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The paper deals with two topics: the quantification of the complexity of networks (graphs and
digraphs) and the simplification of networks by identifying their most important parts (nodes
and arcs / edges) and leaving out the less important parts. The first topic is a preparation for
the second one. It provides measures to quantify the most important nodes and arcs in a
network. Complexity for graphs is first considered, by the average degree. Then the complexity
of digraphs is studied on the basis of reachability. The main goal of this paper is to simplify
complex networks by focusing on their essential parts. This is in fact complexity reduction. In
this way one obtains an overview by removing distracting details. Edges or arcs may need to be
added in order to preserve the topology of the original network. Network reduction can be
compared to (and was in fact inspired by) zooming in or out at cartographic maps: for an
overview of an entire country information on hamlets and villages is not needed. Only, cities,
towns and other more significant geographic features that are of interest at that level are
shown. Zooming in to a small part of the country yields information on less prominent
features. So there is a trade‐off between scale and detail: global scale and limited detail go
together as well as local scale with an abundance of detail. For networks the same kind of
trade‐off can be envisioned: for an overview of the entire network the hubs are important and
the way they are interconnected. For a small part of the network, however, detailed
information on less important nodes should also be provided. This begs the question what are
in fact the important parts of a network? How do we define them? Various measures (node
ranks) are discussed to quantify the relative importance of nodes. With such measure one can
in turn define arc ranks, which can be used to select important arcs.

1 Introduction

Complexity, and in particular complexity reduction, in networks is what this paper1) is about.
Complexity of a network is a multifaceted concept. Part of the paper explores this concept, but
the other focus point is simplification of networks. This is a practical way of dealing with
complexity, and in particular complexity control. This topic can actually be tackled with only an
intuitive understanding of the concept of complexity, which can be very sophisticated and
computationally intensive to apply. To start with, it is necessary to explore measures to
characterize the complexity of networks. In fact, ’complexity of networks’ is a concept that may
invoke mental pictures of networks, that are highly branched and look complicated, but actually
capturing this concept in more precise measures is a challenge. It may be the case that it is so
complicated because there are several aspects involved. Because of this, there may not be a
single measure that expresses all these properties. Or such a measure is possible if the various
aspects involved are explored, and for each at least one suitable measure has been defined. In
that case an overall measure of complexity can be defined by combining the various measures of
aspects of complexity.

The remainder of the paper is organized as follows.

In Section 2 some motivating examples of networks are discussed. Some of the examples are
represented as (undirected) graphs as they involve symmetric relationships between elements.

1) This is the second version of [15]. Major changes have been made in Section 9. The master’s thesis of Simon van
Wageningen ([11]) was the direct cause for this adaptation. It mademe realize that the probabilistic method of adding
arcs to obtain a complexity measure for digraphs was misguided and should be removed from the paper.
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Others are represented by directed graphs (digraphs) as they are about asymmetric relationships
between elements. The lattter type of relationship includes the former, but it makes sense to
distinguish graphs as a special kind of network, in general but, particularly in the present paper.

In Section 3 the complexity of networks is discussed in a general way, as an introduction to what
is coming in the following chapters. As a network comprises both undirected and directed graphs
(or ’digraphs’), this chapter’s aim is to explain why the complexity of digraphs is different from
that of graphs. In the sequel first the complexity of graphs is studied and then that of digraphs.
This is a natural way to proceed as it is simpler to define the complexity of graphs than the
complexity of digraphs. This is a result of the symmetry that graphs possess and digraphs (in
general) lack.

In Section 4 the complexity of (undirected) graphs in terms of the average degree of its nodes is
considered. This is done by looking at classes of graphs which have the same number of edges.
The only freedom in such a class is to rearrange the arcs and ’glue them together’ to form a
graph. This ’glueing’ is in fact identification of nodes. So the number of nodes in the class of
graphs with a fixed number of edges varies. As a measure of complexity the average degree of
the nodes in the graph is assumed. This turns out to be a good measure for how compact a graph
is. More compact graphs appear to be more complex. Because we assume that we are dealing
with graphs and not multigraphs, so that there can be at most one edge between any two points,
the number of points in these graphs has a lower bound typically well above 1.

In Section 5 the complexity of graphs is defined in terms of the length of an optimal path. This
path is of minimal length and covers all edges of the graph. The path can be viewed as the result
of an optimal search procedure that searches the entire graph, traversing all of its edges at least
once, jumping from a node to a node linked to it by an edge. The length of the search path
depends on the choice of the start and finish point. We are interested in the shortest path of this
type. To find such a path, a nontrivial optimization problem needs to be solved. The complexity
measure for this search approach is the length of the shortest path covering all edges divided by
the length of a tour starting and ending at the same point in the graph (which is twice the
number of edges in the graph).

In Section 6 the average distance of different points in a graph is used as such a measure. The
distance used is the ‘natural’ distance where each edge has length 1. This complexity measure is
related to the Wiener index used in mathematical chemistry to quantify the branching of organic
molecules; it is topological in nature, not geometric.

In Section 7, we consider the complexity of a special class of digraphs, namely routing digraphs,
which are acyclic digraphs with a single source and a single sink. Such digraphs often appear in
questionnaires. These digraphs and some of their properties, among them complexity, were
studied by the author in his PhD thesis (of which [13] is a slightly modified version).

In Section 8 a simple complexity measure for digraphs is considered, namely one that is based on
the asymmetry of the adjacency matrix of the digraph. This is the same as the number of pairs of
nodes for which one arc is defined, but not its counter‐arc. The idea is that the more a digraphs
differs from its underlying graph, the more complex it is, in the class of digraphs with the same
underlying graph.

In Section 9 the complexity of digraphs based on the concept of reachability is considered. Using
this concept one looks at the nodes that can be reached from each of the nodes in the digraph.
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In case of a connected graph (viewed as a digraph), one can reach every node from every other
node. The more deviation is found in reachability the more complex the digraph is considered to
be. Reachability is a concept that is closely linked to transitive closure of the network (and its
adjacency matrix), which is explored in this section. The minimum number of arcs needed to be
added to obtain a full reachability is a measure for the complexity of a digraph. The more such
arcs are needed the complexer the digraph is. This is one measure of complexity for digraphs
that is explored in this section. Another complexity measure for digraphs is also considered in
this section. This measure is based on certain probability distributions on the reachability sets.

So far only global measures of complexity of digraphs have been considered. This means that the
entire network is involved to compute the measure. However, this is not always possible or
practical. It is attractive to have a local concept of complexity. It is this issue that Section 10
explores. Central to the idea of local complexity is the use of neighbourhoods of nodes of a
network. Local complexity is not fully explored in the present paper; only some first steps are
made into his area.

In Section 11 we switch to the second major topic of this paper namely network reduction. We
start with the concept of node rank. This is an attribute that can be described as a kind of
popularity measure of the nodes in a digraph, on the basis of being pointed at by arcs. The
popularity of nodes that point to other nodes can be taken into account: a node is more popular
if a high ranking node is pointing to it than a lower ranking one. Several possiblities of defining
node ranks are discussed. Node ranks can be used to select nodes. By selecting the more
inportant ones one can reduce the original network (which may be rather big) and concentrate
on the more interesting parts, while discarding the distracting details.

Once node ranks have been defined, arc ranks can be derived. This is shown in Section 12. We
use Iterative Proportional Fitting (IPF) as an algorithm to achieve this, but other, similar,
algorithms could be used just as well. As marginals in this algorithm the tables with indegrees
and outdegrees, respectively, are used. The arc ranks can also be used when reducing a
(complex) network, as is shown in the next section.

This reduction process is considered in Section 13, which should lead to the essence of a
network. This features only the important nodes of the original network and otherwise faithfully
represents its topology. Arc ranks can be used to modify node ranks, if one wishes to do so. In
this case nodes and arcs not represented in the reduced digraph do not contribute to the node
ranks of the reduced digraph. In case one chooses not to do this but to keep the original ranks,
the nodes in the reduced graph actually represent a cluster of nodes. This mimicks the idea of
the renormalization group idea in statistical physics: Ising models for spin lattices, which are
graphs, not merely digraphs. This section also considers the complexity of reduced digraphs.

Section 14 closes the main part of the paper with a discussion of the main results. Also some
topics for future research that have been noted in the main text are collected here.

The paper is completed by a list of references and four appendices. Appendix A contains several
examples illustrating the reachability concept graphically, to bolster the intuition. Appendix B
presents some graphs where average distances of pairs of points in a graph are used to define
complexity measures. Appendix C contains an overview of the notation used in this paper.
Appendix D contains a glossary.
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2 Motivating examples

2.1 Networks: Graphs and digraphs

In the examples to be presented the underlying network is a directed graph (for short: digraph),
in which we have arcs instead of edges. The arcs are directed, whereas edges are not.
Alternatively we can view an edge {𝑎, 𝑏} as a pair of arcs (𝑎, 𝑏) and (𝑏, 𝑎). In general digraphs
are more complicated than graphs, because of the asymmetry of the arc distribution: an arc may
not have a counter‐arc (pointing in the other direction). A road network with bidirectional streets
is easier to understand, because a path connecting point 𝑎 to 𝑏 automatically yields a path in the
opposite direction, i.e. from 𝑏 to 𝑎.

Sometimes it is useful to forget about directions and replace an arc (𝑎, 𝑏) by the corresponding
edge {𝑎, 𝑏}.

2.2 Transportation networks

Transportation networks can be defined depending on the type of vehicles involved, such as cars,
trains, ships, airplanes, etc. Each such network consists of links between locations.These links are
roads connecting villages, cities, shops, etc., waterways connecting harbours, or airways between
airports, etc.

In an overview map of a transportation network one would want to present the important
connections (in terms of average traffic) and discard the unimportant ones. For a detailed local
map one would focus on those links that are important for the area. This may also mean that
links that are unimportant at a given level are discarded.

2.3 Routing structures in questionnaires

A questionnaire consists of a finite number of questions. For each question an answer is an
element of a domain. An answer to a particular question may lead to a specific next question.
The idea is that in this way one can be more efficient in the questions put to interviewers. if
some question reveals that the respondent is unemployed it does not make sense to bother
them with questions about their current work.

In a questionnaire one can usually group questions into themes and treat these as single nodes
to describe the questionnaire at a higher level of abstraction. To understand a detailed
questionnaire it is of interest to be able to start at a high level of abstraction and click at nodes to
unfold them to see the next level of nodes. The process may be repeated a few times until one
arrives at the most detailed level, consisting of the questions in the questionnaire.

The zooming in that has just been described uses only information describing the logical stucture
of the questionnaire. But suppose that the questionnaire has been used for some time. Then
information about how it is actually filled in is available. This can be used to focus on the most
important paths through the questionnaire, at different levels of aggregation of the questions
(subjects).
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2.4 LANs

A local area network (LAN) is a network of units (computers) that are interconnected by cables.2)

The units are represented by points in the network, and cables connecting the units are
represented by edges. 3) They are typically connected in such a way that any two of them can
communicate with each other. When the LAN is connected to the internet they can all exchange
information with the internet as well. The way the units (PCs, say) are connected in a LAN is
restricted. It is in general not possible to connect each pair of units with a separate cable. The
number of sockets for each unit is typically limited.4) Also the entire network configuration
would change if a unit is added or removed from the LAN. This would affect the global structure
of the LAN. It is desirable that such an operation is a local matter. Of course, if one would opt for
a minimal network connecting all the units (a network in the form of a spanning tree) there are
other problems one faces. If one link would be damaged the LAN would be disconnected. Also,
there would possibly be a lot of data traffic over the network. So in practice, a a structure is
adopted which is a compromise between a minimal network (in the form of a tree) and a
maximal network (represented by a complete graph). Several things have to be balanced in an
optimal compromise for a LAN‐network, with a variety of constraints to be taken into account.

2.5 Internet

At the lowest level of description the internet is a collection of (virtual) webpages that link to each
order using hyperlinks. The internet is also not a static structure but changes all the time: new
URLs or webpages are created, modified or deleted continuously.5) Not only is the web dynamic,
it is also huge in size. There are far too many webpages to detect them all (or even a significant
portion) at a certain moment in time to get a good impression of the structure of the Web.6)

Networks such as the Internet are so huge (and volatile) that they cannot be instantly known.
And if time is taken to investigate them they change. At best one can only probe them by taking a
sample. The sample is then used to estimate certain properties of the network. Such networks
are called random access networks (RANs). See [14] for more information on such networks.

2.6 Genealogical network

A directed network in which for each person their biological father or mother are given,
assuming that they are known. This is another example of a random access network (like the
Internet; see Section 2.5, and one that is incomplete, as not for all persons it is known who their
(biological) parents are. The network also contains errors, as in some cases the person who is
registered as a (biological) parent of a child may in fact not be so. In fact such a person might not
even be aware of this.

2) In practice one would use routers and hubs as well. But for simplicity we assume there is only one type of point. A
more realistic picture is one of a network of hubs and routers, and each unit/computer is connected to exactly one
hub or router.

3) The tacit assumption is that bidirectional communication is possible.
4) A unit/PC has one socket, and a hub or router has several sockets.
5) Since there also exist dynamically created webpages that are produced as a result of a query, and typically do not

persist for very long, the situation is even more confusing. But we consider the more stable part of the internet,
consisting of webpages that exist for a longer time.

6) There is a trade‐off: observing in a very short time gives a more accurate picture of the internet at that time, but this
portion is small compared to the whole thing. Or it is big, in which case it is not a crisp and sharp picture at an instant,
but a blurred one taken over a sizeable time interval.
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2.7 Human society

The points are persons in some society or community, which could be a country, a village, a
school. The relationship studied could be that of ’being a friend of’. The corresponding network
is a digraph. If A declares themself to be a friend of B then it is not necessarily the case that B
considers A to be their friend as well.7) So the relationship ’being a friend of’ is not necessarily
symmetric.

2.8 Businesses

The points in the network are businesses in a country. An arc connecting one point A with
another point B means that a payment of A to B has been made for a delivery or service from B
for A. Such a network would bring to light how businesses interact with each other. Using this
information, it is possible to find the businesses that are hubs in the sense that they are either
big receivers or big spenders (or both).

2.9 Cartographic maps

We consider maps that divide an area into sub‐areas. Think of a piece of land divided into
different parcels, each of which is owned by some individual. We view this division of parcels of
land as a partitioning of the piece of land. Intuitively some subdivisions look more complex than
other. The question is how to capture this kind of complexity. We first note that this problem can
be turned into a graph problem. Each parcel of land is represented by a node. Two nodes are
connected by an edge if the corresponding parcels of land have a (1‐dimensional) boundary in
common. So if they only have a point in common they are not joined by an edge. It is clear that
we are dealing with a topological property and not a geometric one: the sizes of the plots of land
are immaterial. If they are blown up or shrunk, they still do (or do not) have 1‐dimensional
boundaries in common. Muliplication by a factor of 0 is not allowed, as this would not be a
transformation that leaves the topology invariant: any configuration is transformed to a point.

3 Complexity of networks

We propose to consider the complexity of networks in two steps. First we consider graphs and
then, as an extension, digraphs. A graph is an easier object than a digraph. Think of a street
network consisting of two‐way streets only. It is easier planning a trip from one point 𝑎 to
another point 𝑏 in such a graph, which we assume to be connected. In this case one knows that
there exists a route leading from 𝑎 to 𝑏. Also if one has found a route from 𝑎 to 𝑏 then one
automatically has a route from 𝑏 to 𝑎, namely the reverse route.

7) This seems to be related to social status. If B is ranked higher in a social group than A then B might not count A as
a friend, whereas A may view B as a friend. People generally prefer to be associated with persons with at least their
social status in a social group.
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However in a streetplan with many one‐way streets and few two‐way streets, it is not certain
that a path from node 𝑎 to node 𝑏 exists in the digraph. And also, if one has found such a path
then it is not certain that a reverse path from node 𝑏 to node 𝑎 exists in the digraph. The reverse
path is not necessarily an admissible solution. Even if a path from node 𝑏 to node 𝑎 exists in the
network, it may be very different from the path from 𝑎 to 𝑏, in the sense that it may have few
nodes in common.

To make the discussion sensible, one should look at the right classes of graphs and digraphs. For
graphs we look at sets with the same number of edges (and a variable number of nodes). The
complexity is determined by the distribution of the edges over the network, and hence by its
topology. In fact, the average degree of the nodes is taken as a measure of the complexity of a
graph.

For digraphs we consider reachability as a property to determine the complexity. Which nodes
can be reached from a given node? And what can be said about the reachability of an average
node? This information characterizes the complexity of a digraph. For a complex digraph the
reachability from a node may vary considerably. In a digraph with full reachability – in which
every node can be reached from every other node – the complexity is small. Each graph has the
full reachability property, which indicates that reachability is not a suitable complexity measure
for graphs, as it does not discriminate among them. But reachability does for general digraphs. In
fact full reachability is equivalent to the transitive closure of the adjacency matrix being equal to
the ‘all 1s matrix’, that is 𝐴∗ = 𝐽, where 𝐽 is the matrix with all elements equal to 1 and of the
same order as 𝐴 (namely ∣𝑉∣).

For a digraph without full reachability intuitively a measure for complexity could be the proximity
to a digraph 𝐺 with this property, proximity being measured by the number of arcs added to 𝐺.
This adding can be done deterministically in which case we want to add as few arcs as possible.
The question then is which arcs to add. 8) There are other ways to use reachability to define the
complexity of digraphs, several of which are discussed in Section 9. In Section 9.6 a probabilistic
method is proposed to obtain a complexity measure for digraphs without full reachability.

Although these approaches are intuitively justifiable, they have the drawback that they are
computationally demanding. It would be attractive to have a simpler way to compute the
complexity of a digraph. One way to do this is by looking at the reachability sets for the nodes, in
particular their sizes. In case 𝐺 = (𝑉,𝐸), where 𝑉 is the set of nodes and 𝐸 the set of edges, is
fully reachable, they all have the same size namely ∣𝑉∣. So the size distribution is one with all
mass (equal to 1) concentrated in one point (namely ∣𝑉∣). The entropy of this distribution is 0.
For a digraph which is not fully reachable, there is a nondegenerate size distribution of the
reachability sets. The entropy measures how strongly this distribution deviates from the
distribution with all its mass concentrated at a single value. It is maximum for uniform
distributions (that is, for various values of 𝑛).

8) Adding arcs probabilistically was also suggested as an option in the first version of the present paper. But this does
not make a lot of sense as certain arcs need to be added to obtain full reachability. Therefore this ‘option’ has been
dropped in the current version of the paper.
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4 Complexity of graphs using average
degree

4.1 Average degree of a graph

In topology the concept of connectedness is based on the idea of separability. If a topological
space is the union of two nonempty, disjoint open sets it is disconnected. In a connected
topological space such a decomposition is not possible. In the network context the equivalent of
a disconnected space is that of a network consisting of two or more connectivity components.
The idea of a connectivity component is based on the concept of path connectedness in
networks.

It is important to consider, for a moment, connectivity in graphs and digraphs. In fact the digraph
case is the general one, if a graph is viewed as a digraph in which each edge is represented by
two arcs of opposite orientation. A digraph is connected if for each pair 𝑎 and 𝑏 of its nodes,
there is a path from 𝑎 to 𝑏. A path is a finite sequence of arcs in the digraph, where the tail of the
first arc is 𝑎 and the head of the final arc coincides with 𝑏 and for subsequent arcs (𝑎, 𝑏) and
(𝑐, 𝑑) holds that 𝑏 = 𝑐, provided that (𝑎, 𝑏) is before (𝑐, 𝑑). As noted before, in a digraph there
may be a path from 𝑎 to 𝑏 but not a path from 𝑏 to 𝑎. And if there is a path from 𝑏 to 𝑎 it may
not be the reverse of the path from 𝑎 to 𝑏.

A topological space is path connected if any two of its points can be joined by a continuous path
that is entirely within this topological space. Every path connected space is connected, but the
converse is not necessarily true. We shall not elaborate these concepts here as they are, in their
generality, not of interest to us.9) We will concentrate on path connectivity in networks—which is
simply referred to as connectivity—as it is the only concept concerning connectivity in networks
that we use in the present paper.

An evident measure for the complexity of networks is related to the way nodes in a network are
connected. Intuitively, the more branching exists in a network, the more complex it is. But how
should this be quantified? Here we want to take a closer look at this problem.

To make things comparable we look at the class C𝑚 of graphs with the same number𝑚 of edges
for𝑚 ∈ ℕ. This is a good way to compare graphs. The complexity now depends solely on how
the edges are interconnected, within each class C𝑚. Within such a class the number of points
control the complexity: the fewer nodes are present, the higher the complexity of the graph, and
vice versa.

As a candidate complexity measure we now look at the average degree of a graph. This is defined
of the ratio of the sum of the degrees of the nodes in a graph, divided by the number of nodes in
this graph. So if 𝐺 = (𝑉,𝐸) is a graph in C𝑚 with 𝑛 nodes, the average degree is

Δ𝑎𝑣 ≜ Δ𝑡𝑜𝑡
𝑛 , (1)

9) The interested reader should consult a book on general topology.
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where Δ𝑡𝑜𝑡 is the sum of degrees of all the nodes in 𝐺. But this is 2𝑚 for all graphs in C𝑚. This is
easy if one looks at the adjacency matrix of a graph, which is a symmetric (0, 1)‐matrix. So we
find

Δ𝑎𝑣 = 2𝑚𝑛 . (2)

So in the class C𝑚 the number of nodes 𝑛 is the only free parameter. This parameter controls not
only the complexity of the graph, but also a topological property such as the number of
connectivity components. We consider this aspect in the sequel, but for the moment we
concentrate on average degrees.

In Figure 4.1 there are twelve examples of graphs in C12, ordered by nondecreasing average
degree. For each node the degree is given (in blue) as well as the average degree (Δ𝑎𝑣).

We are interested in the graphs in C𝑚 with the smallest average degree and the highest average
degree. This is equivalent to graphs in C𝑚 with the highest number of nodes, and the smallest
number of nodes, respectively, which in turn, should correspond to graphs with the lowest
complexity and the highest complexity, respectively. This is indeed what Figure 4.1 shows in case
of C12.

