Addressing the class imbalance in aerial images
with Generative Adversarial Networks

Itzel Belderbos

February 2021



Contents

1

Introduction 3
1.1 Problem statement . . . . ... ... ... .. 3
1.2 Research goal and hypotheses . . . . .. ... ... ........ 4
1.3 Researchapproach . ... ... .. ... ... .. ... ...... 4
1.3.1 Exploratory analysis . . . . .. ... ... ... ...... 4
1.3.2 Generation of positives with GANs . . . . . ... ... .. 5
Related work 5
Methodology 7
3.1 Dataanddataset . . ... ... ... ... ... ... 7
3.2 Extraction of feature embeddings . . . . . .. ... ... ... .. 7
3.3 Clustering on extracted feature embeddings . . . . ... ... .. 7
331 KMeans . .. ... .. . 8
3.3.2 Hierarchical clustering . . . . ... ... .......... 8
3.3.3 Clusterdistances . . ... ... ... ... ... ... ... 9
3.3.4 Cluster validity evaluation . . . . . .. ... ........ 9
34 t-SNE . . . . . . e 10
3.5 Thevanilla GAN . . . . . .. ... .. 11
3.6 Deep Convolutional GANs . . . . . ... ... .. ... ... 12
3.7 Conditional GANS . . . . . . . ... 13
3.8 Wasserstein GANS . . . . . . . . . .. 14
3.8.1 TheproblemwithBCEloss . .. ... ........... 14
3.8.2 Earth Mover's Distance . . . ... ............. 14
3.8.3 Wassersteinloss . . ... ... ... .. . 15
3.8.4 1-Lipschitz continuity . . . .. .. ... .. .. ...... 15
3.9 Self-Attention GAN . . . . . ... 17
3.10 Evaluation. . . . . . . . ... 18
3.10.1 Fechet Inception Distance . . . ... ........... 18
3.10.2 Performance increase on classi cation model . . . .. .. 19
3.10.3 Inuencing the generation of images . . . ... .. .. .. 19
Results 20
4.1 Exploratory analysis . . . . . .. ... ... o 20
4.1.1 Identi cation of misclassied samples . . ... ... ... 20
412 tSNE . . ... . . . 22
4.1.3 Clustering on extracted feature embeddings . . . . . . .. 22
4.1.4 Analysis of clustering . . . ... ... .. L 25
4.2 Generationofimages . . . . . ... .. ..o 29
4.2.1 \Vanilla conditional GAN . . . . . ... ... ... ... .. 30
4.2.2 Wasserstein conditional GAN . . . . ... ... ... ... 36
4.2.3 Self-Attention GAN . . . . . ... ... .. 40
Discussion 42
Conclusion 43
Appendix A 46
7.1 KMeans clusteringontrainset . ... ............... 46



Abstract

This research examines whether we can make use of Generative Ad-
versarial Networks as an oversampling technique for aerial solar panel
data. Previous work has shown that an imbalance between classes in the
training set can harm the performance of a classi cation model, having
a severe bias towards the majority group. As the training data consists
of 80% of positives, this bias towards the negatives can be derived from
the low recall rate (55.2%) on the test set covering another geographical
location. Therefore, we rst perform t-SNE and clustering methods on
the feature embeddings extracted by the pre-trained network, in order to
segregate the training data into 5 clusters, of which four consist of more
than 99% positives. We use these clusters as input for our experiments
with three types of GANs: vanilla conditional Deep Convolutional GANS,
conditional Deep Convolutional Wasserstein GANs with several types of
1-Lipschitz continuity enforcements, and conditional Deep Convolutional
Self-Attention GANs with either binary cross-entropy loss or Wasserstein
loss. After GAN training, we added the generated positive images to the
original training set in order to re-train the VGG11-based classi cation
model. The results show that using the clusters as a GAN input improves
the diversity of images and lowers the risk of mode collapse, compared to
using the classes as input. Moreover, the optimal GAN model obtains a
Fechet Inception Distance of 181.82 and an improvement in test recall
rate of 6.14%, after increasing the percentage of positives from 19.59% to
35.13%.

1 Introduction

In recent years, the improvements in supervised classi cation of geographical
images have shown great success. However, the geographical generalization
ability of the models is mostly dependent on how representative the dataset
is. In case that the spatial location of the test set is di erent from the data

in the training set, it is possible that the performance on the test set is not as
desired. One of these obstacles is the class imbalance problem, where one class
is over-represented compared to the other classes. When the class distribution
is imbalanced in binary classi cation, the model might be biased towards the
over-represented class. Simply acquiring more labeled data for the training set
in order to improve the balance is expensive and time-consuming, which leads
to the need for semi-supervised or unsupervised learning techniques [1].

1.1 Problem statement

In 2019, Statistics Netherlands developed a transfer learning model which classi-
es whether an aerial image contains one or multiple solar panels. The goal of this
prediction model is to eventually use this semi-automated model as sustainability
indicator for The Netherlands. The model consists of a ImageNet pre-trained
VGG16 architecture until the last block (block5 _pool) with a classi cation layer
on top. The rst two convolutional blocks were frozen during ne-tuning, while
the rest of the blocks were re-trained on the Heerlen aerial dataset.

