
Discussion Paper

Complexity and simplificaƟon of networks

Léon Willenborg

July 24, 2019

The paper deals with two topics: the quanƟficaƟon of the complexity of networks (graphs and
digraphs) and the simplificaƟon of networks by idenƟfying their most important parts (nodes
and arcs / edges) and leaving out the less important parts. The first topic is a preparaƟon for
the second one. It provides measures to quanƟfy the most important nodes and arcs in a
network. Complexity for graphs is first considered, by the average degree. Then the complexity
of digraphs is studied on the basis of reachability. The main goal of this paper is to simplify
complex networks by focusing on their essenƟal parts. This is in fact complexity reducƟon. In
this way one obtains an overview by removing distracƟng details. Edges or arcs may need to be
added in order to preserve the topology of the original network. Network reducƟon can be
compared to (and was in fact inspired by) zooming in or out at cartographic maps: for an
overview of an enƟre country informaƟon on hamlets and villages is not needed. Only, ciƟes,
towns and other more significant geographic features that are of interest at that level are
shown. Zooming in to a small part of the country yields informaƟon on less prominent
features. So there is a trade-off between scale and detail: global scale and limited detail go
together as well as local scale with an abundance of detail. For networks the same kind of
trade-off can be envisioned: for an overview of the enƟre network the hubs are important and
the way they are interconnected. For a small part of the network, however, detailed
informaƟon on less important nodes should also be provided. This begs the quesƟon what are
in fact the important parts of a network? How do we define them? Various measures (node
ranks) are discussed to quanƟfy the relaƟve importance of nodes. With such measure one can
in turn define arc ranks, which can be used to select important arcs.

1 Introduction

Complexity, and in parƟcular complexity reducƟon, in networks is what this paper1) is about.
Complexity of a network is a mulƟfaceted concept. Part of the paper explores this concept, but
the other focus point is simplificaƟon of networks. This is a pracƟcal way of dealing with
complexity, and in parƟcular complexity control. This topic can actually be tackled with only an
intuiƟve understanding of the concept of complexity, which can be very sophisƟcated and
computaƟonally intensive to apply. To start with, it is necessary to explore measures to
characterize the complexity of networks. In fact, ’complexity of networks’ is a concept that may
invoke mental pictures of networks, that are highly branched and look complicated, but actually
capturing this concept in more precise measures is a challenge. It may be the case that it is so
complicated because there are several aspects involved. Because of this, there may not be a
single measure that expresses all these properƟes. Or such a measure is possible if the various
aspects involved are explored, and for each at least one suitable measure has been defined. In
that case an overall measure of complexity can be defined by combining the various measures of
aspects of complexity.

The remainder of the paper is organised as follows.

In SecƟon 2 some moƟvaƟng examples of networks are discussed. Some of the examples are
represented as (undirected) graphs as they involve symmetric relaƟonships between elements.

1) Frank Pijpers and Sander Scholtus were so kind to review a draŌ of this paper. Their remarks led to various improve-
ments in the text.

CBS | Discussion paper | July 24, 2019 2

Others are represented by directed graphs (digraphs) as they are about asymmetric relaƟonships
between elements. The laƩter type of relaƟonship includes the former, but it makes sense to
disƟnguish graphs as a special kind of network, in general but, parƟcularly in the present paper.

In SecƟon 3 the complexity of networks is discussed in a general way, as an introducƟon to what
is coming in the following chapters. As a network comprises both undirected and directed graphs
(or ’digraphs’), this chapter’s aim is to explain why the complexity of digraphs is different from
that of graphs. In the sequel first the complexity of graphs is studied and then that of digraphs.
This is a natural way to proceed as it is simpler to define the complexity of graphs than the
complexity of digraphs. This is a result of the symmetry that graphs have and digraphs (in
general) lack.

In SecƟon 4 the complexity of (undirected) graphs in terms of the average degree of its nodes is
considered. This is done by looking at classes of graphs which have the same number of edges.
The only freedom in such a class is to rearrange the arcs and ’glue them together’ to form a
graph. This ’glueing’ is in fact idenƟficaƟon of nodes. So the number of nodes in the class of
graphs with a fixed number of edges varies. As a measure of complexity the average degree of
the nodes in the graph is assumed. This turns out to be a good measure for how compact a graph
is. More compact graphs appear to be more complex. Because we assume that we are dealing
with graphs and not mulƟgraphs, so that there can be at most one edge between any two points,
the number of points in these graphs has a lower bound typically well above 1.

In SecƟon 5 the complexity of graphs is defined in terms of the length of an opƟmal path. This
path is of minimal length and covers all edges of the graph. The path can be viewed as the result
of an opƟmal search procedure that searches the enƟre graph, traversing all of its edges at least
once, jumping from a node to a node linked to it by an edge. The length of the search path
depends on the choice of the start and finish point. We are interested in the shortest path of this
type. To find such a path, a nontrivial opƟmizaƟon problem needs to be solved. The complexity
measure for this search approach is the length of the shortest path covering all edges divided by
the length of a tour starƟng and ending at the same point in the graph (which is twice the
number of edges in the graph).

In SecƟon 6 the average distance of different points in a graph is used as such a measure. The
distance used is the ‘natural’ distance where each edge has length 1. This complexity measure is
related to the Wiener index used in mathemaƟcal chemistry to quanƟfy the branching of organic
molecules; it is topological in nature, not geometric.

In SecƟon 7, we consider the complexity of a special class of digraphs, namely rouƟng digraphs,
which are acyclic digraphs with a single source and a single sink. Such digraphs oŌen appear in
quesƟonnaires. These digraphs and some of their properƟes, among them complexity, were
studied by the author in his PhD thesis (of which (13) is a slightly modified version).

In SecƟon 8 a simple complexity measure for digraphs is considered, namely one that is based on
the asymmetry of the adjacency matrix of the digraph. This is the same as the number of pairs of
nodes for which one arc is defined, but not its counter-arc. The idea is that the more a digraphs
differs from its underlying graph, the more complex it is, in the class of digraphs with the same
underlying graph.

In SecƟon 9 the complexity of digraphs based on the concept of reachability is considered. Using
this concept one looks at the nodes that can be reached from each of the nodes in the digraph.

CBS | Discussion paper | July 24, 2019 3

In case of a connected graph (viewed as a digraph), one can reach every node from every node.
The more deviaƟon is found in termes of reachability the more complex the digraph is
considered to be. Reachability is a concept that is closely linked to transiƟve closure of the
network (and its adjacency matrix), which is explored in this secƟon.

We can approach reachability in a determinisƟc or a probabilisƟc way. In the first case the idea is
used of augmenƟng a digraph with arcs in such a way that a digraph is obtained that has full
reachability for every node. The minimum number of arcs needed to do this is a measure for the
complexity of a digraph. The more are needed the complexer the digraph is. A probabilisƟc
variant is obtained when arcs are augmented randomly. In pracƟce this approach is easier to
apply than the determinisƟc approach.

Also an alternaƟve complexity measure for digraphs is considered in this secƟon. This measure is
not based on the augmentaƟon of arcs to produce digraphs with the full reachability property.
This method has the drawback that the original class of digraphs is leŌ. Instead the alternaƟve
measures are based on certain probability distribuƟons on the reachability sets.

So far only global measures of complexity of digraphs have been considered. This means that the
enƟre network is involved to compute the measure. However, this is not always possible or
pracƟcal. It is aƩracƟve to have a local concept of complexity. It is this issue that SecƟon 10
explores. Central to the idea of local complexity is the use of neighbourhoods of nodes of a
network. Local complexity is not fully explored in the present paper; only some first steps are
made into his area.

In SecƟon 11 we switch to the second major topic of this paper namely network reducƟon. We
start with the concept of node rank. This is an aƩribute that can be described as a kind of
popularity measure of the nodes in a digraph, on the basis of being pointed at by arcs. The
popularity of nodes that point to other nodes can be taken into account: a node is more popular
if a high ranking node is poinƟng to it than a lower ranking one. Several possibliƟes of defining
node ranks are discussed. Node ranks can be used to select nodes. By selecƟng the more
inportant ones one can reduce the original network (which may be rather big) and concentrate
on the more interesƟng parts, while discarding the distracƟng details.

Once node ranks have been defined, arc ranks can be derived. This is shown in SecƟon 12. We
use IteraƟve ProporƟonal Fiƫng (IPF) as an algorithm to achieve this, but other, similar,
algorithms could be used just as well. As marginals in this algorithm the tables with indegrees
and outdegrees, respecƟvely, are used. The arc ranks can also be used when reducing a
(complex) network, as is shown in the next secƟon.

This reducƟon process is considered in SecƟon 13, which should lead to the essence of a
network. This features only the important nodes of the original network and otherwise faithfully
represents its topology. Arc ranks can be used to modify node ranks, if one wishes to do so. In
this case nodes and arcs not represented in the reduced digraph do not contribute to the node
ranks of the reduced digraph. In case one chooses not to do this but to keep the original ranks,
the nodes in the reduced graph actually represent a cluster of nodes. This mimicks the idea of
the renormalizaƟon group idea in staƟsƟcal physics: Ising models for spin laƫces, which are
graphs, not merely digraphs. This secƟon also considers the complexity of reduced digraphs.

SecƟon 14 closes the main part of the paper with a discussion of the main results. Also some
topics for future research that have been noted in the main text are collected here.

CBS | Discussion paper | July 24, 2019 4

The paper is completed by a list of references and four appendices. Appendix A contains several
examples illustraƟng the reachability concept graphically, to bolster the intuiƟon. Appendix B
presents some graphs where average distances of pairs of points in a graph are used to define
complexity measures. Appendix C contains an overview of the notaƟon used in this paper.
Appendix D contains a glossary.

2 Motivating examples

2.1 Networks: Graphs and digraphs

In the examples to be presented the underlying network is a directed graph (for short: digraph),
in which we have arcs instead of edges. The arcs are directed, whereas edges are not.
AlternaƟvely we can view an edge {𝑎, 𝑏} as a pair of arcs (𝑎, 𝑏) and (𝑏, 𝑎). In general digraphs
are more complicated than graphs, because of the asymmetry of the arc distribuƟon: an arc may
not have a counter arc (poinƟng in the other direcƟon). A road network with bidirecƟonal streets
is easier to understand, because a path connecƟng point 𝑎 to 𝑏 automaƟcally yields a path in the
opposite direcƟon, i.e. from 𝑏 to 𝑎.

SomeƟmes it is useful to forget about direcƟons and replace an arc (𝑎, 𝑏) by the corresponding
edge {𝑎, 𝑏}.

2.2 Transportation networks

TransportaƟon networks can be defined depending on the type of vehicles involved, such as cars,
trains, ships, airplanes, etc. Each such network consists of links between locaƟons.These links are
roads connecƟng villages, ciƟes, shops, etc., waterways connecƟng harbours, or airways between
airports, etc.

In an overview map of a transportaƟon network one would want to present the important
connecƟons (in terms of average traffic) and discard the unimportant ones. For a detailed local
map one would focus on those links that are important for the area. This may also mean that
links that are unimportant at a given level are discarded.

2.3 Routing structures in questionnaires

A quesƟonnaire consists of a finite number of quesƟons. For each quesƟon an answer is an
element of a domain. An answer to a parƟcular quesƟon may lead to a specific next quesƟon.
The idea is that in this way one can be more efficient in the quesƟons put to interviewers. if
some quesƟon reveals that the respondent is unemployed it does not make sense to bother
them with quesƟons about their current work.

In a quesƟonnaire one can usually group quesƟons into themes and treat these as single nodes
to describe the quesƟonnaire at a higher level of abstracƟon. To understand a detailed
quesƟonnaire it is of interest to be able to start at a high level of abstracƟon and click at nodes to

CBS | Discussion paper | July 24, 2019 5

unfold them to see the next level of nodes. The process may be repeated a few Ɵmes unƟl one
arrives at the most detailed level, consisƟng of the quesƟons in the quesƟonnaire.

The zooming in that has just been described uses only informaƟon describing the logical stucture
of the quesƟonnaire. But suppose that the quesƟonnaire has been used for some Ɵme. Then
informaƟon about how it is actually filled in is available. This can be used to focus on the most
important paths through the quesƟonnaire, at different levels of aggregaƟon of the quesƟons
(subjects).

2.4 LANs

A local area network (LAN) is a network of units (computers) that are interconnected by cables.2)

The units are represented by points in the network, and cables connecƟng the units are
represented by edges. 3) They are typically connected in such a way that any two of them can
communicate with each other. When the LAN is connected to the internet they can all exchange
informaƟon with the internet as well. The way the units (PCs, say) are connected in a LAN is
restricted. It is in general not possible to connect each pair of units with a separate cable. The
number of sockets for each unit is typically limited.4) Also the enƟre network configuraƟon
would change if a unit is added or removed from the LAN. This would affect the global structure
of the LAN. It is desirable that such an operaƟon is a local maƩer. Of course, if one would opt for
a minimal network connecƟng all the units (a network in the form of a spanning tree) there are
other problems one faces. If one link would be damaged the LAN would be disconnected. Also,
there would possibly be a lot of data traffic over the network. So in pracƟce, a a structure is
adopted which is a compromise between a minimal network (in the form of a tree) and a
maximal network (represented by a complete graph). Several things have to be balanced in an
opƟmal compromise for a LAN-network, with a variety of constraints to be taken into account.

2.5 Internet

At the lowest level of descripƟon the internet is a collecƟon of (virtual) webpages that link to each
order using hyperlinks. The internet is also not a staƟc structure but changes all the Ɵme: new
URLs or webpages are created, modified or deleted conƟnuously.5) Not only is the web dynamic,
it is also huge in size. There are far too many webpages to detect them all (or even a significant
porƟon) at a certain moment in Ɵme to get a good impression of the structure of the Web.6)

Networks such as the Internet are so huge (and volaƟle) that they cannot be instantly known.
And if Ɵme is taken to invesƟgate them they change. At best one can only probe them by taking a
sample. The sample is then used to esƟmate certain properƟes of the network. Such networks
are called random access networks (RANs). See (14) for more informaƟon on such networks.

2) In pracƟce one would use routers and hubs as well. But for simplicity we assume there is only one type of point. A
more realisƟc picture is one of a network of hubs and routers, and each unit/computer is connected to exactly one
hub or router.

3) The tacit assumpƟon is that bidirecƟonal communicaƟon is possible.
4) A unit/PC has one socket, and a hub or router has several sockets.
5) Since there also exist dynamically created webpages that are produced as a result of a query, and typically do not

persist for very long, the situaƟon is even more confusing. But we consider the more stable part of the internet,
consisƟng of webpages that exist for a longer Ɵme.

6) There is a trade-off: observing in a very short Ɵme gives a more accurate picture of the internet at that Ɵme, but this
porƟon is small compared to the whole thing. Or it is big, in which case it is not a crisp and sharp picture at an instant,
but a blurred one taken over a sizeable Ɵme interval.

CBS | Discussion paper | July 24, 2019 6

2.6 Genealogical network

A directed network in which for each person their biological father or mother are given,
assuming that they are known. This is another example of a random access network (like the
Internet; see SecƟon 2.5, and one that is incomplete, as not for all persons it is known who their
(biological) parents are. The network also contains errors, as in some cases the person who is
registered as a (biological) parent of a child may in fact not be so. In fact such a person might not
even be aware of this.

2.7 Human society

The points are persons in some society or community, which could be a country, a village, a
school. The relaƟonship studied could be that of ’being a friend of’. The corresponding network
is a digraph. If A declares themself to be a friend of B then it is not necessarily the case that B
considers A to be their friend as well.7) So the relaƟonship ’being a friend of’ is not necessarily
symmetric.

2.8 Businesses

The points in the network are businesses in a country. An arc connecƟng one point A with
another point B means that a payment of A to B has been made for a delivery or service from B
for A. Such a network would bring to light how businesses interact with each other. Using this
informaƟon, it is possible to find the businesses that are hubs in the sense that they are either
big receivers or big spenders (or both).

2.9 Cartographic maps

We consider maps that divide an area into sub-areas. Think of a piece of land divided into
different parcels, each of which is owned by some individual. We view this division of parcels of
land as a parƟƟoning of the piece of land. IntuiƟvely some subdivisions look more complex than
other. The quesƟon is how to capture this kind of complexity. We first note that this problem can
be turned into a graph problem. Each parcel of land is represented by a node. Two nodes are
connected by an edge if the corresponding parcels of land have a (1-dimensional) boundary in
common. So if they only have a point in common they are not joined by an edge. It is clear that
we are dealing with a topological property and not a geometric one: the sizes of the plots of land
are immaterial. If they are blown up or shrunk, they sƟll do (or do not) have 1-dimensional
boundaries in common. MuliplicaƟon by a factor of 0 is not allowed, as this would not be a
transformaƟon that leaves the topology invariant: any configuraƟon is transformed to a point.

7) This seems to be related to social status. If B is ranked higher in a social group than A then B might not count A as
a friend, whereas A may view B as a friend. People generally prefer to be associated with persons with at least their
social status in a social group.

CBS | Discussion paper | July 24, 2019 7

3 Complexity of networks

We propose to consider the complexity of networks in two steps. First we consider graphs and
then, as an extension, digraphs. A graph is an easier object than a digraph. Think of a street
network consisƟng of two-way streets only. It is easier planning a trip from one point 𝑎 to
another point 𝑏 in such a graph, which we assume to be connected. In this case one knows that
there exists a route leading from 𝑎 to 𝑏. Also if one has found a route from 𝑎 to 𝑏 then one
automaƟcally has a route from 𝑏 to 𝑎, namely the reverse route.

However in a streetplan with many one-way streets and few two-way streets, it is not certain
that a path from node 𝑎 to node 𝑏 exists in the digraph. And also, if one has found such a path
then it is not certain that a reverse path from node 𝑏 to node 𝑎 exists in the digraph. The reverse
path is not necessarily an admissible soluƟon. Even if a path from node 𝑏 to node 𝑎 exists in the
network, it may be very different from the path from 𝑎 to 𝑏, in the sense that it may have few
nodes in common.

To make the discussion sensible, one should look at the right classes of graphs and digraphs. For
graphs we look at sets with the same number of edges (and a variable number of nodes). The
complexity is determined by the distribuƟon of the edges over the network, and hence by its
topology. In fact, the average degree of the nodes is taken as a measure of the complexity of a
graph.

For digraphs we consider reachability as a property to determine the complexity. Which nodes
can be reached from a given node? And what can be said about the reachability of an average
node? This informaƟon characterizes the complexity of a digraph. For a complex digraph the
reachability from a node may vary considerably. In a digraph with full reachability – in which
every node can be reached from every other node – the complexity is small. Each graph has the
full reachability property, which indicates that reachability is not a suitable complexity measure
for graphs, as it does not discriminate among them. But reachability does for general digraphs. In
fact full reachability is equivalent to the transiƟve closure of the adjacency matrix being equal to
the ‘all 1s matrix’, that is 𝐴∗ = 𝐽, where 𝐽 is the matrix with all elements equal to 1 and of the
same order as 𝐴 (namely ∣𝑉∣).

For a digraph without full reachability intuiƟvely a measure for complexity could be the distance
to a digraph 𝐺 with this property, distance being measured by the number of arcs added to 𝐺.
This addding can be done determinisƟcally in which case we want to add as few arcs as possible.
The quesƟon then is which arcs to add. In a probabilisƟc approach arcs are randomly added by
drawing arcs from the set of feasible arcs (counter-arcs to exisƟng arcs, insofar they are
available). The drawing is done independently for the arcs concerned in a Bernoulli process,
where each arc is drawn with a probability 𝑝. It is clear that the larger 𝑝 is the larger the
probability is that an augmented digraph will emerge that has the full reachability property.
There is likely to be a criƟcal value 𝑝௖ such that the probability that full reachability is obtained
for 𝑝 > 𝑝௖ is 1, whereas for 𝑝 ≤ 𝑝௖ is this probability is strictly smaller than 1. This 𝑝௖ therefore
can be used to measure the complexity of 𝐺: the higher 𝑝௖ the further removed 𝐺 from a
digraph with full reachability and therefore the complexer it is.

Although these approaches are intuiƟvely jusƟfiable, they have the drawback that they are
computaƟonally demanding. It would be aƩracƟve to have a simpler way to compute the

CBS | Discussion paper | July 24, 2019 8

complexity of a digraph. One way to do this is by looking at the reachability sets for the nodes, in
parƟcular their sizes. In case 𝐺 = (𝑉,𝐸), where 𝑉 is the set of nodes and 𝐸 the set of edges, is
fully reachable, they all have the same size namely ∣𝑉∣. So the size distribuƟon is one with all
mass (equal to 1) concentrated in one point (namely ∣𝑉∣). The entropy of this distribuƟon is 0.
For a digraph which is not fully reachable, there is a nondegenerate size distribuƟon of the
reachability sets. The entropy measures how strongly this distribuƟon deviates from the
distribuƟon with all its mass concentrated at a single value. It is maximum for uniform
distribuƟons (that is, for various values of 𝑛).

4 Complexity of graphs using average
degree

4.1 Average degrees of graphs

In topology the concept of connectedness is based on the idea of separability. If a topological
space is the union of two nonempty, disjoint open sets it is disconnected. In a connected
topological space such a decomposiƟon is not possible. In the network context the equivalent of
a disconnected space is that of a network consisƟng of two or more connecƟvity components.
The idea of a connecƟvity component is based on the concept of path connectedness in
networks.

It is important to consider, for a moment, connecƟvity in graphs and digraphs. In fact the digraph
case is the general one, if a graph is viewed as a digraph in which each edge is represented by
two arcs of opposite orientaƟon. A digraph is connected if for each pair 𝑎 and 𝑏 of its nodes,
there is a path from 𝑎 to 𝑏. A path is a finite sequence of arcs in the digraph, where the tail of the
first arc is 𝑎 and the head of the final arc coincides with 𝑏 and for subsequent arcs (𝑎, 𝑏) and
(𝑐, 𝑑) holds that 𝑏 = 𝑐, provided that (𝑎, 𝑏) is before (𝑐, 𝑑). As noted before, in a digraph there
may be a path from 𝑎 to 𝑏 but not a path from 𝑏 to 𝑎. And if there is a path from 𝑏 to 𝑎 it may
not be the reverse of the path from 𝑎 to 𝑏.