We can view this as a measure of density: how many nodes are used in a graph to accommodate
𝑚 edges? We can compare this with the minimum number of nodes needed to put in𝑚 edges.
How to compute this characteristic as a function of𝑚, is discussed below.

Smallest average degree is obtained when the graph with𝑚 edges is totally unconnected
(consists of𝑚 unconnected edges), and so has 2𝑚 nodes. In case of C12 the graph in Figure 4.1
on the top left position is an example of such a graph. The graph in C𝑚 with the largest average
degree, is the most compact one, that is, with the fewest number of nodes. Since we do not
allow loops or parallel edges in a graph, a nontrivial most compact graph with𝑚 edges exists.10)

In Figure 4.1 the most compact graph (and largest average degree) is pictured at the bottom
right, in case the graph has 12 edges.

We now construct a graph in C𝑚 with a minimum number of nodes and with𝑚 edges. For a
graph with𝑚 edges determine 𝑛𝑚 ∈ ℕ such that

(𝑛𝑚2 ) ≤𝑚 < (
𝑛𝑚 + 1
2 ). (3)

If

(𝑛𝑚2 ) =𝑚 (4)

10) Of course, if they would be allowed, a ‘most compact’ graph would still exist: it would be a generalized graph with one
node and𝑚 parallel loops.
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Figure 4.1 Examples of graphs in C12 in increasing order of complexity, based on the
average degree (Δ𝑎𝑣). The graphs with the lowest complexity (Δ𝑎𝑣 = 1) and with the
highest complexity (Δ𝑎𝑣 = 4) in C12 are included.
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then we are done: take the full graph F𝑛𝑚 with 𝑛𝑚 nodes. In this case𝑚, as defined in (4), is a
triangular number.

If

(𝑛𝑚2 ) <𝑚 < (
𝑛𝑚 + 1
2 ). (5)

take the full graph F𝑛𝑚 with 𝑛𝑚 nodes and expand it by first adding one new node 𝜈 to its node
set and then connect this to𝑚 − (𝑛𝑚2 ) nodes in F𝑛𝑚 . This can usually be done in a variety of
ways. In any case, the resulting graph has𝑚 edges and 𝑛𝑚 + 1 nodes. This number of nodes is,
obviously, the minimum number of nodes for the graphs in C𝑚.11)

To see how 𝑛𝑚 depends on𝑚 assume for the moment that𝑚 = (𝑛2) for some 𝑛. This means that
the graph with minimum number of nodes is a full graph on 𝑛 points. So we have the equation

𝑛(𝑛 − 1)/2 =𝑚, (6)

in which𝑚 is given and 𝑛 has to be determined. The solution is

𝑛𝑚 =
1 +
√
1 + 8𝑚
2 (7)

assuming the expression on the right‐hand side of (7) is in ℕ .

An interesting aspect is also how the connectivity of the graphs in C𝑚 changes when the number
of nodes is varied. When this number is the highest possible (namely 2𝑚) so is the number of
connectivity components (namely 𝑛). When this number is the lowest possible (namely 𝑛𝑚 + 1
with 𝑛𝑚 as in (3)) there is only one connectivity component. For values of 𝑛 between those
extremes it is more complicated to say what the number of components is. However to find this
number the so‐called graph Laplacian can be used, which is the matrix

Δ ≜ 𝐷 − 𝐴, (8)

where 𝐷 = (𝑑𝑖𝑗) is the degree matrix of the graph, defined as follows

𝑑𝑖𝑗 = the degree of 𝑖, if 𝑖 = 𝑗,
= 0, if 𝑖 ≠ 𝑗, (9)

11) This is the case precisely because loops and parallel edges are forbidden in the graphs we consider.
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and 𝐴 is the adjacency matrix of the graph. The dimension of the kernel of Δ, symbolically
dim(Ker(Δ)), equals the number of connectivity components of the graph.

4.2 A reϐinement

Here we want to apply the complexity concept introduced in Subsection 4 to an equivalence class
of graphs, namely those which are the same modulo linear subgraphs. Put another way, given a
graph 𝐺 = (𝑉,𝐸) we look for its compressed form 𝐺𝑐. 𝐺𝑐 is obtained from 𝐺 by replacing all
linear subgraphs by a single edge. A linear subgraph 𝐿(𝑎, 𝑏), where 𝑎 and 𝑏 are nodes in 𝐺, is a
path from 𝑎 to 𝑏, say (𝑛1, … , 𝑛𝑘), where 𝑘 ∈ ℕ, 𝑘 ≥ 3, 𝑛1 = 𝑎 and 𝑛𝑘 = 𝑏, and Δ(𝑛𝑗) = 2 for
𝑗 = 2,… , 𝑘 − 1, where Δ(𝑣) denotes the degree of node 𝑣 ∈ 𝑉, that is the numbers of arcs
incident with 𝑣. Each 𝐺 has a compressed form 𝐺𝑐, which is unique.

The idea now is to base the complexity 𝜅𝑎𝑣,𝑐(𝐺) of a graph 𝐺 on the complexity of its
compressed form 𝐺𝑐:

𝜅𝑎𝑣,𝑐(𝐺) ≜ Δ𝑎𝑣(𝐺𝑐). (10)

The idea behind this complexity measure is that linear (sub)graphs are of the same complexity as
an edge, no matter which size they have. The point is that they do not branch. By replacing each
of them by any (finite) linear graph leaves the complexity unchanged. So one can just as well
replace each of them by an edge. This is precisely the compressed form of the original graph that
one obtains. Two graphs 𝐺1 and 𝐺2 which have the same compressed form, i.e. for which
𝐺𝑐1 = 𝐺𝑐2 , also have the same 𝜅𝑎𝑣,𝑐(𝐺)‐complexity, that is complexity as defined in (10).
Obviously, the relation ’having the same compressed form’ is an equivalence relation on the class
of graphs.

𝜅𝑎𝑣,𝑐(𝐺)‐complexity as defined in (10) is more difficult to apply than Δ𝑎𝑣 in (1) and it also lacks
the nice property to look at ’natural’ and simple class of graphs, namely those with the same
number of edges. Despite these ’drawbacks’ we believe that 𝜅𝑎𝑣,𝑐(𝐺)‐complexity is superior to
Δ𝑎𝑣‐complexity. Since it is simpler to apply we concentrate on Δ𝑎𝑣‐complexity in the remainder
of the present paper. However, 𝜅𝑎𝑣,𝑐(𝐺)‐complexity deserves further exploration.

4.3 Reducing graphs

We can reduce graphs through the removal of nodes or arcs in two ways. We have a general way
(Reduction method A) and a strict way (Reduction method B) to reduce graphs. In the general
reduction method the reduced graph may be disconnected whereas the original graph is
connected. In the strict way this is impossible. In fact this method is aimed at preserving
connectedness in the reduction process.

Let 𝐺 = (𝑉,𝐸) be a graph, with both 𝑉 and 𝐸 nonempty .

Reduction method A

– If 𝑣 is removed from 𝑉 and 𝑣 ∈ 𝑒 then 𝑒 is removed from 𝐸 as well.
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Reduction method B

– If 𝑣 is removed from 𝑉 and 𝑣 ∈ 𝑒 then 𝑒 is removed from 𝐸 as well.
– If 𝑒 is removed from 𝐸 and 𝑣 ∈ 𝑒 and Δ(𝑣) = 1 then 𝑣 is removed from 𝑉 as well.

So both methods agree on node elimination but differ on edge elimination. Method B has a rule
concerning the removal of edges, whereas Method A does not: an edge can be removed without
any consequence for its incident nodes. So in case edge 𝑒 = {𝑣,𝑤} is removed according to
Method A and Δ(𝑣) > 1 and Δ(𝑤) = 1 then the reduced graph has node 𝑤 as an isolated node,
i.e. with Δ(𝑤) = 0. If the removal of 𝑒 is done according to Method B, node 𝑤 will also be
removed.

4.4 Exploring graph complexity

In Section 4 we proposed the average degree as a measure of complexity for graphs. We
provided some examples that supported the idea that it indeed quantifies an intuitive notion of
graph complexity. But here we want to look more closely at this measure.

First we introduce some notation. If 𝐺 = (𝑉,𝐸) a graph then a subgraph 𝐺𝑠 = (𝑉𝑠 , 𝐸𝑠) of 𝐺 is a
graph with 𝑉𝑠 ⊆ 𝑉 and 𝐸𝑠 ⊆ 𝐸. We write 𝐺𝑠 ⊆ 𝐺 in case 𝐺𝑠 is a subgraph of 𝐺.

We consider the following two questions:

1. Does 𝐺𝑠 ⊆ 𝐺 imply Δ𝑎𝑣(𝐺𝑠) ≤ Δ𝑎𝑣(𝐺)?
2. For 𝑞 ∈ ℚ+ is there a graph 𝐺 with Δ𝑎𝑣(𝐺) = 𝑞?

The first question asks if a subgraph has lower complexity, using the ’average degree’ as the
complexity measure. As removal of arcs (directly or indirectly via removal of nodes) produces a
graph in a different class of graphs (one with the same number of nodes as the reduced graph),
anything can happen. We illustrate this with a few examples in Figure 4.2, where the reduction
consists of removing an edge and possibly also a node on the edge.

Figure 4.2 Examples of graph reductions (following method B) and their effect on
Δ𝑎𝑣.
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In Figure 4.2 four types of reductions are shown, producing all the possible outcomes for the
complexity of the reduced graph compared to that of the original graph. In the top row a graph is
shown consisting of a single edge. If this is reduced the empty graph is produced, for which Δ𝑎𝑣 is
not defined. The second row shows an example of a graph with the same complexity as its
reduction. In the third row examples of reductions are shown with a lower complexity than the
original graph. The bottom row shows an example of a graph with a lower complexity than its
reduction. In this case the reduction decreases both the number of edges as well as the number
of nodes by 1.

We now turn to the second problem raised at the beginning of the present subsection: can we
produce a graph with a given complexity, assuming the number specified is in the appropriate
range? The answer turns out to be affirmative if 𝑞 has the correct form 𝑞 = 2𝑚/𝑛, for some
integers𝑚,𝑛 > 0. We construct two graphs, depending on 𝑞, as follows:

– 𝑞 < 1. Start with a graph consisting of𝑚 disconnected edges, and hence, 2𝑚 nodes. Now
create a new graph by adding 𝑛 − 2𝑚 > 0 nodes.

– 𝑞 ≥ 1. Start with a complete graph with 𝑛 nodes, and hence (𝑛2) edges. We may assume that
𝑚 ≤ (𝑛2) = 𝑛(𝑛 − 1)/2. Delete 𝑛(𝑛 − 1)/2 −𝑚 ≥ 0 edges from the complete graph.

In both cases we have constructed a graph with𝑚 edges and 𝑛 nodes and hence with the
requested complexity 𝑞.

4.5 Glueing

To illustrate the idea to build new graphs by identifying nodes from given, simple, linear graphs
(edges), consider Figure 4.3. This shows a powerful mechanism to produce graphs from simpler
graphs by a kind of glueing process, which is the identification of different nodes to represent the
same node.

Figure 4.3 On the left‑hand side is shown how to produce a graph from edges using
identiϐication of nodes. The nodes in each green circle are identiϐied as a single node.
The resulting graph is depicted on the right‑hand side.

A similar glueing process can be defined for edges from different graphs, instead of nodes. In this
case edges are identified. If 𝛼 = {𝑎, 𝑏} and 𝛽 = {𝑐, 𝑑} are edges that are to identified, there are
two possibilities:

1. 𝑎 and 𝑐 are identified and 𝑏 and 𝑑 are identified, or
2. 𝑎 and 𝑑 are identified and 𝑏 and 𝑐 are identified.
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Of course, if two graphs are glued together one needs to specify which nodes are identified or
which pairs of nodes. The glueing process is represented by an operator ∗, or ∗𝑣1 ,𝑣2 or ∗𝑒1 ,𝑒2 ,
where 𝑣1, 𝑣2 are nodes to be identified and 𝑒1, 𝑒2 are edges to be identified. In the latter case it
should be indicated how the edges should be identified, i.e. which nodes should be identified.
This glueing has the following algebraic properties:

1. 𝐺 ∗𝑈 = 𝐺, where 𝑈 is the graph existing of one node and no edges. (Existence of a unit
element)

2. 𝐺1 ∗ 𝐺2 = 𝐺2 ∗ 𝐺1. (Commutativity)
3. (𝐺1 ∗ 𝐺2) ∗ 𝐺3 = 𝐺1 ∗ (𝐺2 ∗ 𝐺3). (Associativity)

It is interesting to study the complexity of the graph that emerges when two graphs are glued,
either by glueing nodes or edges. It is simply a matter of counting nodes and edges. Let
𝐺1 = (𝑉1, 𝐸1) and 𝐺2 = (𝑉2, 𝐸2) with ∣𝑉𝑖 ∣ = 𝑛𝑖 and ∣𝐸𝑖 ∣ =𝑚𝑖 are graphs with disjoint node and edge
sets, that are glued together by identifying a node from 𝐺1 and one node from 𝐺2 to obtain
𝐺1 ∗𝑛 𝐺2, then

Δ𝑎𝑣(𝐺1 ∗𝑛 𝐺2) =
2(𝑚1 +𝑚2)
𝑛1 + 𝑛2 − 1

. (11)

Likewise, if we glue 𝐺1 and 𝐺2 by identifying an edge from 𝐺1 and an edge from 𝐺2 to obtain
𝐺1 ∗𝑒 𝐺2 then

Δ𝑎𝑣(𝐺1 ∗𝑒 𝐺2) =
2(𝑚1 +𝑚2 − 1)
𝑛1 + 𝑛2 − 2

. (12)

Note that the complexity in both glueing operations ∗𝑛 and ∗𝑒 does not depend on which nodes
or edges are identified.

5 Complexity of graphs based on
search

Here we consider another approach to complexity. The intuition behind it is that of an efficient
search through a maze or labyrinth. The begin and end points are chosen in such a way that

1. The search is continuous.
2. The search covers all edges of the graph.
3. The path associated with the search should be of minimal length.

A continuous search in a graph is one so that it follows a path in the graph. This means that the
transition from a node 𝑣 to the next one 𝑤 is only possible if {𝑣,𝑤} is an edge in the graph.
Given a starting point 𝑠 and a finishing point 𝑓 the path followed by the (continuous) search
procedure should be as short as possible, under the restriction that all edges in the graph are
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visited. The restriction is important. And it should be stressed that all edges should be visited at
least once, not just the nodes. Visiting all edges implies visiting all nodes, but not the other way
round. In general, shortest path problems do not have this restriction of visiting all edges in the
graph at least once. But for us it is essential. The shortest path under this restriction depends on
the nodes 𝑠 and 𝑓. The goal is to find a combination for which the length is minimal. We assume
that the edges have equal length 1. We call this metric a natural metric.

We now consider some simple examples. In the graph on the left‐hand side of Figure 5.1 the path
((1, 2), (2, 3), (3, 4), (4, 5), (5, 6)) from node 1 to node 6 has minimal length (namely 5) and
contains all edges (at least) once. In the graph on the righthand side of Figure 5.1 the path
((1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 1)) is a path from node 1 to node 1 of minimal length
(equal to 6) containing all edges of the graph. So the minimal paths we were looking for are
different, because it was requested that all edges should be on the path. If it was only required
that all nodes should be situated on the path, the path ((1, 2), (2, 3), (3, 4), (4, 5), (5, 6)) would
do for both graphs. Consequently both graphs in Figure 5.1 would have had the same complexity.
But from a search perspective these graphs are quite different. The one on the left has two end
points, whereas the one on the right has none. By requesting that the path contain all edges (at
least once) we obtain this distinction. Of course, for the graph on the right‐hand side, from each
node one can walk around in two directions. If one node (or edge) would be blocked one can
then stil walk around it by going in the opposite direction. This is not possible in the graph on the
left‐hand side. If nodes 2, 3, 4 or 5 are blo, it is as if the graph is cut into two separate pieces.

Figure 5.1 Two graphs, 𝐺l on the left and 𝐺r on the right, with the same number of
nodes but with different topologies.

We define a formal complexity measure 𝜅𝑠 for a connected graph 𝐺 = (𝑉,𝐸) with 𝑛 = ∣𝑉∣ and
𝑚 = ∣𝐸∣ by comparing the length 𝜆𝐺 of an optimal path (satisfying the three requirements above)
with that of a tour covering all edges starting at some node 𝑣 ∈ 𝑉, which has length 𝜏𝐺 . So we
can write

𝜅𝑠(𝐺) ≜
𝜆𝐺
𝜏𝐺

(13)

For the graph 𝐺l on the left‐hand side in Figure 5.1 an optimal path covering all edges is
((1, 2), (2, 3), … , (5, 6)) which has length 𝜆𝐺l = 5 and a tour covering all edges starting at one is
((1, 2), (2, 3), … , (5, 6), (6, 5), … , (2, 1)) which has length 𝜏𝐺l = 10. So 𝜅𝑠(𝐺l) = 5/10 = 0.5. For
the graph 𝐺r on the right‐hand side of Figure 5.1 an optimal path covering all edges is
((1, 2), (2, 3), … , (6, 1)) which has length 𝜆𝐺r = 6 and an optimal tour starting at 1 covering all
edges, is the same path, so that 𝜏𝐺r = 6. Hence 𝜅𝑠(𝐺r) = 6/6 = 1.
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6 Complexity of graphs based on
average distance

In Section 5 a metric on a graph was used to define a measure of complexity. In the present
section we also use the natural metric to obtain a complexity measure, where each arc has
length 1. For a connected graph 𝐺 = (𝑉,𝐸) with ∣𝑉∣ = 𝑛 we introduce the distance matrix

𝐷 = (𝑑𝑖𝑗), (14)

where 𝑑𝑖𝑗 is the minimum length of the path in 𝐺 connecting nodes 𝑖 and 𝑗. The length of a path
is computed in terms of the number of edges it contains. For each of these graphs we compute
the average distance for any pair of (different) nodes. The distance matrix contains the adjacency
matrix as a submatrix. We obtain the adjacency matrix 𝐴 from𝐷 by setting all entries 𝑑𝑖𝑗 > 1 to 0.

We define the average distance over all different pairs of nodes in a (connected) graph 𝐺 as a
complexity measure 𝜅𝑑(𝐺):

𝜅𝑑(𝐺) ≜
∑𝑖<𝑗 𝑑𝑖𝑗
(𝑛2)

, (15)

where the sum is over the 𝑛 nodes in 𝐺.

In mathematical chemistry the Wiener12) index (cf. [9]) is used to measure the branching of
organic molecules. It is defined as the total distance of any pair of carbon atoms in such a
molecule, which together form its skeleton, so to speak. So, ifW(𝐺) denotes the Wiener index
then

W(𝐺) ≜෍
𝑖<𝑗

𝑑𝑖𝑗 = (
𝑛
2)𝜅𝑑(𝐺), (16)

where the sum is over the nodes in 𝐺, or rather the upper triangle of its (natural) distance matrix.

We now consider a variant of the complexity measure based on the average distance of different
pairs of nodes in a graph 𝐺 = (𝑉,𝐸). It is based on the distance of edges in 𝐺. To be able to do
this we use the line graph 𝐺𝐿 = (𝑉𝐿 , 𝐸𝐿) derived from 𝐺. The nodes of 𝐺𝐿 are the edges of 𝐺, that
is 𝑉𝐿 ≜ 𝐸. Edges 𝑒, 𝑓 ∈ 𝐸 (nodes in 𝑉𝐿) form an edge in 𝐺𝐿 iff 𝑒 ∩ 𝑓 ≠ ∅. So

12) Namedafter the chemist andphysicianHarryWiener. He introduced thismeasure (which he called the PathNumber) to
quantify the branching of organic molecules. His goal was to relate this property at the molecular level to macroscopic
physical properties of the substances consisting of these molecules. Alongside the Path Number he introduced the
Polarity Number which is the number of pairs of carbon atoms separated by three carbon atoms.
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𝐸𝐿 ≜ {(𝑒, 𝑓) ∈ 𝐸 ∣𝑒 ≠ 𝑓 and 𝑒 ∩ 𝑓 ≠ ∅}. We then apply the complexity measure (15) to 𝐺𝐿
instead of to 𝐺, but view it as a complexity measure for 𝐺. So formally, we then have

𝜅𝑑𝓁(𝐺) ≜
∑𝑖<𝑗 𝑑𝓁𝑖𝑗
(𝑚2)

, (17)

where the 𝑑𝓁𝑖𝑗’s are the ‘natural’ distances in the line graph 𝐺𝐿 of 𝐺. The sum is over the nodes of
𝐺𝐿, which are the edges in 𝐺.

In Appendix B some example graphs are used to compute the quantities defined in (15), (17) and
(16). Comparing the results is difficult if the number of edges in 𝐺 is different. This is familiar
from Section 4.

From the examples in Appendix B it is clear that the Wiener index (16) itself does not qualify as a
complexity measure. It is an ingredient of the complexity measure (15). But there is no particular
reason to single out this component. The complexity measure (15), which is the average distance
for different nodes in the original graph. seems to agree with the intuition about complexity.
However, applying this measure to the line graphs associated with graphs, the results are less
convincing. It seems that the reciprocal of this measure for line graphs does a better job, at least
for the examples in Table B.2. This suggests that the average of the reciprocal distances:

∑𝑖<𝑗(1/𝑑𝓁𝑖𝑗)
(𝑚2)

(18)

could do well too as a measure for graph complexity. Note that (18) is the reciprocal of the
harmonic mean of the distances 𝑑𝓁𝑖𝑗.

7 Complexity of routing digraphs

In [13] (Appendix B) the total number of paths from source to sink in routing digraphs has been
used to define the complexity of the routing structure of a questionnaire.13) A routing digraph is
an acyclic digraph with a single source and a single sink. In [13] such digraphs were called ‘routing
graphs’, somewhat confusingly, as this was the term that was used in practice. We have changed
this name to ‘routing digraph’ to stress that we are dealing with directed graphs, not graphs. We
denote the class of such digraphs by Υ. An example of a simple routing graph is shown in Figure
7.1. Its source (node 1) is coloured green and its sink (node 7) is coloured brownish red.