However, testing the model on a test set of a di erent geographical location
shows that the model does not seem to perform as well as on the training set.



Especially the recall seems to decline severely due to the false negatives. As the
training set consists of 20% positives, while the test set consists of 7% positives,
this could be due to the class imbalance problem. It can be presumed that
because it is trained on a majority of negatives, the model is biased towards
negatives. Nonetheless, in the eld of solar panel recognition, this relatively low
percentage of positives in an aerial image dataset is common, as obviously it is
easier to obtain an aerial image without a solar panel than an image with a solar
panel. In addition, the large proportion of false negatives is not desirable for
this model, as this could inject bias in the analysis of sustainability indicators by

a lower indication of solar panels than the actual number. Omitting a sample
of negatives from the training set in order to create a more balanced dataset
would not be an favorable solution, as the training set solely consists of 23,847
samples of which 4,672 positives. This solution will result in a dataset with
9,344 samples, which is too small for a deep learning model to learn. Therefore,
we would like to nd a way to overcome this lack of data, while simultaneously
being able to choose the speci ¢ class of data we would like to obtain.

1.2 Research goal and hypotheses

The goal of this research is to analyze if we can nd the structure of both datasets
as well as determining whether we can nd a suitable method to create more
data of the minority class. Moreover, we want to iden ty whether the addition
of this minority data will lead to better performance on a test set of di erent
location.

The research questions can be formulated as following:

Can we identify the structure of the two datasets on two di erent geo-
graphical locations?

Are Generative Adversarial Networks suitable generation methods for aerial
images?

Is the addition of synthetic images generated by Generative Adversar-
ial Networks able to improve the performance on another geographical
location?

Which type of Generative Adversarial Networks is the most suitable for
generating aerial images?

1.3 Research approach

This research consists of two parts: an exploratory analysis to obtain a better
understanding of the data and its distribution, followed by the generation of
synthetic images by means of di erent types of GANs.

1.3.1 Exploratory analysis

In the exploratory analysis, the trained classi cation model is used to predict
on the test set with aerial images covering Zuid-Limburg (The Netherlands).
The misclassi ed samples are further analyzed to see which types of images the
model does not seem to identify well. Subsequently, t-SNE, a dimensionality
reduction technique, is used to visualize the distribution of both train and test



set. Clustering methods are used to gain more insights into the structure of the
datasets, as well as a preprocessing step for the GANSs.

1.3.2 Generation of positives with GANs

As stated in the problem statement, we would like to identify whether the
addition of positives to the training set will improve the classi cation of positives

in the test set. Several types of conditional Deep Convolutional GANs (vanilla
GAN, Wasserstein GAN and Self-Attention GAN) are compared to each other.
Their performances are compared both qualitatively and quantitatively; how
realistic the generated images are, as well as the performance increase on the test
set and the Fechet Inception Distance metric, explained in Section 3.10.1.

Originally, conditional generation implies being able to condition the output of
the generated images on the class, in this case positive or negative. However,
in order to control the type of image to be generated, we use the cluster labels
obtained in the exploratory analysis as input condition. Thus gives the possibility

to choose what type of solar panel image we would like to obtain, while also
forcing the GAN model to generate more diverse samples. The cluster analysis
has shown that the train data can be divided into clusters where the positives and
negatives are nely segregated into di erent clusters. This makes the clustering
labels suitable for conditioning.

2 Related work

Research has shown that an imbalance between classes in the training set can
harm the performance of a classi cation model, having a strong bias towards
the majority group [2]. This bias is even more severe in the case of high-
dimensional data, such as images [3]. There are various techniques which aim to
address this issue, such as oversampling, undersampling and ensemble learning.
Oversampling techniques, and in particular Synthetic Minority Oversampling
Technique (SMOTE), are most widely used. SMOTE identi es the k nearest
neighbors for every minority sample based on the Euclidean distance. Nonetheless,
for high-dimensional data such as RGB images, too many dimensions lead to
every sample to appear equidistant from the other data points, which is called
the curse of dimensionality. As these techniques are more focused on this local
neighborhood information, these techniques may not be suitable for synthetic
image generation [4].

Recently, Generative Adversarial Networks (GANs) have gained attention as
an oversampling and data augmentation technique for high-dimensional data.
The vanilla Generative Adversarial Networks (GANSs) [5] consist of two neural
networks: a generator and a discriminator. Generally, GANs model the real
data distribution by simply imitating that distribution. The generator tries to
fool the discriminator by creating data as similar to the real data as possible. In
contrary, the discriminator classi es whether the given instance, either generated
by the generator or sampled from the real data, is real. Mathematically, this is
achieved by a minimax loss function (or more recent loss functions), which the
discriminator tries to maximize and the generator tries to minimize.