A topological space is path connected if any two of its points can be joined by a conƟnuous path
that is enƟrely within this topological space. Every path connected space is connected, but the
converse is not necessarily true. We shall not elaborate these concepts here as they are, in their
generality, not of interest to us.8) We will concentrate on path connnectedness in networks,
which is simply referred to as connectedness, as it is the only concept concernening connecƟvity
in networks.

An evident measure for the complexity of networks is related to the way nodes in a network are
connected. IntuiƟvely, the more branching exists in a network, the more complex it is. But how
should this be quanƟfied? Here we want to take a closer look at this problem.

To make things comparable we look at the class C௠ of graphs with the same number𝑚 of edges
for𝑚 ∈ ℕ. This is a good way to compare graphs. The complexity now depends solely on how

8) The interested reader should consult a book on general topology.

CBS | Discussion paper | July 24, 2019 9

the edges are interconnected, within each class C௠. Within such a class the number of points
control the complexity: the fewer nodes are present, the higher the complexity of the graph, and
vice versa.

As a candidate complexity measure we now look at the average degree of a graph. This is defined
of the raƟo of the sum of the degrees of the nodes in a graph, divided by the number of nodes in
this graph. So if 𝐺 = (𝑉,𝐸) is a graph in C௠ with 𝑛 nodes, the average degree is

Δ௔௩ ≜ Δ௧௢௧
𝑛 , (1)

where Δ௧௢௧ is the sum of degrees of all the nodes in 𝐺. But this is 2𝑚 for all graphs in C௠. This is
easy if one looks at the adjacency matrix of a graph, which is a symmetric (0, 1)-matrix. So we
find

Δ௔௩ = 2𝑚𝑛 . (2)

So in the class C௠ the number of nodes 𝑛 is the only free parameter. This parameter controls not
only the complexity of the graph, but also a topological property such as the number of
connecƟvity components. We consider this aspect in the sequel, but for the moment we
concentrate on average degrees.

In Figure 4.1 there are twelve examples of graphs in Cଵଶ, ordered by nondecreasing average
degree. For each node the degree is given (in blue) as well as the average degree (Δ௔௩).

We are interested in the graphs in C௠ with the smallest average degree and the highest average
degree. This is equivalent to graphs in C௠ with the highest number of nodes, and the smallest
number of nodes, respecƟvely, which in turn, should correspond to graphs with the lowest
complexity and the highest complexity, respecƟvely. This is indeed what Figure 4.1 shows in case
of Cଵଶ.

We can view this as a measure for density: how many nodes are used in a graph to accommodate
𝑚 edges? We can compare this with the minimum number of nodes needed to put in𝑚 edges.
How to compute this characterisƟc as a funcƟon of𝑚, is discussed below.

Lowest average degree is obtained if the graph with𝑚 edges is totally unconnected (consists of
𝑚 unconnected edges), and so has 2𝑚 nodes. In case of Cଵଶ the graph in Figure 4.1 on the top
leŌ posiƟon is an example of such a graph. The graph in C௠ with the highest average degree, is
the most compact one, that is, with the fewest number of nodes. Since we do not allow loops or
parallel edges in a graph, a nontrivial most compact graph with𝑚 edges exists.9) In Figure 4.1 the
most compact graph (and highest average degree) is pictured at the boƩom right, in case the
graph has 12 edges.

9) Of course, if they would be allowed, a ‘most compact’ graph would sƟll exist: it would be a generalized graph with one
node and௠ parallel loops.

CBS | Discussion paper | July 24, 2019 10

Figure 4.1 Examples of graphs in Cଵଶ in increasing order of complexity, based on the
average degree (Δ௔௩). The graphs with the lowest complexity (Δ௔௩ = 1) and with the
highest complexity (Δ௔௩ = 4) in Cଵଶ are included.

CBS | Discussion paper | July 24, 2019 11

We now construct a graph in C௠ with a minimum number of nodes (and𝑚 edges)? For a graph
with𝑚 edges determine 𝑛௠ ∈ ℕ such that

(𝑛௠2) ≤𝑚 < (
𝑛௠ + 1
2). (3)

Take a full graph F௡௠ with 𝑛௠ nodes. Expand F௡௠ by add one new node 𝜈 to its node set. Then
connect 𝜈 to𝑚 − (௡௠ଶ) nodes in F௡௠ . This can usually be done in a variety of ways. In any case,
the resulƟng graph has𝑚 edges and it has 𝑛௠ + 1 nodes. This number of nodes is, obviously, the
minimum number of nodes for the graphs in C௠.10)

To see how 𝑛௠ depends on𝑚 assume for the moment that𝑚 = (௡ଶ) for some 𝑛. This means that
the graph with minimum number of nodes is a full graph on 𝑛 points. So we have the equaƟon

𝑛(𝑛 − 1)/2 =𝑚, (4)

in which𝑚 is given and 𝑛 has to be determined. The soluƟon is

𝑛௠ =
1 +
√
1 + 8𝑚
2 (5)

assuming the expression on the right-hand side of (5) is in ℕ .

An interesƟng aspect is also how the connecƟvity of the graphs in C௠ changes when the number
of nodes is varied. When this number is the highest possible (namely 2𝑚) so is the number of
connecƟvity components (namely 𝑛). When this number is the lowest possible (namely 𝑛௠ + 1
with 𝑛௠ as in (3)) there is only one connecƟvity component. For values of between those
extremes it is more complicated to say what the number of components is. However to find this
number the so-called graph Laplacian can be used, which is the matrix

Δ ≜ 𝐷 − 𝐴, (6)

where 𝐷 = (𝑑௜௝) is the degree matrix of the graph, with

𝑑௜௝ = the degree of 𝑖, if 𝑖 = 𝑗,
= 0, if 𝑖 ≠ 𝑗, (7)

and 𝐴 is the adjacency matrix of the graph. The dimension of the kernel of Δ, i.e. dim(Ker(Δ)),
equals the number of connecƟvity component of the graph.

10) This is the case precisely because loops and parallel edges are forbidden in the graphs we consider.

CBS | Discussion paper | July 24, 2019 12

4.2 A reϐinement

Here we want to apply the complexity concept introduced in SubsecƟon 4 to an equivalence class
of graphs, namely those which are the same modulo linear subgraphs. Put another way, given a
graph 𝐺 = (𝑉,𝐸) we look for its compressed form 𝐺௖. 𝐺௖ is obtained from 𝐺 by replacing all
linear subgraphs by a single edge. A linear subgraph 𝐿(𝑎, 𝑏), where 𝑎 and 𝑏 are nodes in 𝐺, is a
path from 𝑎 to 𝑏, say (𝑛ଵ, … , 𝑛௞), where 𝑘 ∈ ℕ, 𝑘 ≥ 3, 𝑛ଵ = 𝑎 and 𝑛௞ = 𝑏, and Δ(𝑛௝) = 2 for
𝑗 = 2,… , 𝑘 − 1, where Δ(𝑣) denotes the degree of node 𝑣 ∈ 𝑉, that is the numbers of arcs
incident with 𝑣. Each 𝐺 has a compressed form 𝐺௖, which is unique.

The idea now is to base the complexity 𝜅௔௩,௖(𝐺) of a graph 𝐺 on the complexity of its
compressed form 𝐺௖:

𝜅௔௩,௖(𝐺)(𝐺) ≜ Δ௔௩(𝐺௖). (8)

The idea behind this complexity measure is that linear (sub)graphs are of the same complexity as
an edge, no maƩer which size they have. The point is that they do not branch. By replacing each
of them by any (finite) linear graph leaves the complexity unchanged. So one can just as well
replace each of them by an edge. This is precisely the compressed form of the original graph that
one obtains. Two graphs 𝐺ଵ and 𝐺ଶ which have the same compressed form, i.e. for which
𝐺௖ଵ = 𝐺௖ଶ , also have the same 𝜅௔௩,௖(𝐺)-complexity, that is complexity as defined in (8). Obviously,
the relaƟon ’having the same compressed form’ is an equivalence relaƟon on the class of graphs.

𝜅௔௩,௖(𝐺)-complexity as defined in (8) is more difficult to apply than Δ௔௩ in (1) and it also lacks
the nice property to look at ’natural’ and simple class of graphs, namely those with the same
number of edges. Despite these ’drawbacks’ we believe that 𝜅௔௩,௖(𝐺)-complexity is superior to
Δ௔௩-complexity. Since it is simpler to apply we concentrate on Δ௔௩-complexity in the remainder
of the present paper. However, 𝜅௔௩,௖(𝐺)-complexity deserves further exploraƟon.

4.3 Reducing graphs

We can reduce graphs through the removal of nodes or arcs in two ways. We have a general way
(ReducƟon method A) and a strict way (ReducƟon method B) to reduce graphs. In the general
reducƟon method the reduced graph may be disconnected whereas the original graph is
connected. In the strict way this is impossible. In fact this method is aimed at preserving
connectedness in the reducƟon process.

Let 𝐺 = (𝑉,𝐸) be a graph, with both 𝑉 and 𝐸 nonempty .

ReducƟon method A

– If 𝑣 is removed from 𝑉 and 𝑣 ∈ 𝑒 then 𝑒 is removed from 𝐸 as well.

ReducƟon method B

– If 𝑣 is removed from 𝑉 and 𝑣 ∈ 𝑒 then 𝑒 is removed from 𝐸 as well.

CBS | Discussion paper | July 24, 2019 13

– If 𝑒 is removed from 𝐸 and 𝑣 ∈ 𝑒 and Δ(𝑣) = 1 then 𝑣 is removed from 𝑉 as well.

So both methods agree on node eliminaƟon but differ on edge eliminaƟon. Method B has a rule
concerning the removal of edges, whereas Method A does not: an edge can be removed without
any consequence for its incident nodes. So in case edge 𝑒 = {𝑣,𝑤} is removed according to
Method A and Δ(𝑣) > 1 and Δ(𝑤) = 1 then the reduced graph has node 𝑤 as an isolated node,
i.e. with Δ(𝑤) = 0. If the removal of 𝑒 is done according to Method B, node 𝑤 will also be
removed.

4.4 Exploring graph complexity

In SecƟon 4 we proposed the average degree as a measure of complexity for graphs. We
provided some examples that supported the idea that it indeed quanƟfies an intuiƟve noƟon of
graph complexity. But here we want to look more closely at this measure.

First we introduce some notaƟon. If 𝐺 = (𝑉,𝐸) a graph then a subgraph 𝐺௦ = (𝑉௦ , 𝐸௦) of 𝐺 is a
graph with 𝑉௦ ⊆ 𝑉 and 𝐸௦ ⊆ 𝐸. We write 𝐺௦ ⊆ 𝐺 in case 𝐺௦ is a subgraph of 𝐺.

We consider the following two quesƟons:

1. Does 𝐺௦ ⊆ 𝐺 imply Δ௔௩(𝐺௦) ≤ Δ௔௩(𝐺)?
2. For 𝑞 ∈ ℚ+ is there a graph 𝐺 with Δ௔௩(𝐺) = 𝑞?

The first quesƟon asks if a subgraph has lower complexity, using the ’average degree’ as the
complexity measure. As removal of arcs (directly or indirectly via removal of nodes) produces a
graph in a different class of graphs (one with the same number of nodes as the reduced graph),
anything can happen. We illustrate this with a few examples in Figure 4.2, where the reducƟon
consists of removing an edge and possibly also a node on the edge.

Figure 4.2 Examples of graph reductions (following method B) and their effect on
Δ௔௩.

CBS | Discussion paper | July 24, 2019 14

In Figure 4.2 four types of reducƟons are shown, producing all the possible outcomes for the
complexity of the reduced graph compared to that of the original graph. In the top row a graph is
shown consisƟng of a single edge. If this is reduced the empty graph is produced, for which Δ௔௩
is not defined. The second row shows an example of a graph with the same complexity as its
reducƟon. In the third row examples of reducƟons are given in which the reduced graphs have a
lower complexity than the original graph. The boƩom row shows an example of a graph with a
lower complexity than the reduced graph. In this case the reducƟon decreases both the number
of edges as well as the number of nodes by 1.

We now turn to the second problem raised at the beginning of the present subsecƟon: can we
produce a graph with a given complexity, assuming the number specified is in the appropriate
range? The answer turns out to be affirmaƟve if 𝑞 has the correct form 𝑞 = 2𝑚/𝑛, for some
integers𝑚,𝑛 > 0. We construct two graphs, depending on 𝑞, as follows:

– 𝑞 < 1. Start with a graph consisƟng of𝑚 disconnected edges, and hence, 2𝑚 nodes. Now
create a new graph by adding 𝑛 − 2𝑚 > 0 nodes.

– 𝑞 ≥ 1. Start with a complete graph with 𝑛 nodes, and hence (௡ଶ) edges. We may assume that
𝑚 ≤ (௡ଶ) = 𝑛(𝑛 − 1)/2. Delete 𝑛(𝑛 − 1)/2 −𝑚 ≥ 0 edges from the complete graph.

In both cases we have constructed a graph with𝑚 edges and 𝑛 nodes and hence with the
requested complexity 𝑞.

4.5 Glueing

To illustrate the idea to build new graphs by idenƟfying nodes from given, simple, linear graphs
(edges), consider Figure 4.3. This shows a powerful mechanism to produce graphs from simpler
graphs by a kind of glueing process, which is the idenƟficaƟon of different nodes to represent the
same node.

Figure 4.3 On the left-hand side is shown how to produce a graph from edges using
identiϐication of nodes. The nodes in each green circle are identiϐied as a single node.
The resulting graph is depicted on the right-hand side.

A similar glueing process can be defined for edges from different graphs, instead of nodes. In this
case edges are idenƟfied. If 𝛼 = {𝑎, 𝑏} and 𝛽 = {𝑐, 𝑑} are edges that are to idenƟfied, there are
two possibiliƟes:

1. 𝑎 and 𝑐 are idenƟfied and 𝑏 and 𝑑 are idenƟfied, or
2. 𝑎 and 𝑑 are idenƟfied and 𝑏 and 𝑐 are idenƟfied.

CBS | Discussion paper | July 24, 2019 15

Of course, if two graphs are glued together one needs to specify which nodes are idenƟfied or
which pairs of nodes. The glueing process is represented by an operator ∗, or ∗௩ଵ ,௩ଶ or ∗௘ଵ ,௘ଶ ,
where 𝑣ଵ, 𝑣ଶ are nodes to be idenƟfied and 𝑒ଵ, 𝑒ଶ are edges to be idenƟfied. In the laƩer case it
should be indicated how the edges should be idenƟfied, i.e. which nodes should be idenƟfied.
This glueing has the following algebraic properƟes:

1. 𝐺 ∗𝑈 = 𝐺, where 𝑈 is the graph exisƟng of one node and no edges. (Existence of a unit
element)

2. 𝐺ଵ ∗ 𝐺ଶ = 𝐺ଶ ∗ 𝐺ଵ. (CommutaƟvity)
3. (𝐺ଵ ∗ 𝐺ଶ) ∗ 𝐺ଷ = 𝐺ଵ ∗ (𝐺ଶ ∗ 𝐺ଷ). (AssociaƟvity)

It is interesƟng to study the complexity of the graph that emerges when two graphs are glued,
either by glueing nodes or edges. It is simply a maƩer of counƟng nodes and edges. Let
𝐺ଵ = (𝑉ଵ, 𝐸ଵ) and 𝐺ଶ = (𝑉ଶ, 𝐸ଶ) with ∣𝑉௜ ∣ = 𝑛௜ and ∣𝐸௜ ∣ =𝑚௜ are graphs with disjoint node and edge
sets, that are glued together by idenƟfying a node from 𝐺ଵ and one node from 𝐺ଶ to obtain
𝐺ଵ ∗௡ 𝐺ଶ, then

Δ௔௩(𝐺ଵ ∗௡ 𝐺ଶ) =
2(𝑚ଵ +𝑚ଶ)
𝑛ଵ + 𝑛ଶ − 1

. (9)

Likewise, if we glue 𝐺ଵ and 𝐺ଶ by idenƟfying an edge from 𝐺ଵ and an edge from 𝐺ଶ to obtain
𝐺ଵ ∗௘ 𝐺ଶ then

Δ௔௩(𝐺ଵ ∗௘ 𝐺ଶ) =
2(𝑚ଵ +𝑚ଶ − 1)
𝑛ଵ + 𝑛ଶ − 2

. (10)

Note that the complexity in both glueing operaƟons ∗௡ and ∗௘ does not depend on which nodes
or edges are idenƟfied.

5 Complexity of graphs based on
search

Here we consider another approach to complexity. The intuiƟon behind it is that of an efficient
search through a maze or labyrinth. The begin and end points are chosen in such a way that

1. The search is conƟnuous.
2. The search covers all edges of the graph.
3. The path associated with the search should be of minimal length.

A conƟnuous search in a graph is one so that it follows a path in the graph. This means that the
transiƟon from a node 𝑣 to the next one 𝑤 is only possible if {𝑣,𝑤} is an edge in the graph.
Given a starƟng point 𝑠 and a finishing point 𝑓 the path followed by the (conƟnuous) search
procedure should be as short as possible, under the restricƟon that all edges in the graph are

CBS | Discussion paper | July 24, 2019 16

visited. The restricƟon is important. And it should be stressed that all edges should be visited at
least once, not just the nodes. VisiƟng all edges implies visiƟng all nodes, but not the other way
round. In general, shortest path problems do not have this restricƟon of visiƟng all edges in the
graph at least once. But for us it is essenƟal. The shortest path under this restricƟon depends on
the nodes 𝑠 and 𝑓. The goal is to find a combinaƟon for which the length is minimal. We assume
that the edges have equal length 1. We call this metric a natural metric.

We now consider some simple examples. In the graph on the leŌ-hand side of Figure 5.1 the path
((1, 2), (2, 3), (3, 4), (4, 5), (5, 6)) from node 1 to node 6 has minimal length (namely 5) and
contains all edges (at least) once. The path ((1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 1)) is a minimal
path from node 1 to 2 containing all edges of the graph on the right-hand side of Figure 5.1 (of
length 6). So the minimal paths we were looking for are different, because it was requested that
all edges should be on the path. If it was only required that all nodes should be situated on the
path, the path ((1, 2), (2, 3), (3, 4), (4, 5), (5, 6)) would also do for the graph on the right-hand
side of Figure 5.1. Then both graphs in Figure 5.1 would have had the same complexity. But from
a search perspecƟve both graphs are quite different. The one on the leŌ has two end points,
whereas the one on the right has none. By requesƟng that the path contains all edges we obtain
this disƟncƟon.

Figure 5.1 Two graphs, 𝐺l on the left and 𝐺r on the right, with the same number of
nodes but with different topologies.

We define a formal complexity measure 𝜅௦ for a connected graph 𝐺 = (𝑉,𝐸) with 𝑛 = ∣𝑉∣ and
𝑚 = ∣𝐸∣ by comparing the length 𝜆ீ of an opƟmal path (saƟsfying the three requirements above)
with that of a tour covering all edges starƟng at some node 𝑣 ∈ 𝑉, which has length 𝜏ீ . So we
can write

𝜅௦(𝐺) ≜
𝜆ீ
𝜏ீ

(11)

For the graph 𝐺l on the leŌ-hand side in Figure 5.1 an opƟmal path covering all edges is
((1, 2), (2, 3), … , (5, 6)) which has length 𝜆 lீ = 5 and a tour covering all edges starƟng at one is
((1, 2), (2, 3), … , (5, 6), (6, 5), … , (2, 1)) which has length 𝜏 lீ = 10. So 𝜅௦(𝐺l) = 5/10 = 0.5. For
the graph 𝐺r on the right-hand side of Figure 5.1 an opƟmal path covering all edges is
((1, 2), (2, 3), … , (6, 1)) which has length 𝜆 rீ = 6 and an opƟmal tour starƟng at 1 covering all
edges, is the same path, so that 𝜏 rீ = 6. Hence 𝜅௦(𝐺r) = 6/6 = 1.

CBS | Discussion paper | July 24, 2019 17

6 Complexity of graphs based on
average distance

In SecƟon 5 a metric on a graph was used to define a measure of complexity. In the present
secƟon we also use the natural metric to obtain a complexity measure, where each arc has
length 1. For a connected graph 𝐺 = (𝑉,𝐸) with ∣𝑉∣ = 𝑛 we introduce the distance matrix

𝐷 = (𝑑௜௝), (12)

where 𝑑௜௝ is the minimum length of the path in 𝐺 connecƟng nodes 𝑖 and 𝑗. The length of a path
is computed in terms of the number of edges it contains. For each of these graphs we compute
the average distance for any pair of (different) nodes. The distance matrix contains the adjacency
matrix as a submatrix. We obtain the adjacency matrix 𝐴 from𝐷 by seƫng all entries 𝑑௜௝ > 1 to 0.

We define the average distance over all different pairs of nodes in a (connected) graph 𝐺 as a
complexity measure 𝜅ௗ(𝐺):

𝜅ௗ(𝐺) ≜
∑௜<௝ 𝑑௜௝
(௡ଶ)

, (13)

where the sum is over the 𝑛 nodes in 𝐺.

In mathemaƟcal chemistry the Wiener11) index (cf. (10)) is used to measure the branching of
organic molecules. It is defined as the total distance of any pair of carbon atoms in such a
molecule, which together form its skeleton, so to speak. So, ifW(𝐺) denotes the Wiener index
then

W(𝐺) ≜෍
௜<௝

𝑑௜௝ = (
𝑛
2)𝜅ௗ(𝐺), (14)

where the sum is over the nodes in 𝐺, or rather the upper triangle of its (natural) distance matrix.

We now consider a variant of the complexity measure based on the average distance of different
pairs of nodes in a graph 𝐺 = (𝑉,𝐸). It is based on the distance of edges in 𝐺. To be able to do
this we use the line graph 𝐺௅ = (𝑉௅ , 𝐸௅) derived from 𝐺. The nodes of 𝐺௅ are the edges of 𝐺, that
is 𝑉௅ ≜ 𝐸. Edges 𝑒, 𝑓 ∈ 𝐸 (nodes in 𝑉௅) they form an edge in 𝐺௅ iff 𝑒 ∩ 𝑓 ≠ ∅. So

11) NamedaŌer the chemist andphysicianHarryWiener. He introduced thismeasure (which he called the PathNumber) to
quanƟfy the branching of organic molecules. His goal was to relate this property at the molecular level to macroscopic
physical properƟes of the substances consisƟng of these molecules. Alongside the Path Number he introduced the
Polarity Number which is the number of pairs of carbon atoms separated by three carbon atoms.