In fact the (natural) logarithm of the number of paths from source (i.e. the first question) to sink
(i.e. the final question) is defined in [13] as the complexity of the routing structure of a

13) The routing structure defineswhich next question should be posed depending on the answer to the last question asked
to a respondent.
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Figure 7.1 Example of a routing digraph.

questionnaire. If we denote by 𝜋(𝐺) the number of paths from source to sink in 𝐺 we define the
complexity 𝜅Υ(𝐺) of 𝐺 as

𝜅Υ(𝐺) ≜ log𝜋(𝐺). (19)

In (19) ‘log’ denotes the natural logarithm.14) It turns out that this complexity measure has some
nice properties (see [13], Appendix B), that we present here, after introducing some convenient
notation.

Let 𝐺1 and 𝐺2 be two routing digraphs. Then we can form a new digraph with a single source and
sink 𝐺1⊙𝐺2 by identifying the sink of 𝐺1 with the source of 𝐺2.15). To distinguish it from the
glueing of routing digraphs we call the latter operation⊙‐glueing. An example of⊙‐glueing is
presented in Figure 7.2.

Figure 7.2 ⊙‑glueing two routing graphs.

In Figure 7.2 the two routing digraphs to be⊙‐glued are in the top row. The result is represented
in the bottom row. The⊙‐glueing was done by identifying the sink of the routing digraph on the

14) In [13] the logarithm at base 2 was taken. The complexity measure was denoted by ‘𝜌’ instead of ‘𝜅Υ’. The resulting
complexity measures are equivalent, in the sense that they differ by a constant.

15) In [13] this operation is symbolized by ‘∗’ instead of⊙. But in the present paper ‘∗’ is already used for another, similar
operation, called glueing (of graphs), defined in Section 4.5.
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top left‐hand side of Figure 7.2 with the source of the routing digraph on the top right‐hand side
of this figure.

If 𝐺 is an acyclic digraph with a single source and a single sink, so does 𝐺←, the inverse digraph of
𝐺 that we get when we reverse the direction of each arc in 𝐺. In Figure 7.3 the reverse of the
routing digraph in Figure 7.1 is shown.

Figure 7.3 Reverse of the routing digraph in Figure 7.1.

Then we have (cf. [13], p.136):

1. 𝜅Υ(𝐺1⊙𝐺2) = 𝜅Υ(𝐺1) + 𝜅Υ(𝐺2)
2. 𝜅Υ(𝐺2⊙𝐺1) = 𝜅Υ(𝐺1⊙𝐺2).
3. 𝜅Υ(𝐺←) = 𝜅Υ(𝐺).
4. 𝜅Υ(𝐺1) ≤ 𝜅Υ(𝐺2) if 𝐺1 is in Υ and a subdigraph of 𝐺2.
5. 𝜅Υ(𝐺0) = 0, if 𝐺0 is a point graph, consisting of a single node.
6. 𝜅Υ(𝐺) is invariant under contractions of 𝐺.

A contraction of a digraph 𝐺 is a replacement of a linear subdigraph of 𝐺 by a simpler linear
structure, such as a node or an arc or two arcs, depending on the situation. The result of the
contraction should be a digraph. This implies that it is not possible to have parallel arcs between
two nodes. A maximally contracted digraph is one that cannot be contracted any more. So a
digraph 𝐺 is maximally contracted if𝜛(𝐺) = 𝐺, for any contration𝜛 of 𝐺. In other words, 𝐺 is a
fixed point for any contraction operator𝜛 operating on 𝐺. In Figures 7.4, 7.5 and 7.6 several
examples are shown of contractions of digraphs.

Figure 7.4 shows three contractions, starting with the digraph at the top left‐hand side. In each
contraction step one arc is removed. The digraph at the bottom right‐hand side is maximally
contracted. Note that in this case a linear subdigraph is replaced by a single node.

Figure 7.4 Contracting a digraph in a number of steps.
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In Figure 7.5 the digraph on the left‐hand side is contracted to that on the right‐hand side. The
blue and the yellow linear parts on the left‐hand side are replaced by blue and yellow arcs shown
on the right‐hand side. So in this case two linear subdigraphs are replaced by two arcs.

Figure 7.5 Contracting a digraph in two locations.

Figure 7.6 is like the digraph in Figure 7.5 except that the arc (2, 5) is removed. In this case there
are three linear subdigraphs that can be contracted. But because the result has to be a digraph,
we cannot replace each of these subgraphs by arcs, because they would be parallel. So one of
them is replaced by a single arc (the red part) and each of the other two by two arcs (the blue
and yellow parts). Of course, it would also have been possible to replace the blue part by a single
arc and the remaining red and yellow parts by a single arc. Similarly could the yellow part be
replaced by a single arc and the red and blue parts by two arcs each. This shows that maximal
contraction may not lead to a unique result.

Figure 7.6 Contracting a digraph like that in Figure 7.5 but with arc (2, 5) removed.

As the examples in Figures 7.5 and 7.6 show removal of a single arc can have quite an impact on
the contraction result. These examples also show that a contraction of a digraph is non‐unique.
But the topology, i.c. the cycle stucture of the underlying graph is the same. Contracting is also
non‐invertible in the sense that a whole class of digraphs may yield the same contraction.

We can compute 𝜅Υ(𝐺) algebraically, using the adjacency matrix. Let 𝐴 be the𝑚×𝑚 adjacency
matrix of an acyclic digraph. Then there is an 𝑛 such that 𝐴𝑛 = 0 and 𝐴𝑛−1 ≠ 0, which in fact says
that 𝐺 is nilpotent. Then we have that16)

𝜅Υ(𝐺) = log ((𝐼𝑛 − 𝐴)−1)1,𝑛 . (20)

16) cf. [13], p. 135
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8 Complexity of digraphs based on
arc symmetry

Let 𝐺 = (𝑉,𝐸) be a digraph with an 𝑛 × 𝑛 adjacency matrix 𝐴. An aspect that determines the
complexity of 𝐺 is the degree to which it is asymmetric, in terms of arcs (𝑎, 𝑏) with or without a
counter‐arc (𝑏, 𝑎). To quantify this arc symmetry we define:

Θ(𝐴,𝐴′) ≜ max{𝐴,𝐴′} −min{𝐴,𝐴′}. (21)

Θ(𝐴,𝐴′) is the 𝑛 × 𝑛 matrix with entry (𝑖, 𝑗) equal to max{𝑎𝑖,𝑗 , 𝑎𝑗,𝑖} −min{𝑎𝑖,𝑗 , 𝑎𝑗,𝑖}. The matrix
Θ has the following properties:

– Θ(𝐴,𝐴′) ≥ 0. (Nonnegativity)
– Θ(𝐴,𝐴′) = Θ(𝐴′, 𝐴). (Symmetry)
– Θ(𝐴,𝐴′) = 0 iff 𝐴 = 𝐴′ iff 𝐺 is a graph. (First lower bound)
– 𝜄′𝑛Θ(𝐴,𝐴′)𝜄𝑛 = 0 iff 𝐴 = 𝐴′ iff 𝐺 is a graph.17) (Second lower bound)
– 𝜄′𝑛Θ(𝐴,𝐴′)𝜄𝑛 ≤ 𝑛(𝑛 − 1). (Upper bound)

The upper bound in the last item is obtained by digraphs with 𝑛 nodes, for which t he underlying
graph is complete, that is for each pair of vertices there is an edge, and such that for each edge of
the underlying graph {𝑎, 𝑏} with 𝑎 ≠ 𝑏 there is exactly one arc, either (𝑎, 𝑏) or (𝑏, 𝑎).

We can use Θ to define the following complexity measure for digraphs:

𝜅Θ ≜
𝜄′𝑛Θ(𝐴,𝐴′)𝜄𝑛
𝑛(𝑛 − 1) . (22)

Due to the lower bound and upper bound for 𝜄′𝑛Θ(𝐴,𝐴′)𝜄𝑛 we have 0 ≤ 𝜅Θ ≤ 1. The higher the
value of 𝜅Θ the more complex the digraph is supposed to be. Complexity in this case measures
deviance from symmetry under arc reversion. A graph is fully symmetric under arc reversal, and
therefore not complex — as a digraph, that is.

It should be noted that 𝜅Θ as defined in (22) is a rather crude measure of complexity. It does not
consider the topology of a digraph. Digraphs with the same number of arcs without counter‐arcs
(and the same number of nodes) have the same complexity. Other complexity measures that we
consider, differentiate among this class of digraphs by using their topology.

For each of the digraphs in Figure 8.1 we have that 𝜅Θ = 6/12 = 1/2. In both cases there are four
nodes and three arcs without counter‐arcs. The topology of these digraphs, however, is quite
different. For instance removal of point 4 in the right‐hand side digraph produces a digraph
consisting of there separate points. For the digraph on the left‐hand side of Figure 8.1, deletion
of a node results in digraphs with one or two connectivity components.

17) 𝜄𝑛 = (1,… , 1)′ is the all 1s (column) vector of length 𝑛.
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Figure 8.1 Two digraphs with the same 𝜅Θ‑complexity.

9 Complexity of digraphs based on
reachability

In a digraph, reachability is about the ’problem’ which nodes can be reached when starting a
walk in the digraph at a given node. In graphs, reachability is the same as connectedness. In
digraphs the two concepts are different, as a result of the asymmetry in the arcs that are present:
in a digraph an arc does not need to have a counter‐arc. If one can travel from node 𝑎 to node 𝑏
in a digraph it is not necessarily the case that one can also travel from node 𝑏 to node 𝑎. In a
graph (viewed as a digraph) each arc has its counter‐arc, so that if one can travel from node 𝑎 to
node 𝑏, one can then also travel from node 𝑏 to node 𝑎, in fact using the same path in reverse.

It should be stressed that reachability in digraphs is the natural generalization of connectivity in
graphs. The counterpart of a connected graph is a fully reachable digraph, in which there is a
path 𝜋𝑣,𝑤 connecting 𝑣 and 𝑤, for every pair of nodes 𝑣 and 𝑤. Even if the underlying graph 𝐺𝑢𝑛
of a digraph 𝐺 is connected, this does not mean that a path 𝜋𝑣,𝑤 exists in 𝐺, for any nodes 𝑣 and
𝑤 in 𝐺. Also the fact that a path 𝜋𝑣,𝑤 exists connecting 𝑣 with 𝑤, does not imply that a path 𝜋𝑤,𝑣
exists. And if it exists, it does not necessarily mean that the reverse path 𝜋←𝑣,𝑤 is a path in 𝐺 from
𝑤 to 𝑣. If there is a path connecting 𝑤 to 𝑣 it may be quite different from 𝜋←𝑣,𝑤.

So which digraphs are the more complex ones and which are the easier ones? To answer this
question think for a moment about the digraph as a street network, consisting of one‐way and
two‐way streets. Navigating with a car in such a network is easiest in case the network consists of
only two‐way streets and is connected. In such a network a driver knows that he can drive his car
from any location (node) to any other location (node) in the network. Quite the opposite is the
case when the network has one‐way streets only. In that case it is a priori not evident that a
particular location (node) can be reached from another location, by car. And if it can be reached,
the question is how, by which route? And if it cannot be reached, an obvious question would be
which is a nearest location that can be reached by car? The driver, if he was able to drive to the
desired location (or one nearby), faces a similar challenge if he wants to drive to his starting
location. In theory it is possible that such a route does not exist. But assuming it exists, reversing
his original route to the desired location (or a proxy) may not be possible. So it is clear that
reachability is a key notion here. And it is also clear that, generally speaking, the more on‐way
streets the network has, the more difficult it is to answer questions about reachability of
destinations in the network.

Of course, if the driver would be able to use the adjacency matrix 𝐴 of the street network to

CBS | Discussion paper | December 21, 2021 24



compute its transitive closure 𝐴∗, these reachability questions would be easy to answer. If
reachability is possible, then a little more work would be needed to find out the route that leads
to the destination. If it the destination is not reachable by car it is even more works to find a
reachable node nearby. But all this only underlines the complexity of the undertaking. How easy
is it compared to a connected street network with only two‐way streets (for cars).18)

This also shows that searchability is also a basis to consider to quantify the complexity of
digraphs, as it is for graphs, perhaps even more so. If we continue with the street network
example, we would be dealing with this, if no information about the network would be available
prior to the trip. One would simply have to proceed by trial and error. If the searching has to be
continuous it is more complicated in case of digraphs than it is in case of graphs. The reason is
that it is not guaranteed that one can retrace steps at any point during the search. One may even
get stuck in a ‘trap’.19) In case the search ends in a trap one should be allowed to resume search
at the start location. Without any prior of the network it will be essentially a random search in
the network to find a path to the desired location.

We shall not explore searchability of digraphs any further in the present paper, as it is long
enough already. But it is certainly worthwhile doing so elsewhere.

9.1 Checking full reachability

When reachability is used as a criterion for digraph complexity, it is in particular checking for full
reachability that is called for. So it is important to know how to do this. A straightforward way is
to compute the transitive closure 𝐴∗ of the adjacency matrix 𝐴 of the digraph, which we assume
to be of the order 𝑛. This can be done by e.g. Warshall’s algorithm for Boolean matrices
(proposed in [12]). This algorithm is discussed in e.g. [5] and similar books on algorithms.
Warshall’s algorithm is essentially repeated matrix multiplication specialised for Boolean matrices
applied to the adjacency matrix 𝐴. The matrix multiplication is as the ‘usual’ matrix multiplication
but with addition (‘+’) replaced by the Boolean ‘or’ (‘∨’) and with multiplication (‘×’) replaced by
the Boolean ’and’ (‘∧’). Full reachability holds if 𝐴∗ = 𝐽, where 𝐽 is the 𝑛 × 𝑛 all 1s matrix.

9.2 Adding the minimum number of counter‑arcs

In the present section an approach is presented based on adding a minimum number of arcs to
the given digraph in such a way that the resulting digraph is fully reachable. The minimum
number of arcs added gives an idea how far the digraph is removed from a fully reachable one.
As a measure of complexity of the digraph we take: the more arcs need to be added, the further
removed it is from full reachability and hence the more complex it is. In fact, it is not the
absolute number of arcs added, but the relative number, compared to the number of arcs of the
augmented digraph.

The arcs that are added in the augmentation process are only counter‐arcs of existing arcs in the
digraph considered. So pairs of nodes 𝑣,𝑤 where both (𝑣,𝑤) and (𝑤,𝑣) exist are excluded, as is

18) In practice many drivers nowadays benefit from a navigation system that solves these problems for them. The point
is, however, that these navigation problems have to be solved by some party.

19) In reality it is probably not that bad, but in theory this could be a possibility.
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the case for pairs of nodes 𝑣,𝑤 for which neither (𝑣,𝑤) nor (𝑤,𝑣) exists. We call such pairs
saturated. Only those pairs for which either (𝑣,𝑤) or (𝑤,𝑣) exist, but not both, can be used for
the augmentation. Such pairs we call unsaturated. If 𝐺 has 𝜐 unsaturated pairs, 2𝜐 − 1 different
augmentations are possible with additional counter‐arcs.

Using reachability we can define digraph complexity. If the transitive closure of this digraph is not
a complete digraph, we want to add arcs (also called augmenting the digraph) such that the
resulting digraph is fully reachable. And we want to add as few extra arcs as possible. The more
such extra arcs are needed the more complex the original digraph is.

Before we consider the problem in general, we first look at an example, namely the digraph
presented in the top left in Figure 9.1. It contains arcs and edges, which can be seen as a
convenient simplification for an arc and its counter‐arc.

Figure 9.1 At the top left is a digraph that is not fully reachable. On the top right the
nodes that can be mutually reached are labeled red and isolated nodes labeled black.
The bottom row shows two augmented digraphs which are fully reachable.

The digraph on the top right of Figure 9.1, which is the same digraph as the one on the top left,
has the nodes that are mutually reachable labeled red. It is possible to reach the black labeled
nodes from each red one, but not vice versa. Also, the black labeled nodes are isolated, in the
sense that from none of them one can reach any of the remaining ones.

A simple way to make all nodes communicate is to add counter‐arcs to some of the arcs pointing
to the isolated points. This is shown in the digraph on the bottom left of Figure 9.1. Another way
to do this is shown on the bottom right of Figure 9.1. 20)

To look at the problem more formally, we first introduce some notation. Let 𝐺 = (𝑉,𝐸) be a
digraph, with ∣𝑉∣ = 𝑛 and ∣𝐸∣ =𝑚. Let 𝐴 be the 𝑛 × 𝑛 adjacency matrix. Formally we are looking
for an 𝑛 × 𝑛 (0, 1)‐matrix 𝐵 such that the transitive closure of the augmented digraph has full
reach. That is, B should be such that

20) It is easy to see that with adding only two counter‐arcs full reachability cannot be obtained.
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(𝐴 + 𝐵)∗ = 𝐽, (23)

and the number of 1s in 𝐵, i.e. the number of arcs, which can be expressed as

𝜄′𝐵𝜄 (24)

should be minimal. 𝐽 is the 𝑛 × 𝑛 all 1s matrix.

The digraph complexity is defined in terms of the minimum number of arcs that have to be
added to 𝐺 (or, in fact 𝐸) so that the augmented digraph 𝐺𝑎𝑢𝑔 has full reach. The more arcs have
to be added the higher the digraph complexity of 𝐺. This number should be related to the
number of arcs in 𝐺, i.e. 𝑚. If the minimum number of arcs to be added to 𝐺 is denoted by 𝜈𝐺
the digraph complexity based on adding counter‐arcs is defined by

𝜅𝐺 ≜
𝜈𝐺
𝑚 . (25)

Although the definition of this type of complexity of a digraph is easily stated, the problem of
how to actually determine the minimum number of counter‐arcs to be added is not so easily
solved. The computational complexity of this problem is unknown to the present author.21)

As the underlying graph of the digraph is assumed to be connected, we can infer that the
minimum number of counter‐arcs to be added is less than the number of arcs in the digraph
without a counter‐arc. It is easy to find out if fewer counter‐arcs are required. An arc (𝑖, 𝑗)may
be without a counter‐arc (𝑗, 𝑖), it may be possible that there is a path in the digraph from 𝑗 to 𝑖.
To find such cases it suffices to compute the transitive closure of the digraph, by computing 𝐴∗
from the adjacency matrix 𝐴. The number of arcs without counter‐arcs in the transitive closure of
the initial digraph, yields a sharper upper‐bound. But is it possible that the minimum number of
counter‐arcs to be added is strictly less than this?

9.3 Using the size distribution of the reachability sets

In Table 9.1 we have listed the size distributions of the reachability sets of the examples in
Appendix A. There are two extreme distributions, namely the ones associated with Figure A.3
and Figure A.27. The first is a uniform distribution over all possible sizes of reachability sets in the
corresponding digraph, the other one has all mass concentrated in a single point. In the latter
case we are dealing with a digraph with full reachability. For the remaining cases the size
distributions are between those two extremes.

We can use the entropy as a measure of the non‐uniformity of the size distributions in Table 9.1.
The entropies of the distributions listed in Table 9.1 are presented in Table 9.2.

21) Perhaps the decision version of the problem stated: ‘Can at most 𝑘 (a specified number) counter‐arcs be added to the
digraph in such a way that the resulting digraph has full reachability?’ is NP‐complete.
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Size Fig. A.3 Fig. A.6 Fig. A.9 Fig. A.12 Fig. A.15 Fig. A.18 Fig. A.21 Fig. A.24 Fig. A.27
1 1 2 2 2 1 1 0 0 0
2 1 1 2 1 1 1 0 0 0
3 1 1 0 1 1 1 0 4 0
4 1 1 0 0 1 1 4 0 0
5 1 1 0 0 1 0 0 0 0
6 1 0 0 0 0 0 0 0 0
7 1 0 0 0 0 0 0 0 0
8 1 0 0 0 0 0 0 0 0
9 1 0 5 0 0 6 0 0 0

10 1 5 1 6 6 0 6 0 0
11 1 0 1 1 0 0 0 0 0
12 1 1 1 1 1 2 2 0 0
13 1 1 1 1 1 1 1 9 13

Table 9.1 Size distributions of the reachability sets in the examples (Figures) in
Appendix A.

Figure Entropy
Fig. A.3 1.114
Fig. A.6 0.799
Fig. A.9 0.753
Fig. A.12 0.709
Fig. A.15 0.755
Fig. A.18 0.709
Fig. A.21 0.523
Fig. A.24 0.268
Fig. A.27 0

Table 9.2 Entropies of the distribitions in Figure 9.1.

Notice that the entropies of the digraphs represented in the Figures A.3, A.6, A.15, A.9, A.12,
A.18, A.21, A.24 and A.27 are a descending series. The smaller the entropy is the closer the
corresponding digraph is to a digraph with full reachability, and hence the less complex it is.

The size distribution of the reachability sets as a measure of complexity is not ideal, as it does not
involve the interplay of the reachability sets. In theory, it would even be possible that the size
distribution of the reachability sets is peaked, even though there is no full reachability. The
entropy is small in that case although the complexity of the digraph would be high. But as the
example in Table 9.2 shows the measure may also yield sensible results. Further investigation is
needed to find out how this measure behaves in general. If it turns out to work it has the
advantage that it is quite easy to apply.

9.4 Using the multiplicities of nodes in the reachability sets

In this approach we consider how often a node appears in a reachability set. This yields a
distribution over the nodes that we use to derive a complexity measure. In case of full
reachability this distribution is uniform. The entropy is maximal for this distribution, equal to
ln(∣𝑉∣). For all other distributions on the set of nodes it is smaller.22)

22) In case the digraph consists of isolated points, each reachability set consists of one point only. Reachability sets cor‐
responding to different points are disjoint. The entropy in this case also equals ln(∣𝑉∣), although there is no full
reachability, to put it mildly.
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The distribution we are interested in can be easily computed from the transitive closure 𝐴∗ of the
adjacency matrix 𝐴 of the digraph as follows:

𝜗 ≜ 𝜄′𝐴∗
𝜄′𝐴∗𝜄 , (26)

where 𝜄 is the all 1s vector. The complexity measure proposed is the entropy of the distribution 𝜗
in (26), i.e.

𝜅𝐸(𝜗) ≜ −෍
𝑣∈𝑉

𝜗(𝑣) ln𝜗(𝑣). (27)

Entropy is used as a measure of uncertainty, as in case of information theory. For a uniform
distribution the entropy is biggest, whereas for a peaked distribution (with all probability mass
concentrated in a single point) it is minimal, that is, equal to 0.