Researchers have shown that synthetic GAN images are suitable as additional



training samples in order to improve classi cation [6]. Douzas et al. [7] success-
fully compared the performance of GANs with other oversampling techniques
for binary class data on 71 datasets and found that GANs outperform other
methods. However, generating minority samples with a vanilla GAN might
be di cult, as there might not be su cient minority data to train a GAN. A
conditional GAN, which is able to condition the image generation on a speci ¢
class, would be more suitable for this oversampling task as it makes use of all
data. In this way, the GAN is able to learn features for the majority class to
generate samples for the minority class [8]. Moreover, Deep Convolutional GANs
(DGGANS) [9] are an extension of the vanilla GAN, but they make use of deep
convolutional networks for both the discriminator and generator. Frid-Adar et
al. [10] have successfully implemented the conditional DCGAN as a method
to generate synthetic data for medical image classi cation. They found that
GANs outperform simple oversampling techniques due to their ability to recover
the data distribution. Another improvement in the GAN architecture is the
Wasserstein GAN (WGAN) [11], which uses another loss function instead of the
binary cross-entropy loss. With the addition of gradient penalty (WGAN-GP) to
control learning, it diminishes the vanishing gradient problem the original GAN
has [12]. Zheng et al. [13] have succesfully tested the conditional WGAN-GP
as an oversampling approach on 17 datasets to empirically show the increased
performance in classi cation.

Various researchers have also tried to investigate combinations of di erent models.
Shamsolmoali et al. [14] have integrated Capsule Neural Networks and GANs
to generate the minority class. A more end-to-end framework is proposed by
Mullick et al. [15], which came up with a framework consisting of a discriminator,
generator and classi er to address class imbalance. The generator learns to
generate the minority class which are misclassi ed by the classi ed, whereas the
classi er learns to classify samples as minority or majority class.

However, these works are highly focused on solving the class imbalance in empir-
ical datasets, such as MNIST and ImageNet. To our knowledge, oversampling
with GANs has not been performed before in the eld of remote sensing and
especially solar panel data.

In the eld of GANs for remote sensing, several researchers have addressed
the lack of annotated data with unsupervised learning. Lin et al. [16] have
created MARTA GAN, a framework which performs unsupervised learning
when there is not much labeled data available. Duan et al. [17] have created
GAN-NL, which is another unsupervised framework which is suitable when
there is a lack of annotated data. Ma et al. [18] have designed SiftingGAN,
another framework which generates new samples when there is a lack of labeled
data, and outperforms other data augmentation methods. Nonetheless, these
remote sensing GAN frameworks are not designed to generate data of a specic
class, which makes these models are not suitable for solving the class imbalance
problem.

Therefore, we propose several new GAN frameworks which generate aerial solar
panel data of a speci c class. Additionally, we make sure we can control the
generation of the minority class data by conditioning the GAN on generated
clusters instead of solely the class to diversify the outputs.



3 Methodology

3.1 Data and dataset

The training dataset covers aerial images around Heerlen area (Limburg, The
Netherlands) and has a resolution of 200x200 pixels. The dataset originally
consists of 84,693 images, of which 23,847 are labeled. There are 4,672 positives
(20%) and 19,175 negatives (80%).

The test set covers aerial images from the South of province Limburg (The
Netherlands), consisting of 49,686 images, with 39,506 labeled. There are 36,693
negatives (93%) and 2,813 positives (7%) in the dataset.

For computational e ciency purposes, a sample of 10,000 images is taken from
the train set to cluster the images and train the GANs. This new set contains
4,672 positives (47%) and 5,328 (53%) negatives. Hence, all positives are used for
this subset, while a sample of negatives are used. Since the aim of this research
is not to train a classi er, but rather to explore the dataset and generate new
images, this omission of negatives is not signi cant. If we would train a classi er,
we would need these disregarded negatives to train on all types of features,
but as we will only generate positives with the GAN, taking such a subset is
not necessarily disadvantageous. In contrary, when training the classier to
evaluate the GANs performance, we use the complete training set of 23,847
labeled images.

3.2 Extraction of feature embeddings

Transfer learning makes use of the generic features learned on another domain,
and uses these for another domain. In computer vision, this is often performed
with pre-trained models (e.g. VGG, MobileNet and Inception), trained on the
ImageNet Large Scale Visual Recognition Challenge (ILSVRC) dataset [19].
While the layers at the beginning of the network learn low-level features (e.g.
edges), layers close to the output learn the feature which are more specic to
the domain. This makes a pre-trained model trained on a generic domain also
suitable as a feature extraction model, which omits the classi cation layer, and
substitutes this with a prediction on the (new) dataset. In this research, the
VGG16 model, which is ne-tuned on the Heerlen training set, is used as a
feature extractor. The output of the last atten layer is used, giving a feature
vector of 12,800 dimensions.

3.3 Clustering on extracted feature embeddings

Clustering is an unsupervised learning method, which implies that the ground
truth labels of the clusters are not available. It aims to nd clusters in which
the samples are similar to other samples inside of group (intra-cluster distances),
but dissimilar to samples of other groups (inter-cluster distances). The quality
of the clustering is determined by a certain similarity measure and the capacity
to explore some hidden patterns.

As already explained, in this work clustering is used as a preprocessing step and
the created clusters are used as input for the GAN. Moreover, it is used as an



exploratory tool to gain insights into the distribution of the training and testing
data.

3.3.1 KMeans

KMeans is a partitioning methods which iteratively determines the middle point

of a cluster by measuring the distances of the samples to this point. First, the
samples are divided intok clusters, wherek is the prede ned number of clusters
desired. Subsequently, the seed points are the centroids (middle points) of the
clusters, and every sample is assigned to the nearest centroid, based on the
Euclidean distance. These steps are repeated until the assignment of samples
does not change.