CBS | Discussion paper | July 24, 2019 18

𝐸௅ ≜ {(𝑒, 𝑓) ∈ 𝐸 ∣𝑒 ≠ 𝑓 and 𝑒 ∩ 𝑓 ≠ ∅}. We then apply the complexity measure (13) to 𝐺௅
instead of to 𝐺, but view it as a complexity measure for 𝐺. So formally, we then have

𝜅ௗℓ(𝐺) ≜
∑௜<௝ 𝑑ℓ௜௝
(௠ଶ)

, (15)

where the 𝑑ℓ௜௝’s are the ‘natural’ distances in the line graph 𝐺௅ of 𝐺. The sum is over the nodes of
𝐺௅, which are the edges in 𝐺.

In Appendix B some example graphs are used to compute the quanƟƟes defined in (13), (15) and
(14). Comparing the results is difficult if the number of edges in 𝐺 is different. This is familiar
from SecƟon 4.

From the examples in Appendix B it is clear that the Wiener index (14) itself does not qualify as a
complexity measure. It is an ingredient of the complexity measure (13). But there is no parƟcular
reason to single out this component. The complexity measure (13), which is the average distance
for different nodes in the original graph. seems to agree with the intuiƟon about complexity.
However, applying this measure to the line graphs associated with graphs, the results are less
convincing. It seems that the reciprocal of this measure for line graphs does a beƩer job, at least
for the examples in Table B.2. This suggests that the average of the reciprocal distances:

∑௜<௝(1/𝑑ℓ௜௝)
(௠ଶ)

(16)

could do well too as a measure for graph complexity. Note that (16) is the reciprocal of the
harmonic mean of the distances 𝑑ℓ௜௝.

7 Complexity of routing digraphs

In (13) (Appendix B) the total number of paths from source to sink in rouƟng digraphs has been
used to define the complexity of the rouƟng structure of a quesƟonnaire.12) A rouƟng digraph is
an acyclic digraph with a single source and a single sink. In (13) such digraphs were called ‘rouƟng
graphs’, somewhat confusingly, as this was the term that was used in pracƟce. We have changed
this name to ‘rouƟng digraph’ to stress that we are dealing with directed graphs, not graphs. We
denote the class of such digraphs by Υ. An example of a simple rouƟng graph is shown in Figure
7.1. Its source (node 1) is coloured green and its sink (node 7) is coloured brownish red.

In fact the (natural) logarithm of the number of paths from source (i.e. the first quesƟon) to sink
(i.e. the final quesƟon) is defined in (13) as the complexity of the rouƟng structure of a

12) The rouƟng structure defineswhich next quesƟon should be posed depending on the answer to the last quesƟon asked
to a respondent.

CBS | Discussion paper | July 24, 2019 19

Figure 7.1 Example of a routing digraph.

quesƟonnaire. If we denote by 𝜋(𝐺) the number of paths from source to sink in 𝐺 we define the
complexity 𝜅஌(𝐺) of 𝐺 as

𝜅஌(𝐺) ≜ log𝜋(𝐺). (17)

In (17) ‘log’ denotes the natural logarithm.13) It turns out that this complexity measure has some
nice properƟes (see (13), Appendix B), that we present here, aŌer introducing some convenient
notaƟon.

Let 𝐺ଵ and 𝐺ଶ be two rouƟng digraphs. Then we can form a new digraph with a single source and
sink 𝐺ଵ⊙𝐺ଶ by idenƟfying the sink of 𝐺ଵ with the source of 𝐺ଶ.14). To disƟnguish it from the
glueing of rouƟng digraphs we call the laƩer operaƟon⊙-glueing. An example of⊙-glueing is
presented in Figure 7.2.

Figure 7.2 ⊙-glueing two routing graphs.

In Figure 7.2 the two rouƟng digraphs to be⊙-glued are in the top row. The result is represented
in the boƩom row. The⊙-glueing was done by idenƟfying the sink of the rouƟng digraph on the

13) In (13) the logarithm at base ଶ was taken. The complexity measure was denoted by ‘ఘ’ instead of ‘఑஌’. The resulƟng
complexity measures are equivalent, in the sense that they differ by a constant.

14) In (13) this operaƟon is symbolized by ‘∗’ instead of⊙. But in the present paper ‘∗’ is already used for another, similar
operaƟon, called glueing (of graphs), defined in SecƟon 4.5.

CBS | Discussion paper | July 24, 2019 20

top leŌ-hand side of Figure 7.2 with the source of the rouƟng digraph on the top right-hand side
of this figure.

If 𝐺 is an acyclic digraph with a single source and a single sink, so does 𝐺←, the inverse digraph of
𝐺 that we get when we reverse the direcƟon of each arc in 𝐺. In Figure 7.3 the reverse of the
rouƟng digraph in Figure 7.1 is shown.

Figure 7.3 Reverse of the routing digraph in Figure 7.1.

Then we have (cf. (13), p.136):

1. 𝜅஌(𝐺ଵ⊙𝐺ଶ) = 𝜅஌(𝐺ଵ) + 𝜅஌(𝐺ଶ)
2. 𝜅஌(𝐺ଶ⊙𝐺ଵ) = 𝜅஌(𝐺ଵ⊙𝐺ଶ).
3. 𝜅஌(𝐺←) = 𝜅஌(𝐺).
4. 𝜅஌(𝐺ଵ) ≤ 𝜅஌(𝐺ଶ) if 𝐺ଵ is in Υ and a subdigraph of 𝐺ଶ.
5. 𝜅஌(𝐺଴) = 0, if 𝐺଴ is a point graph, consisƟng of a single node.
6. 𝜅஌(𝐺) is invariant under contracƟons of 𝐺.

A contracƟon of a digraph 𝐺 is a replacement of a linear subdigraph of 𝐺 by a simpler linear
structure, such as a node or an arc or two arcs, depending on the situaƟon. The result of the
contracƟon should be a digraph. This implies that it is not possible to have parallel arcs between
two nodes. A maximally contracted digraph is one that cannot be contracted any more. So a
digraph 𝐺 is maximally contracted if𝜛(𝐺) = 𝐺, for any contraƟon𝜛 of 𝐺. In other words, 𝐺 is a
fixed point for any contracƟon operator𝜛 operaƟng on 𝐺. In Figures 7.4, 7.5 and 7.6 several
examples are shown of contracƟons of digraphs.

Figure 7.4 shows three contracƟons, starƟng with the digraph at the top leŌ-hand side. In each
contracƟon step one arc is removed. The digraph at the boƩom right-hand side is maximally
contracted. Note that in this case a linear subdigraph is replaced by a single node.

Figure 7.4 Contracting a digraph in a number of steps.

In Figure 7.5 the digraph on the leŌ-hand side is contracted to that on the right-hand side. The
blue and the yellow linear parts on the leŌ-hand side are replaced by blue and yellow arcs shown
on the right-hand side. So in this case two linear subdigraphs are replaced by two arcs.

CBS | Discussion paper | July 24, 2019 21

Figure 7.5 Contracting a digraph in two locations.

Figure 7.6 is like the digraph in Figure 7.5 except that the arc (2, 5) is removed. In this case there
are three linear subdigraphs that can be contracted. But because the result has to be a digraph,
we cannot replace each of these subgraphs by arcs, because they would be parallel. So one of
them is replaced by a single arc (the red part) and each of the other two by two arcs (the blue
and yellow parts). Of course, it would also have been possible to replace the blue part by a single
arc and the remaining red and yellow parts by a single arc. Similarly could the yellow part be
replaced by a single arc and the red and blue parts by two arcs each. This shows that maximal
contracƟon may not lead to a unique result.

Figure 7.6 Contracting a digraph like that in Figure 7.5 but with arc (2, 5) removed.

As the examples in Figures 7.5 and 7.6 show removal of a single arc can have quite an impact on
the contracƟon result. These examples also show that a contracƟon of a digraph is non-unique.
But the toplogy, i.c. the cycle stucture of the underlying graph is the same. ContracƟng is also
non-inverƟble in the sense that a whole class of digraphs may yield the same contracƟon.

We can compute 𝜅஌(𝐺) algebraically, using the adjacency matrix. Let 𝐴 be the𝑚×𝑚 adjacency
matrix of an acyclic digraph. Then there is an 𝑛 such that 𝐴௡ = 0 and 𝐴௡−ଵ ≠ 0, which in fact says
that 𝐺 is nilpotent. Then we have that15)

𝜅஌(𝐺) = log ((𝐼௡ − 𝐴)−ଵ)ଵ,௡ . (18)

15) cf. (13), p. 135

CBS | Discussion paper | July 24, 2019 22

8 Complexity of digraphs based on
arc symmetry

Let 𝐺 = (𝑉,𝐸) be a digraph with an 𝑛 × 𝑛 adjacency matrix 𝐴. An aspect that determines the
complexity of 𝐺 is the degree to which it is asymmetric, in terms of arcs (𝑎, 𝑏) with or without a
counter-arc (𝑏, 𝑎). To quanƟfy this arc symmetry we define:

Θ(𝐴,𝐴ᇱ) ≜ max{𝐴,𝐴ᇱ} −min{𝐴,𝐴ᇱ}. (19)

Θ(𝐴,𝐴ᇱ) is the 𝑛 × 𝑛 matrix with entry (𝑖, 𝑗) equal to max{𝑎௜,௝ , 𝑎௝,௜} −min{𝑎௜,௝ , 𝑎௝,௜}. The matrix
Θ has the following properƟes:

– Θ(𝐴,𝐴ᇱ) ≥ 0. (NonnegaƟvity)
– Θ(𝐴,𝐴ᇱ) = Θ(𝐴ᇱ, 𝐴). (Symmetry)
– Θ(𝐴,𝐴ᇱ) = 0 iff 𝐴 = 𝐴ᇱ iff 𝐺 is a graph. (First lower bound)
– 𝜄ᇱ௡Θ(𝐴,𝐴ᇱ)𝜄௡ = 0 iff 𝐴 = 𝐴ᇱ iff 𝐺 is a graph.16) (Second lower bound)
– 𝜄ᇱ௡Θ(𝐴,𝐴ᇱ)𝜄௡ ≤ 𝑛(𝑛 − 1). (Upper bound)

The upperbound in the last item is obtained by digraphs with 𝑛 nodes, for which the underlying
graph is complete, that is for each pair of verƟces there is an edge, and such that for each edge of
the underlying graph {𝑎, 𝑏} with 𝑎 ≠ 𝑏 there is exactly one arc, either (𝑎, 𝑏) or (𝑏, 𝑎).

We can use Θ to define the following complexity measure for digraphs:

𝜅஀ ≜
𝜄ᇱ௡Θ(𝐴,𝐴ᇱ)𝜄௡
𝑛(𝑛 − 1) . (20)

Due to the lower bound and upper bound for 𝜄ᇱ௡Θ(𝐴,𝐴ᇱ)𝜄௡ we have 0 ≤ 𝜅஀ ≤ 1. The higher the
value of 𝜅஀ the more complex the digraph is supposed to be. Complexity in this case measures
deviance from symmetry under arc reversion. A graph is fully symmetric under arc reversal, and
therefore not complex — as a digraph, that is.

It should be noted that 𝜅஀ as defined in (20) is a rather crude measure of complexity. It does not
consider the topology of a digraph. Digraphs with the same number of arcs without counter-arcs
(and the same number of nodes) have the same complexity. Other complexity measures that we
consider, differenƟate among this class of digraphs by using their topology.

For each of the digraphs in Figure 8.1 we have that 𝜅஀ = 6/12 = 1/2. In both cases there are four
nodes and three arcs without counter-arcs. The topology of these digraphs, however, is quite
different. For instance removal of point 4 in the right-hand side digraph produces a digraph
consisƟng of there separate points. For the digraph on the leŌ-hand side of Figure 8.1, deleƟon
of a node results in digraphs with one or two connecƟvity components.

16) ఐ௡ = (ଵ,… , ଵ)ᇱ is the all 1s (column) vector of length ௡.

CBS | Discussion paper | July 24, 2019 23

Figure 8.1 Two digraphs with the same 𝜅஀-complexity.

9 Complexity of digraphs based on
reachability

In a digraph, reachability is about the ’problem’ which nodes can be reached when starƟng a
walk in the digraph at a given node. In graphs, reachability is the same as connectedness. In
digraphs the two concepts are different, as a result of the asymmetry in the arcs that are present:
in a digraph an arc does not need to have a counter-arc. If one can travel from node 𝑎 to node 𝑏
in a digraph it is not necessarily the case that one can also travel from node 𝑏 to node 𝑎. In a
graph (viewed as a digraph) each arc has its counter arc, so that if one can travel from node 𝑎 to
node 𝑏, one can then also travel from node 𝑏 to node 𝑎, in fact using the same path in reverse.

In SecƟons 9.2 and 9.3 two approaches based on reachability are sketched to quanƟfy the
complexity of digraphs. One approach is determinisƟc and the other probabilisƟc. In both cases
one is augmenƟng a given digraph and one tries to use the ’amount of augmentaƟon needed’ as
a measure for the degree of complexity: the more arcs need to be added, the further removed
the original digraph is from full reachability and hence the more complex it is.

In both cases to actually compute – or rather esƟmate – the complexity measures proposed is
rather computer intensive. We only propose these approaches here. There was no Ɵme for
studying the computaƟonal aspects of both measures. That has to be reserved for the future.

It should be stressed that reachability in digraphs is the natural generalizaƟon of connecƟvity in
graphs. The counterpart of a connected graph is a fully reachable digraph, in which there is a
path 𝜋௩,௪ connecƟng 𝑣 and 𝑤, for every pair of nodes 𝑣 and 𝑤. Even if the underlying graph 𝐺௨௡
of a digraph 𝐺 is connected, this does not mean that a path 𝜋௩,௪ exists in 𝐺, for any nodes 𝑣 and
𝑤 in 𝐺. Also the fact that a path 𝜋௩,௪ exists connecƟng 𝑣 with 𝑤, does not imply that a path 𝜋௪,௩
exists. And if it exists, it does not necessarily mean that the reverse path 𝜋←௩,௪ is a path in 𝐺 from
𝑤 to 𝑣. If there is a path connecƟng 𝑤 to 𝑣 it may be quite different from 𝜋←௩,௪.

The arcs that are added in the augmentaƟon process are only counter-arcs of exisƟng arcs in the
digraph considered. So pairs of nodes 𝑣,𝑤 where both (𝑣,𝑤) and (𝑤,𝑣) exist are excluded, as is
the case for pairs of nodes 𝑣,𝑤 for which neither (𝑣,𝑤) nor (𝑤,𝑣) exists. We call such pairs
saturated. Only those pairs for which either (𝑣,𝑤) or (𝑤,𝑣) exist, but not both, can be used for
the augmentaƟon. Such pairs we call unsaturated. If 𝐺 has 𝜐 unsaturated pairs, 2జ − 1 different
augmentaƟons are possible with addiƟonal counter-arcs.

CBS | Discussion paper | July 24, 2019 24

9.1 Checking full reachability

When reachability is used as a criterion for digraph complexity, it is in parƟcular checking for full
reachability that is called for. So it is important to know how to do this. A straighƞorward way is
to compute the transiƟve closure 𝐴∗ of the adjacency matrix 𝐴 of the digraph, which we assume
to be of the order 𝑛. This can be done by e.g. Warshall’s algorithm for Boolean matrices
(proposed in (12)). This algorithm is discussed in e.g. (5) and similar books on algorithms.
Warshall’s algorithm is essenƟally repeated matrix mulƟplicaƟon specialised for Boolean matrices
applied to the adjacency matrix 𝐴. The matrix mulƟplicaƟon is as the ‘usual’ matrix mulƟplicaƟon
but with addiƟon (‘+’) replaced by the Boolean ‘or’ (‘∨’) and with mulƟplicaƟon (‘×’) replaced by
the Boolean ’and’ (‘∧’). Full reachability holds if 𝐴∗ = 𝐽, where 𝐽 is the 𝑛 × 𝑛 all 1s matrix.

9.2 Adding arcs optimally

Using reachability we can come up with two types measures of digraph complexity, one
determinisƟc, the other probabilisƟc. Both types of measures are relaƟve to the underlying
graph. In each case they aim to quanƟfy how far the digraph is removed from being full reach, by
which we mean, that every node can be reached from every other node. In the determinisƟc
case this property should hold exactly, whereas in the probabilisƟc case this should hold with
sufficiently high probability. We consider two probabilisƟc cases. In the first one the number of
arcs added is random, in the second case this number is fixed.

Let 𝐺 = (𝑉,𝐸) be a digraph, with ∣𝑉∣ = 𝑛 and ∣𝐸∣ =𝑚. Let 𝐴 be the 𝑛 × 𝑛 adjacency matrix.
Formally we are looking for an 𝑛 × 𝑛 (0, 1)-matrix 𝐵 such that the transiƟve closure of the
augmented digraph has full reach. That is, B should be such that

(𝐴 + 𝐵)∗ = 𝐽, (21)

and the number of 1s (i.e. arcs) in 𝐵, that is

𝜄ᇱ𝐵𝜄 (22)

is minimal. 𝐽 is the 𝑛 × 𝑛 all 1s matrix.

The digraph complexity is defined in terms of the minimum number of arcs that have to be
added to 𝐺 (or, in fact 𝐸) so that the augmented digraph 𝐺௔௨௚ has full reach. The more arcs have
to be added the higher the digraph complexity of 𝐺. This number should be related to the
number of arcs in 𝐺, i.e. 𝑚. So if the minumum number of arcs to be added to 𝐺 is denoted by
𝜈ீ the determinisƟc digraph complexity is defined by

𝜅ீ ≜
𝜈ீ
𝑚 . (23)

CBS | Discussion paper | July 24, 2019 25

Although the definiƟon of the determinisƟc complexity of a digraph is easily stated, the problem
of how to actually determine it for a given digraph is sƟll open, as a challenge for future
research.17)

It is not unlikely that the problem in pracƟce can best be solved (approximately) by trial and
error. It is a maƩer of reducing an upper bound for the number of counter-arcs added. A crude
upper bound is𝑚 itself, as the digraph with all counter-arcs added is in fact the underlying graph,
which is of full reach. The next quesƟon is: is it possible to augment 𝐺 with𝑚 − 1 counter-arcs so
that the augmented digraph is full reach. If so, we ask the same quesƟon for𝑚 − 2,𝑚 − 3,…
counter-arcs. For each smaller number of counter-arcs to be added the quesƟon: ’Can 𝑘
counter-arcs be added to 𝐺 such that the resulƟng augmented digraph is full reach?’ is harder to
answer. There are (௠௞) possible augmented digraphs to check.

9.3 Adding arcs probabilistically

Instead of adding arcs in an opƟmum way to a digraph, we can also add them probabilisƟcally.
AŌer arcs have been added to a digraph it ought to be checked whether the augmented digraph
has the full reachability property or not. The checking can be done by compuƟng the transiƟve
closure of the augmented digraph. In SubsecƟon 9.1 we discuss a method to do this.

It does not suffice to generate a single augmented digraph for each probability 𝑝 to add a
counter-arc. It has to be done repeatedly and each 𝑝 acts as a control parameter. Higher values
of 𝑝 are more likely to yield augmented digraph with the full reachability property.

The approach suggested here ressembles that of percolaƟon theory. The goal of this theory is to
invesƟgate the connecƟvity of randomly generated subgraphs of grid graphs. A probability 𝑝 is
used to generate an arc between a set of neighbouring grid points. There typically is a criƟcal
value 0 < 𝑝௖ < 1, such that the random graph generated is connected with probability 1 if 𝑝 > 𝑝௖.

In our case we are not considering graphs but digraphs and the issue is not connecƟvity but full
reachability. Basically, it is the same kind of problem that is studied in basic percolaƟon theory,
but this Ɵme it is reachability that is the issue.18) This can be seen as the equivalent problem for
digraphs.

We propose the criƟcal probability 𝑝௖ as a measure for the complexity of a digraph. The higher
the value of 𝑝௖ the more ’effort’ is needed to obtain an augmented digraph that is fully reachable
with probability 1. So in that case we are dealing with a more complex digraph, which is some
distance removed from one that has the full reachability property.

The determinaƟon of 𝑝௖ can be done in various ways. For instance by using Poisson sampling.
One chooses a probability 0 < 𝑝 < 1 and for each unsaturated arc it is selected (with probability
𝑝) or not (with probability 𝑞 = 1 − 𝑝), independent of the selecƟon process for the remaining
arcs. The number of selected arcs is probabilisƟc. The probability that 𝑘 out of𝑚 arcs are
selected is (௠௞)𝑝௞𝑞௠−௞. The criƟcal value 𝑝௖ for 𝑝 can be esƟmated experimentally. An

17) It is possible that the decision version of the problem stated: “Can at most ௞ (a specified number) arcs be added to
the digraph in such a way that the resulƟng digraph has full reachability?” Is NP-complete.

18) There exists in fact a subarea of percolaƟon theory called ’directed percolaƟon theory’; see (7)

CBS | Discussion paper | July 24, 2019 26

experiment consists of repeatedly drawing samples and register the fracƟon of those samples
that yield full reachability of the node set of the digraph, for a given value of 𝑝. By slowly
increasing 𝑝more and more samples will be generated with full reachability for each node.

A drawback of of using Poisson sampling is the number of selected arcs is stochasƟc. If one wants
to control the number of selected arcs one can use simple random sampling without
replacement (SRSWOR). Then one chooses a size 𝑘 first and 𝑘 arcs are drawn using SRSWOR, out
of the𝑚 candidates. The selected arcs are added and full reachability is checked for each
augmented digraph, like in case of Poisson sampling. The probability of selecƟng an arc is 𝑘/𝑚.
One can then vary 𝑘 from 1 to𝑚. Among the probabiliƟes 1/𝑚,2/𝑚,… , 1 one should look for
the criƟcal one, in the same way as just described for the Poisson sampling case.