9.5 Partial order of the reachability sets

In the examples in Appendix A ditrees are presented that show how the various reachability sets
are related, or ordered, to be more specific. These ditrees also can be used to get an insight into
the complexity of a digraph in terms of reachability. The examples in Appendix A indicate that
the smaller the tree, the closer the digraph is to being a digraph with full reachability, which is
the least complex case.

First we want to point out an interesting property about reachability sets. Let 𝐺 = (𝑉,𝐸) be a
digraph and let 𝑖, 𝑗 ∈ 𝑉 be nodes in 𝐺. Suppose furthermore that 𝑗 can be reached from node 𝑖,
in notation 𝑖 ; 𝑗. Then 𝑗 ⊆ 𝑖. If also holds that 𝑗; 𝑖 then it follows 𝑖 = 𝑗. Here, 𝑖, 𝑗 denotes the
reachability sets of nodes 𝑖 and 𝑗, respectively. This explains why the ‘subset’ property of
reachability sets of a digraph leads to a tree: nontrivial cycles cannot exist: they collapse to a
point. This implies that the reachability sets of a digraph form a partial order, ≤, interpreted as
follows: for sets 𝑎, 𝑏 it holds: 𝑎 ≤ 𝑏 iff 𝑏 ⊆ 𝑎. That the properties for partial orders hold for ≤
follows from the following properties for for all 𝑖, 𝑗, 𝑘 ∈ 𝑉:

1. 𝑖 ; 𝑖 ⇒ 𝑖 ⊆ 𝑖.
2. 𝑖 ; 𝑗 and 𝑗; 𝑖 ⇒ 𝑖 = 𝑗 (since 𝑗 ⊆ 𝑖 and 𝑖 ⊆ 𝑗).
3. if 𝑖 ; 𝑗 and 𝑗; 𝑘 then 𝑖 ; 𝑘 ⇒ 𝑘 ⊆ 𝑖 (since 𝑗 ⊆ 𝑖 and 𝑘 ⊆ 𝑗).

In terms of ≤ these results can be stated as follows:

1. 𝑖 ≤ 𝑖 (reflexivity)
2. 𝑖 ≤ 𝑗 and 𝑗 ≤ 𝑖 ⇒ 𝑖 = 𝑗 (antisymmetry)
3. 𝑖 ≤ 𝑗 and 𝑗 ≤ 𝑘 ⇒ 𝑖 ≤ 𝑘. (transitivity)
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These properties define ≤ as a partial order. The ditrees in Appendix A are graphical
representations of such partial orders.

We can use the underlying trees of the ditrees representing the partial ordering ≤ to define a
complexity measure for ditrees. So the complexity measure to be used is given by (1). However,
certain nodes (reachability sets) appear multiple times. We can use the multiplicity of each node
to weigh its degree. We denote the complexity measure in this case by Δ𝑎𝑣,𝑚𝑢𝑙𝑡. We can also
choose to ignore the multiplicity, which actually means that it is taken to be equal to 1 for each
node. We then get another complexity measure denoted by Δ𝑎𝑣,1. If we apply these measures to
(the underlying trees of) the ditrees in Appendix A we find the results in Table 9.3.

Figure Δ𝑎𝑣,𝑚𝑢𝑙𝑡 Δ𝑎𝑣,1
Fig. A.4 24/13 = 1.846 24/13 = 1.846
Fig. A.7 28/13 = 2.154 16/9 = 1.778
Fig. A.10 28/13 = 2.154 16/9 = 1.778
Fig. A.13 24/13 = 1.846 14/8 = 1.750
Fig. A.16 19/13 = 1.462 14/8 = 1.750
Fig. A.19 24/13 = 1.846 12/7 = 1.714
Fig. A.22 21/13 = 1.615 6/4 = 1.500
Fig. A.25 1 1
Fig. A.28 0 0

Table 9.3 Complexities of the ditrees in Appendix A.

The examples in Table 9.3 show that Δ𝑎𝑣,1 yields a strictly decreasing sequence, as one should
expect, whereas Δ𝑎𝑣,𝑚𝑢𝑙𝑡 has a tendency to decrease, however with exceptions. This suggests
that Δ𝑎𝑣,1 is superior to Δ𝑎𝑣,𝑚𝑢𝑙𝑡 as a complexity measure for digraphs, at least in the example
presented in Table 9.3.

9.6 Using random coverings with reachability sets

In this approach one uses the reachability sets associated with each node in a digraph to quantify
complexity. The idea is to draw 𝑘 nodes 𝑣1, … , 𝑣𝑘 randomly and consider the union of the
reachability sets 𝑣1, … , 𝑣𝑘 and compute the portion of the node set it covers. If this is often close
to 1, then the value of a critical value 𝑘𝑐 for which this is obtained is a measure of the complexity
of the digraph: the higher 𝑘𝑐 the complexer the digraph.

So the complexity measure 𝜅𝑐𝑜𝑣 we propose is the fraction of node set covered by the
reachability sets sampled, that is

𝜅𝑐𝑜𝑣(𝑘) ≜
𝐸(∣∪𝑘𝑖=1 𝑣𝑖 ∣)

∣𝑉∣ . (28)

For a given 𝜖 > 0 we are interested in the critical value 𝑘𝑐 which is defined as the smallest value 𝑘
such that for samples of size 𝑘 we have

𝑘𝑐 ≜ min
𝑘∈ℕ
{𝜅𝑐𝑜𝑣(𝑘) ≥ 1 − 𝜖}. (29)
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We denote the critical value that (29) produces by 𝑘𝑐𝜖 . The larger this value is, the more the
digraph is removed from one with full reachability and the same number of points, and hence
the more complex it is.

9.7 Taking the complexity of the underlying graph into account

The complexity measures of digraphs considered above are in fact defined relative to the
underlying graph of the digraphs considered. The underlying graph in turn defines a class of
digraphs that is a sort of universe in which to work. The role of the underlying graph in the
complexity measures is therefore somewhat implicit. But in the present section we want to make
its role explicit. We then view the digraph complexity measures above as conditional complexity
measures, conditional on the universe of digraphs implied by the underlying graph of the digraph
in question. But, of course, the underlying graph is a graph itself which also has a complexity. We
want to present complexity measures of digraphs that take its complexity also into account.

If we follow the reasoning in probability theory with conditional probabilities and unconditional
probabilities, we define an (unconditional) measure of complexity of a digraph 𝐷𝐺 (𝜅𝐷𝐺) as the
product of the (conditional) measure of complexity of the digraph 𝐷𝐺 given its underlying graph
𝑈𝐺 (𝜅𝐷𝐺∣𝑈𝐺) times the complexity of the underlying graph 𝑈𝐺 (𝜅𝑈𝐺). Symbolically we can write
this as:

𝜅𝐷𝐺 = 𝜅𝐷𝐺∣𝑈𝐺 × 𝜅𝑈𝐺 . (30)

To make (30) precise we can take for 𝜅𝐷𝐺∣𝑈𝐺 = any of the complexity measures for digraphs that
we have studies in the present section, such as the one defined in (22),23) (25), (27) or (28); as
𝑈𝐺 is a graph we can take for 𝜅𝑈𝐺 a complexity measure for graphs such defined in (1).

In case 𝐷𝐺 is in fact a graph 𝜅𝐷𝐺∣𝑈𝐺 = 1 then 𝜅𝐷𝐺 = 𝜅𝑈𝐺 , where 𝐷𝐺 is in fact equal to 𝑈𝐺.

10 Local complexity of networks

10.1 Intuitive idea

In the complexity measure for the networks so far, the (tacit) assumption was that the
neighbourhood of each point in the network is (in principle) the entire network.24) In the present
section we want to consider an extension by considering local versions of these complexity
measures. The aim is not to present the details for the ‘localization’ of every complexity measure
considered above, but to present some examples. From these it should be clear how one can
produce local versions of other complexity measures.

23) With reservations, as the measure is a rather crude one.
24) Local complexity is an example of a concept that is defined locally. Such concepts abound in mathematics, in areas

such as geometry, algebraic geometry, topology and algebra, to mention but a few.
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But what is the advantage of working locally? The obvious situation is the one in which the
network is very big, or in which it is a random access network (RAN) which is a network for which
essential information is lacking that is estimated by taking some probes of the network.25) A RAN
is like an unknown population, such as a population of fish living in a particular lake: How many
fish are there at a certain point in time?26)Howmany species of fish live there at a certain point in
time? These are typical questions ichtyologists or ecologists may be interested in. And, typically,
such a population is dynamic: fish are born in the lake; they migrate to the lake from another
lake or river; they die of disease or old age; they are eaten by other animals; they migrate to
another lake or river, et cetera. These questions then need to be answered repeatedly, at
different points in time, so that an idea can be formed about the dynamics of the fish population
in the lake. Likewise in case of a RAN, nodes and links appear and disappear constantly. Likewise
a RAN is dynamic, like the fish population in the example. Think of the internet as the archetypal
example of a RAN.

Huge networks such as RANs, and especially dynamic ones, require that one works locally. They
are simply too big and possibly too fleeting, to be studied globally. This forces one to look locally.
In case of a fish population in a lake, if it is too big to be studied in its entirety, it should be
divided into suitably defined ‘sub lakes’. These should, on the one hand, be are small enough so
that they can be investigated, and, on the other hand, should be sufficiently isolated so that they
can be considered habitats, rather than passage areas. Combined they should provide a
representative sample of the entire lake.

This means that for each point 𝑝 in a network 𝑁 we define a neighbourhood 𝑁𝑝, which is a local
version of 𝑁 (to be made precise below). The complexity measures defined above, for both
graphs and digraphs, can be localized by carrying out computations for individual points 𝑝 using
𝑁𝑝 instead of the entire network 𝑁.

Neighbourhoods for graphs and digraphs are differently defined, but are both based on metrics
(in case of graphs) or quasimetrics (in case of digraphs). For both types of networks we work
locally (in neighbourhoods of points) and we generate a vector with local complexity information
per entry, where each entry corresponds to a node. Details of both types of local complexity
measures can be found in Subsections 10.4 and 10.5. But we first we consider neighbourhoods
on graphs and digraphs and how they are defined with the help of (quasi)metrics that have been
specified for these structures.

10.2 Neighbourhoods in graphs

In defining neighbourhoods in graphs we look at neighbourhoods in topology, in particular in
metric spaces as an example. Let (𝑋,𝑑) be a metric space, with 𝑋 a non‐empty set and 𝑑 a
metric defined on this space. With the metric, open balls can be defined that form a basis for a
topology (𝑋, 𝜏). The open balls of the type 𝐵𝑝(𝜌) ≜ {𝑥 ∈ 𝑋∣𝑑(𝑝, 𝑥) < 𝜌} for 𝜌 > 0 form a basis
of this topology 𝜏. A closed ball would be of the type 𝐵̄𝑝(𝜌) ≜ {𝑥 ∈ 𝑋∣𝑑(𝑝, 𝑥) ≤ 𝜌}.

25) See e.g. [14]
26) ‘Point in time’ is a figure of speech and should not be taken literally. It takes time to probe an ecosystem such as a

lake. So rather than a ‘point’ we need an interval. But the point of time is just a reference time. It could also be the
midpoint of such a time interval.
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For graphs we shall also use the idea of ‘balls’ of a certain diameter around a vertex 𝑝 to
implement the idea of a neighbourhood of 𝑝. For this we need a distance function. For graphs
lengths of paths connecting points in a graph are natural choices to derive such a function.

A neighbourhood 𝑁𝑝 of a node 𝑝 in a graph 𝐺 = (𝑉,𝐸) is defined as a set of vertices in 𝑉, that is
𝑁𝑝 ⊆ 𝑉. Once a neighbourhood 𝑁𝑝 of a node 𝑝 has been identified, it can be used to define a
neighbourhood subgraph 𝐺𝑝 = (𝑁𝑝, 𝐸𝑝) of the original graph 𝐺 = (𝑉,𝐸), where
𝐸𝑝 ≜ {{𝑎, 𝑏} ∈ 𝐸 ∣𝑎, 𝑏 ∈ 𝑁𝑝}. 27)

In order to make this work we need to define a metric. For this we use paths in each connectivity
component of the graph 𝐺 = (𝑉,𝐸) be a graph. Let 𝑣 and 𝑤 be two nodes in 𝐺, that is, 𝑣,𝑤 ∈ 𝑉.
Suppose that 𝑣 and 𝑤 are in the same connectivity component, so that there is a path 𝜋 in 𝐺
connecting 𝑣 and 𝑤, for short 𝑣 𝜋

; 𝑤. Because 𝐺 is a graph, the reverse path 𝜋← is a path
connecting 𝑤 and 𝑣 in 𝐺, that is 𝑤 𝜋←

; 𝑣.

We start with defining the distance between nodes in 𝐺 with the natural metric. In this metric
every edge has length 1 If nodes 𝑣,𝑤 ∈ 𝑉 𝑣 ; 𝑤 in 𝐺 then 𝑑(𝑣,𝑤) is defined as the length of
the shortest path 𝜋∗𝑣,𝑤 in 𝐺 connecting 𝑣 and 𝑤, which is the number of edges on 𝜋∗𝑣,𝑤. In case
each edge {𝑎, 𝑏} has a length 𝑑𝑎𝑏 = 𝑑𝑏,𝑎 > 0 then the length of the path is equal to the sum of
the lengths of the edges of which 𝜋 consists. The distance 𝑑𝑣𝑤 of 𝑣 and 𝑤 is the length of the
shortest path 𝜋∗𝑣,𝑤 measured as the sum of the lengths of the edges of which it consists, that is

𝑑𝑣𝑤 ≜ 𝓁(𝜋∗𝑣,𝑤) = ෍
{𝑎,𝑏}∈𝜋∗𝑣,𝑤

𝑑𝑎𝑏 . (31)

If 𝐷𝐺 = (𝑑𝑣𝑤), with 𝑣,𝑤 ∈ 𝑉 and in the same connectivity component then the following
properties hold:

– 𝐷𝐺 ≥ 0,
– 𝐷′

𝐺 = 𝐷𝐺 ,
– 𝑑𝑣𝑣 = 0 for all 𝑣 ∈ 𝑉.

We now consider an example. Figure 10.1 shows a graph with two neighbourhoods, one with
nodes distance 1 removed from the center node 3 and the other with nodes with distance at
most 2 removed from the center node 3. In both cases the natural metric is used. The edges
belonging to the neighbourhoods subgraph have also been indicated. On the left‐hand side the
entire graph is shown, whereas on the right‐hand side only the neighbourhood subgraphs are
shown.

It is understandable that one wants to concentrate on the local information such as the
neighbourhood graph, but this is not quite enough. The problem is that the degrees of some
nodes in the neighbourhood subgraphs may be incorrect: some edges may not be taken into
account, in which case the degrees of some nodes in a neighbourhood are not taken into account.

27) In fact this is the convenientway to define a neighbourhood subgraph. However, and edgemay actually not be situated
on any path from a point in the neighbourhood to its central point. We take this for granted, because otherwise the
definition of a neighborhood subgraph is too complicated. And this complication does not serve a purpose.
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Figure 10.1 Neighbourhoods of node 3. Top left, with distance at most 1; bottom left,
with distance at most 2. On the right‑hand side the corresponding neighbourhood
subgraphs are shown.

To avoid this problem we should consider extended neighbourhoods. This means, in case of
neighbourhood 𝑁3, that edges should be considered in the cut set defined by 𝑁3 and its
complement 𝑉/𝑁3. In Figure 10.2 we show the extended neighbourhoods displayed in Figure
10.1.

Figure 10.2 Extended neighbourhood subgraph for node 3 as part of the entire
graph. It is the same graph as the one shown in Figure 10.1. The edges in red are in the
extension.

10.3 Neighbourhoods for digraphs

To define neighbourhoods for digraphs we take a similar approach as in case of graphs (see
Section 10.2). Because with digraphs we are now dealing with arcs (possibly without its
counter‐arc) instead of edges (arcs and their counter‐arcs), the situation is generally quite
different from that in case of graphs, due to a lack of symmetry. The distance of a node 𝑣 to a
node 𝑤 may be different from that of node 𝑤 to node 𝑣. It is actually possible that there is no
path from 𝑤 to 𝑣, in which case the corresponding ‘distance’ is symbolically∞. This means that
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we (typically) are not be dealing with metrics, but with quasimetrics (see below).28)

But we still can use the same idea to measure the distance from point 𝑣 to point 𝑤, namely by
considering paths 𝜋𝑣𝑤 from 𝑣 to𝑤, and to use the length of the shortest one as a measure of the
distance from 𝑣 to 𝑤. However, we have to measure the distance from node 𝑤 to node 𝑣
separately, as 𝜋←𝑣𝑤 may not be an allowable path from 𝑤 to 𝑣; it may not be a path at all.

Again, as in the case of graphs, we first define a neighbourhood as a set of nodes in the original
graph. Then we add arcs to these nodes to obtain a subgraph of the original graph, which we
shall call a neighbourhood subdigraph. We do this in a similar way as in case of graphs.

Let 𝐺 = (𝑉,𝐸) be a digraph, and 𝑎, 𝑏 nodes in 𝐺. A path 𝜋 = (𝑒1, … , 𝑒𝓁) from 𝑎 to 𝑏 in 𝐺 is a
sequence of arcs in 𝐺, such that the end node of arc 𝑒𝑗 is the start node of the next arc 𝑒𝑗+1 for
𝑗 = 1,… , 𝓁 − 1, and the start node of 𝑒1 is 𝑎 and the end node of 𝑒𝓁 is 𝑏. The (natural) length of 𝜋
is 𝓁. This equals the distance of the start node of 𝑒1 to the end node of 𝑒𝓁. In this case each arc
has length 1. If so desired one can associate a different length with an arc 𝑒𝑗 , say 𝑑𝑗. The length
associated with the path 𝜋 would then be ∑𝑗 𝑑𝑗.

Let (𝐺,𝑑) = (𝑉,𝐸, 𝑑) where 𝐺 = (𝑉,𝐸) be a digraph and 𝑑 is a quasimetric on 𝐺. This is a
function 𝑑 ∶ 𝐸 → ℝ/ℝ−. Also, 𝑑 is not necessarily symmetric: If (𝑎, 𝑏) is an arc in 𝐺, (𝑏, 𝑎) need
not be an arc in 𝐺, in which case 𝑑(𝑏, 𝑎) is not defined (at the moment).

Using the definition of a quasimetric on the arcs of 𝐺 as a basis, we can extend this distance
concept to any pair of nodes 𝑎, 𝑏 in 𝐺. If 𝑎; 𝑏 then 𝑑𝑎𝑏 is defined as the length of the shortest
path in 𝐺 from 𝑎 to 𝑏, where the length of a path is the sum of the 𝑑‐values associated with each
of the arcs on the path. If there is no path from 𝑎 to 𝑏 then the value of 𝑑𝑎𝑏 is set to∞.

If we use a matrix 𝐷𝐺 = (𝑑𝑎𝑏), with 𝑎, 𝑏 ∈ 𝑉 to represent the distances in 𝐺 then it has the
following properties:

– 𝐷𝐺 ≥ 0,
– 𝑑𝑎𝑎 = 0 for all 𝑎 ∈ 𝑉.
– If 𝑎 ↝̸ 𝑏, then 𝑑𝑎𝑏 =∞.

If we compare these properties with the corresponding ones for a graph, we see that the lack of
symmetry (arcs without counter‐arcs) leads to a more complicated distance concept in digraphs.
This is clearly visible if we look at neighbourhoods of nodes in digraphs. Defining them requires a
bit more attention than in case of graphs.

In case 𝐺 = (𝑉,𝐸) is a digraph a neighbourhood of a node 𝑝 is a subset 𝑉𝑝,𝛿 of 𝑉 consisting of two
parts, the incoming part 𝑉𝑝,𝛿,𝑖𝑛 and the outcoming part 𝑉𝑝,𝛿,𝑜𝑢𝑡:

𝑉𝑝,𝛿,𝑖𝑛 ≜ {𝑣 ∈ 𝑉 ∣𝑣 ; 𝑝 , 𝑑(𝑣, 𝑝) ≤ 𝛿}, (32a)

𝑉𝑝,𝛿,𝑜𝑢𝑡 ≜ {𝑣 ∈ 𝑉 ∣𝑝; 𝑣 , 𝑑(𝑝, 𝑣) ≤ 𝛿}, (32b)

𝑉𝑝,𝛿 ≜ 𝑉𝑝,𝛿,𝑖𝑛 ∪ 𝑉𝑝,𝛿,𝑜𝑢𝑡 (32c)

28) In case the digraph does not happen to be a graph.
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To produce a neighbourhood subdigraph for a neighbourhood 𝑁𝑝 we need to add a set of arcs.
Like in case of graphs, we take the set of all arcs in 𝐸 with end points in 𝑉𝑝,𝛿 for this:
𝐸𝑝 ≜ {(𝑎, 𝑏) ∈ 𝐸 ∣𝑎, 𝑏 ∈ 𝑁𝑝}.29) 𝑉𝑝,𝛿 for some choice of 𝛿 is an example of a neighbourhood 𝑁𝑝.

We use Figure A.2 as an example showing two neighbourhoods of a point in a digraph. In Figure
10.3 two neighbourhoods of node 4 are presented. The top row at the left‐hand side depicts the
neighbourhood of node 4 with nodes at distance at most equal to 1. On the top row at the
right‐hand side the neighbourhood subdigraph of node 4 is shown. On the bottom row at the
left‐hand side the neighbourhood of node 4 is shown, with the nodes at a distance of at most 2
to the center node 4. On the bottom row at the right‐hand side the corresponding
neighbourhood subdigraph of center node 4 is represented.

Figure 10.3 Neighbourhoods of center node 4 on the left, and the corresponding
neigbourhood subdigraphs on the right. In the top row the distance to the center node
4 is at most 1, at the bottom row at most 2. Incoming arcs in green, outgoing arcs in
red. Other arcs in neighbourhood subdigraphs in yellow. Remaining arcs and nodes in
gray.

As in case of graphs we need to consider extended neighbourhood digraphs to obtain the correct
indegrees of all the nodes of the neighbourhood. An extended neighbourhood subdigraph is a
neighbourhood subdigraph with arcs added. These arcs are the ones connecting nodes in the
neighbourhood subdigraph with nodes outside this neighbourhood subdigraph (or vice versa).
Stated differently, the arcs are in the cut set defined by the neighbourhood and its complement
in the original digraph.