A downside of KMeans is that is it sensitive to outliers, as an outlier can severely
distort the mean of the data. Therefore, KMedoids (e.g. Partitioning Around
Medoids) is introduced, which takes the most centrally positioned sample in
the cluster as the 'centroid’. However, due to the computational complexity,
PAM does not work well for larger datasets. Therefore we choose to work with
KMeans.

As the number of clusters has to be de ned beforehand, it might be di cult

to de ne the optimal number of clusters. The sum of squared error (SSE) is
a method that could aid de ning the optimal number of clusters. The SSE is
the sum of the squared distances between a sample and the cluster centroid.
Equation 1 shows the formula for computing the SSE, withi as the cluster
number, k as the total number of clusters,x as a data point, ¢; as the centroid

of clusteri and C; as clusteri.

X X
SSE = (distance(q; ; x)) 2 (1)
i=1 x2C;

Computing a clustering for severalk and plotting the SSE with respect to
the number of clustersk could give more insights into the optimal number of
clusters.

3.3.2 Hierarchical clustering

Hierarchical clustering is a collection of algorithms that create nested clusters by
splitting or merging them subsequently. Agglomerative clustering is a bottom-up
form of hierarchical clustering, as it starts with every sample as a cluster, and
merges the closest pair of clusters untik clusters are left.

The merging strategy is determined by the type of linkage criteria. Single linkage,
average linkage and maximum linkage imply minimization of the distances
between respectively the closest samples, all samples and furthest samples
between 2 clusters. Ward [20] aims to minimize the sum of squared di erences
inside of the clusters.



3.3.3 Cluster distances

There are several distance measures for computing the clusterings. KMeans only
works with the Euclidean distance, which is the most common distance measure

used. The Euclidean distance computes sum of squared di erences between a
data point and the cluster center.

Euclidean distance/L2 norm

0Gy)= (g c)? )

Hierarchical clustering can also work with the Manhattan distance and cosine
similarity. The Manhattan distance takes the sum of absolute di erences between
data point and cluster center. Cosine similarity quanti es the similarity between
two vectors. The function divides the dot product of two vectors by the product
of the norms of the vectors.

Manhattan distance/L1 norm

x’] . .
xy)= X d ®3)
i=1
Cosine similarity
ab
cos =
kek B
49— 4
kek= a?+ +a @
q__
D = b% + + bﬁ]

3.3.4 Cluster validity evaluation

The validity of a clustering can be based on the cohesion (intra-cluster distances),
separation (inter-cluster distances) of the formed clusters, or a combination of
these. In this case, we do not have access to the ground truth labels of the
clusters. Therefore, we make use of metrics which do not require these labels:
Silhouette coe cient and Calinski-Harabasz index.

Silhouette coe cient
Silhouette coe cient [21] takes into account a combination of cohesion and
separation. The score is bounded between 1 (completely incorrect clustering)
and +1 (very good clustering). In case the score is around O, it implies that
there are many clusters with overlapping data. This metric can also be used to
compare two clusterings or two clusters. The Silhouette Coe cient s for a single
data point can be given:

sep coh

- max(coh; sep

(5)



Where sepis the mean distance between a data point and all other samples in
the next closest cluster, whilecoh is the mean distance between a data point an
all other samples in the same cluster.

Calinski-Harabasz Index

The Calinski-Harabasz Index [22] is another evaluation metric which is suitable
when ground truth labels are unknown. It is an index which is the ratio of the
sum of squared distances between clusters and inside of clusters. The index can
be formulated as:

_ tr(Bg) n k
Totr(We) k1 ©)

Where np is the number of data samples andk is the prede ned number of
clusters. tr (Wg) and tr (Bk) are the trace of the within cluster dispersion matrix
respectively the between cluster dispersion matrix. These two matrices are
formulated as:

X< X

W = (x c)x a)T (7)
i=1 x2C;
X<

B= ni(a o) o) (8)

i=1

Where ¢ is the center of clusteri, cp the center of the dataD and n; the number
of samples in the cluster. The higher the score, the better the separation of the
clusters.

3.4 t-SNE

T-Distributed Stochastic Neighbor Embedding (t-SNE) is a nondeterministic
method which aims to visualize high dimensional data into two or three dimen-
sions, without losing too much information. Hence, it is a form of dimensionality
reduction which measures pairwise distances between high-dimensional objects.
The idea behind t-SNE is that it uses an objective function which measures the
discrepancy between the similarities between samples in the (low-dimensional)
map and similarities between samples in the original data. Nowadays, Principal
Component Analysis (PCA) is a widely-used method for dimensionality reduc-
tion. However, this technique is not suitable for high-dimensional data, as PCA
aims project the samples into a low-dimensional subspace such that the variance
is maximized. Due to this variance maximization, mostly the distances between
the dissimilar points are preserved. Nonetheless, the higher-dimensional the
data, the less important the distances between dissimilar points, as they become
less indicative of the real data structure. An example of this is shown in Figure
1. We can clearly see that in this 3D setting, the points with the same color
(similar points) are more indicative for the structure than the points further
away from each other (dissimilar points). When we want to map the data to a
lower dimensional subspace, we thus want to preserve these smaller distances.