9.4 Using the size distribution of reachability sets

In Table 9.1 we have listed the size distribuƟons of the reachability sets of the examples in
Appendix A. There are two extreme distribuƟons, namely the ones associated with Figure A.3
and Figure A.27. The first is a uniform distribuƟon over all possible sizes of reachability sets in the
corresponding digraph, the other one has all mass concentrated in a single point. In the laƩer
case we are dealing with a digraph with full reachability. For the remaining cases the size
distribuƟons are between those two extremes.

Size Fig. A.3 Fig. A.6 Fig. A.9 Fig. A.12 Fig. A.15 Fig. A.18 Fig. A.21 Fig. A.24 Fig. A.27
1 1 2 2 2 1 1 0 0 0
2 1 1 2 1 1 1 0 0 0
3 1 1 0 1 1 1 0 4 0
4 1 1 0 0 1 1 4 0 0
5 1 1 0 0 1 0 0 0 0
6 1 0 0 0 0 0 0 0 0
7 1 0 0 0 0 0 0 0 0
8 1 0 0 0 0 0 0 0 0
9 1 0 5 0 0 6 0 0 0

10 1 5 1 6 6 0 6 0 0
11 1 0 1 1 0 0 0 0 0
12 1 1 1 1 1 2 2 0 0
13 1 1 1 1 1 1 1 9 13

Table 9.1 Size distributions of the reachability sets in the examples (Figures) in
Appendix A.

We can use the entropy as a measure of the non-uniformity of the size distribuƟons in Table 9.1.
The entropies of the distribuƟons listed in Table 9.1 are presented in Table 9.2.

Figure Entropy
Fig. A.3 1.114
Fig. A.6 0.799
Fig. A.9 0.753
Fig. A.12 0.709
Fig. A.15 0.755
Fig. A.18 0.709
Fig. A.21 0.523
Fig. A.24 0.268
Fig. A.27 0

Table 9.2 Entropies of the distribitions in Figure 9.1.

CBS | Discussion paper | July 24, 2019 27

NoƟce that the entropies of the digraphs represented in the Figures A.3, A.6, A.15, A.9, A.12,
A.18, A.21, A.24 and A.27 are a descending series. The smaller the entropy is the closer the
corresponding digraph is to a digraph with full reachability, and hence the less complex it is.

The size distribuƟon of the reachability sets as a measure of complexity is not ideal, as it does not
involve the interplay of the reachability sets. In theory, it would even be possible that the size
distribuƟon of the reachability sets is peaked, even though there is no full reachability. The
entropy is small in that case although the complexity of the digraph would be high. But as the
example in Table 9.2 shows the measure may also yield sensible results. Further invesƟgaƟon is
needed to find out how this measure behaves in general. If it turns out to work it has the
advantage that it is quite easy to apply.

9.5 Using the multiciplities of nodes in reachability sets

In this approach we consider how oŌen a node appears in a reachability set. This yields a
distribuƟon over the nodes that we use to derive a complexity measure. In case of full
reachability this distribuƟon is uniform. The entropy is maximal for this distribuƟon, equal to
ln(∣𝑉∣). For all other distribuƟons on the set of nodes it is smaller.19)

The distribuƟon we are interested in can be easily computed from the transiƟve closure 𝐴∗ of the
adjacency matrix 𝐴 of the digraph as follows:

𝜗 ≜ 𝜄ᇱ𝐴∗
𝜄ᇱ𝐴∗𝜄 , (24)

where 𝜄 is the all 1s vector. The complexity measure proposed is the entropy of the distribuƟon 𝜗
in (24), i.e.

𝜅ா(𝜗) ≜ −෍
௩∈௏

𝜗(𝑣) ln𝜗(𝑣). (25)

Entropy is used as a measure of uncertainty, as in case of informaƟon theory. For a uniform
distribuƟon the entropy is biggest, whereas for a peaked distribuƟon (with all probability mass
concentrated in a single point) it is minimal, that is, equal to 0.

19) In case the digraph consists of isolated points, each reachability set consists of one point only. Reachability sets cor-
responding to different points are disjoint. The entropy in this case also equals ln(∣௏∣), although there is no full
reachability, to put it mildly.

CBS | Discussion paper | July 24, 2019 28

9.6 Partial order of the reachability sets

In the examples in Appendix A ditrees are presented that show how the various reachability sets
are related, or ordered, to be more specific. These ditrees also can be used to get an insight into
the complexity of a digraph in terms of reachability. The examples in Appendix A indicate that
the smaller the tree, the closer the digraph is to being a digraph with full reachability, which is
the least complex case.

First we want to point out an interesƟng property about reachability sets. Let 𝐺 = (𝑉,𝐸) be a
digraph and let 𝑖, 𝑗 ∈ 𝑉 be nodes in 𝐺. Suppose furthermore that 𝑗 can be reached from node 𝑖,
in notaƟon 𝑖 ; 𝑗. Then 𝑗 ⊆ 𝑖. If also holds that 𝑗; 𝑖 then it follows 𝑖 = 𝑗. Here, 𝑖, 𝑗 denotes the
reachability sets of nodes 𝑖 and 𝑗, respecƟvely. This explains why the ‘subset’ property of
reachability sets of a digraph leads to a tree: nontrivial cycles cannot exist: they collapse to a
point. This implies that the reachability sets of a digraph form a parƟal order, ≤, interpreted as
follows: for sets 𝑎, 𝑏 it holds: 𝑎 ≤ 𝑏 iff 𝑏 ⊆ 𝑎. That the properƟes for parƟal orders hold for ≤
follows from the following properƟes for for all 𝑖, 𝑗, 𝑘 ∈ 𝑉:

1. 𝑖 ; 𝑖 ⇒ 𝑖 ⊆ 𝑖.
2. 𝑖 ; 𝑗 and 𝑗; 𝑖 ⇒ 𝑖 = 𝑗 (since 𝑗 ⊆ 𝑖 and 𝑖 ⊆ 𝑗).
3. if 𝑖 ; 𝑗 and 𝑗; 𝑘 then 𝑖 ; 𝑘 ⇒ 𝑘 ⊆ 𝑖 (since 𝑗 ⊆ 𝑖 and 𝑘 ⊆ 𝑗).

In terms of ≤ these results can be stated as follows:

1. 𝑖 ≤ 𝑖 (reflexivity)
2. 𝑖 ≤ 𝑗 and 𝑗 ≤ 𝑖 ⇒ 𝑖 = 𝑗 (anƟsymmetry)
3. 𝑖 ≤ 𝑗 and 𝑗 ≤ 𝑘 ⇒ 𝑖 ≤ 𝑘. (transiƟvity)

These properƟes define ≤ as a parƟal order. The ditrees in Appendix A are graphical
representaƟons of such parƟal orders.

We can use the underlying trees of the ditrees represenƟng the parƟal ordering ≤ to define a
complexity measure for ditrees. So the complexity measure to be used is given by (1). However,
certain nodes (reachability sets) appear mulƟple Ɵmes. We can use the mulƟplicity of each node
to weigh its degree. We denote the complexity measure in this case by Δ௔௩,௠௨௟௧. We can also
choose to ignore the mulƟplicity, which actually means that it is taken to be equal to 1 for each
node. We then get another complexity measure denoted by Δ௔௩,ଵ. If we apply these measures to
(the underlying trees of) the ditrees in Appendix A we find the results in Table 9.3.

Figure Δ௔௩,௠௨௟௧ Δ௔௩,ଵ
Fig. A.4 24/13 = 1.846 24/13 = 1.846
Fig. A.7 28/13 = 2.154 16/9 = 1.778
Fig. A.10 28/13 = 2.154 16/9 = 1.778
Fig. A.13 24/13 = 1.846 14/8 = 1.750
Fig. A.16 19/13 = 1.462 14/8 = 1.750
Fig. A.19 24/13 = 1.846 12/7 = 1.714
Fig. A.22 21/13 = 1.615 6/4 = 1.500
Fig. A.25 1 1
Fig. A.28 0 0

Table 9.3 Complexities of the ditrees in Appendix A.

The examples in Table 9.3 show that Δ௔௩,ଵ yields a strictly decreasing sequence, as one should
expect, whereas Δ௔௩,௠௨௟௧ has a tendency to decrease, however with excepƟons. This suggests

CBS | Discussion paper | July 24, 2019 29

that Δ௔௩,ଵ is superior to Δ௔௩,௠௨௟௧ as a complexity measure for digraphs, at least in the example
presented in Table 9.3.

9.7 Using random coverings with reachability sets

In this approach one uses the reachability sets associated with each node in a digraph to quanƟfy
complexity. The idea is to draw 𝑘 nodes 𝑣ଵ, … , 𝑣௞ randomly and consider the union of the
reachability sets 𝑣ଵ, … , 𝑣௞ and compute the porƟon of the node set it covers. If this is oŌen close
to 1, then the value of a criƟcal value 𝑘௖ for which this is obtained is a measure of the complexity
of the digraph: the higher 𝑘௖ the complexer the digraph.

So the complexity measure 𝜅௖௢௩ we propose is the fracƟon of node set covered by the
reachability sets sampled, that is

𝜅௖௢௩(𝑘) ≜
𝐸(∣∪௞௜=ଵ 𝑣௜ ∣)

∣𝑉∣ . (26)

For a given 𝜖 > 0 we are interested in the criƟcal value 𝑘௖ which is defined as the smallest value 𝑘
such that for samples of size 𝑘 we have

𝑘௖ ≜ min
௞∈ℕ
{𝜅௖௢௩(𝑘) ≥ 1 − 𝜖}. (27)

We denote the criƟcal value that (27) produces by 𝑘௖ఢ . The larger this value is, the more the
digraph is removed from one with full reachability and the same number of points, and hence
the more complex it is.

9.8 Taking the complexity of the underlying graph into account

The complexity measures of digraphs considered above are in fact defined relaƟve to the
underlying graph of the digraphs considered. The underlying graph in turn defines a class of
digraphs that is a sort of universe in which to work. The role of the underlying graph in the
complexity measures is therefore somewhat implicit. But in the present secƟon we want to make
its role explicit. We then view the digraph complexity measures above as condiƟonal complexity
measures, condiƟonal on the universe of digraphs implied by the underlying graph of the digraph
in quesƟon. But, of course, the underlying graph is a graph itself which also has a complexity. We
want to present complexity measures of digraphs that take its complexity also into account.

If we follow the reasoning in probability theory with condiƟonal probabiliƟes and uncondiƟonal
probabiliƟes, we define an (uncondiƟonal) measure of complexity of a digraph 𝐷𝐺 (𝜅஽ீ) as the
product of the (condiƟonal) measure of complexity of the digraph 𝐷𝐺 given its underlying graph
𝑈𝐺 (𝜅஽ீ∣௎ீ) Ɵmes the complexity of the underlying graph 𝑈𝐺 (𝜅௎ீ). Symbolically we can write
this as:

CBS | Discussion paper | July 24, 2019 30

𝜅஽ீ = 𝜅஽ீ∣௎ீ × 𝜅௎ீ . (28)

To make (28) precise we can take for 𝜅஽ீ∣௎ீ = any of the complexity measures for digraphs that
we have studies in the present secƟon, such as the one defined in (20),20) (23), (25) or (26); as
𝑈𝐺 is a graph we can take for 𝜅௎ீ a complexity measure for graphs such defined in (1).

In case 𝐷𝐺 is in fact a graph 𝜅஽ீ∣௎ீ = 1 then 𝜅஽ீ = 𝜅௎ீ , where 𝐷𝐺 is in fact equal to 𝑈𝐺.

10 Local complexity of networks

10.1 Intuitive idea

In the complexity measure for the networks so far, the (tacit) assumpƟon was that the
neighbourhood of each point in the network is (in principle) the enƟre network.21) In the present
secƟon we want to consider an extension by considering local versions of these complexity
measures. The aim is not to present the details for the ‘localizaƟon’ of every complexity measure
considered above, but to present some examples. From these it should be clear how one can
produce local versions of other complexity measures.

But what is the advantage of working locally? The obvious situaƟon is the one in which the
network is very big, or in which it is a random access network (RAN) which is a network for which
essenƟal informaƟon is lacking that is esƟmated by taking some probes of the network.22) A RAN
is like an unknown populaƟon, such as a populaƟon of fish living in a parƟcular lake: How many
fish are there at a certain point in Ɵme?23)Howmany species of fish live there at a certain point in
Ɵme? These are typical quesƟons ichtyologists or ecologists may be interested in. And, typically,
such a populaƟon is dynamic: fish are born in the lake; they migrate to the lake from another
lake or river; they die of disease or old age; they are eaten by other animals; they migrate to
another lake or river, et cetera. These quesƟons then need to be answered repeatedly, at
different points in Ɵme, so that an idea can be formed about the dynamics of the fish populaƟon
in the lake. Likewise in case of a RAN, nodes and links appear and disappear constantly. Likewise
a RAN is dynamic, like the fish populaƟon in the example. Think of the internet as the archetypal
example of a RAN.

Huge networks such as RANs, and especially dynamic ones, require that one works locally. They
are simply too big and possibly too fleeƟng, to be studied globally. This forces one to look locally.
In case of a fish populaƟon in a lake, if it is too big to be studied in its enƟrety, it should be
divided into suitably defined ‘sub lakes’. These should, on the one hand, be are small enough so

20) With reservaƟons, as the measure is a rather crude one.
21) Local complexity is an example of a concept that is defined locally. Such concepts abound in mathemaƟcs, in areas

such as geometry, algebraic geometry, topology and algebra, to menƟon but a few.
22) See e.g. (14)
23) ‘Point in Ɵme’ is a figure of speech and should not be taken literally. It takes Ɵme to probe an ecosystem such as a

lake. So rather than a ‘point’ we need an interval. But the point of Ɵme is just a reference Ɵme. It could also be the
midpoint of such a Ɵme interval.

CBS | Discussion paper | July 24, 2019 31

that they can be invesƟgated, and, on the other hand, should be sufficiently isolated so that they
can be considered habitats, rather than passage areas. Combined they should provide a
representaƟve sample of the enƟre lake.

This means that for each point 𝑝 in a network 𝑁 we define a neighbourhood 𝑁௣, which is a local
version of 𝑁 (to be made precise below). The complexity measures defined above, for both
graphs and digraphs, can be localized by carrying out computaƟons for individual points 𝑝 using
𝑁௣ instead of the enƟre network 𝑁.

Neighbourhoods for graphs and digraphs are differently defined, but are both based on metrics.
For both types of networks we work locally (in neighbourhoods of points) and we generate a
vector with local complexity informaƟon per entry, where each entry corresponds to a node.
Details of both types of local complexity measures can be found in SubsecƟons 10.4 and 10.5.
But we first we consider neighbourhoods on graphs and digraphs and how they are defined with
the help of metrics that have been specified for these structures.

10.2 Neighbourhoods for graphs

10.2.1 Distances in graphs
Let (𝐺,𝑑) = (𝑉,𝐸, 𝑑) where 𝐺 = (𝑉,𝐸)is a graph and 𝑑 is a metric on 𝐺. This is a funcƟon
𝑑 ∶ 𝑉 × 𝑉 ∶→ ℝ/ℝ− ∪ {∞}. For an edge {𝑎, 𝑏} in 𝐸 𝑑(𝑎, 𝑏) = 𝑑௔௕, where 𝑑௔௕ ≥ 0 is a given
number for each edge {𝑎, 𝑏} ∈ 𝐸. For each point 𝑎 ∈ 𝑉 we assume 𝑑௔௔ = 0.

Using the definiƟon of a metric on the edges of 𝐺 as a basis we can extend the distance concept
to any pair of points 𝑎, 𝑏 in 𝐺. If for nodes 𝑎, 𝑏 ∈ 𝑉 𝑎; 𝑏 in 𝐺 then 𝑑(𝑎, 𝑏) is defined as the
length of the shortest path in 𝐺 connecƟng 𝑎 and 𝑏, where the length of a path is the sum of the
𝑑-values associated with each of the edges on the path. If 𝑎 ↝̸ 𝑏 then 𝑑௔௕ =∞.

If we use a matrix 𝐷ீ = (𝑑௔௕), with 𝑎, 𝑏 ∈ 𝑉 then the following properƟes hold:

– 𝐷ீ ≥ 0,
– 𝐷ᇱ

ீ = 𝐷ீ ,
– 𝑇𝑟(𝐷ீ) ≜ ∑௔∈௏ 𝑑௔௔ = 0 implying 𝑑௔௔ = 0 for all 𝑎 ∈ 𝑉.
– If 𝑎 ↝̸ 𝑏 then 𝑑௔௕ = 𝑑௕௔ =∞.

Here 𝑇𝑟 denotes the Trace operator, with 𝑇𝑟(𝑀) = ∑௡
௜=ଵ𝑚௜௜, if𝑀 = (𝑚௜௝) an 𝑛 × 𝑛 matrix.

𝑎 ↝̸ 𝑏 means that there is no path from node 𝑎 to node 𝑏 in 𝐺.

10.2.2 Neighbourhoods for graphs deϐined
Let 𝑝 be a point in 𝐺. We use the metric 𝑑 to define a neighbourhood 𝑁௣ for 𝑝. First assume that
𝐺 is a graph. Let 𝛿 > 0 be a threshold value. We then can define the ‘ball’ around 𝑝 of size 𝛿. This
is a subgraph (𝑉௣,ఋ , 𝐸௣,ఋ) defined as follows.

𝑉௣,ఋ ≜ {𝑣 ∈ 𝑉 ∣𝑑(𝑝, 𝑣) ≤ 𝛿}, (29)

𝐸௣,ఋ ≜ {{𝑎, 𝑏} ∈ 𝐸 ∣𝑎, 𝑏 ∈ 𝑉௣,ఋ and𝑎 ≠ 𝑏} (30)

CBS | Discussion paper | July 24, 2019 32

In (29) the ‘ball’ of nodes around 𝑝 with radius 𝛿 is defined. In (30) the edges in this ‘ball’ are
defined: they have nodes in this ‘ball’ as their endpoints.

In 𝐺 there may be nodes in 𝑉/𝑉௣,ఋ . As we are not interested in the individual nodes outside the
neighbourhood we idenƟfy them as one (virtual) node Ω; it symbolizes a point outside the
neighbourhood 𝑉௣,ఋ .There also may be edges in 𝐺 with one endpoint 𝑎 in (𝑉௣,ఋ and the other
endpoint 𝑏 in 𝑉/𝑉௣,ఋ . Instead of {𝑎, 𝑏} we represent it as {𝑎,Ω}. Furthermore there may be
edges with both endpoints in 𝑉/𝑉௣,ఋ . We are not interested in these edges. They would be
represented as loops {Ω,Ω}, which we discard. It should be obvious that Ω has different
meanings for different neighbourhoods. It should be seen as ‘one of the nodes outside the
neighbourhood we happen to be interested in’.

We use the graph in Figure A.1 as an example. Two neighbourhoods of node 3 are shown in
Figure 10.1. In the top row the ‘ball’ with diameter 1 and center at node 3 is shown. On the
leŌ-hand side also with the nodes not in this neighbourhood. On the top right-hand side all
nodes not in this neighbourhood are idenƟfied as Ω is presented. Also the arcs to and from this
node to nodes in the neighbourhood are shown. On the boƩom row the ‘ball’ of radius 2 is
shown with node 3 at its centre, on the leŌ with all nodes outside the ‘ball’ drawn, and on the
right-hand side with all these nodes idenƟfied in one node Ω. The arcs within the respecƟve
neighbourhoods have been coloured green. The original arcs outside the neighbourhood are
coloured black, whereas those with the node Ω as an endpoint are coloured blue.

Figure 10.1 Neighbourhoods of node 3.

SomeƟmes it is preferable to look also at the immediate surroundings of a neighbourhood. This
is for instance the case if we want to compute the average degree of nodes in a neighbourhood.
If only the edges in the neighbourhood are known and the ones outside are discarded, then we
cannot determine the average degree for such ‘boundary nodes’ correctly. They would be
underesƟmated. If we look at a slightly extended neighborhood, which includes the ‘boundary’
edges (with one endpoint in the neighbourhood, the other outside) we are able to compute the
degrees for all nodes in the neighbourhood correctly.

As an example see Figure 10.2 which shows extended ‘balls’ of radius 1 around node 3, as in the
top line of Figure 10.1. The boundary points and edges are in black, while the ones not in the
extended neighbourhood have been coloured grey. A virtual pointΨ symbolizes all the grey
points, that is, those points outside the extended neighbourhood. So it is like the Ω above but has
a somewhat different meaning: it now refers to the node not in the extended neighbourhood.

CBS | Discussion paper | July 24, 2019 33

Figure 10.2 Extended neighbourhood of node 3, in detailed and reduced form.

10.3 Neighbourhoods for digraphs

10.3.1 Distances in digraphs
Let (𝐺,𝑑) = (𝑉,𝐸, 𝑑) where 𝐺 = (𝑉,𝐸) be a digraph and 𝑑 is a metric on 𝐺. This is a funcƟon
𝑑 ∶ 𝑉 × 𝑉 → ℝ/ℝ− ∪ {∞}. For an arc (𝑎, 𝑏) in 𝐸 𝑑(𝑎, 𝑏) = 𝑑௔௕, where 𝑑௔௕ ≥ 0 is a given number
for arc (𝑎, 𝑏) ∈ 𝐸. For each node 𝑎 we assume 𝑑௔௔ = 0.

Using the definiƟon of a metric on the arcs of 𝐺 as a basis, we can extend the the distance
concept to any pair of points 𝑎, 𝑏 in 𝐺. If 𝑎; 𝑏 then 𝑑௔௕ is defined as the length of the shortest
path in 𝐺 from 𝑎 to 𝑏, where the length of a path is the sum of the 𝑑-values associated with each
of the arcs on the path. If there is no path from 𝑎 to 𝑏 then 𝑑௔௕ =∞. In the digraph 𝐺 we can
have that there are nodes 𝑎, 𝑏 such that 𝑑௔௕ ∈ ℝ and 𝑑௕௔ =∞, or more generally that 𝑑௔௕ ≠ 𝑑௕௔.