By adding these arcs we make sure that every node in the neighbourhood digraph has the same
indegree and outdegree as in case of the original digraph. In Figure 10.4 an extended
neighbourhood digraph is shown for a neighbourhood digraph shown on the top row of Figure
10.3.

29) This choice may imply that some arcs in this neighbourhood are not situated on any path connecting a point in the
neighbourhood to the center point. In a previous attempt to define a suitable neighbourhood subdigraph this was a
requirement for each of its arcs. However, the resulting definition of a neighbourhood subdigraph turned out to be
too complicated. It was therefore abandoned for the current, straightforward, and hence simpler, one.
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Figure 10.4 Extended neighbourhood subdigraph of center node 4. Ingoing arcs in
green, outgoing arcs in red, other arcs of the neighbourhood in orange, arcs in the
extension of the extended neighbourhood in black, orange nodes are nodes not in the
neighbourhood but with an arc connecting them to the neighbourhood digraph.
Nodes outside the neighbourhood and remaining arcs in gray.

In case one does not use extended neighbourhoods, one still is able to compute complexity
measures, but for the border node of each neighbourhood, the values may not be the same as in
case the original digraph would be used. If the neighbourhoods are bigger, one may expect that
there are relatively fewer border points, compared to the total number of points in the interior of
the neighbourhood.30)

10.4 Local complexity for graphs

To illustrate local complexity for graphs we look at the average degree (as defined in 1). This
would develop into the local variant where degrees are averaged for the nodes in the
neighbourhoods of points, instead of over all nodes in the graph. We then would find:

Δ𝑎𝑣𝑝,𝑁𝑝 =
Δ𝑁𝑝
∣𝑁𝑝∣

, (33)

where Δ𝑁𝑝 is the sum of the degrees of all nodes in 𝑁𝑝 and ∣𝑁𝑝∣ denotes the size of 𝑁𝑝. In (33)
we have used 𝑝 as well as 𝑁𝑝 as subscripts, because a neighbourhood for a point can usually be
defined in many ways. So (33) is the average of the degrees of the points in 𝑁𝑝. In the original
definition it was the average of the degrees of all the points in the network. For a local version
we would take all the points in a neighbourhood of each point. Of course, these neighbourhoods
should be defined first. This can be done in many ways. The result obviously depends on the
choice of the neighbourhoods of each of the points in the network.

So instead of a single quantity to express the complexity of a network, using local complexity
produces a vector of length ∣𝑁∣ in which the components are complexity measures for each node
in the network. In case of the local complexity measure (33) we have

30) If the analogy with a ball would hold, the surface area of a ball inℝ3 with radius 𝑟 grows as 4𝜋𝑟2, whereas the volume
grows as 4

3𝜋𝑟
3. In ℝ𝑛 the 𝑛‐volume of a ball is proportional to 𝑟𝑛 and the (𝑛 − 1)‐volume is proportional to 𝑟𝑛−1.

If the same sort of relationship would hold for the number of border points relative to the total number of points in
the neighbourhood, the influence of the values of the border points would decrease proportional to 1/𝑟.
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Δ𝑎𝑣𝑙𝑜𝑐 ≜ (Δ𝑎𝑣1,𝑁1 , … , Δ
𝑎𝑣
∣𝑉∣,𝑁∣𝑉∣), (34)

where we have assumed that the nodes of the network (in 𝑉) have been consecutively ordered
(in some way) from 1 to ∣𝑉∣. In case of a huge network one would only have the (estimates of)
the values for a subset of the components.

10.5 Local complexity for digraphs

Local complexity for digraphs is also based on (extended) neighbourhoods of nodes, as in case of
graphs. Only the definition of ‘neighbourhood’ for a digraph is different from that of a graph (see
Subsection 10.3).

The idea is to apply reachability locally, that is, for the (extended) neighbourhoods of the nodes
in 𝐺. Reachability is discussed in Section 9. In particular the complexity measure in (27) is based
on the entropy of a distribution defined in (26). If reachability is defined locally, we can apply the
same kind of measure as (26) locally. We shall leave the details to the interested reader.

11 Node rank

The idea behind node ranks is this: consider a criterion to define important nodes (or arcs) in a
network, select them and complete the network with these nodes (or arcs) using connectivity
information from the original network. For some problems it is natural to concentrate on the
nodes, such as the Internet, where the nodes are (clusters of) webpages (URLs). For other
problems, such as traffic problems, it is natural to consider links / arcs, which in this case would
represent roads or road segments.31)

Node rank can be used as a criterion to identify the important nodes. The concept of ‘node rank’
is derived from that of ‘page rank’ defined, originally, for the WWW. Intuitively, the idea of node
rank is that the node rank of a node is based on the node ranks of the nodes linking to it. A node
with a higher node rank contributes more to the page rank of the node referred to. Despite this
intuitive idea for node rank it can be defined in several ways. We present some examples.

31) Technically, one can always consider top nodes. But then one should redefine the original network. One can create
an arc network where the arcs are represented by dots, and two dots (𝑎, 𝑏) and (𝑐, 𝑑) are connected if and only if
𝑏 = 𝑑, that is, if the head of (𝑎, 𝑏) coincides with the tail of (𝑐, 𝑑). In the arc network of the original digraph the
nodes are in fact the arcs of the original networks. Selecting top nodes in the arc network yields top arcs in the original
network.

CBS | Discussion paper | December 21, 2021 38



11.1 Node rank 𝑟1

We present the definition of node rank from [14], which was inspired by that of page rank in [4].
It deviates slightly from the original definition. It can be fairly easily defined locally. From this
definition a global one can be derived in terms of matrices. We start by looking at a node 𝑎 and
the 𝑛𝑎 > 0 nodes pointed at from 𝑎, by arcs, 𝑏1, … , 𝑏𝑛𝑎 . Suppose that node 𝑎 has rank 𝑟1(𝑎).
Then 𝑏𝑖 gets share 𝑟1(𝑎)/𝑛𝑎 of the rank 𝑟1(𝑎) of 𝑎. To determine the rank 𝑟1(𝑏) of 𝑏, one adds
all contributions from the nodes pointing to 𝑏.

This method of determining a node rank can be linked to invariant distributions for Markov
chains. See [6], pp. 392 ff. To the adjacency matrix 𝐴 of a digraph a Markov matrix 𝑃 can be
associated with 𝐴 by dividing each row 𝑖 of 𝐴 by the sum of the elements in this row (which is the
outdegree for node 𝑖). This corresponds to the Markov chain where a jump from a node 𝑖 occurs
with equal probability to any of the nodes 𝑗 connected to node 𝑖 is, that is, such that (𝑖, 𝑗) ∈ 𝐸.

If this matrix is denoted by 𝑃 then an invariant distribution is a vector 𝑢 ≥ 0 with 𝜄′𝑢 = 1, such
that

𝑢𝑃 = 𝑢. (35)

Under certain conditions 𝑢 > 0 exists and is unique.32)

11.2 Node rank 𝑟2

The idea of the node rank as defined in Section 11.1 is that the rank 𝑟1(𝑎) of a node 𝑎 pointing to
𝑛 nodes is equally distributed over its outgoing arcs. So if node 𝑏 with (𝑎, 𝑏) ∈ 𝐸 the ’donation’
of 𝑎 to the rank of 𝑏 is 𝑟1(𝑎)/𝑛𝑎. The implicit assumption is that a visit to a node 𝑎 also implies a
visit to node 𝑏. But this assumption is questionable, as it, in its ultimate consequence, would
imply that users would follow very long paths of links (arcs). This is highly unlikely. Think of the
Internet as an example. Typically users will only click on a limited number of links.

In a modified version of the node rank we want to distinguish between the rank contribution of a
direct link to a node and rank contributions from indirect to this node. This latter contribution we
want to diminish. In the context of the WWW, the modification can be motivatied by the fact
that only a fraction of the links pointing to 𝑎 is actually used to point to 𝑏. For definiteness, we
assume that only a (fixed) fraction 𝜎 ∈ (0, 1) is used in this way. This is also the fraction that we
use to carry over the node rank of 𝑎 to a node 𝑏, with (𝑎, 𝑏) ∈ 𝐸.

So we assume that the direct link from 𝑎 to 𝑏 contributes to the node rank of 𝑏 in two
components

1. a weight 1, because 𝑎 is linked directly to 𝑏.

32) See the theorem on p. 393 in [6].
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2. a weight 𝜎𝑟2(𝑎), for the nodes indirectly linked to 𝑏 via 𝑎, i.e. all the nodes 𝑐 with (𝑐, 𝑎) ∈ 𝐸.
The parameter 0 < 𝜎 < 1 is a control parameter, to see how the results change when this
parameter is changed.

So the total contribution of 𝑎 to the rank of 𝑏 is: 1 + 𝜎𝑟2(𝑎)/𝑛𝑎. So the node rank of 𝑏 is
obtained by summing over all nodes 𝑎 that point to 𝑏. That is

𝑟2(𝑏) = ෍
𝑎∈Ξ(𝑏)

(1 + 𝜎𝑟2(𝑎)) = Δ𝑖𝑛(𝑏) + 𝜎 ෍
𝑎∈Ξ(𝑏)

𝑟2(𝑎), (36)

where Ξ(𝑏) = {(𝑧, 𝑏) ∈ 𝐸, for some 𝑧 ∈ 𝑉} is the set of nodes with arcs pointing to node 𝑏 and
Δ𝑖𝑛(𝑏) denotes the indegree of node 𝑏, i.e. ∣Ξ(𝑏)∣ = Δ𝑖𝑛(𝑏).

We can write (36) as a matrix equation

𝑢 = Δ + 𝜎𝐴′𝑢, (37)

where 𝑢 = (𝑟2(1), … , 𝑟2(𝑛))′, Δ = (Δ𝑖𝑛(1), … , Δ𝑖𝑛(𝑛))′. If (37) has a solution 𝑢, it can be written
as:

𝑢 = (𝐼 − 𝜎𝐴′)−1Δ. (38)

So (38) exists if the matrix 𝐼 − 𝜎𝐴′ is nonsingular, which is the case if 𝜎 is not an eigenvalue of 𝐴′,
or equivalently, of 𝐴. If (38) has a solution, it is unique.

12 Arc rank

So far we have considered the concept of node rank of a network. In the present section we use
node rank to compute arc ranks. They are used in Section 13 to reduce a (complex) network to a
less complex one by removing certain nodes and arcs. That is, one method that is proposed there
uses the arc ranks.

For each node 𝑣 with incoming and outgoing arcs, the sum of the arc ranks of each type of arcs
are the same and equal to the node rank of 𝑣. With arc ranks at our disposal we can distinguish
between the importance of arcs. These arc ranks can also be used to correct node ranks in case a
network is reduced to its essence. See Section 13.

The arc ranks are computed from the node ranks, by using iterative proportional fitting (IPF). In
sampling applications IPF is used as a disaggregation method, to spread the values of marginal
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tables with population numbers proportionally over a higher dimensional table with sampling
values. The method originated in several areas, among them National Accounts.33)

The node ranks act as the 1𝐷 marginals and the adjacency matrix of the digraph is the 2𝐷 table
over which the node ranks are to be spread in a certain way. It should be stated that a solution
does not always exist. However, in case of a 2𝐷 table with positive entries Sinkhorn’s theorem
guarantees the existence of a solution (see [10], pp. 75 ff.). For most digraphs this requirement is
not satisfied; only for the complete digraphs does it hold. But we could approximate it by
replacing each value 0 by a small value 𝜖 > 0, thus obtaining 𝐴𝜖 instead of 𝐴. Then by taking the
limit 𝜖 ↓ 0 we hope to find a solution to the original IPF problem with 𝐴 instead of 𝐴𝜖.34)

If a solution exists35) we have that the sum of the arc ranks of the incoming arcs of a node 𝑖
equals that of the sum of the ranks of the outgoing arcs of this node, which are both equal to the
node rank of 𝑖.

In Figure 12.1 a general setting for the IPF problem we need to solve is presented. The marginal
tables are provided by the node ranks 𝜔𝑖. The adjacency matrix 𝐴 = (𝑎𝑖𝑗) is used as the 2D table
over which the node ranks are to be distributed.

Figure 12.1 IPF problem setting: node ranks 𝜔𝑖 and adjacency matrix 𝑎𝑖,𝑗 .

In Figure 12.2 the solution— if it exists — of Figure 12.1 is presented. The weights𝑤𝑖𝑗 are the arc
weights.

Figure 12.2 Solution of the IPF problem in Figure 12.1: arc ranks 𝑤𝑖𝑗 .

Row‐wise and column‐wise the weights sum to the node ranks: 𝑊𝜄 =𝑊′𝜄 = 𝜔, where
𝜔 = (𝜔1, … ,𝜔𝑛)′, 𝜄 is the all 1s vector of length 𝑛 and𝑊 = (𝑤𝑖𝑗), the matrix of arc ranks.

33) The name associated with applications in economics is that of R. Stone from Cambridge University, who called it the
RAS method. In the sampling area W. Deming and F. Stephan are early proponents of this method. [2] was written
at the department of Stone and provides an account that is motivated by economic applications. [10], Section 2.6 is
another source for a discussion of this method, which has a more statistical orientation. The R package mipfp (see [3])
can be used to apply IPF (and similar methods).

34) Provided a direct computation does not yield a solution. However, in many cases if some of the entries are 0 a solution
can be obtained by direct computation, which means iteratively.

35) To find necessary and sufficient conditions for IPF to converge is a complicated matter. Sufficient conditions for the 2D
case are known: 1. the marginals of the values in the table (i.e 𝑎𝑖+ and 𝑎+𝑗) are strictly positive, and 2. the table is
inseparable, that is, it does not permute to a block‐diagonal form. But are they also necessary?
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13 The essence of a network

13.1 The idea

The problem is how to present the highlights of a complicated network, from which all the
distracting details have been removed. But what are the highlights, and the distracting details?
The same problem is faced by a cartographer who wants to produce a map of an entire country
that should give a viewer a clear picture of its main features: the bigger cities, the main
waterways, the main roads, etc. And if one zooms in at a smaller part of the country more details
become visible – but only for a smaller part of the country. So there is a trade‐off between scale
and detail.

Depending on the scale level chosen, the corresponding amount of detail provided is chosen.
The reason for this is to focus on the important things at the chosen scale level. In a sense, less is
more: presenting all the details available swamps the message and hides the bigger picture.

Translating this idea to networks one can employ node and arc ranks to differentiate among the
nodes and the arcs in a network and choose the more important ones. One can select the nodes
that have a rank value above the threshold value 𝛿 . So 𝛿 is a parameter controlling the detail to
be made visible of the reduced network, and hence its complexity (the more detail the more
complex). But only showing the selected nodes or arcs may result in a reduced network with a
topology that deviates from that of the original network. This we want to avoid. It can be
achieved by adding more arcs, carefully chosen.

Selecting the important nodes is the easy bit of the complexity reduction. More work is required
to find the arcs that should be added (if any). This is done by looking at the topology, in particular
the connectivity, of the original network. It is clear that this process reduces the complexity of
the original network. The reduction is controlled by the parameter 𝛿.

The first approach is focussed on node selection. The arcs follow suit, and they are mainly used
to produce a reduced network with the right topology, mimicking that of the original network. In
the second approach the arcs are selected first and the nodes follow suit. We consider these
approaches in separate sections.

An application of computing the essence of a network is to apply it to a big (and complex)
network and to draw it in a picture, on screen or on paper. As software to render networks
already exists, it is only required to be able to compute the essence of networks, following the
specifications of users.

13.2 Selecting nodes

A node rank defined for a network can be used to distinguish the important nodes from the less
important ones: the higher the value, the higher their importance. So given a network
𝐺 = (𝑉,𝐸), a node rank function 𝜌 ∶ 𝑉 → ℝ/ℝ− and a threshold 𝛿 > 0, we can define
𝑉𝛿 = {𝑣 ∈ 𝑉 ∣𝜌(𝑣) ≥ 𝛿} as the subset of nodes in 𝑉 with rank at least 𝛿.
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For the adjacency matrix 𝐴 of 𝐺 let 𝐴∣𝑉𝛿 be the adjacency matrix obtained from 𝐴 by only
selecting those rows and columns that correspond to elements in 𝑉𝛿 . The first idea is to consider
𝐴∣𝑉𝛿 as the adjacency matrix for the selection of nodes 𝑉𝛿 . But it is not the correct choice, as it
only gives the arcs that are also in 𝐺. But two nodes may be connected indirectly, via nodes not
in 𝑉𝛿 . So we should know for each 𝑣𝑖 , 𝑣𝑗 ∈ 𝑉𝛿 whether 𝑣𝑖 ; 𝑣𝑗 holds in 𝐺, that is, whether there
is a path in 𝐺 from 𝑣𝑖 to 𝑣𝑗.

In order to decide this, the transitive closure 𝐴∗ of 𝐴 is needed. In fact, the adjacency matrix of
the digraph best presenting the essence of the original digraph is 𝐴∗∣𝑉𝛿 , which denotes 𝐴∗
restricted to the rows and columns corresponding to the nodes in 𝑉𝛿 .36) But both 𝐴∣𝑉𝛿 and 𝐴∗∣𝑉𝛿
are needed to distinguish arcs in 𝐺 from paths in 𝐺 that are not arcs. If 𝐴∣𝑉𝛿(𝑣𝑖 , 𝑣𝑗) = 1 there is
an arc in 𝐺 from 𝑣𝑖 to 𝑣𝑗 , which we colour blue. In case 𝐴∗∣𝑉𝛿(𝑣𝑖 , 𝑣𝑗) = 1 and 𝐴∣𝑉𝛿(𝑣𝑖 , 𝑣𝑗) = 0
there is a path from 𝑣𝑖 to 𝑣𝑗 which is not an arc in 𝐺, which we colour red. A red arc corresponds
to a path in the original digraph connecting top nodes. However, not all the nodes in such a path
need to be top nodes.

13.3 Selecting arcs

In Section 13.2 nodes were selected to define an essence digraph. But one can also derive an
essence digraph based on a selection of arcs.

Let the arcs in a digraph 𝐺 = (𝑉,𝐸) be ranked according to some arc rank. On the basis of this
ranking and a threshold 𝜖 top arcs from 𝐸 are selected, that is with arc rank at least 𝜖. Denote
the selection by 𝑇 = {𝑒1, … , 𝑒𝑙}. Each arc is an ordered pair of vertices: 𝑒𝑗 = (𝑣𝑗1 , 𝑣𝑗2 ). Let
𝑒̆𝑗 = {𝑣𝑗1 , 𝑣𝑗2} be the underlying edge of 𝑒𝑗. 𝑇 implies the set
𝑇𝑉 = ∪𝑙𝑗=1 ̆𝑒𝑗 = {𝑣11, 𝑣12, … , 𝑣𝑙1, 𝑣𝑙2} of endpoints of these arcs.

As in Section 13.2 the adjacency matrix that describes the essence of 𝐺 based on the node set
𝑇𝑉 and the arc set 𝑇 is 𝐴∗∣𝑇𝑉, which denotes 𝐴∗ restricted to the rows and columns
corresponding to the nodes in 𝑇𝑉. We can apply the same colouring scheme as in Section 13.2 to
colour the arcs in the essence digraph with the nodes in 𝑇𝑉.

13.4 Example

We consider an example of a small network, where the various nodes have different node ranks,
indicated by colour. See Figure 13.1, in the upper left corner. The nodes are coloured to indicate
different degrees of node ranks. The digraph in this example is somewhat special as it is a ditree
(and hence is acyclic).

In the cell in the right‐upper corner of Figure 13.1 the nodes with the lowest ranks have been
removed, as well as the arcs that are incident to these nodes. This is the first reduction. In the
left lower corner the nodes with the highest rank in this digraph are shown. This is the second
reduction. Finally the digraph obtained by reducing the second reduction is shown in the
right‐hand lower corner. It is a single node, which is the hub of the original digraph.

36) Or perhaps the transitive reduction of this matrix, or the digraph corresponding to it, if one wants a smaller set of arcs
from which others can be deduced by transitive closure.
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Figure 13.1 Digraph with node ranks in colours in left upper corner. Various
reductions are shown in the other cells of the table.

In Figure 13.2 a digraph is shown on the left that is supposed to be part of a larger network. The
nodes are supposed to have node ranks associated with them. Some of them are considered
high enough and some of them are not. The idea is to prune these latter nodes (and the arcs
involved) so that we get a reduced digraph with high enough node ranks. This pruned digraph is
shown at the right‐hand side of Figure 13.2.

Figure 13.2 Digraph with node with high node ranks (black and blue) or with low
node ranks (yellow). The blue nodes are pointed at from nodes in the larger network
not depicted.

After the pruning has been completed the question is now whether or not to adjust the node and
arc ranks in the pruned digraph, or not. We consider the consequences of each choice in the
Sections 13.4.1 and 13.4.2, respectively.

13.4.1 Keep node ranks
If we go for this option we start removing arcs and nodes. For the remaining nodes we use the
original node ranks. With these node ranks, we can recompute the ranks for the remaining arcs
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in the reduced digraph. In this way node information from the original digraph is preserved and
the arc ranks are adjusted to obtain consistency.

It should be pointed out that, tacitly, this reduction process has redefined the meaning of the
remaining nodes. Some nodes in the reduced graph seem the same nodes in the original
network, but this is not really the case. There is a ‘semantic shift’ in the meaning of these nodes.
To understand this, consider the nodes 3, 4, 5, 6, 8, 14 in Figure 13.2. Each of them has
neighbourhoods in the original digraph and in the reduced digraph that are different. So, for
instance, node 14 of the reduced network still also represents nodes 15 and 16 in the original
digraph, although these nodes do not appear in the reduced network. However, their influence is
still present in the node and arc ranks used, as they have not been updated. To mark this
difference it is perhaps preferable to indicate explicitly that these notes are slightly different by
using primes with the original labels. So we then would use, for instance, 3′, 4′, 5′, 6′, 8′, 14′ in
the reduced network instead of 3, 4, 5, 6, 8, 14 in the original network. However, this convention
shows the relation between corresponding nodes in the reduced and original digraph.