10



Hence, when the data is high-dimensional, it is desired to mostly maintain the
small distances between data points in the mapping, while the large distances
between the data points are more negligible.

Figure 1: Example of high dimensional data [23]

In Equation 9, the probability p; of picking a pair of points i and j, proportional
to how similar these points are in the original data. In contrary, g; in Equation
10 computes the probability of picking a certain pair of points proportional to
how similar the points are in the (low-dimensional) map.

(i X xji2=2 2)
K sk €xp(l Xk Xjj?=2 2)

pj = P

(9)

o ©XPUl Vi Vi)
K sk &XPUI Yk viii?)

Gj = (10)

The goal of t-SNE is to make the two probability distributions ¢; and p; as
similar are possible, in order to not lose too much information contained in
the original data. This discrepancy is measured by the Kullback-Leibner (KL)
divergence:

.. X X Pij
KL (PjiQ) = pj log — (11)
i j6i Qi
Hence, the points in the low-dimensional map are moved around in order to
minimize the KL-divergence by means of gradient descent.

3.5 The vanilla GAN

A Generative Adversarial Network consists of two parts: a generator and a
discriminator, which are both neural networks. The goal of the GAN is to make
the real and fake distributions as similar as possible. In the original GAN, the
discriminator is a classi er which aims to determine whether a given image is real
or fake. It tries to evaluate the conditional probability of the class (real/fake) Y,
given the data/features X :

P(YjX) (12)

11



In contrary, the generator creates samples of a speci c class. In order to ensure
that the generator does not generate only one type of image, it uses a random
noise vector as input, which inject randomness into the generation of images.
The generator evaluates the probability of the features/data X , and models the
real distribution of the features, having a higher probability to generate the more
common features and being less likely to sample the more rare types of features.

P(X) (13)

The binary cross-entropy (BCE) cost function is used to determine the GAN loss.
The BCE loss is the average of the discriminator cost due to wrongly classifying
fake and real observations. This loss function is de ned as:

L()= % O logp(x®; )+ (@ yD)log® px®; N (14)

i=1

In Equation 14, y() is the binary true label (fake/real), x(") are the features
of the images, are the parameters andp(x() is the prediction from the
discriminator.

The rst part of the function ( y() logp(x("; )) is focused on the real images.
This is because when the true label() is 0, this term will obviously also be
0, regardless of how well the prediction is. Hence, this rst part will always be
canceled out for the fake images, and thus only have an in uence on the cost
for the real images. For the real images, when the prediction is really good
and thus close to 1, this term will approximate 0, as 1 10g0:99 0. Hence,
when the prediction is close to the true label, there will be low cost. In contrary,
when the prediction is far from the true label and thus close to 0, the output
of this term will be 1 . This minus will be canceled out by the minus at the
beginning of the function. In short, the rst term of the function will give high
cost the prediction for real images is bad, and will give almost zero cost when
the prediction for the real images is close.

The same applies for (1 y@)log(1 p(x‘"; )), the second term of the loss
function. This term only applies to fake samples, as the (1 y‘!) cancels out for
the real samples. This term solely plays a role when the prediction is 0, and will
give a high cost when the prediction for the fake samples is bad and low cost
when the prediction is close to the true label.

The discriminator tries to minimize its cost, while the generator tries to maximize
this cost: a minimax game. The GAN trains in an alternating way: the discrimi-
nator trains by updating its parameters on the basis of its own classi cation of
the real and fake images, while the generator learns with the feedback from the
discriminator, trying to generate images that fool the discriminator more easily.
It is important that both discriminator and generator improve, as otherwise the
feedback is not helpful.

3.6 Deep Convolutional GANs

In normal GANSs, the discriminator and generator are fully connected layers.
In Deep Convolutional GANSs [9], the model consists of convolutional layers,

12



Figure 2: Generative Adversarial Network

which perform downsampling with the convolutional stride and upsampling with
transposed convolutions. Downsampling is used in the discriminator, as the
network receives anC H W image and downsamples it into a scalar prediction.
In contrary, the generator upsamples the noise vector intoaC H W image.
Moreover, batch normalization is introduced between the convolutional layer and
the activation layer, except from the input layer of the discriminator and the last
layer of the generator. In addition, ReLU is used in the generator blocks, while
tanh is used in its last block. For the discriminator, the activation LeakyRelLU
is used, instead of sigmoid.

3.7 Conditional GANs

The vanilla GAN does not specify the classes which the generator creates, while
the conditional GAN adds an extra condition class to the output of the GAN.
This implies that the training dataset needs to be labeled, while in the original
case this requirement was not speci ed. In order to make a GAN conditional,
the input of the generator is the noise vector with a one-hot vector of the class
appended.

Figure 3: Concatenation of noise and one-hot labels

The discriminator also has this class information added to its input image in the
form of one-hot class matrices. As visual representation is shown in Figure 4. As
the image shows, the number of matrices appended to the image is dependent
on the number of classes. In this example, the number of classes is 6 and the
third class is the class which belongs to the image.