If we use a matrix 𝐷ீ = (𝑑௔௕), with 𝑎, 𝑏 ∈ 𝑉 to represent the distances in 𝐺 then we find the
following properƟes:

– 𝐷ீ ≥ 0,
– 𝑇𝑟(𝐷ீ) ≜ ∑௔∈௏ 𝑑௔௔ = 0 implying 𝑑௔௔ = 0 for all 𝑎 ∈ 𝑉.
– If 𝑎 ↝̸ 𝑏, then 𝑑௔௕ =∞.

Compare these properƟes with those in case of a graph. The only difference is that the distance
matrix must be symmetric in the case of graphs, whereas in case of digraphs no such
requirement existst.

10.3.2 Neighbourhoods for digraphs deϐined
In case 𝐺 is a digraph the definiƟon of a neighbourhood is as follows:

𝑉௣,ఋ,௜௡ ≜ {𝑣 ∈ 𝑉 ∣𝑑(𝑣, 𝑝) ≤ 𝛿}, (31)

𝑉௣,ఋ,௢௨௧ ≜ {𝑣 ∈ 𝑉 ∣𝑑(𝑝, 𝑣) ≤ 𝛿}, (32)

𝐸௣,ఋ ≜ {(𝑎, 𝑝) ∈ 𝐸 ∣𝑎 ∈ 𝑉௣,ఋ,௜௡}∪ {(𝑝, 𝑏) ∈ 𝐸 ∣𝑏 ∈ 𝑉௣,ఋ,௢௨௧} (33)

In (31) the nodes in the neighbourhood of 𝑝 are defined in such a way that they link to 𝑝 as tails
of arcs with 𝑝 as its head. In (32) the nodes in the neighbourhood are similarly defined, but in
this case 𝑝 is the tail of these arcs. EquaƟon (33) defines the set of arcs in the neighbourhood of
𝑝. They should involve nodes in (31) as tails and 𝑝 as their head, or nodes in (32) as heads with 𝑝
as their tail.

CBS | Discussion paper | July 24, 2019 34

As in the graph case there may be nodes in the digraph that are not in 𝑉௣,ఋ,௜௡. Again we represent
them by the virtual node Ω.

We use the digraph in Figure A.2 as an example of two neighbourhoods of in a digraph. In Figure
10.3 two neighbourhoods of node 4 are presented. The top row depicts the neighbourhood of
node 4 with nodes at distance at most equal to 1; on the leŌ-hand side showing all nodes not
included in this neighbourhood; on the right-hand side the compressed form with node Ω
represenƟng all nodes outside the neighbourhood. On the boƩom row the neighbourhood of
node 4 is shown, but this Ɵme with the nodes of a distance at most 2 are shown. Again, on the
leŌ-hand side with all ‘external’ nodes given, and on the right-hand side with these nodes
idenƟfied as the node Ω. The arcs within the respecƟve neighbourhoods have been coloured
green. The original arcs outside the neighbourhood are coloured black, whereas those with the
node Ω have been coloured blue.

Figure 10.3 Neighbourhoods of node 4, in detailed and reduced form.

In Figure 10.4 extended neighbourhoods are shown of node 4, in detailed form on the leŌ-hand
side and in reduced form on the right-hand side. In the extended form, the neighbourhoods
contain enough informaƟon to compute the local complexity measure.

Figure 10.4 Extended neighbourhoods of node 4, in detailed and reduced form.

In case one does not compute extended neighbourhoods, one sƟll is able to compute complexity
measures. Only for the border points of each neighbourhood, the values may not be the same as
in case the original digraph is used. If the neighbourhoods are bigger one may hope that there
are less border points, compared to the total number of points in the neighbourhood.24)

24) If the analogy with a ball would hold, the surface area of a ball inℝଷ with radius ௥ grows as ସగ௥ଶ, whereas the volume

CBS | Discussion paper | July 24, 2019 35

10.4 Local complexity for graphs

To illustrate local complexity for graphs we look at the average degree (as defined in 1). This
would develop into the local variant where degrees are averaged for the nodes in the
neighborhoods of points, instead of over all nodes in the graph. We then would find:

Δ௔௩௣,ே௣ =
Δே௣
∣𝑁௣∣

, (34)

where Δே௣ is the sum of the degrees of all nodes in 𝑁௣ and ∣𝑁௣∣ denotes the size of 𝑁௣. In (34)
we have used 𝑝 as well as 𝑁௣ as subscripts, because a neighbourhood for a point can usually be
defined in many ways. So (34) is the average of the degrees of the points in 𝑁௣. In the original
definiƟon it was the average of the degrees of all the points in the network. For a local version
we would take all the points in a neighbourhood of each point. Of course, these neighbourhoods
should be defined first. This can be done in many ways. The result obviously depends on the
choice of the neighbourhoods of each of the points in the network.

So instead of a single quanƟty to express the complexity of a network, using local complexity
produces a vector of length ∣𝑁∣ in which the components are complexity measures for each node
in the network. In case of the local complexity measure (34) we have

Δ௔௩௟௢௖ ≜ (Δ௔௩ଵ,ேଵ , … , Δ
௔௩
∣௏∣,ே∣௏∣), (35)

where we have assumed that the nodes of the network (in 𝑉) have been consecuƟvely ordered
(in some way) from 1 to ∣𝑉∣. In case of a huge network one would only have the (esƟmates of)
the values for a subset of the components.

10.5 Local complexity for digraphs

Local complexity for digraphs is also based on (extended) neighbourhoods of nodes, as in case of
graphs. Only the definiƟon of ‘neighbourhood’ for a digraph is different from that of a graph (see
SubsecƟon 10.3).

The idea is to apply reachability locally, that is, for the (extended) neighbourhoods of the nodes
in 𝐺. Reachability, is discussed in SecƟon 9. In parƟcular the complexity measure in (25) is based
on the entropy of a distribuƟon defined in (24). If reachability is defined locally, we can apply the
same kind of measure as (24) locally. We shall leave the details to the interested reader.

grows as ସ
ଷగ௥

ଷ. In ℝ௡ the ௡-volume of a ball is proporƟonal to ௥௡ and the (௡ − ଵ)-volume is proporƟonal to ௥௡−ଵ.
If the same sort of relaƟonship would hold for the number of surface points relaƟve to the total number of points in
the neighbourhood, the influence of the values of the border points would decrease proporƟonal to ଵ/௥.

CBS | Discussion paper | July 24, 2019 36

11 Node ranks

The idea behind node ranks is this: consider a criterion to define important nodes (or arcs) in a
network, select them and complete the network with these nodes (or arcs) using connecƟvity
informaƟon from the original network. For some problems it is natural to concentrate on the
nodes, such as the Internet, where the nodes are (clusters of) webpages (URLs). For other
problems, such as traffic problems, it is natural to consider links / arcs, which in this case would
represent roads or road segments.25)

Node rank can be used as a criterion to idenƟfy the important nodes. The concept of ‘node rank’
is derived from that of ‘page rank’ defined, originally, for the WWW. IntuiƟvely, the idea of node
rank is that the node rank of a node is based on the node ranks of the nodes linking to it. A node
with a higher node rank contributes more to the page rank of the node referred to. Despite this
intuiƟve idea for node rank it can be defined in several ways. We present some examples.

11.1 Node rank 𝑟1

We present the definiƟon of node rank from (14), which was inspired by that of page rank in (4).
It deviates slightly from the original definiƟon. It can be fairly easily defined locally. From this
definiƟon a global one can be derived in terms of matrices. We start by looking at a node 𝑎 and
the 𝑛௔ > 0 nodes pointed at from 𝑎, by arcs, 𝑏ଵ, … , 𝑏௡௔ . Suppose that node 𝑎 has rank 𝑟ଵ(𝑎).
Then 𝑏௜ gets share 𝑟ଵ(𝑎)/𝑛௔ of the rank 𝑟ଵ(𝑎) of 𝑎. To determine the rank 𝑟ଵ(𝑏) of 𝑏, one adds
all contribuƟons from the nodes poinƟng to 𝑏.

This method of determining a node rank can be linked to invariant distribuƟons for Markov
chains. See (6), pp. 392 ff. To the adjacency matrix 𝐴 of a digraph a Markov matrix 𝑃 can be
associated with 𝐴 by dividing each row 𝑖 of 𝐴 by the sum of the elements in this row (which is the
outdegree for node 𝑖). This corresponds to the Markov chain where a jump from a node 𝑖 occurs
with equal probability to any of the nodes 𝑗 connected to node 𝑖 is, that is, such that (𝑖, 𝑗) ∈ 𝐸.

If this matrix is denoted by 𝑃 then an invariant distribuƟon is a vector 𝑢 ≥ 0 with 𝜄ᇱ𝑢 = 1, such
that

𝑢𝑃 = 𝑢. (36)

Under certain condiƟons 𝑢 > 0 exists and is unique.26)

25) Technically, one can always consider top nodes. But then one should redefine the original network. One can create
an arc network where the arcs are represented by dots, and two dots (௔, ௕) and (௖, ௗ) are connected if and only if
௕ = ௗ, that is, if the head of (௔, ௕) coincides with the tail of (௖, ௗ). In the arc network of the original digraph the
nodes are in fact the arcs of the original networks. SelecƟng top nodes in the arc network yields top arcs in the original
network.

26) See the theorem on p. 393 in (6).

CBS | Discussion paper | July 24, 2019 37

11.2 Node rank 𝑟2

The idea of the node rank as defined in SecƟon 11.1 is that the rank 𝑟ଵ(𝑎) of a node 𝑎 poinƟng to
𝑛 nodes is equally distributed over its outgoing arcs. So if node 𝑏 with (𝑎, 𝑏) ∈ 𝐸 the ’donaƟon’
of 𝑎 to the rank of 𝑏 is 𝑟ଵ(𝑎)/𝑛௔. The implicit assumpƟon is that a visit to a node 𝑎 also implies a
visit to node 𝑏. But this assumpƟon is quesƟonable, as it, in its ulƟmate consequence, would
imply that users would follow very long paths of links (arcs). This is highly unlikely. Think of the
Internet as an example. Typically users will only click on a limited number of links.

In a modified version of the node rank we want to disƟnguish between the rank contribuƟon of a
direct link to a node and rank contribuƟons from indirect to this node. This laƩer contribuƟon we
want to diminish. In the context of the WWW, the modificaƟon can be moƟvaƟed by the fact
that only a fracƟon of the links poinƟng to 𝑎 is actually used to point to 𝑏. For definiteness, we
assume that only a (fixed) fracƟon 𝜎 ∈ (0, 1) is used in this way. This is also the fracƟon that we
use to carry over the node rank of 𝑎 to a node 𝑏, with (𝑎, 𝑏) ∈ 𝐸.

So we assume that the direct link from 𝑎 to 𝑏 contributes to the node rank of 𝑏 in two
components

1. a weight 1, because 𝑎 is linked directly to 𝑏.
2. a weight 𝜎𝑟ଶ(𝑎), for the nodes indirectly linked to 𝑏 via 𝑎, i.e. all the nodes 𝑐 with (𝑐, 𝑎) ∈ 𝐸.

The parameter 0 < 𝜎 < 1 is a control parameter, to see how the results change when this
parameter is changed.

So the total contribuƟon of 𝑎 to the rank of 𝑏 is: 1 + 𝜎𝑟ଶ(𝑎)/𝑛௔. So the node rank of 𝑏 is
obtained by summing over all nodes 𝑎 that point to 𝑏. That is

𝑟ଶ(𝑏) = ෍
௔∈ஆ(௕)

(1 + 𝜎𝑟ଶ(𝑎)) = Δ௜௡(𝑏) + 𝜎 ෍
௔∈ஆ(௕)

𝑟ଶ(𝑎), (37)

where Ξ(𝑏) = {(𝑧, 𝑏) ∈ 𝐸, for some 𝑧 ∈ 𝑉} is the set of nodes with arcs poinƟng to node 𝑏 and
Δ௜௡(𝑏) denotes the indegree of node 𝑏, i.e. ∣Ξ(𝑏)∣ = Δ௜௡(𝑏).

We can write (37) as a matrix equaƟon

𝑢 = Δ + 𝜎𝐴ᇱ𝑢, (38)

where 𝑢 = (𝑟ଶ(1), … , 𝑟ଶ(𝑛))ᇱ, Δ = (Δ௜௡(1), … , Δ௜௡(𝑛))ᇱ. If (38) has a soluƟon 𝑢, it can be wriƩen
as:

𝑢 = (𝐼 − 𝜎𝐴ᇱ)−ଵΔ. (39)

So (39) exists if the matrix 𝐼 − 𝜎𝐴ᇱ is nonsingular, which is the case if 𝜎 is not an eigenvalue of 𝐴ᇱ,
or equivalently, of 𝐴. If (39) has a soluƟon it is unique.

CBS | Discussion paper | July 24, 2019 38

12 Arc ranks

So far we have considered node ranks of a network. In the present secƟon we use these node
ranks to compute arc ranks. They are used in SecƟon 13 to reduce a (complex) network to a less
complex one by removing certain nodes and arcs. That is, one method that is proposed there
uses the arc ranks.

For each node 𝑣 with incoming and outgoing arcs, the sum of the arc ranks of each type of arcs
are the same and equal to the node rank of 𝑣. With arc ranks at our disposal we can disƟnguish
between the importance of arcs. These arc ranks can also be used to correct node ranks in case a
network is reduced to its essence. See SecƟon 13.

The arc ranks are computed from the node ranks, by using iteraƟve proporƟonal fiƫng (IPF). In
sampling applicaƟons IPF is used as a disaggregaƟon method, to spread the values of marginal
tables with populaƟon numbers proporƟonally over a higher dimensional table with sampling
values. The method originated in several areas, among them NaƟonal Accounts.27)

The node ranks act as the 1𝐷 marginals and the adjacency matrix of the digraph is the 2𝐷 table
over which the node ranks are to be spread in a certain way. It should be stated that a soluƟon
does not always exist. However, in case of a 2𝐷 table with nonnegaƟve entries Sinkhorn’s
theorem guarantees the existence of a soluƟon (see (11), pp. 75 ff.). For most digraphs this
requirement is not saƟsfied; only for the complete digraphs does it hold. But we could
approximate it by replacing each value 0 by a small value 𝜖 > 0, thus obtaining 𝐴ఢ instead of 𝐴.
Then by taking the limit 𝜖 ↓ 0 we hope to find a soluƟon to the original IPF problem with 𝐴
instead of 𝐴ఢ.28)

If a soluƟon exists29) we have that the sum of the arc ranks of the incoming arcs of a node 𝑖
equals that of the sum of the ranks of the outgoing arcs of this node, which are both equal to the
node rank of 𝑖.

In Figure 12.1 a general seƫng for the IPF problem we need to solve is presented. The marginal
tables are provided by the node ranks 𝜔௜. The adjacency matrix 𝐴 = (𝑎௜௝) is used as the 2D table
over which the node ranks are to be distributed.

In Figure 12.2 the soluƟon — if it exists — of Figure 12.1 is presented. The weights𝑤௜௝ are the arc
weights.

Row-wise and column-wise the weights sum to the node ranks: 𝑊𝜄 =𝑊ᇱ𝜄 = 𝜔, where
𝜔 = (𝜔ଵ, … ,𝜔௡)ᇱ, 𝜄 is the all 1s vector of length 𝑛 and𝑊 = (𝑤௜௝), the matrix of arc ranks.

27) The name associated with applicaƟons in economics is that of R. Stone from Cambridge University, who called it the
RAS method. In the sampling area W. Deming and F. Stephan are early proponents of this method. (2) was wriƩen
at the department of Stone and provides an account that is moƟvated by economic applicaƟons. (11), SecƟon 2.6 is
another source for a discussion of this method, which has a more staƟsƟcal orientaƟon. The R package mipfp (see (3))
can be used to apply IPF (and similar methods) in R.

28) Provided a direct computaƟon does not yield a soluƟon. However, in many cases if some of the entries are ଴ a soluƟon
can be obtained by direct computaƟon, which means iteraƟvely.

29) To find necessary and sufficient condiƟons for IPF to converge is a complicated maƩer. Sufficient condiƟons for the 2D
case are known: 1. the marginals of the values in the table (i.e ௔௜+ and ௔+௝) are strictly posiƟve, and 2. the table is
inseparable, that is, it does not permute to a block-diagonal form. But are they also necessary?

CBS | Discussion paper | July 24, 2019 39

Figure 12.1 IPF problem setting: node ranks 𝜔௜ and adjacency matrix 𝑎௜,௝ .

Figure 12.2 Solution of the IPF problem in Figure 12.1: arc ranks 𝑤௜௝ .

13 The essence of a network

13.1 The idea

The problem is how to present the highlights of a complicated network, from which all the
distracƟng details have been removed. But what are the highlights, and the distracƟng details?
The same problem is faced by a cartographer who wants to produce a map of an enƟre country
that should give a viewer a clear picture of its main features: the bigger ciƟes, the main
waterways, the main roads, etc. And if one zooms in at a smaller part of the country more details
become visible – but only for a smaller part of the country. So there is a trade-off between scale
and detail.

Depending on the scale level chosen, the corresponding amount of detail provided is chosen.
The reason for this is to focus on the important things at the chosen scale level. In a sense, less is
more: presenƟng all the details available swamps the message and hides the bigger picture.

TranslaƟng this idea to networks one can employ node and arc ranks to differenƟate among the
nodes and the arcs in a network and choose the more important ones. One can select the nodes
that have a rank value above the threshold value 𝛿 . So 𝛿 is a parameter controlling the detail to
be made visible of the reduced network, and hence its complexity (the more detail the more
complex). But only showing the selected nodes or arcs may result in a reduced network with a
topology that deviates from that of the original network. This we want to avoid. It can be
achieved by adding more arcs, carefully chosen.

SelecƟng the important nodes is the easy bit of the complexity reducƟon. More work is required
to find the arcs that should be added (if any). This is done by looking at the topology, in parƟcular
the connecƟvity, of the original network. It is clear that this process reduces the complexity of
the original network. The reducƟon is controlled by the parameter 𝛿.

The first approach is focussed on node selecƟon. The arcs follow suit, and they are mainly used
to produce a reduced network with the right topology, mimicking that of the original network. In
the second approach the arcs are selected first and the nodes follow suit. We consider these
approaches in separate secƟons.

CBS | Discussion paper | July 24, 2019 40

An applicaƟon of compuƟng the essence of a network is to apply it to a big (and complex)
network and to draw it in a picture, on screen or on paper. As soŌware to render networks
already exists, it is only required to be able to compute the essence of networks, following the
specificaƟons of users.

13.2 Selecting nodes

A node rank defined for a network can be used to disƟnguish the important nodes from the less
important ones: the higher the value, the higher their importance. So given a network
𝐺 = (𝑉,𝐸), a node rank funcƟon 𝜌 ∶ 𝑉 → ℝ/ℝ− and a threshold 𝛿 > 0, we can define
𝑉ఋ = {𝑣 ∈ 𝑉 ∣𝜌(𝑣) ≥ 𝛿} as the subset of nodes in 𝑉 with rank at least 𝛿.

For the adjacency matrix 𝐴 of 𝐺 let 𝐴∣௏ఋ be the adjacency matrix obtained from 𝐴 by only
selecƟng those rows and columns that correspond to elements in 𝑉ఋ . The first idea is to consider
𝐴∣௏ఋ as the adjacency matrix for the selecƟon of nodes 𝑉ఋ . But it is not the correct choice, as it
only gives the arcs that are also in 𝐺. But two nodes may be connected indirectly, via nodes not
in 𝑉ఋ . So we should know for each 𝑣௜ , 𝑣௝ ∈ 𝑉ఋ whether 𝑣௜ ; 𝑣௝ holds in 𝐺, that is, whether there
is a path in 𝐺 from 𝑣௜ to 𝑣௝.

In order to decide this, the transiƟve closure 𝐴∗ of 𝐴 is needed. In fact, the adjacency matrix of
the digraph best presenƟng the essence of the original digraph is 𝐴∗∣௏ఋ , which denotes 𝐴∗
restricted to the rows and columns corresponding to the nodes in 𝑉ఋ .30) But both 𝐴∣௏ఋ and 𝐴∗∣௏ఋ
are needed to disƟnguish arcs in 𝐺 from paths in 𝐺 that are not arcs. If 𝐴∣௏ఋ(𝑣௜ , 𝑣௝) = 1 there is
an arc in 𝐺 from 𝑣௜ to 𝑣௝ , which we colour blue. In case 𝐴∗∣௏ఋ(𝑣௜ , 𝑣௝) = 1 and 𝐴∣௏ఋ(𝑣௜ , 𝑣௝) = 0
there is a path from 𝑣௜ to 𝑣௝ which is not an arc in 𝐺, which we colour red. A red arc corresponds
to a path in the original digraph connecƟng top nodes. However, not all the nodes in such a path
need to be top nodes.

13.3 Selecting arcs

In SecƟon 13.2 nodes were selected to define an essence digraph. But one can also derive an
essence digraph based on a selecƟon of arcs.

Let the arcs in a digraph 𝐺 = (𝑉,𝐸) be ranked according to some arc rank. On the basis of this
ranking and a threshold 𝜖 top arcs from 𝐸 are selected, that is with arc rank at least 𝜖. Denote
the selecƟon by 𝑇 = {𝑒ଵ, … , 𝑒௟}. Each arc is an ordered pair of verƟces: 𝑒௝ = (𝑣௝ଵ , 𝑣௝ଶ). Let
𝑒̆௝ = {𝑣௝ଵ , 𝑣௝ଶ} be the underlying edge of 𝑒௝. 𝑇 implies the set
𝑇𝑉 = ∪௟௝=ଵ ̆𝑒௝ = {𝑣ଵଵ, 𝑣ଵଶ, … , 𝑣௟ଵ, 𝑣௟ଶ} of endpoints of these arcs.

As in SecƟon 13.2 the adjacency matrix that describes the essence of 𝐺 based on the node set
𝑇𝑉 and the arc set 𝑇 is 𝐴∗∣்௏, which denotes 𝐴∗ restricted to the rows and columns
corresponding to the nodes in 𝑇𝑉. We can apply the same colouring scheme as in SecƟon 13.2 to
colour the arcs in the essence digraph with the nodes in 𝑇𝑉.

30) Or perhaps the transiƟve reducƟon of this matrix, or the digraph corresponding to it, if one wants a smaller set of arcs
from which others can be deduced by transiƟve closure.