13.4.2 Adjust node ranks
If this option is chosen, the node ranks from the original digraph are adjusted by subtracting the
ranks of the arcs removed from the node ranks of the original network. If we denote the node
ranks for the reduced network by 𝑤(𝑗)′ and the arc ranks of the original network by 𝛼𝑖,𝑗 , we find
from Figure 13.2the following set of linear constraints:

𝑤(1)′ ≜ 𝛼2,1 + 𝛼3,1 + 𝛼4,1,
𝑤(2)′ ≜ 𝛼5,2 + 𝛼6,2,
𝑤(3)′ ≜ 𝛼6,3,
𝑤(4)′ ≜ 𝛼8,4,
𝑤(5)′ ≜ 𝛼11,5, (39)

𝑤(6)′ ≜ 𝛼11,6,
𝑤(8)′ ≜ 𝛼14,8,
𝑤(14)′ ≜ 𝛼17,14,
𝛼17,14 = 𝛼14,8 = 𝛼8,4 = 𝛼4,1,

The final equality of (39) implies

𝑤′(14) = 𝑤(8)′ = 𝑤(4)′ = 𝛼4,1 (40)

For the reduced network the arc nodes have to be computed using the adjacency matrix of the
reduced network and the adjusted node ranks as marginals. This can be done using the IPF
algorithm, as described in Section 12, but for the new situation.37)

37) We assume that in this way new arc ranks can actually be found. But this depends of the reduced network that has
been created, and in particular the structure of its adjacencymatrix. If there are toomany zero cells, awkwardly placed,
a solution may not exist.
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It should be stressed that in this case the meaning of the nodes has not been changed: each
node in the reduced network represents the same object as in the original network. The rank
information from the nodes and arcs eliminated has also been eliminated along with these
objects.

13.5 Graph reduction and complexity

Obviously, the methods described in Sections 13.2 and 13.3 lead to smaller digraphs, i.e. with
fewer nodes or fewer arcs. The expectation is that this usually leads to networks with smaller
complexity. But this is not necessarily the case. In Figure 4.2 we provided a simple example of a
graph that has a subgraph of higher complexity, if we take the average degree, Δ𝑎𝑣, as the
measure of complexity.

The same phenomenon exists for digraphs: the reachability of a subdigraph can be less than that
of the original digraph, and hence there can be an increase in complexity.

By removing nodes or arcs from a network with graph reductions one ends up in a class of
networks different from the one to which the original network belongs, because the underlying
graph is different. This makes comparison of complexities of digraphs belonging to different
classes of underlying graphs not very meaningful. Within a class of digraphs with the same
underlying graph direct comparison of our complexity measures for digraphs is meaningful and
informative. But not between networks belonging to different classes. The problem is that the
relation between number of nodes and number of arcs on the one hand and a complexity on the
other is not monotonous: more nodes and / or arcs does not automatically imply a higher
complexity. Important is how these elements are interconnected.

14 Discussion and conclusions

The present paper has two major objectives: to define complexity measures for networks and to
find methods to simplify networks, in particular those that are complex. First complexity
measures for graphs were defined, as they are simpler due to the fact that their adjacency matrix
is symmetric. For graphs, the first idea to quantify the complexity of graphs is to use the degree
of ‘compression’ of a graph as a guiding principle. A second idea was to use a special kind of full,
continuous search of the graph as a basis for graph complexity. A third idea was to uses natural
distances between nodes in graphs or line graphs.

Then complexity measures for digraphs were defined. This is a natural order to proceed, as
digraphs form a wider class of objects than graphs. New ideas have to be used to describe their
complexity. We have used reachability and the number of paths (for routing digraphs). We
hinted at the possibility of using search, and pointed at additional complications. Our approach
lead also to complexity measures for digraphs that are defined relative to the underlying graphs.
However some complexity measures for digraphs look at augmentation by arcs in order to reach
full reachability, which implies a transition to different underlying graphs. Then direct
comparison of the complexity of digraphs is not possible anymore. It would, however, if the
complexity of the underlying graph is also taken into account. We have suggested an approach
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where the digraph complexity measure is viewed as a complexity measure conditional on the
underlying graph. By multiplying this by the complexity of the underlying graph the idea is that
an unconditional complexity measure for digraphs is thus obtained.

Another extension that is considered in this paper is local complexity. The measures considered
initially in the present paper tacitly assume that the neighbourhood of each point is the entire
network. However it is possible to choose a neighbourhood of each node. Complexity
information is collected locally, that is in the neighbourhood associated with each node. Local
complexity measures were constructed by adapting the global measures considered before by
using local information, that is the neighbourhoods associated to the respective nodes in the
network.

In mathematics there are many structures that are defined locally. Manifolds, vector fields,
sheaves are examples of such local structures. The challenge is to derive global results from such
locally defined constructs. In case of local complexity of a network the challenge is to link it to its
global complexity. This is left as future research topic. The present paper does no go into this
issue.

The complexity measures introduced in this paper have not been thoroughly explored. Only a
few examples have been presented for the purpose of illustration. Full exploration on real data is
reserved for the future. Only then does it become clear what the value of each of the complexity
measures is, what their limitations are, how they are interconnected, how they should possibly
be modified to provide more attractive complexity measures, etc.

The second theme explored in the present paper is the reduction of networks. A reduction
similar as in cartography where one can zoom out and get information about a larger area but
with less detail, or zoom in and get detailed information about a smaller area. In a network
context one should be able to indicate what one considers important nodes or arcs and a
simplified network should then be generated with these elements present, and, if necessary,
supplemented with additional information to produce a network that has the same topology as
the original network. A reduced network embodies, so to speak, the essence of the original
network, at a level chosen by a user.

An application of this reduction option would be complex networks. One often would like a view
of the network that leaves out distracting details – unimportant nodes or arcs – so that one can
focus on the parts that matter. In a network representing a snapshot of the Internet, the
important nodes are the hubs of a certain minimum size.

One can reduce a network using only the original objects, with exactly the same meaning as in
the original network, or by using modified objects, which are in fact aggregate objects. Original
objects plus some neighbouring ones. So a node is then not a hub as in the original Internet, but
a hub and less important nodes (representing pages) pointing to it.

To be able to value, and rank, nodes and arcs in a network we consider node ranks and arc ranks.
Node ranks are weights on nodes that measure popularity, so to speak, in terms of being
referenced, that is pointed, at by arcs. A node 𝑏 pointing to a node 𝑎 contributes its own node
rank 𝜎(𝑏) to the node rank 𝜎(𝑎) of node 𝑎. In one type of node rank, the full node rank 𝜎(𝑏) of
node 𝑏 is contributed to the node rank 𝜎(𝑎) of the node 𝑎. This tacitly assumes that if node 𝑐
points to 𝑏 it also points to 𝑎, although this may only be through an indirect link. In a modified
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version of this node rank, the contribution of each node pointing to another one is modified: the
direct link counts for one and the indirect ones are discounted by a fixed factor 𝜆.

Given a network with node ranks, arc ranks were computed from them. We use the IPF algorithm
for this purpose, with the adjacency matrix of the network as the 2𝐷 table and with the node
ranks as the marginal tables. As with the nodes one can also select important arcs and define a
reduced network on their basis. Like in the nodes case, one has to make sure that the topology
of the reduced digraph reflects that of the original digraph.

It would be nice if network reduction would imply a lower level of complexity of the reduced
network than the original one. We have seen that this does not necessarily hold for the
complexity measures considered, with the possible exception of an unconditional complexity
measure. There was no opportunity to investigate this problem here, so it is left to future
research to answer it. It would be nice to have complexity measures that have lower values for
reduced networks.

In the paper several problems were mentioned that need to be solved, possibly only
approximately, if one wants to have a set of routines at one’s disposal for complexity
computations, or at least implemented. Possibly some problems are quite difficult to solve and
cannot be solved exactly, in which case approximation methods are called for.

Apart from elaborating some ideas further theoretically, what is most needed is to apply the
methods proposed to real data.
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Appendix
A Example digraphs and their

complexities

We present here some examples of digraphs in which we look at reachability for each of the
nodes. The examples we consider, all have the same underlying graph 𝐺, namely the one shown
in Figure A.1. We denote this class of digraphs as G𝐺,𝑘, where 𝐺 denotes the underlying graph
and 𝑘 denotes the number of arcs in the class of digraphs. If 𝐺 = (𝑉,𝐸) with ∣𝑉∣ = 𝑛 and ∣𝐸∣ =𝑚,
we have𝑚 ≤ 𝑘 ≤ 2𝑚. To compare the behaviour of the digraphs it is interesting to first consider
the digraphs in a class G𝐺,𝑘, for a fixed parameter 𝑘, and then to see what happens when the
parameter 𝑘 is varied from𝑚 to 2𝑚. The digraphs considered in this way will more and more
look like the graph 𝐺, and so will the reachability properties. One can also vary 𝐺 in the class of
graphs with 𝑛 points, by varying the number of edges. As we are interested in connected graphs
this number should take values between 𝑛 − 1 (a tree) and (𝑛2) (the full graph on 𝑛 points).
Below we restrict ourselves to the first step and consider, for a given graph 𝐺, a class G𝐺,𝑘 for
𝑘 =𝑚 and also for some values of 𝑘 between𝑚 and 2𝑚. It would take too much space to also
vary over the 𝐺s and to study for each choice what happens within a class G𝐺,𝑘 and when varying
𝑘. So we only consider one graph 𝐺 below. The graph we use in all our examples is the one in
Figure A.1, that we shall refer to byH. This is a graph with 13 nodes and 26 edges.

We start with a digraph in which the arrows are neatly ordered. This case is a kind of a
benchmark. It is an example of a digraph with the smallest complexity due to arc orientation in
the class of digraphs with the same underlying graph. Then we look at a digraph in which the arcs
can be considered as randomly oriented. Looking at reachability we see a more chaotic picture
than in case of the very orderly first example. The third example shows a digraph that is very
close to the one in the second example; they differ only in the orientation of one arc. This
example is considered to indicate the consequences of a small change in orientation of the arcs
in terms of reachability.

Figure A.1 The graphH that is the underlying graph for the digraphs considered in
the examples of the present appendix.

Example 1: An orderly digraph in GH,26

We consider the digraph represented in Figure A.2, which can be considered to be one of the two
most orderly graphs in the class of digraphs, with the graphH in Figure A.1 as the underlying
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graph.38) Note that for all the arcs (𝑎, 𝑏) we have that 𝑎 < 𝑏. So an arc is always ’pointing
forward’, so to speak.

Figure A.2 Digraph with underlying graph in Figure A.1 from Example 1, where all
arcs are ’pointing forward’.

Figure A.3 shows the reachability sets for each node in the digraph in Figure A.2. The reachability
sets are neatly nested: the reachability set of a node contains those associated with a higher
number.

We are interested in the nodes that can be reached from each of the nodes in Figure A.2. These
follow from the transitivity properties of this graph. In Figure A.3 they are presented in graphical
form. The entrance node is given in blue with blue and underlined label. Some nodes have the
same reachability set. The reachability set corresponding to node 𝑘 is presented as 𝑘̄.We see that
these sets differ widely. Sometimes they consist of a single point, sometimes they consist of
several points, and in one case all the nodes can be reached from a single point. So the situation
is far more diverse than in the graph case, where reachability and connectedness coincide.

The reachability sets can be ordered by inclusion. Figure A.4 represents this inclusion relation for
the reachability sets in Figure A.3. Each arc indicates an inclusion. So reachability set 1̄ contains
reachability set 2̄.39)

Example 2: A random digraph in GH,26

The digraph we consider in this example is given in Figure A.5. In this case the arcs have been
randomly oriented. In that sense this digraph is more chaotic, and intuitively more complex than
the one in Figure A.2.

The reachability sets in Figure A.6 are partially ordered through inclusion.40) The tree showing
this inclusion relation is presented in Figure A.7. We have

38) The other most orderly digraph in this class is the digraph with all the arcs reversed.
39) Or equivalently, reachability set 2̄ is included in reachability set 1̄.
40) In the sense of ’contains’, not in the sense of ’is contained in’.

CBS | Discussion paper | December 21, 2021 51



Figure A.3 The reachability sets of the nodes in digraph for Example 1 in Figure A.2.

Figure A.4 The reachability sets of the nodes in digraph for Example 1 in Figure A.2.
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Figure A.5 A digraph for Example 2 with randomly oriented arcs.

Figure A.6 Reachability sets for each of the nodes in the digraph of Example 2 in
Figure A.5. The picture in the middle of the top row shows a reachability set that is the
same for several entrance nodes.
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1̄ = {1}∪ ̄13
2̄ = {2}∪ 1̄ ∪ 8̄
3̄ = {3}∪ 2̄ ∪ 4̄
4̄ = {4}∪ 2̄ ∪ 5̄ ∪ 6̄
5̄ = {5}∪ 3̄ ∪ 6̄
6̄ = {6}
7̄ = {7}∪ 6̄ ∪ 8̄ ∪ ̄10 (A.1)

8̄ = {8}∪ 1̄ ∪ 4̄ ∪ 6̄ ∪ 9̄
9̄ = {9}∪ 1̄ ∪ ̄12 ∪ ̄13
̄10 = {10}∪ 8̄ ∪ 9̄ ∪ ̄11
̄11 = {11}∪ 9̄ ∪ ̄12
̄12 = {12}
̄13 = {13}∪ ̄12.

The 𝑘̄’s act as nonterminal symbols. By repeatedly substituting the expressions in (A.1) we can
eliminate them and what remains are sets of nodes:

1̄ = {1, 12, 13}
2̄ = 3̄ = 4̄ = 5̄ = 8̄ = {1, 2, 3, 4, 5, 6, 8, 9, 12, 13}
6̄ = {6}
7̄ = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}
9̄ = {1, 9, 12, 13} (A.2)
̄10 = {1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13}
̄11 = {1, 9, 10, 11, 12, 13}
̄12 = {12}
̄13 = {12, 13}

Figure A.7 Nesting of the reachability sets of Example 2 in Figure A.6.
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The reachability tree in Figure A.7 can be used to produce the reachability sets in (A.2). By
starting with node ̄12 (which must be the set {12}) and 6̄ (which must be the set {6}) and
working ’upwards’, one can retrieve the other reachability sets in (A.2).

Example 3: Another digraph in GH,26

The digraph we consider is given in Figure A.8. This digraph is the same as the one in Figure A.5
except for one arc that has been reversed: arc (8, 9) was replaced by arc (9, 8). To stress this,
the arc (9, 8) is represented in a different colour in Figure A.8. This example was chosen to
illustrate how one small change in a digraph (reversal of an arc) can give rather different results
concerning reachability.

Figure A.8 A digraph similar to that in Figure A.5 used in Example 3. Only arc (8, 9)
has been replaced by arc (9, 8).

As in Example 1 we are interested in the nodes that can be reached from each of the nodes in
Figure A.8. In Figure A.9 they are presented in a graphical form. As in Figure A.5 the initial node is
given in blue and is underlined. As in Example 2 some nodes have the same reachability set. But
we also note that these sets may differ considerably.

The reachability sets in Figure A.9 are partially ordered through inclusion, as in Example 1.41) The
tree showing this inclusion relation is presented in Figure A.10. The reachability set
corresponding to node 𝑘 is presented as 𝑘̄. We have the following sets of equations for the
reachability sets indicated in Figure A.9:

41) In the sense of ’contains’, not in the sense of ’is contained in’.
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Figure A.9 Reachability sets for each of the nodes in the digraph in Figure A.8 in
Example 3. The entrance nodes are coloured blue and are underlined. The picture in
the middle of the top row shows a reachability set that is the same for several
entrance nodes.
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1̄ = {1}∪ ̄13
2̄ = {2}∪ 1̄ ∪ 8̄
3̄ = {3}∪ 2̄ ∪ 4̄
4̄ = {4}∪ 2̄ ∪ 5̄ ∪ 6̄
5̄ = {5}∪ 3̄ ∪ 6̄
6̄ = {6}
7̄ = {7}∪ 6̄ ∪ 8̄ ∪ ̄10 (A.3)

8̄ = {8}∪ 1̄ ∪ 4̄ ∪ 6̄
9̄ = {9}∪ 1̄ ∪ 8̄ ∪ ̄12 ∪ ̄13
̄10 = {10}∪ 8̄ ∪ 9̄ ∪ ̄11
̄11 = {11}∪ 9̄ ∪ ̄12
̄12 = {12}
̄13 = {13}∪ ̄12.

Elaborating the equations in (A.3) by repeated subsitution until all nonterminal symbols have
been eliminated, we obtain the following set of solutions:

1̄ = {1, 12, 13}
2̄ = 3̄ = 4̄ = 5̄ = 8̄ = {1, 2, 3, 4, 5, 6, 8, 12, 13}
6̄ = {6}
7̄ = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}
9̄ = {1, 2, 3, 4, 5, 6, 8, 9, 12, 13} (A.4)
̄10 = {1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13}
̄11 = {1, 2, 3, 4, 5, 6, 8, 9, 11, 12, 13}
̄12 = {12}
̄13 = {12, 13}

Figure A.10 Nesting of the reachability sets of Example 3 in Figure A.9.
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Again, the reachability tree in Figure A.10 can be used to produce the reachability sets in (A.4).
By starting with node 12 (which must be the single point set {12}) and 6̄ (which must be the
single point set {6}) and working ’upwards’, one can retrieve the other reachability sets in (A.4).

Example 4: A digraph in GH,27

This example considers a digraph in GH,27 that is close to the ones presented in Examples 2 and
3, which are both in GH,26, so each with one arc less. This time the edge {8, 9} has remained
from graphH, which comprises of both the arcs (9, 8) and (8, 9). So this graph is a bit closer to
the saturated digraphH.42) Again the aim of this example is to see what the impact is of a small
change of a digraph, concerning the orientation of one of the arcs.

Figure A.11 A digraph in GH,27 used in Example 4, that is close to both the one in
Figure A.5 and the one in Figure A.8.

In this case, as in case of the previous example, a small change in the digraph studied may lead to
considerable changes in the reachability sets, as Figure A.12 shows. On the other hand, this
example also shows that some of the reachability sets are not affected at all by this particular
change of the structure of the digraph.

We can write down the equations that the reachability sets have to obey:

42) Saturated within the class of digraphs withH as the underlying graph.
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Figure A.12 Reachability sets for the nodes of the digraph in Example 4 in Figure
A.11.

1̄ = {1}∪ ̄13
2̄ = {2}∪ 1̄ ∪ 8̄
3̄ = {3}∪ 2̄ ∪ 4̄
4̄ = {4}∪ 2̄ ∪ 5̄ ∪ 6̄
5̄ = {5}∪ 3̄ ∪ 6̄
6̄ = {6}
7̄ = {7}∪ 6̄ ∪ 8̄ ∪ ̄10 (A.5)

8̄ = {8}∪ 1̄ ∪ 4̄ ∪ 6̄ ∪ 9̄
9̄ = {9}∪ 1̄ ∪ 8̄ ∪ ̄12 ∪ ̄13
̄10 = {10}∪ 8̄ ∪ 9̄ ∪ ̄11
̄11 = {11}∪ 9̄ ∪ ̄12
̄12 = {12}
̄13 = {13}∪ ̄12.

As before, we can solve (𝐴.5) by repeated substitution of the nonterminal symbols, that is,
indicated as numbers with a bar on top. The result is presented in (A.6):
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1̄ = {1, 12, 13}
2̄ = 3̄ = 4̄ = 5̄ = 8̄ = 9̄ = {1, 2, 3, 4, 5, 6, 8, 9, 12, 13}
6̄ = {6}
7̄ = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13} (A.6)
̄10 = {1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13}
̄11 = {1, 2, 3, 4, 5, 6, 8, 9, 11, 12, 13}
̄12 = {12}
̄13 = {12, 13}

We can represent the reachability sets in (A.6) in a tree, to show the nesting of these sets
graphically. See Figure A.13.

Figure A.13 Nesting of the reachability sets in Figure A.12 of Example 4.

Example 5: Another digraph in GH,27

In the previous two examples so far we modified a specific arc inH. We now look at the effect of
adding another arc, so that we obtain another digraph in GH,27. We then obtain the example
shown in Figure A.14.

Figure A.14 Another digraph in GH,27 used in Example 5. Note the edge {6, 8}.

We can write down the reachability equations for each node:
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Figure A.15 Reachability sets for the nodes of the digraph in Figure A.14 in Example
5.

Figure A.16 Nesting of the reachability sets in Figure A.15 in Example 5.
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1̄ = {1}∪ ̄13
2̄ = {2}∪ 1̄ ∪ 8̄
3̄ = {3}∪ 2̄ ∪ 4̄
4̄ = {4}∪ 2̄ ∪ 5̄ ∪ 6̄
5̄ = {5}∪ 3̄ ∪ 6̄
6̄ = {6}∪ 8̄
7̄ = {7}∪ 6̄ ∪ 8̄ ∪ ̄10 (A.7)

8̄ = {8}∪ 1̄ ∪ 4̄ ∪ 6̄ ∪ 9̄
9̄ = {9}∪ 1̄ ∪ 8̄ ∪ ̄12 ∪ ̄13
̄10 = {10}∪ 8̄ ∪ 9̄ ∪ ̄11
̄11 = {11}∪ 9̄ ∪ ̄12
̄12 = {12}
̄13 = {13}∪ ̄12.

Solving the equations in (A.7), as before, we obtain:

1̄ = {1, 12, 13}
2̄ = 3̄ = 4̄ = 5̄ = 6̄ = 8̄ = {1, 2, 3, 4, 5, 6, 8, 9, 12, 13}
7̄ = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}
9̄ = {1, 9, 12, 13} (A.8)
̄10 = {1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13}
̄11 = {1, 9, 11, 12, 13}
̄12 = {12}
̄13 = {12, 13}

Example 6: A digraph in GH,28

To get some feeling about the effect of adding an extra arc toH, we consider another example,
which is shown in Figure A.17. Here two arcs are added to the initial digraph in Example 2,
namely the one in Figure A.5. In the following examples we study the effect of adding more
edges to the digraph. With every step the resulting digraph is one step closer to the saturated
digraph, that isH in Figure A.1.

The reachability sets for each node are presented in Figure A.18. The first thing that is evident is
that there are less different such sets when we compare it to the examples considered so far.