13



Figure 4: Concatenation of image and matrix one-hot labels

3.8 Wasserstein GANs
3.8.1 The problem with BCE loss

The vanilla GAN is trained with BCE loss, a cost function derived from the
binomial distribution and ideal for binary classi cation tasks. However, it is
evident that the generator has to provide a very complex output (an image),
while the discriminator only has to output 1 or 0. Hence, the task of the
discriminator is much easier than the generator's task, which makes it common
for the discriminator to perform better than the generator. In the beginning
of training this is not yet the case, as the discriminator has not yet learned to
distinguish properly between reals and fakes. Thus, the discriminator still gives
valuable feedback to the generator in the form of a nonzero gradient. But as
the discriminator improves, it begins giving feedback in the form of numbers
close to zeros or ones, which in turn is not valuable for the generator, as it is
unable to improve. As the cost function approximated by the BCE loss has at
regions, vanishing gradients (gradients close to 0) can occur, leading to mode
collapse. Mode collapse means that the generator tends to only generate one
type of sample, as it learned that this sample easily fools the discriminator. This
problem is even more severe in unconditional GANs, as the model is not forced
to generate di erent classes of outputs, but it can generate any image.

3.8.2 Earth Mover's Distance

The Earth Mover's Distance (EMD) is a distance which gauges the distance
between two distributions. Generally, the EMD computes the e ort for making
the fake distribution similar to the real distribution. Hence, this e ort is
dependent on the amount and distance which has to be 'moved' to make them
similar. The advantage of EMD compared to BCE loss is that there is not a
restriction of the loss being between 0 and 1. The gradient will not approach
zero, even when the distributions are very dissimilar. This lack of at regions in
the loss functions makes it less prone to vanishing gradient problems, and thus
also to mode collapse.

14



3.8.3 Wasserstein loss

The BCE loss can be simpli ed into:

minmax - [E(log(d(x))) + E(1 log(d(g()))))] (15)

The generator wants to maximize the cost, while the discriminator wants to
minimize the cost. The sum of the samples to m divided by the number of
samplesm is actually an expected value, wherey() equals 1 in the rst term,
and in the second termy(") equals 0, which makes the (1 y())-term 1.

In contrary, the Wasserstein loss approximates the Earth Mover's Distance:
min maxE(c(x))  E((a(2))) (16)

Hence, the main di erence with the simpli ed BCE loss function in Equation 15 is
that the function does not contain any logarithms. In this case, the discriminator

is called the ‘critic', as it does not classify anymore, but evaluates the distance.
The critic tries to maximize the distance between the real and fake distribution,
while the generator aims to minimize the distance. The loss is not bounded
between 0 and 1, because it outputs a real number representing the distance.
This W-loss can be used as the new cost function for the Wasserstein GAN,
introduced by Arjovsky, Chintala and Bottou [11].

3.8.4 1-Lipschitz continuity

The Wasserstein GAN has the requirement that the gradient of the critic is
stable. This is controlled by 1-Lipschitz continuity, implying that the norm of
the critic's gradients should be at most 1 at every point of the function. In this
way, the gradient cannot grow more than linearly. This makes sure that the
W-loss is not only di erentiable and continuous, but also stable during training.
This is shown in the Equation below, with ¢ as the critic and x as the image.

kr c(x)k, 1 a7

However, there are multiple ways to enforce 1-L continuity on the Wasserstein
GAN. The rst way is weight clipping [11]: imposing the critic's weights to
be between bounds, meaning that the weight values which are lower or higher
than these bounds are ‘clipped' to these bounds. However, the main risk of this
method is that it inhibits the learning of the critic, which could lead to poor
performance.

Another way to ensure 1-L contintuity is gradient penalty, which is a form of
regularization of the critic's gradient, introduced by Gulrajani et al. [12]. This
term penalizes the critic when its gradient norm is larger than 1. However, it is
impossible to check whether the gradient norm is smaller than 1 at every point
in the feature space. Therefore, points are sampled by means of interpolation
between reals and fakes. The reals get a weight ofand the fakes get a weight of

15



1 , which leads to a random interpolation . The gradient norm of ® should
be less than or equal to 1.

2= x+@1 )92 (18)

In the function above, x is the real image, % is the interpolated image, z is
the noise vector andg(z) is the generated image. This leads to the following
regularization term:

(kr c(R)k, 1) (19)

As the gradient norm of the critic is requested to be (lower than) 1, the 1
between the brackets will penalize any value which is not 1. Thus, instead
of penalizing any value larger than 1, it penalizes any value which is not 1.
The square of this term rather than the absolute value makes sure that values
very di erent from 1 are penalized more. Eventually, the new Wasserstein loss
function with gradient penalty and gradient penalty weight is de ned as:

mginméale(c(x)) E(c(g(z))) + E(kr c(%)k, 1)? (20)

A visual representation of the process of computing the gradient penalty is shown
in Figure 5. The gure shows how rst an interpolation of the real and fake
image is computed, and with the concatenation of the interpolation and the
one-hot labels the critic predicts the distance. The interpolated image and the
critic prediction are used to compute the gradients of the interpolated image,
after which the norm is computed. In the image, this is shown for one single
image, while in practice the norms are computed for one batch simultaneously.
The average of the norms of a batch is computed and used to calculate the
gradient penalty.