CBS | Discussion paper | July 24, 2019 41

13.4 Example

We consider an example of a small network, where the various nodes have different node ranks,
indicated by colour. See Figure 13.1, in the upper leŌ corner. The nodes are coloured to indicate
different degrees of node ranks. The digraph in this example is somewhat special as it is a ditree
(and hence is acyclic).

Figure 13.1 Digraph with node ranks in colours in left upper corner. Various
reductions are shown in the other cells of the table.

In the cell in the right-upper corner of Figure 13.1 the nodes with the lowest ranks have been
removed, as well as the arcs that are incident to these nodes. This is the first reducƟon. In the
leŌ lower corner the nodes with the highest rank in this digraph are shown. This is the second
reducƟon. Finally the digraph obtained by reducing the second reducƟon is shown in the
right-hand lower corner. It is a single node, which is the hub of the original digraph.

In Figure 13.2 a digraph is shown on the leŌ that is supposed to be part of a larger network. The
nodes are supposed to have node ranks associated with them. Some of them are considered
high enough and some of them are not. The idea is to prune these laƩer nodes (and the arcs
involved) so that we get a reduced digraph with high enough node ranks. This pruned digraph is
shown at the right-hand side of Figure 13.2.

AŌer the pruning has been completed the quesƟon is now whether or not to adjust the node and
arc ranks in the pruned digraph, or not. We consider the consequences of each choice in the
SecƟons 13.4.1 and 13.4.2, respecƟvely.

13.4.1 Keep node ranks
If we go for this opƟon we start removing arcs and nodes. For the remaining nodes we use the
original node ranks. With these node ranks, we can recompute the ranks for the remaining arcs
in the reduced digraph. In this way node informaƟon from the original digraph is preserved and
the arc ranks are adjusted to obtain consistency.

CBS | Discussion paper | July 24, 2019 42

Figure 13.2 Digraph with node with high node ranks (black and blue) or with low
node ranks (yellow). The blue nodes are pointed at from nodes in the larger network
not depicted.

It should be pointed out that, tacitly, this reducƟon process has redefined the meaning of the
remaining nodes. Some nodes in the reduced graph seem the same nodes in the original
network, but this is not really the case. There is a ‘semanƟc shiŌ’ in the meaning of these nodes.
To understand this, consider the nodes 3, 4, 5, 6, 8, 14 in Figure 13.2). Each of them has
neighbourhoods in the original digraph and in the reduced digraph that are different. So, for
instance, node 14 of the reduced network sƟll also represents nodes 15 and 16 in the original
digraph, although these nodes do not appear in the reduced network. However, their influence is
sƟll present in the node and arc ranks used, as they have not been updated. To mark this
difference it is perhaps preferable to indicate explicitly that these notes are slightly different by
using primes with the original labels. So we then would use, for instance, 3ᇱ, 4ᇱ, 5ᇱ, 6ᇱ, 8ᇱ, 14ᇱ in
the reduced network instead of 3, 4, 5, 6, 8, 14 in the original network. However, this convenƟon
shows the relaƟon between corresponding nodes in the reduceda nd original digraph.

13.4.2 Adjust node ranks
If this opƟon is chosen, the node ranks from the original digraph are adjusted by subtracƟng the
ranks of the arcs removed from the node ranks of the original network. If we denote the node
ranks for the reduced network by 𝑤(𝑗)ᇱ and the arc ranks of the original network by 𝛼௜,௝, we find
from Figure 13.2the following set of linear constraints:

𝑤(1)ᇱ ≜ 𝛼ଶ,ଵ + 𝛼ଷ,ଵ + 𝛼ସ,ଵ,
𝑤(2)ᇱ ≜ 𝛼ହ,ଶ + 𝛼଺,ଶ,
𝑤(3)ᇱ ≜ 𝛼଺,ଷ,
𝑤(4)ᇱ ≜ 𝛼଼,ସ,
𝑤(5)ᇱ ≜ 𝛼ଵଵ,ହ, (40)

𝑤(6)ᇱ ≜ 𝛼ଵଵ,଺,
𝑤(8)ᇱ ≜ 𝛼ଵସ,଼,
𝑤(14)ᇱ ≜ 𝛼ଵ଻,ଵସ,
𝛼ଵ଻,ଵସ = 𝛼ଵସ,଼ = 𝛼଼,ସ = 𝛼ସ,ଵ,

The final equality of (40) implies

CBS | Discussion paper | July 24, 2019 43

𝑤ᇱ(14) = 𝑤(8)ᇱ = 𝑤(4)ᇱ = 𝛼ସ,ଵ (41)

For the reduced network the arc nodes have to be computed using the adjacency matrix of the
reduced network and the adjusted node ranks as marginals. This can be done using the IPF
algorithm, as described in SecƟon 12, but for the new situaƟon.31)

It should be stressed that in this case the meaning of the nodes has not been changed: each
node in the reduced network represents the same object as in the original network. The rank
informaƟon from the nodes and arcs eliminated has also been eliminated along with these
objects.

13.5 Graph reduction and complexity

Obviously, the methods described in SecƟons 13.2 and 13.3 lead to smaller digraphs, i.e. with
fewer nodes or fewer arcs. The expectaƟon is that this usually leads to networks with smaller
complexity. But this is not necessarily the case. In Figure 4.2 we provided a simple example of a
graph that has a subgraph of higher complexity, if we take the average degree, Δ௔௩, as the
measure of complexity.

The same phenomenon exists for digraphs: the reachability of a subdigraph can be less than that
of the original digraph, and hence there can be an increase in complexity.

By removing nodes or arcs from a network with graph reducƟons one ends up in a different class
of networks than the one to which the original network belongs, because the underlying graph is
different. This makes comparison of complexiƟes of digraphs belonging to different classes of
underlying graphs not very meaningful. Within a class of digraphs with the same underlying
graph direct comparison of our complexity measures for digraphs is meaningful and informaƟve.
But not between networks belonging to different classes.

Maybe this observaƟon implies that we should look for complexity measures that also involve
the number of nodes and arcs/edges. None of the complexity measures we have considered in
the present paper has this property. This, however, is somewhat of a formal problem, not a real
one. The removal of nodes or arcs/edges is, by definiƟon, an act of network simplificaƟon, even
though a formal complexity measure would have an increased value.

14 Discussion and conclusions

The present paper has two major objecƟves: to define complexity measures for networks and to
find methods to simplify networks, in parƟcular those that are complex. First complexity

31) We assume that in this way new arc ranks can actually be found. But this depends of the reduced network that has
been created, and in parƟcular the structure of its adjacencymatrix. If there are toomany zero cells, awkwardly placed,
a soluƟon may not exist.

CBS | Discussion paper | July 24, 2019 44

measures for graphs were defined, as they are simpler due to the fact that their adjacency matrix
is symmetric. For graphs, the first idea to quanƟfy the complexity of graphs is to use the degree
of ‘compression’ of a graph as a guiding principle. A second idea was to use a special kind of full,
conƟnuous search of the graph as a basis for graph complexity. A third idea was to uses natural
distances between nodes in graphs or line graphs.

Then complexity measures for digraphs were defined. This is a natural order in the sense that
digraphs is a wider class of objects than graphs. New ideas have to be used to describe their
complexity. We have used reachability, opƟmal search and the number of paths (for rouƟng
digraphs). This leads to complexity measures for digraphs that are in fact defined relaƟve to the
underlying graph. However some complexity measures for digraphs look at augmentaƟon by arcs
in order to reach full reachability, which implies a transiƟon to different underlying graphs. Then
direct comparison of complexity of digraphs is not possible anymore. It would, if the complexity
of the underlying graph is also taken into account. We have suggested an approach where the
digraph complexity measure is viewed as a complexity measure condiƟonal on the underlying
graph. By mulƟplying this by the complexity of the underlying graph the idea is that an
uncondiƟonal complexity measure for digraphs is thus obtained.

Another extension that is considered in this paper is local complexity. The measures considered
iniƟally in the present paper tacitly assume that the neighbourhood of each point is the enƟre
network. However it is possible to choose a neighbourhood of each node. Complexity
informaƟon is collected locally, that is in the neighbourhood associated with each node. Local
complexity measures were constructed by adapƟng the global measures considered before by
using local informaƟon, that is the neighbourhoods associated to the respecƟve nodes in the
network.

In mathemaƟcs there are many structures that are defined locally. Manifolds, vector fields,
sheaves are examples of such local structures. The challenge is to derive global results from such
locally defined constructs. In case of local complexity of a network the challenge is to link it to its
global complexity. This is leŌ as future research topic. The present paper does no go into this
issue.

The complexity measures introduced in this paper have not been thoroughly explored. Only a
few examples have been presented for the purpose of illustraƟon. Full exploraƟon on real data is
reserved for the future. Only then does it become clear what the value of each of the complexity
measures is, what their limitaƟons are, how they are interconnected, how they should possibly
be modified to provide more aƩracƟve complexity measures, etc.

The second theme explored in the present paper is the reducƟon of networks. A reducƟon
similar as in cartography where one can zoom out and get informaƟon about a larger area but
with less detail, or zoom in and get detailed informaƟon about a smaller area. In a network
context one should be able to indicate what one considers important nodes or arcs and a
simplified network should then be generated with these elements present, and, if necessary,
supplemented with addiƟonal informaƟon to produce a network that has the same topology as
the original network. A reduced network embodies, so to speak, the essence of the original
network, at a level chosen by a user.

An applicaƟon of this reducƟon opƟon would be complex networks. One oŌen would like a view
of the network that leaves out distracƟng details – unimportant nodes or arcs – so that one can

CBS | Discussion paper | July 24, 2019 45

focus on the parts that maƩer. In a network represenƟng a snapshot of the Internet, the
important nodes are the hubs of a certain minimum size.

One can reduce a network using only the original objects, with exactly the same meaning as in
the original network, or by using modified objects, which are in fact aggregate objects. Original
objects plus some neighbouring ones. So a node is then not a hub as in the original Internet, but
a hub and less important nodes (represenƟng pages) poinƟng to it.

To be able to value, and rank, nodes and arcs in a network we consider node ranks and arc ranks.
Node ranks are weights on nodes that measure popularity, so to speak, in terms of being
referenced, that is pointed, at by arcs. A node 𝑏 poinƟng to a node 𝑎 contributes its own node
rank 𝜎(𝑏) to the node rank 𝜎(𝑎) of node 𝑎. In one type of node rank, the full node rank 𝜎(𝑏) of
node 𝑏 is contributed to the node rank 𝜎(𝑎) of the node 𝑎. This tacitly assumes that if node 𝑐
points to 𝑏 it also points to 𝑎, although this may only be through an indirect link. In a modified
version of this node rank, the contribuƟon of each node poinƟng to another one is modified: the
direct link counts for one and the indirect ones are discounted by a fixed factor 𝜆.

Given a network with node ranks, arc ranks were computed from them. We use the IPF algorithm
for this purpose, with the adjacency matrix of the network as the 2𝐷 table and with the node
ranks as the marginal tables. As with the nodes one can also select important arcs and define a
reduced network on their basis. Like in the nodes case, one has to make sure that the topology
of the reduced digraph reflects that of the original digraph.

It would be nice if network reducƟon would imply a lower level of complexity of the reduced
network than the original one. We have seen that this does not necessarily hold for the
complexity measures considered, with the possible excepƟon of an uncondiƟonal complexity
measure. There was no opportunity to invesƟgate this problem here, so it is leŌ to future
research to answer it. It would be nice to have complexity measures that have lower values for
reduced networks.

In the paper several problems were menƟoned that need to be solved, possibly only
approximately, if one wants to have a set of rouƟnes at one’s disposal for complexity
computaƟons, or at least implemented. Possibly some problems are quite difficult to solve and
cannot be solved exactly, in which case approximaƟon methods are called for.

Apart from elaboraƟng some ideas further theoreƟcally, what is most needed is to apply the
methods proposed to real data.

CBS | Discussion paper | July 24, 2019 46

References

[1] A. Aho, M. Garey & J. Ullman (1972). The transiƟve reducƟon of a directed graph, SIAM
Journal on CompuƟng, 1 (2), pp. 131–137.

[2] M. Bacharach (1970). BiproporƟonal Matrices & Input — Output Change, Cambridge
University Press.

[3] J. Barthelemy, T. Suesse & M. Namazi-Rad (2018). Package ’mipfp’ – mulƟdimensional
iteraƟve proporƟonal fiƫng and alternaƟve, CRAN repository.

[4] S. Brin & L. Page (1998). The anatomy of a large-scale hypertextual web search engine,
Report, Computer Science Department, Stanford University, Stanford, Cal., USA.

[5] T. Cormen, C. Leierson & R. Rivest (2009). IntroducƟon to Algorithms, MIT Press.

[6] W. Feller (1968). An IntroducƟon to Probability Theory and its ApplicaƟons, Vol. I (3௥ௗ ed.),
Wiley.

[7] B. Hughes (1996). RandomWalks and Random Environments: Volume 2: Random
Environments, Clarendon Press.

[8] Munro, I. (1971). Efficient determinaƟon of the transiƟve closure of a directed graph,
InformaƟon Processing LeƩers, 1, pp. 56–58.

[9] Purdom, P., Jr. (1970), A transiƟve closure algorithm, BIT, 10, pp. 76–94.

[10] D. Rouvray & R. King (eds.) (2002). Topology in Chemistry, Woodhead Publishing.

[11] E. Seneta (1981). Non-negaƟve Matrices and Markov Chains, Springer.

[12] S. Warshall (1962). A theorem on Boolean matrices, J. of the ACM, 9, pp. 11-12.

[13] L. Willenborg (1988). ComputaƟonal Aspects of Survey Data Processing. CWI Tract 54,
Center for MathemaƟcs and Computer Science, Amsterdam.

[14] L. Willenborg (2018). Sampling restricted access networks. Discussion paper, CBS, The
Hague.

CBS | Discussion paper | July 24, 2019 47

Appendix
A Example digraphs and their

complexities

We present here some examples of digraphs in which we look at reachability for each of the
nodes. The examples we consider, all have the same underlying graph 𝐺, namely the one shown
in Figure A.1. We denote this class of digraphs as Gீ,௞, where 𝐺 denotes the underlying graph
and 𝑘 denotes the number of arcs in the class of digraphs. If 𝐺 = (𝑉,𝐸) with ∣𝑉∣ = 𝑛 and ∣𝐸∣ =𝑚,
we have𝑚 ≤ 𝑘 ≤ 2𝑚. To compare the behaviour of the digraphs it is interesƟng to first consider
the digraphs in a class Gீ,௞, for a fixed parameter 𝑘, and then to see what happens when the
parameter 𝑘 is varied from𝑚 to 2𝑚. The digraphs considered in this way will more and more
look like the graph 𝐺, and so will the reachability properƟes. One can also vary 𝐺 in the class of
graphs with 𝑛 points, by varying the number of edges. As we are interested in connected graphs
this number should take values between 𝑛 − 1 (a tree) and (௡ଶ) (the full graph on 𝑛 points).
Below we restrict ourselves to the first step and consider, for a given graph 𝐺, a class Gீ,௞ for
𝑘 =𝑚 and also for some values of 𝑘 between𝑚 and 2𝑚. It would take too much space to also
vary over the 𝐺s and to study for each choice what happens within a class Gீ,௞ and when varying
𝑘. So we only consider one graph 𝐺 below. The graph we use in all our examples is the one in
Figure A.1, that we shall refer to byH. This is a graph with 13 nodes and 26 edges.

We start with a digraph in which the arrows are neatly ordered. This case is a kind of a
benchmark. It is an example of a digraph with the smallest complexity due to arc orientaƟon in
the class of graphs with the same underlying digraph. Then we look at a digraph in which the arcs
can be considered as randomly oriented. Looking at reachability we see a more chaoƟc picture
than in case of the very orderly first example. The third example shows a digraph that is very
close to the one in the second example; they differ only in the orientaƟon of one arc. This
example is considered to indicate the consequences of a small change in orientaƟon of the arcs
in terms of reachability.

Figure A.1 The graphH that is the underlying graph for the digraphs considered in
the examples of the present appendix.

Example 1: An orderly digraph in GH,26

We consider the digraph represented in Figure A.2, which can be considered to be one of the two
most orderly graphs in the class of digraphs, with the graphH in Figure A.1 as the underlying

CBS | Discussion paper | July 24, 2019 48

graph.32) Note that for all the arcs (𝑎, 𝑏) we have that 𝑎 < 𝑏. So an arc is always ’poinƟng
forward’, so to speak.

Figure A.2 Digraph with underlying graph in Figure A.1 from Example 1, where all
arcs are ’pointing forward’.

Figure A.3 shows the reachability sets for each node in the digraph in Figure A.2. The reachability
sets are neatly nested: the reachability set of a node contains those associated with a higher
number.

We are interested in the nodes that can be reached from each of the nodes in Figure A.2. These
follow from the transiƟvity properƟes of this graph. In Figure A.3 they are presented in graphical
form. The entrance node is given in blue with blue and underlined label. Some nodes have the
same reachability set. The reachability set corresponding to node 𝑘 is presented as 𝑘̄.We see that
these sets differ widely. SomeƟmes they consist of a single point, someƟmes they consist of
several points, and in one case all the nodes can be reached from a single point. So the situaƟon
is far more diverse than in the graph case, where reachability and connectedness coincide.

The reachability sets can be ordered by inclusion. Figure A.4 represents this inclusion relaƟon for
the reachability sets in Figure A.3. Each arc indicates an inclusion. So reachability set 1̄ contains
reachability set 2̄.33)

Example 2: A random digraph in GH,26

The digraph we consider in this example is given in Figure A.5. In this case the arcs have been
randomly oriented. In that sense this digraph is more chaoƟc, and intuiƟvely more complex than
the one in Figure A.2.

The reachability sets in Figure A.6 are parƟally ordered through inclusion.34) The tree showing
this inclusion relaƟon is presented in Figure A.7. We have

32) The other most orderly digraph in this class is the digraph with all the arcs reversed.
33) Or equivalently, reachability set ଶ̄ is included in reachability set ଵ̄.
34) In the sense of ’contains’, not in the sense of ’is contained in’.

CBS | Discussion paper | July 24, 2019 49

Figure A.3 The reachability sets of the nodes in digraph for Example 1 in Figure A.2.

Figure A.4 The reachability sets of the nodes in digraph for Example 1 in Figure A.2.

CBS | Discussion paper | July 24, 2019 50

Figure A.5 A digraph for Example 2 with randomly oriented arcs.

Figure A.6 Reachability sets for each of the nodes in the digraph of Example 2 in
Figure A.5. The picture in the middle of the top row shows a reachability set that is the
same for several entrance nodes.

CBS | Discussion paper | July 24, 2019 51

1̄ = {1}∪ ̄13
2̄ = {2}∪ 1̄ ∪ 8̄
3̄ = {3}∪ 2̄ ∪ 4̄
4̄ = {4}∪ 2̄ ∪ 5̄ ∪ 6̄
5̄ = {5}∪ 3̄ ∪ 6̄
6̄ = {6}
7̄ = {7}∪ 6̄ ∪ 8̄ ∪ ̄10 (A.1)

8̄ = {8}∪ 1̄ ∪ 4̄ ∪ 6̄ ∪ 9̄
9̄ = {9}∪ 1̄ ∪ ̄12 ∪ ̄13
̄10 = {10}∪ 8̄ ∪ 9̄ ∪ ̄11
̄11 = {11}∪ 9̄ ∪ ̄12
̄12 = {12}
̄13 = {13}∪ ̄12.

The 𝑘̄’s act as nonterminal symbols. By repeatedly subsƟtuƟng the expressions in (A.1) we can
eliminate them and what remains are sets of nodes:

1̄ = {1, 12, 13}
2̄ = 3̄ = 4̄ = 5̄ = 8̄ = {1, 2, 3, 4, 5, 6, 8, 9, 12, 13}
6̄ = {6}
7̄ = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}
9̄ = {1, 9, 12, 13} (A.2)
̄10 = {1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13}
̄11 = {1, 9, 10, 11, 12, 13}
̄12 = {12}
̄13 = {12, 13}

Figure A.7 Nesting of the reachability sets of Example 2 in Figure A.6.

CBS | Discussion paper | July 24, 2019 52

The reachability tree in Figure A.7 can be used to produce the reachability sets in (A.2). By
starƟng with node ̄12 (which must be the set {12}) and 6̄ (which must be the set {6}) and
working ’upwards’, one can retrieve the other reachability sets in (A.2).

Example 3: Another digraph in GH,26

The digraph we consider is given in Figure A.8. This digraph is the same as the one in Figure A.5
except for one arc that has been reversed: arc (8, 9) was replaced by arc (9, 8). To stress this,
the arc (9, 8) is represented in a different colour in Figure A.8. This example was chosen to
illustrate how one small change in a digraph (reversal of an arc) can give rather different results
concerning reachability.

Figure A.8 A digraph similar to that in Figure A.5 used in Example 3. Only arc (8, 9)
has been replaced by arc (9, 8).

As in Example 1 we are interested in the nodes that can be reached from each of the nodes in
Figure A.8. In Figure A.9 they are presented in a graphical form. As in Figure A.5 the iniƟal node is
given in blue and is underlined. As in Example 2 some nodes have the same reachability set. But
we also note that these sets may differ considerably.

The reachability sets in Figure A.9 are parƟally ordered through inclusion, as in Example 1.35) The
tree showing this inclusion relaƟon is presented in Figure A.10. The reachability set
corresponding to node 𝑘 is presented as 𝑘̄. We have the following sets of equaƟons for the
reachability sets indicated in Figure A.9:

35) In the sense of ’contains’, not in the sense of ’is contained in’.

CBS | Discussion paper | July 24, 2019 53

Figure A.9 Reachability sets for each of the nodes in the digraph in Figure A.8 in
Example 3. The entrance nodes are coloured blue and are underlined. The picture in
the middle of the top row shows a reachability set that is the same for several
entrance nodes.