By now it should be clear how the reachability sets can be computed. So we shall not present the
equations that express them in terms of unknowns. We also shall not present the solution, as it
can be gleaned from Figure A.18.

In Figure A.19 the tree is presented that shows how the reachability sets in Figure A.18 are
ordered by inclusion.

CBS | Discussion paper | December 21, 2021 62



Figure A.17 A digraph in GH,28 in Example 6. Note the edges {6, 8} and {10, 11}.

Figure A.18 Reachability sets for the nodes of the digraph from Example 6 in Figure
A.17.

Figure A.19 Nesting of the reachability sets in Figure A.18 used in Example 6.
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Example 7: A digraph in GH,29

Compared to the previous example the digraph in the present example has one more arc. So we
get one more step closer to the saturated graphH. The resulting digraph is shown in Figure A.20.
Compared to the original digraph it has three more arcs.

Figure A.20 A digraph in GH,29 used in Example 7. Note the edges {6, 8}, {9, 12} and
{10, 11}.

The reachability sets are now shown in Figure A.21. This time there are only four different
reachability sets, three less than in Example 6.

Figure A.21 Reachability sets for the nodes of the digraph in Figure A.20 used in
Example 7.

Again we do not present the solution method, as it should be clear. The results are implicit in
Figure A.21 and therefore will not be represented explicitly as well. However, the way they are
nested is shown in Figure A.22. The tree is more ’compressed’ than any of the previous trees. As
the following examples show, this trend will continue.

Example 8: A digraph in GH,30

For this example we have added one more arc to the digraph of Example 7, that is, the one which
is represented in Figure A.20. So we are now yet one more step closer to the saturated graphH.
The resulting digraph is shown in Figure A.23. Compared to the original digraph it has four more
arcs.
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Figure A.22 Nesting of the reachability sets in Figure A.21 used in Example 7.

Figure A.23 A digraph in GH,30 used in Example 8. Note the edges {6, 8}, {7, 8}, {9, 12}
and {10, 11}.

In Figure A.24 the reachability sets of the digraph in Figure A.23 are shown. Now there are only
two different such sets. This shows that the digraph in Figure A.23 is close to the saturated
digraph in terms of reachability.

Figure A.24 Reachability sets for the nodes of the digraph in Figure A.23 used in
Example 8.

The ordering of the reachability sets by inclusion is presented in Figure A.25.

Example 9: A digraph in GH,31

With the present example we reach the finale, so to speak, of the incremental example of
digraphs with increasing numbers of arcs. We again have added an arc, so that the resulting
digraph has 5 more arcs compared to the initial digraph. The resulting digraph is presented in
Figure A.26.

In this case we find that all points have the same reachability set, namely the one equal to the
node set of all the digraphs considered in the examples in the present appendix. See Figure A.27.
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Figure A.25 Nesting of the reachability sets in Figure A.24 used in Example 8.

Figure A.26 A digraph in GH,31 used in Example 9. Note the edges {6, 8}, {7, 8}, {8, 9},
{9, 12} and {10, 11}.

So the digraph in Figure A.26 has the saturated digraphH as its transitive closure.

Figure A.27 Reachability sets for the nodes of the digraph in Figure A.26 used in
Example 9.

The tree showing the ordering of the reachability sets has shrunken to a single point in this
example. See Figure A.28.

So this example is a kind of final result: adding more arcs will not yield digraphs that show a
different ’reachability behaviour’. They all have the same transitive closure, namely the entire
node set. So nothing new will be shown concerning reachability.

Example 10: A digraph with reachability sets with smaller
variation in size

The examples presented above have reachability sets that vary considerably in size. From
one‐point sets to the entire node set of the digraph. In the present example the sizes of the
various reachability sets do not differ so much. The example is just to show that digraphs exist
that are less diverse.

The digraph we are interested in in the present example is presented in Figure A.29.

The reaches of the nodes in digraph in Figure A.29 are presented in Figure A.30.
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Figure A.28 Nesting of the reachability sets in Figure A.27 used in Example 9.

Figure A.29 A digraph with smaller reachability sets.

Example 11: A digraph with drainage areas

So far in the examples in this appendix we have considered reachability sets from nodes in
digraphs, that is, sets that can be reached from a given node. It is also of interest to know the
drainage set of a node 𝑣 in a digraph, which consists of the nodes in the digraph from which
paths lead to 𝑣.

It is a very simple to compute the drainage set of 𝑣: reverse the arcs in the original digraph and
compute the reachability set of 𝑣 in this dual of the original digaph. Reversing the arcs in the
digraph yields a digraph with 𝐴′ as its adjacency matrix, if 𝐴 denotes the adjacency matrix of the
original digraph.

We illustrate this using the graph in Figure A.29. Its dual is shown in Figure A.31.

The reachability sets of the digraph in Figure A.31 are shown in Figure A.32. These are the
drainage sets of the original digraph in Figure A.29.

So from Figure A.32 we can infer that point 1, for instance, can be reached, in the original
digraph in Figure A.29, from points 1, 2, 8, 13; and point 9 can be reached in this digraph from
points 1, 2, 8, 9, 10, 11, 12, 13. Etcetera.

Reϐlecting on the examples above

Here we consider the examples in Appendix A and try to see what can we learn from them with
respect to the complexity of the class of digraphs with the same underlying graph. First of all, we
should note that the pictures shown are very direct. But the same information can be obtained
more quickly by computing the transitive closure of the adjacency matrix of the digraph in
question.

The digraph in the first example is regular and forms a partial order. The reachability sets are
nested in a linear fashion, so to speak. In the other examples considered, the reachability set
were ordered in a more complicated partial ordering. So this may perhaps be taken as a hint that
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Figure A.30 The reachability sets of the nodes of the digraph in Figure A.29.

Figure A.31 The dual of the digraph in Figure A.29.
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Figure A.32 Reachability sets of the digraph in Figure A.31. These are the drainage
sets of its dual in Figure A.29.
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the structure of the digraph corresponding to the nesting of the reachability sets, can be used to
quantify the complexity of the digraphs in the class considered: the more it branches, the more
complex the corresponding digraph is.

In some of the examples, some nodes had the same reachability sets, although the digraphs
differ. This implies that these nodes are in a sense equivalent. One can take them as a single
node. This node can then be connected to the other nodes in the digraph. It yields a new digraph
with fewer nodes that represents a partial order.

Some of the examples show that small changes in the structure of a digraph may have
considerable impact on some reachability sets, and none at all on other such sets. This suggest
some form of locality.

However, from this one may not conclude that such changes only have local impact: these
impacts may be global, and affecting many reachability sets.

The examples in Appendix A all have in common that there is at least one node for which the
reachability set is the entire set of nodes. This is probably not typical for most networks
encountered in practice. So the examples shown there are not intended to exhibit species of
digraphs of very different complexities. Its purpose was to show how, starting with some digraph,
changing the orientation of a few arcs or adding a small number of them affects the reachability
of the various nodes.
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B Average distances in graphs:
Examples

In this appendix we present some examples to illustrate the complexity measure based on
average distances of different points in graphs as treated in Section 6. Two methods are
illustrated that are presented there to compute complexity measures based on average
distances. The first one applies it to the graph in question directly. The second one applies it to
the line graph of this graph. Each method is described in a separate section.

B.1 Using the graphs directly

In Figure B.1 several example graphs are shown that we will use to illustrate the complexity
measure based on average distance of distinct nodes. The metric used is the one for which the
length of each edge in the graph is 1, so that the length of a path equals the number of edges
situated on the path.

Figure B.1 Examples of some graphs with 6 nodes and varying numbers of edges.

The distance matrix 𝐷𝑡𝑙 of the graph 𝐺𝑡𝑙 on the top left cell of Figure B.1 is

𝐷𝑡𝑙 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 2 3 4 5
1 0 1 2 3 4
2 1 0 1 2 3
3 2 1 0 1 2
4 3 2 1 0 1
5 4 3 2 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(B.1)

The distance matrix 𝐷𝑡𝑟 of the graph 𝐺𝑡𝑟 on the top right cell of Figure B.1 is
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𝐷𝑡𝑟 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 1 1 1 1
1 0 2 2 2 2
1 2 0 2 2 2
1 2 2 0 2 2
1 2 2 2 0 2
1 2 2 2 2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(B.2)

The distance matrix 𝐷𝑚𝑙 of the graph 𝐺𝑚𝑙 on the mid left cell of Figure B.1 is

𝐷𝑚𝑙 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 2 3 3 4
1 0 1 2 2 3
2 1 0 1 1 2
3 2 1 0 2 3
3 2 1 2 0 1
4 3 2 3 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(B.3)

The distance matrix 𝐷𝑚𝑟 of the graph 𝐺𝑚𝑟 on the mid right cell of Figure B.1 is

𝐷𝑚𝑟 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 2 3 2 1
1 0 1 2 3 2
2 1 0 1 2 3
3 2 1 0 1 2
2 3 2 1 0 1
1 2 3 2 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(B.4)

The distance matrix 𝐷𝑏𝑙 of the graph 𝐺𝑏𝑙 on the bottom left cell of Figure B.1 is

𝐷𝑏𝑙 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 2 2 3 4
1 0 1 1 2 3
2 1 0 2 1 2
2 1 2 0 1 2
3 2 1 1 0 1
4 3 2 2 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(B.5)

The distance matrix 𝐷𝑏𝑟 of the graph 𝐺𝑏𝑟 on the bottom right cell of Figure B.1 is

𝐷𝑏𝑟 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 1 2 3 3
1 0 1 2 3 3
1 1 0 1 2 2
2 2 1 0 1 1
3 3 2 1 0 1
3 3 2 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(B.6)

With the matrices in (𝐵.1), (𝐵.2), (𝐵.3), (𝐵.4), (𝐵.5) and (𝐵.6) we can compute the values for the
complexity 𝜅𝑑 and the Wiener indexW . The results are collected in Table B.1.
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Graph ∣𝑉∣ ∣𝐸∣ 𝜅𝑑 W
𝐺𝑡𝑟 6 5 1 2

3 = 1.67 25
𝐺𝑚𝑙 6 5 2 1

15 = 2.07 31
𝐺𝑡𝑙 6 5 2 1

3 = 2.33 35
𝐺𝑚𝑟 6 6 1 4

5 = 1.80 27
𝐺𝑏𝑙 6 6 1 13

15 = 1.87 28
𝐺𝑏𝑟 6 7 1 4

5 = 1.80 27
Table B.1 Results for the graphs in Figure B.1.

where 𝜅𝑑 is defined in equation (15) and 𝑛 = ∣𝑉∣ denotes the number of nodes in 𝐺.

The complexity measure 𝜅𝑑 and the Wiener indexW are presented in Table B.1. The results
were sorted, first on the number of edges and then on the scores of 𝜅𝑑.

Within the classes of graphs with 5 or 6 edges, 𝜅𝑑 andW seem to make sense as complexity
measures if one takes lower scores to mean higher complexities, and vice versa. In the group of
graphs with 6 nodes and 5 edges 𝐺𝑡𝑙 is then the simplest graph and 𝐺𝑡𝑟 the most complex one;
𝐺𝑚𝑙 has a complexity in between these two. So actually, 1/𝜅𝑑 and 1/W act more like complexity
measures, in the sense that higher values indicate more complex graphs, that is, graphs with
more branching.

Of course, the number of example graphs is too small to draw far reaching conclusions from the
results in Table B.1.

B.2 Using line graphs

We now consider the line graphs for each of the graphs presented in Figure B.1. These are
presented in Figure B.2. The graphs are on the left‐hand side and the corresponding line graphs
are on the right‐hand side of the table. A graph and its corresponding line graph are represented
in the same row.

Figure B.2 Examples of graphs and their line graphs. A graph (in the left column)
and its line graph (on the right column) are on the same row.
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To apply (17) to the line graphs in Figure (B.2) we first determine the six distance matrices. They
are as follows.

The distance matrix 𝐷𝓁
1 of the line graph 𝐺𝐿,1 in the first line of Figure B.2 is

𝐷𝓁
1 =

⎛
⎜⎜⎜⎜⎜
⎝

0 1 2 3 4
1 0 1 2 3
2 1 0 1 2
3 2 1 0 1
4 3 2 1 0

⎞
⎟⎟⎟⎟⎟
⎠

(B.7)

The distance matrix 𝐷𝓁
2 of the line graph 𝐺𝐿,2 in the second line of Figure B.2 is the circulant

matrix

𝐷𝓁
2 =

⎛
⎜⎜⎜⎜⎜
⎝

0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0

⎞
⎟⎟⎟⎟⎟
⎠

(B.8)

The distance matrix 𝐷𝓁
3 of the line graph 𝐺𝐿,3 in the third line of Figure B.2 is

𝐷𝓁
3 =

⎛
⎜⎜⎜⎜⎜
⎝

0 1 2 2 3
1 0 1 1 2
2 1 0 1 2
2 1 1 0 1
3 2 2 1 0

⎞
⎟⎟⎟⎟⎟
⎠

(B.9)

The distance matrix 𝐷𝓁
4 of the line graph 𝐺𝐿,4 in the fourth line of Figure B.2 is the circulant matrix

𝐷𝓁
4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 2 3 2 1
1 0 1 2 3 2
2 1 0 1 2 3
3 2 1 0 1 2
2 3 2 1 0 1
1 2 3 2 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(B.10)

The distance matrix 𝐷𝓁
5 of the line graph 𝐺𝐿,5 in the fifth line of Figure B.2 is

𝐷𝓁
5 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 1 2 2 3
1 0 1 1 2 3
1 1 0 1 1 2
2 1 1 0 1 1
2 2 1 1 0 1
3 3 2 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(B.11)
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The distance matrix 𝐷𝓁
6 of the line graph 𝐺𝐿,6 in the sixth line of Figure B.2 is

𝐷𝓁
6 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 1 2 3 3 4
1 0 1 1 2 2 3
1 1 0 1 2 2 3
2 1 1 0 1 1 2
3 2 2 1 0 1 1
3 2 2 1 1 0 1
4 3 3 2 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(B.12)

Table B.2 contains the values of 𝜅𝑑(𝐺𝐿) andW(𝐺𝐿). Their purpose is to quantify the
complexities of the original graphs. 𝜅𝑑(𝐺𝐿) gives higher values to less complex graphs (less
branching), as we saw before. The results of Table B.1 and Table B.2 point in a similar direction.

Graph Line graph ∣𝑉∣ ∣𝐸∣ 𝜅𝑑𝓁(𝐺𝐿) W(𝐺𝐿)
𝐺1 𝐺𝐿,1 5 4 2 20
𝐺2 𝐺𝐿,2 5 10 1 10
𝐺3 𝐺𝐿,3 5 5 1 3

5 = 1.60 16
𝐺4 𝐺𝐿,4 6 6 1 4

5 = 1.80 27
𝐺5 𝐺𝐿,5 6 10 1 8

15 = 1.53 23
𝐺6 𝐺𝐿,6 7 7 1 17

21 = 1.81 38
Table B.2 Results for the graphs in Figure B.2.
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C Notation

Here we define the most important notation that is used in the present paper. The items are
alphabetically ordered. In the explanation of the notation concepts are used that are explaned in
Appendix D.

– ⇒ : ‘a⇒ b’ is an abbreviation for ‘a implies b’ or, alternatively, ‘if a then b’.
– ∣ ⋅ ∣ : ∣𝑆∣ is the cardinality of a finite set 𝑆, that is, the number of elements of 𝑆.
– 𝐴 : Adjacency matrix of a network.
– 𝐴′ : Transpose of the matrix 𝐴.
– 𝐴∗ : Transitive closure of adjacency matrix 𝐴.
– 𝐴↓ : Transitive reduction of adjacency matrix 𝐴.
– 𝐸 : Arc set or edge set. An edge 𝑣,𝑤 can be represented by two arcs: the arc (𝑎, 𝑏) and its

counter‐arc (𝑏, 𝑎).
– 𝐺 = (𝑉,𝐸) : A network with node set 𝑉 and edge or arc set 𝐸.
– 𝐺𝑐 : The compressed graph of a graph 𝐺.
– 𝐺←. : The network that is the reverse of the digraph 𝐺 = (𝑉,𝐸). 𝐺← = (𝑉,𝐸←) and
(𝑏, 𝑎) ∈ 𝐸← if (𝑎, 𝑏) ∈ 𝐸. The adjacency matrix of 𝐺← is 𝐴′, the transposed of 𝐴.

– 𝐺∗ : The network that is the transitive closure of the network 𝐺 = (𝑉,𝐸). 𝐺∗ = (𝑉,𝐸∗),
where 𝐸∗ is the set of arcs corresponding to the adjacency matrix 𝐴∗.

– 𝐺↓ : The network that is the transitive reduction of the network 𝐺 = (𝑉,𝐸). 𝐺↓ = (𝑉,𝐸↓),
where 𝐸↓ is the set of arcs corresponding to the adjacency matrix of 𝐴↓.

– G𝐺,𝑘 : The set of digraphs with 𝐺 = (𝑉,𝐸) as its underlying graph and with 𝑘 arcs, with
∣𝐸∣ ≤ 𝑘 ≤ 2∣𝐸∣.

– 𝐽 : The all 1s matrix. A square matrix with all entries equal to 1. The order of 𝐽may vary, but it
should be clear in a particular context. To indicate it explicitly 𝐽𝑛 is used if it is an 𝑛×𝑛matrix.

– 𝜋 : in a network 𝐺, 𝜋 denotes a path in 𝐺.
– 𝓁(𝜋): if 𝜋 is a path in a network, 𝓁(𝜋) denotes the length of path 𝜋, that is, the number of

edges it contains. If an edge appears multiple times in 𝜋 it is counted for the number of times
it appears on 𝜋.

– 𝜋𝑣,𝑤 : in a network 𝐺, 𝜋𝑣,𝑤 denotes a path in 𝐺 from node 𝑣 to node 𝑤.
– 𝜋← : in a network 𝐺, if 𝜋 denotes a path in 𝐺, 𝜋← denotes the reverse path. It is formally

obtained by reversing the order of the arcs in the path 𝜋 and by reversing the order of the
nodes in each arc. If any of the counter‐arcs thus obtained is not a part of 𝐺, the reversed
path is not in 𝐺.

– 𝜋←𝑤,𝑣 : in a network 𝐺 𝜋←𝑤,𝑣 denotes the reverse path of 𝜋 starting in 𝑤 and ending in 𝑣. It may
not be a path in 𝐺.

– 𝑇𝑟 : The Trace operator, with 𝑇𝑟(𝑀) = ∑𝑛
𝑖=1𝑚𝑖𝑖, if𝑀 = (𝑚𝑖𝑗) an 𝑛 × 𝑛 matrix.

– 𝑉 : Vertex set of a network 𝐺 = (𝑉,𝐸).
– 𝑣 : Entrance point of a node 𝑣 in a digraph.
– 𝑣 : Reachability set of node 𝑣 in a digraph.
– 𝑣 ; 𝑤 : If 𝑣 and 𝑤 are nodes in a network 𝐺, there is a path in 𝐺 from 𝑣 to 𝑤.
– 𝑣 𝜋

; 𝑤 : If 𝑣 and 𝑤 are nodes in a network 𝐺, there is a path 𝜋 in 𝐺 from 𝑣 to 𝑤.
– 𝑣 ↝̸ 𝑤 : there is no path from node 𝑣 to node 𝑤 in a network 𝐺.
– Υ : the set of acyclic digraphs with a single source and sink. Such digraphs are called ‘routing

graphs’ in [13] (although they are digraphs).
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D Glossary

Here we describe a few key‐concepts in the present paper. These concepts are alphabetically
ordered. Some of the concept definitions are either taken literally from [14] or in a slightly
modified form.

Adjacency matrix 0‐1 matrix where element (𝑖, 𝑗) indicated if there is an arc from 𝑖 to 𝑗 (if the
value = 1) or not (if the value = 0). An adjacency matrix can be viewed as a representation of a
(di)graph. In case of a graph it is symmetric. In case of a digraph it needs not to be symmetric.

Arc An ordered pair of nodes (𝑎, 𝑏). In a picture an arc (𝑎, 𝑏) is denoted by an arrow pointing
from 𝑎 to 𝑏. The node 𝑎 is called the tail and 𝑏 is called the head of the arc (𝑎, 𝑏).

Arc rank Arc ranks are weights on arcs of a digraph, to indicate their importance. They are
computed from node ranks in such a way that the sum of the arc ranks of the arcs into a node
equal its node rank. Likewise, the sum of the arc ranks of the arcs out of a node are equal to
its node rank.

Augmented digraph A digraph that is considered as a kind of benchmark, to which some arcs
have been added, in the case of the present paper, to see how the complexity of this new
digraph has changed with respect to that of the benchmark. If 𝐷 is a digraph in G𝐺,𝑘, the
augmentation is a process of adding counter‐arcs in cases where this is possible, i.e. for those
nodes 𝑎 and 𝑏 of 𝐷 for which either (𝑎, 𝑏) or (𝑏, 𝑎) is an arc but not both.

Border point A point in a neighbourhood that is linked to at least one point outside of this set.
Center point The reference point of a neighbourhood in a network defined with the help of a

metric or quasi‐metric. It is comparable to the center of a circle or disk in geometry.
Circulant matrix A square matrix of order 𝑛 of the form

C =
⎛
⎜⎜⎜
⎝

c1 c2 ⋯ cn−1 cn
c2 c3 ⋯ cn c1
⋮ ⋮ ⋱ ⋮ ⋮
cn c1 ⋯ cn−2 cn−1

⎞
⎟⎟⎟
⎠

is a circulant matrix which is fully specified by the vector (𝑐1,⋯, 𝑐𝑛), which is the first row of C.
Complexity of a digraph This measures how the digraph differs from a digraph with the same

underlying graph which has full reachability, that is, which is connected.
Complexity of a graph In the present paper several such quantities are defined to express the

way a graph branches.
Compressed graph A graph 𝐺𝑐 is the compressed graph of a graph 𝐺 if each linear subgraph of 𝐺

is replaced by an edge in 𝐺𝑐.
Connected network A network for which each pair of points 𝑣,𝑤 can be connected by a path in

the network, which is denoted as 𝑣 ; 𝑤. In a graph, if 𝑣 ; 𝑤 then 𝑤; 𝑣. In a digraph
𝑣 ; 𝑤 does not automatically imply 𝑤; 𝑣. And if it does, the path from 𝑤 to 𝑣 may not be
the reversed path connecting 𝑣 to 𝑤.