Figure 5: Computing the gradient penalty

A lighter Lipschitz regularization technique is Spectral Normalization (SN),
introduced for GANs by Miyato et al [24]. SN is a weight normalization method

16



which stabilizes the training of the discriminator by normalizing the spectral
norm of the weight matrices. In this way, it stabilizes the training of the
discriminator and enforces 1-L contintuity, lowering the risk of mode collapse.
The advantage of this method is that it does not require much hyperparameter
tuning and it is very easy to implement, while also not making to model more
computationally expensive.

3.9 Self-Attention GAN

Although Deep Convolutional GANs are good in generating images with geo-
metric structures (e.g. landscapes), DCGANs sometimes fail to generate the
complete object accurately, e.g. two separate legs of an animal. This is due to
the convolutions in the DCGAN, which are local operations. The convolutional
Iters are excellent in discovering the local structure of the image, but the recep-
tive elds might not have a su ciently large size to discover bigger structures.
Increasing the kernel size or making the network deeper is at the expense of
the computational e ciency, while GANs are already really expensive to train.
Therefore, the concept of self-attention applied to GANs is introduced by Zhang
et al [25].

The addition of a self-attention module to the GAN could improve the discovery
of these non-local dependencies in images. Intuitively, the self-attention module
computes what part of the feature map should receive more attention by means
of interactions between the di erent parts.

The concept of self-attention uses three representation matrices: query (Q),
key (K) and value (V) matrices. Conceptually, the query matrix entails the
representation of every position related to itself, the key matrix contains the
representation of every position with respect to other positions. The value gives
the weight of importance of the attention at every position. The most important
positions should obtain more weight than insigni cant ones. In Equation 21, W;
is the representation matrix and F the attened image input.

Q=WF
K =W F (21)
V=WF

The importance of two speci ¢ positions relative to each other is computed by
the dot product of the query (Q) and key (K) matrices, which is called dot
product attention. This dot product is converted to a probability distribution

by means of a softmax. Both the discriminator and generator make use of the
self-attention. The computation which is used for the Self-Attention GAN [25]
is shown in Equation 22, which is slightly adapted from the o cial self-attention
paper [26]. Moreover, spectral normalization is used for the weights of the
representation matrices.

attention = softmax( QK ~)

. . (22)
scaled attention = (attention) V

17



The proposed module is visualized in Figure 6. In the gure,f (x), g(x) and
h(x) are the query, key and value matrices.

Figure 6: The Self-Attention mechanism [25]

In the case of solar panels in aerial images, self-attention might also improve the
GANSs ability to identify the importance of the solar panels in the images, as in
some images the solar panel covers a small fraction of the image. In this way, we
would like to decrease the risk of generating positives without any solar panel in
the image.

3.10 Evaluation

The evaluation of GANs is more di cult than regular classi ers. For regular
classi ers it is relatively simple to evaluate whether the model has the right
classi cation compared to the true classi cation. In contrast, as GANs are
unsupervised and generate samples which are fairly complex, it is harder to
de ne an evaluation metric. For the evaluation of GANs, two characteristics of
the images are important. First the delity, de ned as the quality (e.g. blurriness
or realism) of the images. Moreover, the diversity implies the variety of the
generated images.

An example of an evaluation metric could be the pixel distance, which computes

the absolute di erence between the pixels of a real and fake image. However,
this metric is not reliable at all, as a small shift in a feature in one image has a

high impact on the absolute di erence between the images, although the images
might be similar. Therefore, a metric which assesses the di erence between
images in a more high-level way is required.

3.10.1 Fechet Inception Distance

The Fechet Inception Distance is an evaluation metric which computes a high-
level feature distance between fakes and reals by means of extracted feature
vectors and the statistics of the images. The method extracts feature vectors
for the fake and real images with a pre-trained neural network and cuts o the
fully connected layer. The output of the model is de ned by the last pooling
layer, which gives is an encoded representation of the features in the image of
2,048 dimensions. Generally, the Inception-v3 network is widely used as the
state-of-the-art pre-trained network for extracting features for FID evaluation
[27].

18



The Fechet distance [28] computes the di erence between two distributions. In
case of Fechet Inception Distance (FID), the fakes and reals are both represented
as two multivariate normal distributions, with a means e and eq and
covariance matrices ea and ake . The multivariate normal Fechet Distance
is de ned as:

p--
k real fake k2+TI’( real t  fake 2 real fake) (23)

The FID is computed by extracting n feature vectors of both the reals and the
fakes, ta multivariate normal distribution on them and compare their statistics
(means and covariances) with the Fechet distance of Equation 23. The lower the
FID, the more similar the distributions are, having a smaller distance between
the reals and the fakes.

3.10.2 Performance increase on classi cation model

A second quantitative metric to evaluate the performance of a trained GAN
is assessing whether adding synthetic positives to the training set leads to
a classi cation performance increase in the test set. This is performed by
rst training a classi cation model on the original Heerlen dataset and report
its accuracy, precision and recall for the train, validation and test set. The
architecture of this model is based on VGG11 by Simonyan et al. [29] and
the last 4 convolutional blocks are retrained, freezing the rst 4 convolutional
blocks. This performance is considered the baseline performance. Afterwards, a
predetermined number of generated positives (generally 5,000) is added to the
training set in order to create a better balance in the dataset. The classi cation
model with the same hyperparameter settings is trained on this new dataset,
and its performance metrics are compared with the performance of the baseline
model.