CBS | Discussion paper | July 24, 2019 54

1̄ = {1}∪ ̄13
2̄ = {2}∪ 1̄ ∪ 8̄
3̄ = {3}∪ 2̄ ∪ 4̄
4̄ = {4}∪ 2̄ ∪ 5̄ ∪ 6̄
5̄ = {5}∪ 3̄ ∪ 6̄
6̄ = {6}
7̄ = {7}∪ 6̄ ∪ 8̄ ∪ ̄10 (A.3)

8̄ = {8}∪ 1̄ ∪ 4̄ ∪ 6̄
9̄ = {9}∪ 1̄ ∪ 8̄ ∪ ̄12 ∪ ̄13
̄10 = {10}∪ 8̄ ∪ 9̄ ∪ ̄11
̄11 = {11}∪ 9̄ ∪ ̄12
̄12 = {12}
̄13 = {13}∪ ̄12.

ElaboraƟng the equaƟons in (A.3) by repeated subsituƟon unƟl all nonterminal symbols have
been eliminated, we obtain the following set of soluƟons:

1̄ = {1, 12, 13}
2̄ = 3̄ = 4̄ = 5̄ = 8̄ = {1, 2, 3, 4, 5, 6, 8, 12, 13}
6̄ = {6}
7̄ = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}
9̄ = {1, 2, 3, 4, 5, 6, 8, 9, 12, 13} (A.4)
̄10 = {1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13}
̄11 = {1, 2, 3, 4, 5, 6, 8, 9, 11, 12, 13}
̄12 = {12}
̄13 = {12, 13}

Figure A.10 Nesting of the reachability sets of Example 3 in Figure A.9.

CBS | Discussion paper | July 24, 2019 55

Again, the reachability tree in Figure A.10 can be used to produce the reachability sets in (A.4).
By starƟng with node 12 (which must be the single point set {12}) and 6̄ (which must be the
single point set {6}) and working ’upwards’, one can retrieve the other reachability sets in (A.4).

Example 4: A digraph in GH,27

This example considers a digraph in GH,ଶ଻ that is close to the ones presented in Examples 2 and
3, which are both in GH,ଶ଺, so each with one arc less. This Ɵme the edge {8, 9} has remained
from graphH, which comprises of both the arcs (9, 8) and (8, 9). So this graph is a bit closer to
the saturated digraphH.36) Again the aim of this example is to see what the impact is of a small
change of a digraph, concerning the orientaƟon of one of the arcs.

Figure A.11 A digraph in GH,ଶ଻ used in Example 4, that is close to both the one in
Figure A.5 and the one in Figure A.8.

In this case, as in case of the previous example, a small change in the digraph studied may lead to
considerable changes in the reachability sets, as Figure A.12 shows. On the other hand, this
example also shows that some of the reachability sets are not affected at all by this parƟcular
change of the structure of the digraph.

We can write down the equaƟons that the reachability sets have to obey:

36) Saturated within the class of digraphs withH as the underlying graph.

CBS | Discussion paper | July 24, 2019 56

Figure A.12 Reachability sets for the nodes of the digraph in Example 4 in Figure
A.11.

1̄ = {1}∪ ̄13
2̄ = {2}∪ 1̄ ∪ 8̄
3̄ = {3}∪ 2̄ ∪ 4̄
4̄ = {4}∪ 2̄ ∪ 5̄ ∪ 6̄
5̄ = {5}∪ 3̄ ∪ 6̄
6̄ = {6}
7̄ = {7}∪ 6̄ ∪ 8̄ ∪ ̄10 (A.5)

8̄ = {8}∪ 1̄ ∪ 4̄ ∪ 6̄ ∪ 9̄
9̄ = {9}∪ 1̄ ∪ 8̄ ∪ ̄12 ∪ ̄13
̄10 = {10}∪ 8̄ ∪ 9̄ ∪ ̄11
̄11 = {11}∪ 9̄ ∪ ̄12
̄12 = {12}
̄13 = {13}∪ ̄12.

As before, we can solve (𝐴.5) by repeated subsƟtuƟon of the nonterminal symbols, that is,
indicated as numbers with a bar on top. The result is presented in (A.6):

CBS | Discussion paper | July 24, 2019 57

1̄ = {1, 12, 13}
2̄ = 3̄ = 4̄ = 5̄ = 8̄ = 9̄ = {1, 2, 3, 4, 5, 6, 8, 9, 12, 13}
6̄ = {6}
7̄ = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13} (A.6)
̄10 = {1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13}
̄11 = {1, 2, 3, 4, 5, 6, 8, 9, 11, 12, 13}
̄12 = {12}
̄13 = {12, 13}

We can represent the reachability sets in (A.6) in a tree, to show the nesƟng of these sets
graphically. See Figure A.13.

Figure A.13 Nesting of the reachability sets in Figure A.12 of Example 4.

Example 5: Another digraph in GH,27

In the previous two examples so far we modified a specific arc inH. We now look at the effect of
adding another arc, so that we obtain another digraph in GH,ଶ଻. We then obtain the example
shown in Figure A.14.

Figure A.14 Another digraph in GH,ଶ଻ used in Example 5. Note the edge {6, 8}.

We can write down the reachability equaƟons for each node:

CBS | Discussion paper | July 24, 2019 58

Figure A.15 Reachability sets for the nodes of the digraph in Figure A.14 in Example
5.

Figure A.16 Nesting of the reachability sets in Figure A.15 in Example 5.

CBS | Discussion paper | July 24, 2019 59

1̄ = {1}∪ ̄13
2̄ = {2}∪ 1̄ ∪ 8̄
3̄ = {3}∪ 2̄ ∪ 4̄
4̄ = {4}∪ 2̄ ∪ 5̄ ∪ 6̄
5̄ = {5}∪ 3̄ ∪ 6̄
6̄ = {6}∪ 8̄
7̄ = {7}∪ 6̄ ∪ 8̄ ∪ ̄10 (A.7)

8̄ = {8}∪ 1̄ ∪ 4̄ ∪ 6̄ ∪ 9̄
9̄ = {9}∪ 1̄ ∪ 8̄ ∪ ̄12 ∪ ̄13
̄10 = {10}∪ 8̄ ∪ 9̄ ∪ ̄11
̄11 = {11}∪ 9̄ ∪ ̄12
̄12 = {12}
̄13 = {13}∪ ̄12.

Solving the equaƟons in (A.7), as before, we obtain:

1̄ = {1, 12, 13}
2̄ = 3̄ = 4̄ = 5̄ = 6̄ = 8̄ = {1, 2, 3, 4, 5, 6, 8, 9, 12, 13}
7̄ = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}
9̄ = {1, 9, 12, 13} (A.8)
̄10 = {1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13}
̄11 = {1, 9, 11, 12, 13}
̄12 = {12}
̄13 = {12, 13}

Example 6: A digraph in GH,28

To get some feeling about the effect of adding an extra arc toH, we consider another example,
which is shown in Figure A.17. Here two arcs are added to the iniƟal digraph in Example 2,
namely the one in Figure A.5. In the following examples we study the effect of adding more
edges to the digraph. With every step the resulƟng digraph is one step closer to the saturated
digraph, that isH in Figure A.1.

The reachability sets for each node are presented in Figure A.18. The first thing that is evident is
that there are less different such sets when we compare it to the examples considered so far.

By now it should be clear how the reachability sets can be computed. So we shall not present the
equaƟons that express them in terms of unknowns. We also shall not present the soluƟon, as it
can be gleaned from Figure A.18.

In Figure A.19 the tree is presented that shows how the reachability sets in Figure A.18 are
ordered by inclusion.

CBS | Discussion paper | July 24, 2019 60

Figure A.17 A digraph in GH,ଶ଼ in Example 6. Note the edges {6, 8} and {10, 11}.

Figure A.18 Reachability sets for the nodes of the digraph from Example 6 in Figure
A.17.

Figure A.19 Nesting of the reachability sets in Figure A.18 used in Example 6.

CBS | Discussion paper | July 24, 2019 61

Example 7: A digraph in GH,29

Compared to the previous example the digraph in the present example has one more arc. So we
get one more step closer to the saturated graphH. The resulƟng digraph is shown in Figure A.20.
Compared to the original digraph it has three more arcs.

Figure A.20 A digraph in GH,ଶଽ used in Example 7. Note the edges {6, 8}, {9, 12} and
{10, 11}.

The reachability sets are now shown in Figure A.21. This Ɵme there are only four different
reachability sets, three less than in Example 6.

Figure A.21 Reachability sets for the nodes of the digraph in Figure A.20 used in
Example 7.

Again we do not present the soluƟon method, as it should be clear. The results are implicit in
Figure A.21 and therefore will not be represented explicitly as well. However, the way they are
nested is shown in Figure A.22. The tree is more ’compressed’ than any of the previous trees. As
the following examples show, this trend will conƟnue.

Example 8: A digraph in GH,30

For this example we have added one more arc to the digraph of Example 7, that is, the one which
is represented in Figure A.20. So we are now yet one more step closer to the saturated graphH.
The resulƟng digraph is shown in Figure A.23. Compared to the original digraph it has four more
arcs.

CBS | Discussion paper | July 24, 2019 62

Figure A.22 Nesting of the reachability sets in Figure A.21 used in Example 7.

Figure A.23 A digraph in GH,ଷ଴ used in Example 8. Note the edges {6, 8}, {7, 8}, {9, 12}
and {10, 11}.

In Figure A.24 the reachability sets of the digraph in Figure A.23 are shown. Now there are only
two different such sets. This shows that the digraph in Figure A.23 is close to the saturated
digraph in terms of reachability.

Figure A.24 Reachability sets for the nodes of the digraph in Figure A.23 used in
Example 8.

The ordering of the reachability sets by inclusion is presented in Figure A.25.

Example 9: A digraph in GH,31

With the present example we reach the finale, so to speak, of the incremental example of
digraphs with increasing numbers of arcs. We again have added an arc, so that the resulƟng
digraph has 5 more arcs compared to the iniƟal digraph. The resulƟng digraph is presented in
Figure A.26.

In this case we find that all points have the same reachability set, namely the one equal to the
node set of all the digraphs considered in the examples in the present appendix. See Figure A.27.

CBS | Discussion paper | July 24, 2019 63

Figure A.25 Nesting of the reachability sets in Figure A.24 used in Example 8.

Figure A.26 A digraph in GH,ଷଵ used in Example 9. Note the edges {6, 8}, {7, 8}, {8, 9},
{9, 12} and {10, 11}.

So the digraph in Figure A.26 has the saturated digraphH as its transiƟve closure.

Figure A.27 Reachability sets for the nodes of the digraph in Figure A.26 used in
Example 9.

The tree showing the ordering of the reachability sets has shrunken to a single point in this
example. See Figure A.28.

So this example is a kind of final result: adding more arcs will not yield digraphs that show a
different ’reachability behaviour’. They all have the same transiƟve closure, namely the enƟre
node set. So nothing new will be shown concerning reachability.

Example 10: A digraph with reachability sets with smaller
variation in size

The examples presented above have reachability sets that vary considerably in size. From
one-point sets to the enƟre node set of the digraph. In the present example the sizes of the
various reachability sets do not differ so much. The example is just to show that digraphs exist
that are less diverse.

The digraph we are interested in in the present example is presented in Figure A.29.

The reaches of the nodes in digraph in Figure A.29 are presented in Figure A.30.

CBS | Discussion paper | July 24, 2019 64

Figure A.28 Nesting of the reachability sets in Figure A.27 used in Example 9.

Figure A.29 A digraph with smaller reachability sets.

Example 11: A digraph with drainage areas

So far in the examples in this appendix we have considered reachability sets from nodes in
digraphs, that is, sets that can be reached from a given node. It is also of interest to know the
drainage set of a node 𝑣 in a digraph, which consists of the nodes in the digraph from which
paths lead to 𝑣.

It is a very simple to compute the drainage set of 𝑣: reverse the arcs in the original digraph and
compute the reachability set of 𝑣 in this dual of the original digaph. Reversing the arcs in the
digraph yields a digraph with 𝐴ᇱ as its adjacency matrix, if 𝐴 denotes the adjacency matrix of the
original digraph.

We illustrate this using the graph in Figure A.29. Its dual is shown in Figure A.31.

The reachability sets of the digraph in Figure A.31 are shown in Figure A.32. These are the
drainage sets of the original digraph in Figure A.29.

So from Figure A.32 we can infer that point 1, for instance, can be reached, in the original
digraph in Figure A.29, from points 1, 2, 8, 13; and point 9 can be reached in this digraph from
points 1, 2, 8, 9, 10, 11, 12, 13. Etcetera.

Reϐlecting on the examples above

Here we consider the examples in Appendix A and try to see what can we learn from them with
respect to the complexity of the class of digraphs with the same underlying graph. First of all, we
should note that the pictures shown are very direct. But the same informaƟon can be obtained
more quickly by compuƟng the transiƟve closure of the adjacency matrix of the digraph in
quesƟon.

The digraph in the first example is regular and forms a parƟal order. The reachability sets are
nested in a linear fashion, so to speak. In the other examples considered, the reachability set
were ordered in a more complicated parƟal ordering. So this may perhaps be taken as a hint that

CBS | Discussion paper | July 24, 2019 65

Figure A.30 The reachability sets of the nodes of the digraph in Figure A.29.

Figure A.31 The dual of the digraph in Figure A.29.

CBS | Discussion paper | July 24, 2019 66

Figure A.32 Reachability sets of the digraph in Figure A.31. These are the drainage
sets of its dual in Figure A.29.

CBS | Discussion paper | July 24, 2019 67

the structure of the digraph corresponding to the nesƟng of the reachability sets, can be used to
quanƟfy the complexity of the digraphs in the class considered: the more it branches, the more
complex the corresponding digraph is.

In some of the examples, some nodes had the same reachability sets, although the digraphs
differ. This implies that these nodes are in a sense equivalent. One can take them as a single
node. This node can then be connected to the other nodes in the digraph. It yields a new digraph
with fewer nodes that represents a parƟal order.

Some of the examples show that small changes in the structure of a digraph may have
considerable impact on some reachability sets, and none at all on other such sets. This suggest
some form of locality.

However, from this one may not conclude that such changes only have local impact: these
impacts may be global, and affecƟng many reachability sets.

The examples in Appendix A all have in common that there is at least one node for which the
reachability set is the enƟre set of nodes. This is probably not typical for most networks
encountered in pracƟce. So the examples shown there are not intended to exhibit species of
digraphs of very different complexiƟes. Its purpose was to show how, starƟng with some digraph,
changing the orientaƟon of a few arcs or adding a small number of them affects the reachability
of the various nodes.

CBS | Discussion paper | July 24, 2019 68

B Average distances in graphs:
Examples

In this appendix we present some examples to illustrate the complexity measure based on
average distances of different points in graphs as treated in SecƟon 6. Two methods are
illustrated that are presented there to compute complexity measures based on average
distances. The first one applies it to the graph in quesƟon directly. The second one applies it to
the line graph of this graph. Each method is described in a separate secƟon.

B.1 Using the graphs directly

In Figure B.1 several example graphs are shown that we will use to illustrate the complexity
measure based on average distance of disƟnct nodes. The metric used is the one for which the
length of each edge in the graph is 1, so that the length of a path equals the number of edges
situated on the path.

Figure B.1 Examples of some graphs with 6 nodes and varying numbers of edges.

The distance matrix 𝐷௧௟ of the graph 𝐺௧௟ on the top leŌ cell of Figure B.1 is

𝐷௧௟ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 2 3 4 5
1 0 1 2 3 4
2 1 0 1 2 3
3 2 1 0 1 2
4 3 2 1 0 1
5 4 3 2 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(B.1)

The distance matrix 𝐷௧௥ of the graph 𝐺௧௥ on the top right cell of Figure B.1 is

CBS | Discussion paper | July 24, 2019 69

𝐷௧௥ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 1 1 1 1
1 0 2 2 2 2
1 2 0 2 2 2
1 2 2 0 2 2
1 2 2 2 0 2
1 2 2 2 2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(B.2)

The distance matrix 𝐷௠௟ of the graph 𝐺௠௟ on the mid leŌ cell of Figure B.1 is

𝐷௠௟ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 2 3 3 4
1 0 1 2 2 3
2 1 0 1 1 2
3 2 1 0 2 3
3 2 1 2 0 1
4 3 2 3 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(B.3)

The distance matrix 𝐷௠௥ of the graph 𝐺௠௥ on the mid right cell of Figure B.1 is

𝐷௠௥ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 2 3 2 1
1 0 1 2 3 2
2 1 0 1 2 3
3 2 1 0 1 2
2 3 2 1 0 1
1 2 3 2 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(B.4)

The distance matrix 𝐷௕௟ of the graph 𝐺௕௟ on the boƩom leŌ cell of Figure B.1 is

𝐷௕௟ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 2 2 3 4
1 0 1 1 2 3
2 1 0 2 1 2
2 1 2 0 1 2
3 2 1 1 0 1
4 3 2 2 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(B.5)

The distance matrix 𝐷௕௥ of the graph 𝐺௕௥ on the boƩom right cell of Figure B.1 is

𝐷௕௥ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 1 2 3 3
1 0 1 2 3 3
1 1 0 1 2 2
2 2 1 0 1 1
3 3 2 1 0 1
3 3 2 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(B.6)

With the matrices in (𝐵.1), (𝐵.2), (𝐵.3), (𝐵.4), (𝐵.5) and (𝐵.6) we can compute the values for the
complexity 𝜅ௗ and the Wiener indexW . The results are collected in Table B.1.

CBS | Discussion paper | July 24, 2019 70

Graph ∣𝑉∣ ∣𝐸∣ 𝜅ௗ W
𝐺௧௥ 6 5 1 ଶ

ଷ = 1.67 25
𝐺௠௟ 6 5 2 ଵ

ଵହ = 2.07 31
𝐺௧௟ 6 5 2 ଵ

ଷ = 2.33 35
𝐺௠௥ 6 6 1 ସ

ହ = 1.80 27
𝐺௕௟ 6 6 1 ଵଷ

ଵହ = 1.87 28
𝐺௕௥ 6 7 1 ସ

ହ = 1.80 27
Table B.1 Results for the graphs in Figure B.1.

where 𝜅ௗ is defined in equaƟon (13) and 𝑛 = ∣𝑉∣ denotes the number of nodes in 𝐺.

The complexity measure 𝜅ௗ and the Wiener indexW are presented in Table B.1. The results
were sorted, first on the number of edges and then on the scores of 𝜅ௗ.

Within the classes of graphs with 5 or 6 edges, 𝜅ௗ andW seem to make sense as a complexity
measures if one takse lower scores to mean higher complexiƟes and vice versa. In the group of
graphs with 6 nodes and 5 edges 𝐺௧௟ is then the simplest graph and 𝐺௧௥ the most complex one;
𝐺௠௟ has a complexity in between these two. So actually, 1/𝜅ௗ and 1/W act more like complexity
measures, in the sense that higher values indicate more complex graphs, that is, graphs with
more branching.

Of course, the number of example graphs is too small to draw far reaching conclusions from the
results in Table B.1.

B.2 Using line graphs

We now consider the line graphs for each of the graphs presented in Figure B.1. These are
presented in Figure B.2. The graphs are on the leŌ-hand side and the corresponding line graphs
are on the right-hand side of the table. A graph and its corresponding line graph are represented
in the same row.

CBS | Discussion paper | July 24, 2019 71

Figure B.2 Examples of graphs and their line graphs. A graph (in the left column)
and its line graph (on the right column) are on the same row.

To apply (15) to the line graphs in Figure (B.2) we first determine the six distance matrices. They
are as follows.

The distance matrix 𝐷ℓ
ଵ of the line graph 𝐺௅,ଵ in the first line of Figure B.2 is

𝐷ℓ
ଵ =

⎛
⎜⎜⎜⎜⎜
⎝

0 1 2 3 4
1 0 1 2 3
2 1 0 1 2
3 2 1 0 1
4 3 2 1 0

⎞
⎟⎟⎟⎟⎟
⎠

(B.7)

The distance matrix 𝐷ℓ
ଶ of the line graph 𝐺௅,ଶ in the second line of Figure B.2 is the circulant

matrix

CBS | Discussion paper | July 24, 2019 72

𝐷ℓ
ଶ =

⎛
⎜⎜⎜⎜⎜
⎝

0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0

⎞
⎟⎟⎟⎟⎟
⎠

(B.8)

The distance matrix 𝐷ℓ
ଷ of the line graph 𝐺௅,ଷ in the third line of Figure B.2 is

𝐷ℓ
ଷ =

⎛
⎜⎜⎜⎜⎜
⎝

0 1 2 2 3
1 0 1 1 2
2 1 0 1 2
2 1 1 0 1
3 2 2 1 0

⎞
⎟⎟⎟⎟⎟
⎠

(B.9)

The distance matrix 𝐷ℓ
ସ of the line graph 𝐺௅,ସ in the fourth line of Figure B.2 is the circulant matrix

𝐷ℓ
ସ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 2 3 2 1
1 0 1 2 3 2
2 1 0 1 2 3
3 2 1 0 1 2
2 3 2 1 0 1
1 2 3 2 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(B.10)

The distance matrix 𝐷ℓ
ହ of the line graph 𝐺௅,ହ in the fiŌh line of Figure B.2 is

𝐷ℓ
ହ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 1 2 2 3
1 0 1 1 2 3
1 1 0 1 1 2
2 1 1 0 1 1
2 2 1 1 0 1
3 3 2 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(B.11)

The distance matrix 𝐷ℓ
଺ of the line graph 𝐺௅,଺ in the sixth line of Figure B.2 is

𝐷ℓ
଺ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 1 2 3 3 4
1 0 1 1 2 2 3
1 1 0 1 2 2 3
2 1 1 0 1 1 2
3 2 2 1 0 1 1
3 2 2 1 1 0 1
4 3 3 2 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(B.12)

Table B.2 contains the values of 𝜅ௗ(𝐺௅) andW(𝐺௅). Their purpose is to quanƟfy the
complexiƟes of the original graphs. 𝜅ௗ(𝐺௅) gives higher values to less complex graphs (less
branching), as we saw before. The results of Table B.1 and Table B.2 point in a similar direcƟon.

CBS | Discussion paper | July 24, 2019 73

Graph Line graph ∣𝑉∣ ∣𝐸∣ 𝜅ௗℓ(𝐺௅) W(𝐺௅)
𝐺ଵ 𝐺௅,ଵ 5 4 2 20
𝐺ଶ 𝐺௅,ଶ 5 10 1 10
𝐺ଷ 𝐺௅,ଷ 5 5 1 ଷ

ହ = 1.60 16
𝐺ସ 𝐺௅,ସ 6 6 1 ସ

ହ = 1.80 27
𝐺ହ 𝐺௅,ହ 6 10 1 ଼

ଵହ = 1.53 23
𝐺଺ 𝐺௅,଺ 7 7 1 ଵ଻

ଶଵ = 1.81 38
Table B.2 Results for the graphs in Figure B.2.