Continuous search A search procedure in a graph 𝐺 = (𝑉,𝐸) in which nodes are visited in such a
way that consecutive points are adjacent, that is form an edge in 𝐸. In other words if
(𝑎1, 𝑎2, … , 𝑎𝓁) are the nodes visited in the actual order, this is a path in 𝐺.

Contraction A process to simplify a digraph by eliminating linear sub‐digraphs from it. These
parts are replaced by a node, and arc or two connected arcs, depending on the situation.
Contraction does not change the branching structure of a digraph.

Counter‐arc If (𝑎, 𝑏) is an arc in a digraph 𝐺 then (𝑏, 𝑎). This may or may not be an arc in 𝐺.
Cut set Let 𝐺 = (𝑉,𝐸) be a (di)graph and 𝐶 ⊆ 𝑉 be a non‐empty set of nodes in 𝑉. The

arcs/edges with one node in 𝐶 and the other in 𝑉/𝐶 defines a cut set which is defined by the
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partition {𝐶,𝑉/𝐶} of 𝑉.
Cycle A path in a digraph or graph with the same start and finish.
Degree In a graph the number of edges attached to the node.
Degree matrix The degree matrix 𝐷 = (𝑑𝑖𝑗) of a graph is a diagonal matrix with 𝑑𝑖𝑖 equal to the

degree of node 𝑖.
Digraph See: Directed graph.
Directed graph Consists of nodes and arcs. An arc is an ordered pair of nodes. If (𝑎, 𝑏) is an arc

it means that node 𝑎 is connected to node 𝑏. If (𝑎, 𝑏) is an arc in a directed graph it is not
necessarily the case that (𝑏, 𝑎) is also an arc.

Distance See: Metric.
Drainage set The drainage set of a node 𝑣 in digraph 𝐺 is the reachability set of 𝑣 in the reverse

digraph 𝐺←. It is the set of nodes 𝑎 in 𝐺 that lead to 𝑣, that is, such that 𝑎; 𝑣.
Dual digraph The dual of a digraph 𝐺 = (𝑉,𝐸) is the digraph 𝐺← = (𝑉←, 𝐸←) with 𝑉← = 𝑉 and
(𝑎, 𝑏) ∈ 𝐸← iff (𝑏, 𝑎) ∈ 𝐸. So the dual of a digraph is the same digraph but with the arcs
reversed. The dual of the dual of a digraph 𝐺 is 𝐺 itself. If 𝐺 is a graph its dual is 𝐺 itself. That
is, a graph is self‐dual.

Edge In a graph, an edge is a set {𝑎, 𝑏} of two nodes 𝑎 and 𝑏. In a picture an edge is often
represented by a line segment or arc without arrow heads (as there is no direction). Viewed
in a digraph context an edge {𝑎, 𝑏} is represented by the arcs (𝑎, 𝑏) and (𝑏, 𝑎).

Endpoints In edge 𝑒 = {𝑎, 𝑏} in a graph the node 𝑎 and 𝑏 are its endpoints. The endpoints 𝑎 and
𝑏 define the edge 𝑒.

Entrance point If 𝑣 is a node in a digraph 𝐺. The nodes that can be reached from 𝑣 form the
reachability set 𝑣. 𝑣 is the entrance point of 𝑣, which is stressed by using underlining: 𝑣, to
distinguish the entrance point from other points in the corresponding reachability set.

Essence of a network The most important part of a network, in terms of node rank or arc rank.
The nodes (arcs) are selected using a threshold 𝛿 specified by a user. The network is then
completed according to the original network. Selected nodes 𝑣,𝑤 are connected by arcs
(𝑣,𝑤) if 𝑣 ; 𝑤 in the original network. Selected arcs imply selected nodes (the ones that
define the arcs) and these nodes are connected if necessary as in case of selected nodes.

Extended neighbourhood subdigraph A neighbourhood subdigraph with arcs added. These arcs
connect a node in the neighbourhood subdigraph with a node outside of it (or vice versa). By
adding these arcs every node in the neighbourhood subdigraph has the same indegree and
outdegree as in the original digraph.

Extended neighbourhood graph A neighbourhood subgraph with edges added. These edges
connect a node in the neighbourhood subgraph with a node outside of it. By adding these
edges every node in the neighbourhood subgraph has the same degree as in the original
graph.

Finish The node where a path in a digraph or graph ends.
Full reach A digraph has full reach if from every of its nodes every other node can be reached.

This means that for every pair of nodes 𝑎 and 𝑏 there is a path from 𝑎 to 𝑏 (and reversely).
The path from 𝑏 to 𝑎 does not have to be the same as the reverse path from 𝑎 to 𝑏.

Graph A graph is a self‐dual digraph, that is, if 𝐺 is a graph then 𝐺← = 𝐺. A graph is also a digraph
with a symmetric adjacency matrix: 𝐴′ = 𝐴.

Graph Laplacian The graph Laplacian of a graph 𝐺 is the matrix Δ ≜ 𝐷 −𝐴, where Δ is the degree
matrix of 𝐺 and 𝐴 its adjacency matrix. The graph Laplacian is the graph equivalent of the
Laplace operator in calculus which is the divergence of the gradient, Δ ≜ ∇ ⋅ ∇, which in
Cartesian coordinates 𝑥𝑖, can be written as Δ = ∑𝑛

𝑖=1
𝜕2
𝜕𝑥2𝑖

. The graph Laplacian contains all the
properties of its corresponding graph (as the adjacency matrix already does, which can be
deived from the off‐diagonal elements in the graph Laplacian). The only challenge is to derive
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them from this matrix, which is not always easy.
Head The head of an arc (𝑎, 𝑏) in a digraph is 𝑏. In a graphical representation the arc is typically

depicted as an arrow or directed (curvy) line segment. The head is the dot (representing an
end node) where the arc is pointing at.

Hub A node in a digraph with a (relatively) large node rank.
Iff If and only if.
Incidence For a graph 𝐺 = (𝑉,𝐸) we say that an edge 𝑒 ∈ 𝐸 is incident with a node 𝑎 ∈ 𝑉 if

𝑣 ∈ 𝑒, which means that 𝑒 = {𝑣, 𝑥} for some 𝑥 ∈ 𝑉.
Indegree For a node 𝑣 ∈ 𝑉 in a network 𝐺 = (𝑉,𝐸) the indegree is the number of arcs that end

in 𝑣. That is, the number of nodes 𝑎 ∈ 𝑉 such that (𝑎, 𝑣) ∈ 𝐸. Its dual concept is outdegree.
Isolated node A node 𝑣 in a network with Δ𝑖𝑛(𝑣) = Δ𝑜𝑢𝑡(𝑣) = 0. In case the network is a graph

we have that Δ(𝑣) = 0.
IPF Iterative Proportional Fitting. “The iterative proportional fitting procedure … is an iterative

algorithm for estimating cell values of a contingency table such that the marginal totals
remain fixed and the estimated table decomposes into an outer product.”43) An outer
product 𝛼⊗𝛽 of two vectors 𝛼 and 𝛽 is a tensor (multilinear) product that equals 𝛼𝛽′,
where 𝛼 and 𝛽 are presented as column vectors.

Line graph If 𝐺 = (𝑉,𝐸) is a graph, the line graph 𝐺𝐿 = (𝑉𝐿 , 𝐸𝐿) is a graph with 𝑉𝐿 ≜ 𝐸 and
𝐸𝐿 ≜ {(𝑒, 𝑓) ∈ 𝐸 ∣𝑒 ≠ 𝑓 and 𝑒 ∩ 𝑓 ≠ ∅}. In words, a line graph represents the adjacency
structure of the edges of a graph. That is, it indicates which edges have nodes in common.

Local complexity Complexity for a network defined on the basis of a neighbourhood system,
that is a neighbourhood 𝑁𝑝 for each point 𝑝 in a network 𝑁. For each point 𝑝 the
neighbourhood 𝑁𝑝 plays the role of 𝑁 in case of a (global) complexity measure. In this way,
for each point 𝑝 we can compute a complexity, which depends on 𝑝 as well as on the choice
of its neighbourhood 𝑁𝑝.

Loop A loop is an arc (or edge) with the same head and tail (or endpoints). So if 𝑎 is a point in a
network, a loop on 𝑎 would be an arc (𝑎, 𝑎) or an edge {𝑎, 𝑎}. In our approach we exclude
graphs with loops.

Metric For a graph 𝐺 = (𝑉,𝐸) a metric is a function 𝑑 ∶ 𝑉 × 𝑉 ∶→ ℝ/ℝ− ∪ {∞} such that
𝑑(𝑎, 𝑎) = 0, 𝑑(𝑎, 𝑏) = 𝑑(𝑏, 𝑎) and 𝑑(𝑎, 𝑐) ≤ 𝑑(𝑎, 𝑏) + 𝑑(𝑏, 𝑐) for all nodes 𝑎, 𝑏, 𝑐 ∈ 𝑉. Nodes
𝑎 and 𝑏 are in different connectivity components of 𝐺 iff 𝑑(𝑎, 𝑏) =∞. Suppose that for each
edge {𝑎, 𝑏} a nonnegative number 𝑑𝑎𝑏 is given, satisfying the constraints just mentioned (for
each triangle {𝑎, 𝑏, 𝑐}, where {𝑎, 𝑏}, {𝑏, 𝑐} and {𝑎, 𝑐} are arcs we should have that the
triangle inequality holds: 𝑑𝑎𝑐 ≤ 𝑑𝑎𝑏 + 𝑑𝑏𝑐). With this we can extend the metric to the entire
graph: for a pair of nodes 𝑎, 𝑏 ∈ 𝑉 in the same connectivity component of 𝐺 we define Γ𝑎𝑏 is
the set of paths in 𝐺 connecting 𝑎 and 𝑏. Then 𝑑(𝑎, 𝑏) ≜ min𝛾∈Γ𝑎𝑏 ∑𝑒={𝑐,𝑑}∈𝛾 𝑑𝑐𝑑, which the
minimum length of the paths connecting 𝑎 and 𝑏 in terms of the 𝑑‐values associated with the
edges on the path. If 𝑎 and 𝑏 are in different connectivity components then 𝑑(𝑎, 𝑏) ≜ ∞.

Natural metric Metric defined for a graph, where each edge has length 1.
Neighbourhood of a node in a digraph A subset 𝑁 of the node set 𝑉 of the digraph 𝐺 = (𝑉,𝐸)

of nodes close to a node 𝑝 ∈ 𝑁, which is called the center point of the neighbourhood, in
terms of a suitable quasimetric on 𝐺.

Neighbourhood of a node in a graph For a graph 𝐺 = (𝑉,𝐸) and a point 𝑝 ∈ 𝑉, a
neighbourhood 𝑁𝑝, intuitively, is a subset of 𝑉 containing 𝑝 and points close to 𝑝. Assuming a
metric 𝑑 on 𝐺 we can define 𝑁𝑝 = {𝑞 ∈ 𝑉 ∣𝑑(𝑝, 𝑞) ≤ 𝛿} for some 𝛿 ≥ 0.

Neighbourhood subdigraph The subdigraph of a digraph 𝐺 = (𝑉,𝐸) with neighbourhood 𝑁 ⊆ 𝑉
as a node set and with 𝐹 = {(𝑎, 𝑏) ∈ 𝐸∣𝑎, 𝑏 ∈ 𝑁} = (𝑁 ×𝑁)∩ 𝐸 as its set of arcs.

43) Definition fromWikipedia: https://en.wikipedia.org/wiki/Iterative_proportional_fitting.
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Neighbourhood subgraph The subgraph of a graph 𝐺 = (𝑉,𝐸) with neighbourhood 𝑁 ⊆ 𝑉 as a
node set and with 𝐹 = {{𝑎, 𝑏} ∈ 𝐸∣𝑎, 𝑏 ∈ 𝑁} = (𝑁 ×𝑁)∩ 𝐸 as its set of edges.

Network A collective name for ‘graph’ and ‘digraph’. Although, technically, a graph is a special
kind of digraph, it is useful in practice to single out graphs as a special category of networks.
Formally, a network is a digraph, and a graph is a special kind of digraph.

Nilpotent A square matrix𝑀 is nilpotent if there is a 𝑝 ∈ ℕ such that𝑀𝑝 = 0.
Node A node in a network is one of the ingredients that defines the network. In graphical

displays a node is often depicted as a (solid or hollow) dot or circle. Nodes are used to define
arcs or edges, which are the complementing objects in a network, typically represented by
line segments or curves (directed or undirected) connecting the defining nodes.

Node rank A weight associated with each node in a digraph. Intuitively, it is based on the notion
of ’being pointed at’, directly or indirectly. The more this is the case, the higher the node
rank. It is a measure of popularity, so to speak.

Outdegree For a node 𝑣 ∈ in a network 𝐺 = (𝑉,𝐸) the outdegree is the number of arcs that start
in 𝑣. That is, the number of nodes 𝑎 ∈ 𝑉 such that (𝑣, 𝑎) ∈ 𝐸. Its dual concept is indegree.

Parallel arcs / edges Two arcs (or edges) are parallel if they have the have the same head and
tail (or endpoints). In our approach we avoid graphs with parallel arcs / edges, so that two
endpoints 𝑎, 𝑏 define an arc (𝑎, 𝑏) or an edge {𝑎, 𝑏} uniquely.

Path A path in a digraph 𝐺 = (𝑉,𝐸) from 𝑎 ∈ 𝑉 to 𝑏 ∈ 𝑉 is a function 𝜋 ∶ {1,… , 𝑘}→ 𝑉, with
𝑘 ≥ 2 such that 𝜋(1) = 𝑎, 𝜋(𝑘) = 𝑏 and (𝜋(𝑖), 𝜋(𝑖 + 1)) ∈ 𝐸 for each 𝑖 = 1,… , 𝑘 − 1. 𝑘 − 1 is
the path length. The path 𝜋 connects nodes 𝑎 to 𝑏. By definition, a node is also a path, of
length 0. If 𝑎 = 𝑏, the path is a cycle. 𝑎 is called the start and 𝑏 the finish of the path.

Point See: Node.
Quasimetric Let 𝑑(⋅, ⋅) be a quasimetric on a space 𝑋. It has the following properties:

𝑑(𝑥, 𝑦) ≥ 0 (positivity), 𝑑(𝑥, 𝑦) = 0 implies 𝑥 = 𝑦 (positive definiteness),
𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦) (triangle inequality). In contrast to a metric, it needs not to be
symmetric, that is 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) is not required to hold. 44)

RAN See: Random Access Network.
Random Access Network A network that is too big to comprehend at once. It requires some

kind of sampling procedure to collect relevant characteristics. For instance, one can randomly
choose points in the network and explore it by following links to other nodes, using a certain
strategy. This exploration has to stop at some point in time. The information gathered in this
way about nodes and how they are linked is then to be used to estimate certain connectivity
characteristics of the entire network.

Reachability set If 𝑣 is a node in a digraph 𝐺, the set of nodes in 𝐺 that can be reached from 𝑣 is
the reachability set. It is denoted by 𝑣.

Reduction of a network See ’Simplification of a network’.
Reverse path Let 𝜋 be a path in a graph 𝐺 = (𝑉,𝐸) from 𝑎 ∈ 𝑉 to 𝑏 ∈ 𝑉, defined as

𝜋 ∶ {1,… , 𝑘}→ 𝑉, with 𝑘 ≥ 2 such that 𝜋(1) = 𝑎, 𝜋(𝑘) = 𝑏 and (𝜋(𝑖), 𝜋(𝑖 + 1)) ∈ 𝐸 for each
𝑖 = 1,… , 𝑘 − 1. Then the reverse path 𝜋← is defined by 𝜋←(𝑡) = 𝜋(𝑘 − 𝑡) for 𝑡 = 1,… , 𝑘.

Routing graph A routing graph45) is an acyclic digraph with one source and one sink. In [13] such
structures were introduced in the context of questionnaires, in particular to describe their
routing structure, which prescribes which question is to be asked next on the basis of the
answers provided to the questions so far. Despite the name, they are used in the present
paper in a neutral context. In the present paper this class of digraphs is denoted by Υ

44) See https://en.wikipedia.org/wiki/Metric_(mathematics)#Quasimetrics.
45) This is strictly speaking a misnomer, but it is faithful to the naming of these structures in [13]. ‘Routing digraph’ would

be more appropriate.
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(upsilon).
Saturated pair of nodes A pair of nodes 𝑎, 𝑏 in a digraph for which both (𝑎, 𝑏) and (𝑏, 𝑎) are

arcs, or, equivalently, for which {𝑎, 𝑏} is an edge.
Self‐dual A network 𝐺 for which 𝐺← = 𝐺. A self‐dual network is a graph.
Simplification of a network The goal of this process is to present the essence of a network. It

either selects the nodes or arcs with the highest ranks (above a threshold 𝛿 > 0, specified by
the user) completed in such a way that the reachability properties of the original digraph are
preserved.

Sink A node 𝑣 in a digraph with only ingoing arcs. So for 𝑣 holds: Δ𝑖𝑛 > 0 and Δ𝑜𝑢𝑡 = 0.
Source A node 𝑣 in a digraph with only outgoing arcs. So for 𝑣 holds: Δ𝑖𝑛 = 0 and Δ𝑜𝑢𝑡 > 0.
Start The node in a graph where a path begins.
Tail The tail of an arc (𝑎, 𝑏) in a digraph is 𝑎. In a graphical representation the arc is typically

depicted as an arrow or directed (curvy) line segment. The tail is the dot (representing an end
node) where the arc starts.

Tour See: Cycle.
Transitive closure If 𝐺 = (𝑉,𝐸) is a digraph. 𝐺 is transitive if for all nodes 𝑎, 𝑏, 𝑐 in 𝑉 it is the case

that that if (𝑎, 𝑏) and (𝑏, 𝑐) are in 𝐸 then also (𝑎, 𝑐) is in 𝐸. If 𝐺 is not transitive we can make
it transitive as follows: if 𝑎, 𝑏, 𝑐 are nodes in 𝑉 and (𝑎, 𝑏), (𝑏, 𝑐) ∈ 𝐸 but (𝑎, 𝑐) /∈ 𝐸 then add
(𝑎, 𝑐) to a new arc set 𝐸∗ ⊇ 𝐸. In this way we create a new digraph 𝐺∗ = (𝑉,𝐸∗), of which 𝐺
is a subdigraph, that is transitive. In fact, 𝐺∗ is the smallest digraph of which 𝐺 is a subdigraph
that is transitive. 𝐺∗ is called the transitive closure of 𝐺. If 𝐴 is the adjacency matrix of 𝐺 then
𝐴∗ is used to denote the adjacency matrix of 𝐺∗. 𝐴∗ can be computed from 𝐴 using
Warshall’s algorithm (cf. [12]).46) We have: (𝐺∗)∗ = 𝐺∗ and likewise (𝐴∗)∗ = 𝐴∗. For more
properties see ’transitive reduction’.
It is also possible to compute the transitive closure using transitive reduction, as is shown in
[1]. In fact this paper shows that computing transitive closure or transitive reduction is of the
same computational complexity.

Transitive reduction Let 𝐴 be an adjacency matrix of some digraph 𝐺. The transitive reduction of
𝐺 is the minimal digraph 𝐺↓ with (𝐺↓)∗ = 𝐺∗. Likewise we define the transitive reduction of
𝐴, i.e. 𝐴↓, as the minimal adjacency matrix with the same transitive closure as 𝐴.
The following commutative properties hold for transitive closure (∗) and transitive reduction
(↓) in combination with transposition (′):
– (𝐴′)↓ = (𝐴↓)′,
– (𝐴′)∗ = (𝐴∗)′,
For transitive closure (∗) and transitive reduction (↓) combined the following properties hold:
– (𝐴↓)∗ = 𝐴∗,
– (𝐴∗)↓ = 𝐴↓,
For iteration of these operators the following properties hold:
– (𝐴∗)∗ = 𝐴∗ (idempotency),
– (𝐴↓)↓ = 𝐴↓ (idempotency),
– (𝐴′)′ = 𝐴 (involution),
Note that transposition behaves differently from transitive closure and transitive reduction.
– 𝐴 ≤ 𝐵 ⇒ 𝐴∗ ≤ 𝐵∗ (monotonicity),
– 𝐴 ≤ 𝐵 ⇒ 𝐴↓ ≤ 𝐵↓ (monotonicity).
𝐴 and 𝐵 are adjacency matrices of the same order 𝑛 × 𝑛, say. The matrix inequalities used in
the final two properties operate element‐wise. Similar properties hold for the graphs

46) This is intuitively a nice algorithm. From a computational point of view, however, it is not so attractive. More efficient
algorithms exist, such as described in [7] or [8].
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corresponding to the adjacency matrices. Instead of 𝐺′ we write 𝐺←.
The following condition holds (cf. [1]): 𝐴↓𝑖𝑗 = 1 iff 𝐴𝑖𝑗 = 1 and (𝐴⊙𝐴∗)𝑖𝑗 = 0, which can be
used to compute the transitive reduction with the help of the transitive closure.

Triangular number A natural number of the form (𝑛+12 ) =
𝑛(𝑛+1)

2 , for 𝑛 = 0, 1, 2, 3,…. So 0, 1, 3,
6, 10, 15, 21, 36, 45, 56, 66, 78, 91,… is the beginning of a list of triangle numbers. It is a
theorem in number theory that each natural number is the sum of three triangular numbers.

Underlying graph of a digraph If 𝐺 = (𝑉,𝐸) is a digraph then the underlying graph
𝐺𝑢𝑛 = (𝑉,𝐸𝑢𝑛) is the graph with 𝐸𝑢𝑛 = {{𝑎, 𝑏}∣𝑎, 𝑏 ∈ 𝑉and (𝑎, 𝑏) ∈ 𝐸 or (𝑏, 𝑎) ∈ 𝐸}.

Unsaturated pair of nodes A pair of nodes 𝑎, 𝑏 in a digraph for which (𝑎, 𝑏) or (𝑏, 𝑎) is an arc
but not both.

Vertex See: Node.
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