3.10.3 Inuencing the generation of images

Clusters as GAN input

After training the GAN, the generator is able to generate synthetic images.
However, we would like to have more control over the features which the trained
model generates. As we make use of conditional GANs, we can control whether
we want to generate an image of a certain class. However, there might also be a
lot of diversity within the classes. As we are only interested in the generation
of positives, we would like to have more in uence on what kind of positives
our GAN generates. Therefore, we test whether conditioning the GAN on the
clusters instead of the classes increases its performance and controllability. Fur-
thermore, conditioning the GAN on multiple classes could increase diversity of
generation, as well as decrease the risk of mode collapse, since the generator is
forced to create multiple types of samples. In order to do this, it is important
that the clustering methods are able to make a division between within and
between the positives and negatives. In the ideal situation, clusters have the
positives separated into di erent groups. In this way, we can evaluate whether
only generating certain types of positives leads to a higher FID and classi cation
performance increase.

19



Truncation trick

As previously explained, the generator uses a noise vector as input for its
image generation. The values within this vector are sampled from a Gaussian
distribution, which implies that values closer to the mean of this distribution
occur more frequently in the generator's input during training. In contrary,
the tail values of this distribution will have a low occurrence in the generator
input.

This means that after training of the GAN, we can in uence the generation of
images with the noise vector we impute. Using a noise vector with values close
to 0 (the Gaussian mean) will give higher quality images, as the GAN has seen
these values more regularly during training, and thus the generator has received
more feedback about these images and has learned to generate better images of
this kind. The downside is that these images generated by these values will be
less diverse.

Figure 7: Truncation trick

The truncation trick makes use of this increase of quality by using the cut o
values of the Gaussian distribution as an input for the trained generator. In
this way, low-quality images are not generated. Previous work has proven that
truncating the noise vector could lead to improved quality of generated results
[30]. A possible downside could be that the FID decreases due to the reduction
in diversity. However, it is a possibility that the increase in quality still leads to
higher performance increase in the classi cation model, as the conditioning on
the clusters already improves diversity of generation.

4 Results

4.1 Exploratory analysis
4.1.1 Identi cation of misclassi ed samples

In order to obtain better understanding of the model, we rst validate the trained
model on a subset of the test, which consists of 10,000 samples. As can be viewed
in the confusion matrix in Figure 8, this subset consists of 7,202 negatives (72%)
and 2,783 positives (28%), which is a more balanced ratio between positives and
negatives than in the original test set (93:7). The confusion matrix uncovers that
the model has di culty classifying the positives correctly, as 1,248 out of 2,783
positives are misclassi ed. Nonetheless, the model seems to identify the negatives

20



almost awlessly, as only 14 samples of 7,202 negatives are misclassi ed as a
positive. Therefore, the precision is really high (99.1%), while the recall is low
(55.2%) This arouses the impression that the model could be biased towards the
negatives, due to the class imbalance in the training set (80% negatives).

Figure 8: Confusion matrix test set (Zuid-Limburg)

The histograms of the output probabilities are shown in Figure 9 and 10. Figure 9
shows the probabilities of some samples which are correctly classi ed as positive.
On the other hand, Figure 10 shows the probabilities of a sample of positives
which are wrongly classi ed. It is remarkable that the probabilities are not very

di erent between the true positives and the false negatives. It would be desirable
that the probabilities of the true positives are close to 1, while the probabilities
of the misclassi ed positives (false negatives) are close to 0.5. However, this
is not the case for both of the histograms. It is suspected that these images
contain features which also occur frequently in images classi ed as negative.
Moreover, it is also possible that the model is not calibrated well, implying
that the output probabilities of the network are not representative of the true
likelihood of correctness [31]. Some example images of the train and test set are
shown in Figures 11 and 12.

Figure 9: Histogram true Figure 10: Histogram false
positives negatives

21






	Introduction
	Problem statement
	Research goal and hypotheses
	Research approach
	Exploratory analysis
	Generation of positives with GANs


	Related work
	Methodology
	Data and dataset
	Extraction of feature embeddings
	Clustering on extracted feature embeddings
	KMeans
	Hierarchical clustering
	Cluster distances
	Cluster validity evaluation

	t-SNE
	The vanilla GAN
	Deep Convolutional GANs
	Conditional GANs
	Wasserstein GANs
	The problem with BCE loss
	Earth Mover's Distance
	Wasserstein loss
	1-Lipschitz continuity

	Self-Attention GAN
	Evaluation
	Fréchet Inception Distance
	Performance increase on classification model
	Influencing the generation of images


	Results
	Exploratory analysis
	Identification of misclassified samples
	t-SNE
	Clustering on extracted feature embeddings
	Analysis of clustering

	Generation of images
	Vanilla conditional GAN
	Wasserstein conditional GAN
	Self-Attention GAN


	Discussion
	Conclusion
	Appendix A
	KMeans clustering on train set


