lim𝜂→∞ 𝑏̂(𝜂).

– The factorization is not unique, since𝑚𝑖𝑗 = 𝑎𝑖𝑏𝑗 = (𝛾𝑎𝑖)(
1
𝛾𝑏𝑗) for any 𝛾 > 0.

– The factor totals remain constant, i.e. ∑𝑖 𝑎̂
(𝜂)
𝑖 = ∑𝑖 𝑎̂

(1)
𝑖 for any 𝜂 ≥ 1 and ∑𝑗 𝑏̂

(𝜂)
𝑗 = ∑𝑗 𝑏̂

(0)
𝑗

for any 𝜂 ≥ 0.
– To fit the Q‐model, where𝑚𝑖𝑗 = 0 a priori for (𝑖, 𝑗) ∈ 𝑆, set 𝛿𝑖𝑗 = 0 if (𝑖, 𝑗) ∈ 𝑆 and 𝛿𝑖𝑗 = 1

otherwise. Then

𝑎̂(𝜂)𝑖 = 𝑥𝑖+
∑𝑗 𝛿𝑖𝑗𝑏̂

(𝜂−1)
𝑗

, (A.3a)

𝑏̂(𝜂)𝑗 =
𝑥+𝑗

∑𝑖 𝛿𝑖𝑗𝑎̂
(𝜂)
𝑖

, (A.3b)

𝑚̂(2𝜂)
𝑖𝑗 = 𝛿𝑖𝑗𝑎̂(𝜂)𝑖 𝑏̂(𝜂)𝑗 . (A.3c)
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A.3 RAS

The Problem: Let𝑀 = (𝑚(0)
𝑖𝑗 ) ∈ ℝ𝐼×𝐽 be the initial matrix with nonnegative entries, 𝑢 ∈ ℝ𝐼 a

vector of specified row marginals (or, row sums) and 𝑣 ∈ ℝ𝐽, a vector of column marginals. We
wish to compute a matrix 𝑀̂ = (𝑚̂𝑖𝑗) ∈ ℝ𝐼×𝐽 similar to𝑀 and consistent with the predefined
marginals, meaning

𝑚̂𝑖+ =
𝑛

෍
𝑗=1

𝑚̂𝑖𝑗 = 𝑢𝑖 , (A.4a)

𝑚̂+𝑗 =
𝑚

෍
𝑖=1

𝑚̂𝑖𝑗 = 𝑣𝑗 . (A.4b)

Define the diagonalization operator diag ∶ ℝ𝑘 ⟶ℝ𝑘×𝑘, which produces a (diagonal) matrix with
its input vector on the main diagonal and zeroes elsewhere. Then, for 𝜂 ≥ 0, set

𝑀(2𝜂+1) = diag(𝑟(𝜂+1))𝑀(2𝜂), (A.5a)

𝑀(2𝜂+2) = 𝑀(2𝜂+1)diag(𝑠(𝜂+1)). (A.5b)

where

𝑟𝜂+1𝑖 = 𝑢𝑖
∑𝑗𝑚

(2𝜂)
𝑖𝑗

, (A.6a)

𝑠𝜂+1𝑗 =
𝑣𝑗

∑𝑖𝑚
(2𝜂+1)
𝑖𝑗

. (A.6b)

A.4 Sinkhorn's theorem and beyond

A.4.1 The theorem
Sinkhorn’s theorem can be viewed as an application of IPF. This theorem is as follows. Let 𝐴 be a
square matrix (say 𝑛 × 𝑛 with 𝐴 > 0, that is, with only positive entries. Then there exist diagonal
matrices 𝐷1 and 𝐷2 with strictly positive diagonal elements such that 𝐷1 𝐴𝐷2 is doubly
stochastic. The matrices 𝐷1 and 𝐷2 are unique modulo scale factors.20) See [17] and [11]. The
result also follows from the application of IPF to the matrix 𝐴 and marginal distributions
𝜄 = (1, … , 1) (of length 𝑛). This obvious solution method was suggested in [18], which also
analyzed the convergence of the algorithm.

20) Multiplying 𝐷1 by 𝜆 > 0 and 𝐷2 by 1/𝜆 yields the same result.
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A.4.2 Beyond the theorem
The restriction 𝐴 > 0 is rather limiting, as in practice one often encounters situations where
some of the entries of 𝐴 are 0. An obvious approach is to replace each of these zeroes by small
values 𝜖 > 0, in which case a solution exists according to Sinkhorn’s theorem, and then take the
limit 𝜖 ↓ 0. Such an approach is suggested in [13].
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B Copulas

Let 𝑋 be a real‐valued random variable, and 𝐹 its cumulative distribution function (CDF). Then it
is well‐known that the random variable 𝐹(𝑋) is uniformly distributed on [0, 1]21) This idea can be
used in a multivariate setting as well. Let (𝑋1, 𝑋2, … , 𝑋𝑛) be a random vector with values in ℝ𝑛.
Let the marginal CDF be 𝐹𝑖(𝑥) = 𝑃[𝑋𝑖 ≤ 𝑥]. Then

(𝑈1, … , 𝑈𝑛) = (𝐹(𝑋1), … , 𝐹(𝑋𝑛)) (B.1)

is a distribution where each of the marginals has a uniform distribution on [0, 1]. The copula of
𝑋 = (𝑋1, 𝑋2, … , 𝑋𝑛) is defined as the joint CDF of 𝑈 = (𝑈1, … , 𝑈𝑛):

𝐶(𝑢1, … , 𝑢𝑛) = 𝑃[𝑈1 ≤ 𝑢1, … , 𝑈𝑛 ≤ 𝑢𝑛]. (B.2)

So (B.2) contains the dependence structure of a kind of normalized variables, which are
independent of the marginal distributions of the various components of the random vector. The
marginal distributions are separated off from the original problem.

The nice thing is that the steps can be reversed. For a given copula function 𝐶 one can generate
pseudo‐random samples (𝑈1, … , 𝑈𝑛) and one can generate (𝑋1, 𝑋2, … , 𝑋𝑛) as follows

(𝑋1, … , 𝑋𝑛) = (𝐹−11 (𝑈1), … , 𝐹−1𝑛 (𝑈𝑛)) (B.3)

It should be remarked that if 𝐹 is a continuous function, the inverse 𝐹−1 exists. In general this
need not be the case. However, a CDF 𝐹 is always right continuous and a generalized inverse 𝐹−
can always be defined, with 𝐹 ∘ 𝐹−(𝑥) = 𝑥 and 𝐹− ∘ 𝐹(𝑦) = 𝑦.

21) Or [0, 1) or (0, 1) or (0, 1]. For the sake of the argument the exact set is not so important, as we assume that single
point sets are assumed to have zero probability.
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