CBS | Discussion paper | July 24, 2019 74

C Notation

Here we define the most important notaƟon that is used in the present paper. The items are
alphabeƟcally ordered. In the explanaƟon of the notaƟon concepts are used that are explaned in
Appendix D.

– ⇒ : ‘a⇒ b’ is an abbreviaƟon for ‘a implies b’ or, alternaƟvely, ‘if a then b’.
– ∣ ⋅ ∣ : ∣𝑆∣ is the cardinality of a finite set 𝑆, that is, the number of elements of 𝑆.
– 𝐴 : Adjacency matrix of a network.
– 𝐴ᇱ : Transpose of the matrix 𝐴.
– 𝐴∗ : TransiƟve closure of adjacency matrix 𝐴.
– 𝐴↓ : TransiƟve reducƟon of adjacency matrix 𝐴.
– 𝐸 : Arc set or edge set. An edge 𝑣,𝑤 can be represented by two arcs: the arc (𝑎, 𝑏) and its

counter-arc (𝑏, 𝑎).
– 𝐺 = (𝑉,𝐸) : A network with node set 𝑉 and edge or arc set 𝐸.
– 𝐺௖ : The compressed graph of a graph 𝐺.
– 𝐺←. : The network that is the reverse of the digraph 𝐺 = (𝑉,𝐸). 𝐺← = (𝑉,𝐸←) and
(𝑏, 𝑎) ∈ 𝐸← if (𝑎, 𝑏) ∈ 𝐸. The adjacency matrix of 𝐺← is 𝐴ᇱ, the transposed of 𝐴.

– 𝐺∗ : The network that is the transƟve closure of the network 𝐺 = (𝑉,𝐸). 𝐺∗ = (𝑉,𝐸∗), where
𝐸∗ is the set of arcs corresponding to the adjacecncy matrix 𝐴∗.

– 𝐺↓ : The network that is the transiƟve reducƟon of the network 𝐺 = (𝑉,𝐸). 𝐺↓ = (𝑉,𝐸↓),
where 𝐸↓ is the set of arcs corresponding to the adjacency matrix of 𝐴↓.

– Gீ,௞ : The set of digraphs with 𝐺 = (𝑉,𝐸) as its underlying graph and with 𝑘 arcs, with
∣𝐸∣ ≤ 𝑘 ≤ 2∣𝐸∣.

– 𝐽 : The all 1s matrix. A square matrix with all entries equal to 1. The order of 𝐽may vary, but it
should be clear in a paƟcular context. To indicate it explicitly 𝐽௡ is used if it is an 𝑛 × 𝑛 matrix.

– 𝜋 : in a network 𝐺, 𝜋 denotes a path in 𝐺.
– 𝜋௩,௪ : in a network 𝐺, 𝜋௩,௪ denotes a path in 𝐺 from node 𝑣 to node 𝑤.
– 𝜋← : in a network 𝐺, if 𝜋 denotes a path in 𝐺, 𝜋← denotes the reverse path. It is formally

obtained by reversing the order of the arcs in the path 𝜋 and by reversing the order of the
nodes in each arc. If any of the counter-arcs thus obtained is not a part of 𝐺, the reversed
path is not in 𝐺.

– 𝜋←௪,௩ : in a network 𝐺 𝜋←௪,௩ denotes the reverse path of 𝜋 starƟng in 𝑤 and ending in 𝑣. It may
not be a path in 𝐺.

– 𝑇𝑟 : The Trace operator, with 𝑇𝑟(𝑀) = ∑௡
௜=ଵ𝑚௜௜, if𝑀 = (𝑚௜௝) an 𝑛 × 𝑛 matrix.

– 𝑉 : Vertex set of a network 𝐺 = (𝑉,𝐸).
– 𝑣 : Entrance point of a node 𝑣 in a digraph.
– 𝑣 : Reachability set of node 𝑣 in a digraph.
– 𝑣 ; 𝑤 : If 𝑣 and 𝑤 are nodes in a network 𝐺, there is a path in 𝐺 from 𝑣 to 𝑤.
– 𝑣 గ

; 𝑤 : If 𝑣 and 𝑤 are nodes in a network 𝐺, there is a path 𝜋 in 𝐺 from 𝑣 to 𝑤.
– 𝑣 ↝̸ 𝑤 : there is no path from node 𝑣 to node 𝑤 in a network 𝐺.
– Υ : the set of acyclic digraphs with a single source and sink. Such digraphs are called ‘rouƟng

graphs’ in (13) (although they are digraphs).

CBS | Discussion paper | July 24, 2019 75

D Glossary

Here we describe a few key-concepts in the present paper. These concepts are alphabeƟcally
ordered. Some of the concept definiƟes are literally taken from (14) or are slightly modified.

Adjacency matrix 0-1 matrix where element (𝑖, 𝑗) indicated if there is an arc from 𝑖 to 𝑗 (if the
value = 1) or not (if the value = 0). An adjacency matrix can be viewed as a representaƟon of a
(di)graph. In case of a graph it is symmetric. In case of a digraph it needs not to be symmetric.

Arc An ordered pair of nodes (𝑎, 𝑏). In a picture an arc (𝑎, 𝑏) is denoted by an arrow poinƟng
from 𝑎 to 𝑏. The node 𝑎 is called the tail and 𝑏 is called the head of the arc (𝑎, 𝑏).

Arc rank Arc ranks are weights on arcs of a digraph, to indicate their importance. They are
computed from node ranks in such a way that the sum of the arc ranks of the arcs into a node
equal its node rank. Likewise, the sum of the arc ranks of the arcs out of a node are equal to
its node rank.

Augmented digraph A digraph that is considered as a kind of benchmark, to which some arcs
have been added, in the case of the present paper, to see how the complexity of this new
digraph has changed with respect to that of the benchmark. If 𝐷 is a digraph in Gீ,௞, the
augmentaƟon is a process of adding counter-arcs in cases where this is possible, i.e. for those
nodes 𝑎 and 𝑏 of 𝐷 for which either (𝑎, 𝑏) or (𝑏, 𝑎) is an arc but not both.

Bernoulli process A finite sequence of iid random variables 𝑋ଵ, … ,𝑋௡ with 𝑋௜ ∈ {0, 1} and
𝑃[𝑋௜ = 1] = 𝑝 > 0, for 𝑖 = 1,… , 𝑛.

Border point A point in a neighbourhood that is linked to at least one point outside of this set.
Circulant matrix A square matrix of order 𝑛 of the form

C =
⎛
⎜⎜⎜
⎝

cଵ cଶ ⋯ c୬−ଵ c୬
cଶ cଷ ⋯ c୬ cଵ
⋮ ⋮ ⋱ ⋮ ⋮
c୬ cଵ ⋯ c୬−ଶ c୬−ଵ

⎞
⎟⎟⎟
⎠

is a circulant matrix which is fully specified by the vector (𝑐ଵ,⋯, 𝑐௡), which is the first row of C.
Complexity of a digraph This measures how the digraph differs from a digraph with the same

underlying graph which has full reachability, that is, which is connected.
Complexity of a graph In the present paper several such quanƟƟes are defined to express the

way a graph branches.
Compressed graph A graph 𝐺௖ is the compressed graph of a graph 𝐺 if each linear subgraph of 𝐺

is replaced by an edge in 𝐺௖.
Connected network A network for which each pair of points 𝑣,𝑤 can be connected by a path in

the network, which is denoted as 𝑣 ; 𝑤. In a graph, if 𝑣 ; 𝑤 then 𝑤 ; 𝑣. In a digraph
𝑣 ; 𝑤 does not automaƟcally imply 𝑤 ; 𝑣. And if it does, the path from 𝑤 to 𝑣 may not be
the reversed path connecƟng 𝑣 to 𝑤.

ConƟnuous search A search procedure in a graph 𝐺 = (𝑉,𝐸) in which nodes are visited in such a
way that consecuƟve points are adjacent, that is form an edge in 𝐸. In other words if
(𝑎ଵ, 𝑎ଶ, … , 𝑎ℓ) are the nodes visited in the actual order, this is a path in 𝐺.

ContracƟon A process to simplify a digraph by eliminaƟng linear sub-digraphs from it. These
parts are replaced by a node, and arc or two connected arcs, depending on the situaƟon.
ContracƟon does not change the branching structure of a digraph.

Counter-arc If (𝑎, 𝑏) is an arc in a digraph 𝐺 then (𝑏, 𝑎). This may or may not be an arc in 𝐺.
Cycle A path in a digraph or graph with the same start and finish.
Degree In a graph the number of edges aƩached to the node.

CBS | Discussion paper | July 24, 2019 76

Degree matrix The degree matrix 𝐷 = (𝑑௜௝) of a graph is a diagonal matrix with 𝑑௜௜ equal to the
degree of node 𝑖.

Digraph See directed graph.
Directed graph Consists of nodes and arcs. An arc is an ordered pair of nodes. If (𝑎, 𝑏) is an arc

it means that node 𝑎 is connected to node 𝑏. If (𝑎, 𝑏) is an arc in a directed graph it is not
necessarily the case that (𝑏, 𝑎) is also an arc.

Distance See metric.
Drainage set The drainage set of a node 𝑣 in digraph 𝐺 is the reachability set of 𝑣 in the reverse

digraph 𝐺←. It is the set of nodes 𝑎 in 𝐺 that lead to 𝑣, that is, such that 𝑎; 𝑣.
Dual digraph The dual of a digraph 𝐺 = (𝑉,𝐸) is the digraph 𝐺← = (𝑉←, 𝐸←) with 𝑉← = 𝑉 and
(𝑎, 𝑏) ∈ 𝐸← iff (𝑏, 𝑎) ∈ 𝐸. So the dual of a digraph is the same digraph but with the arcs
reversed. The dual of the dual of a digraph 𝐺 is 𝐺 itself. If 𝐺 is a graph its dual is 𝐺 itself. That
is, a graph is self-dual.

Edge In a graph, an edge is a set {𝑎, 𝑏} of two nodes 𝑎 and 𝑏. In a picture an edge is oŌen
represented by a line segment or arc without arrow heads (as there is no direcƟon). Viewed
in a digraph context an edge {𝑎, 𝑏} is represented by the arcs (𝑎, 𝑏) and (𝑏, 𝑎).

Endpoints In edge 𝑒 = {𝑎, 𝑏} in a graph the node 𝑎 and 𝑏 are its endpoints. The endpoints 𝑎 and
𝑏 define the edge 𝑒.

Entrance point If 𝑣 is a node in a digraph 𝐺. The nodes that can be reached from 𝑣 form the
reachability set 𝑣. 𝑣 is the entrance point of 𝑣, which is stressed by using underlining: 𝑣, to
disƟnguish the entrance point from other points in the corresponding reachability set.

Essence of a network The most important part of a network, in terms of node rank or arc rank.
The nodes (arcs) are selected using a threshold 𝛿 specified by a user. The network is then
completed according to the original network. Selected nodes 𝑣,𝑤 are connected by arcs
(𝑣,𝑤) if 𝑣 ; 𝑤 in the original network. Selected arcs imply selected nodes (the ones that
define the arcs) and these nodes are connected if necessary as in case of selected nodes.

Finish The node where a path in a digraph or graph ends.
Full reach A digraph has full reach if from every of its nodes every other node can be reached.

This means that for every pair of nodes 𝑎 and 𝑏 there is a path from 𝑎 to 𝑏 (and reversely).
The path from 𝑏 to 𝑎 does not have to be the same as the reverse path from 𝑎 to 𝑏.

Graph A graph is a self-dual digraph, that is, if 𝐺 is a graph then 𝐺← = 𝐺. A graph is also a digraph
with a symmetric adjacency matrix: 𝐴ᇱ = 𝐴.

Graph Laplacian The graph Laplacian of a graph 𝐺 is the matrix Δ ≜ 𝐷 − 𝐴, where 𝐷 is the
degree matrix of 𝐺 and 𝐴 its adjacency matrix. The graph Laplacian is the graph equivalent of
the Laplace operator in analysis which is the divergence of the gradiënt, Δ ≜ ∇ ⋅ ∇, which in
Cartesian coordinates 𝑥௜, can be wriƩen as Δ(𝑓) = ∑௡

௜=ଵ
డଶ௙
డ௫ଶ௜

where 𝑓 ∶ ℝ௡ → ℝ is a
sufficiently smooth funcƟon.
The graph Laplacian contains all the properƟes of its corresponding graph (as the adjacency
matrix already does, which can be deived from the off-diagonal elements in the graph
Laplacian). The only challenge is to derive them from this matrix, which is not always easy.

Head The head of an arc (𝑎, 𝑏) in a digraph is 𝑏. In a graphical representaƟon the arc is typically
depicted as an arrow or directed (curvy) line segment. The head is the dot (represenƟng an
end node) where the arc is poinƟng at.

Hub A node in a digraph with a (relaƟvely) large node rank.
Iff If and only if.
iid For random variables: independent idenƟcally distributed.
Incidence For a graph 𝐺 = (𝑉,𝐸) we say that an edge 𝑒 ∈ 𝐸 is incident with a node 𝑎 ∈ 𝑉 if

𝑣 ∈ 𝑒, which means that 𝑒 = {𝑣, 𝑥} for some 𝑥 ∈ 𝑉.
Indegree For a node 𝑣 ∈ 𝑉 in a network 𝐺 = (𝑉,𝐸) the indegree is the number of arcs that end

CBS | Discussion paper | July 24, 2019 77

in 𝑣. That is, the number of nodes 𝑎 ∈ 𝑉 such that (𝑎, 𝑣) ∈ 𝐸. Its dual concept is outdegree.
Isolated node A node 𝑣 in a network with Δ௜௡(𝑣) = Δ௢௨௧(𝑣) = 0. In case the network is a graph

we have that Δ(𝑣) = 0.
IPF IteraƟve ProporƟonal Fiƫng. “The iteraƟve proporƟonal fiƫng procedure … is an iteraƟve

algorithm for esƟmaƟng cell values of a conƟngency table such that the marginal totals
remain fixed and the esƟmated table decomposes into an outer product.”37) An outer
product 𝛼⊗𝛽 of two vectors 𝛼 and 𝛽 is a tensor (mulƟlinear) product that equals 𝛼𝛽ᇱ,
where 𝛼 and 𝛽 are presented as column vectors.

Line graph If 𝐺 = (𝑉,𝐸) is a graph, the line graph 𝐺௅ = (𝑉௅ , 𝐸௅) is a graph with 𝑉௅ ≜ 𝐸 and
𝐸௅ ≜ {(𝑒, 𝑓) ∈ 𝐸 ∣𝑒 ≠ 𝑓 and 𝑒 ∩ 𝑓 ≠ ∅}. In words, a line graph represents the adjacency
structure of the edges of a graph, that is, which edges have nodes in common.

Local complexity Complexity for a network defined on the basis of a neighbourhood system,
that is a neighbourhood 𝑁௣ for each point 𝑝 in a network 𝑁. For each point 𝑝 the
neighbourhood 𝑁௣ plays the role of 𝑁 in case of a (global) complexity measure. In this way,
for each point 𝑝 we can compute a complexity, which depends on 𝑝 as well as on the choice
of its neighbourhood 𝑁௣.

Loop A loop is an arc (or edge) with the same head and tail (or endpoints). So if 𝑎 is a point in a
network, a loop on 𝑎 would be an arc (𝑎, 𝑎) or an edge {𝑎, 𝑎}. In our approach we exclude
graphs with loops.

Metric For a graph 𝐺 = (𝑉,𝐸) a metric is a funcƟon 𝑑 ∶ 𝑉 × 𝑉 ∶→ ℝ/ℝ− ∪ {∞} such that
𝑑(𝑎, 𝑎) = 0, 𝑑(𝑎, 𝑏) = 𝑑(𝑏, 𝑎) and 𝑑(𝑎, 𝑐) ≤ 𝑑(𝑎, 𝑏) + 𝑑(𝑏, 𝑐) for all nodes 𝑎, 𝑏, 𝑐 ∈ 𝑉. Nodes
𝑎 and 𝑏 are in different connecƟvity components of 𝐺 iff 𝑑(𝑎, 𝑏) =∞. Suppose that for each
edge {𝑎, 𝑏} a nonnegaƟve number 𝑑௔௕ is given, saƟsfying the constraints just menƟoned (for
each triangle {𝑎, 𝑏, 𝑐}, where {𝑎, 𝑏}, {𝑏, 𝑐} and {𝑎, 𝑐} are arcs we should have that the
triangle inequality holds: 𝑑௔௖ ≤ 𝑑௔௕ + 𝑑௕௖). With this we can extend the metric to the enƟre
graph: for a pair of nodes 𝑎, 𝑏 ∈ 𝑉 in the same connecƟvity component of 𝐺 we define Γ௔௕ is
the set of paths in 𝐺 connecƟng 𝑎 and 𝑏. Then 𝑑(𝑎, 𝑏) ≜ minఊ∈୻௔௕ ∑௘={௖,ௗ}∈ఊ 𝑑௖ௗ, which the
minimum length of the paths connecƟng 𝑎 and 𝑏 in terms of the 𝑑-values associated with the
edges on the path. If 𝑎 and 𝑏 are in different connecƟvity components then 𝑑(𝑎, 𝑏) ≜ ∞.

Neighbourhood For a network 𝑁 = (𝑉,𝐸) and a point 𝑝 ∈ 𝑉, a neighbourhood 𝑁௣ is a subgraph
of 𝑁 containing 𝑝 and points close to 𝑝. Assuming a metric 𝑑 on 𝑁 we can define
𝑁௣ = {𝑞 ∈ 𝑉 ∣𝑑(𝑝, 𝑞) ≤ 𝜃} for some 𝜃 ≥ 0.

Network A collecƟve name for graph and digraph. Although, technically a graph is a special kind
of digraph it is useful in pracƟce to single graphs out as a special category of graphs. Formally,
a network is a digraph, and a graph is a special kind of digraph.

Nilpotent A square matrix𝑀 is nilpotent if there is a 𝑝 ∈ ℕ such that𝑀௣ = 0.
Node A node in a network is one of the ingredients that defines the network. In graphical

displays a node is oŌen depicted as a (solid or hollow) dot. Nodes are used to define arcs or
edges, which are the complemenƟng objects in a network, typically represented by line
segments or curves (directed or undirected) connecƟng the defining nodes .

Node rank A weight associated with each node in a digraph. IntuiƟvely, it is based on the noƟon
of ’being pointed at’, directly or indirectly. The more this is the case, the higher the node
rank. It is a measure of popularity, so to speak.

Outdegree For a node 𝑣 ∈ in a network 𝐺 = (𝑉,𝐸) the outdegree is the number of arcs that start
in 𝑣. That is, the number of nodes 𝑎 ∈ 𝑉 such that (𝑣, 𝑎) ∈ 𝐸. Its dual concept is indegree.

Parallel arcs / edges Two arcs (or edges) are parallel if they have the have the same head and
tail (or endpoints). In our approach we avoid graphs with parallel arcs / edges, so that two

37) DefiniƟon fromWikipedia: https://en.wikipedia.org/wiki/Iterative_proportional_fitting.

CBS | Discussion paper | July 24, 2019 78

endpoints 𝑎, 𝑏 define an arc (𝑎, 𝑏) or an edge {𝑎, 𝑏} uniquely.
Path A path in a digraph 𝐺 = (𝑉,𝐸) from 𝑎 ∈ 𝑉 to 𝑏 ∈ 𝑉 is a funcƟon 𝜋 ∶ {1,… , 𝑘}→ 𝑉, with

𝑘 ≥ 2 such that 𝜋(1) = 𝑎, 𝜋(𝑘) = 𝑏 and (𝜋(𝑖), 𝜋(𝑖 + 1)) ∈ 𝐸 for each 𝑖 = 1,… , 𝑘 − 1. 𝑘 − 1 is
the path length. The path 𝜋 connects nodes 𝑎 to 𝑏. By definiƟon, a node is also a path, of
length 0. If 𝑎 = 𝑏, the path is a cycle. 𝑎 is called the start and 𝑏 the finish of the path.

PercolaƟon theory “In staƟsƟcal physics and mathemaƟcs, percolaƟon theory describes the
behaviour of connected clusters in a random graph.”38)

Point See ’Node’.
RAN See: Random Access Network.
Random Access Network A network that is too big to comprehend at once. It requires some

kind of sampling procedure to collect relevant characterisƟcs. For instance, one can randomly
choose points in the network and explore it by following links to other nodes, using a certain
strategy. This exploraƟon has to stop at some point in Ɵme. The informaƟon gathered in this
way about nodes and how they are linked is then to be used to esƟmate certain connecƟvity
characterisƟcs of the enƟre network.

Reachability set If 𝑣 is a node in a digraph 𝐺, the set of nodes in 𝐺 that can be reached from 𝑣 is
the reachability set. It is denoted by 𝑣.

ReducƟon of a network See ’SimplificaƟon of a network’.
Reverse path Let 𝜋 be a path in a graph 𝐺 = (𝑉,𝐸) from 𝑎 ∈ 𝑉 to 𝑏 ∈ 𝑉, defined as

𝜋 ∶ {1,… , 𝑘}→ 𝑉, with 𝑘 ≥ 2 such that 𝜋(1) = 𝑎, 𝜋(𝑘) = 𝑏 and (𝜋(𝑖), 𝜋(𝑖 + 1)) ∈ 𝐸 for each
𝑖 = 1,… , 𝑘 − 1. Then the reverse path 𝜋← is defined by 𝜋←(𝑡) = 𝜋(𝑘 − 𝑡) for 𝑡 = 1,… , 𝑘.

RouƟng graph A rouƟng graph39) is an acyclic digraph with one source and one sink. In (13) such
structures were introduced in the context of quesƟonnaires, in parƟcular to describe their
rouƟng structure, which prescribes which quesƟon is to be asked next on the basis of the
answers provided to the quesƟons so far. Despite the name, they are used in the present
paper in a neutral context. In the present paper this class of digraphs is denoted by Υ
(upsilon).

Saturated pair of nodes A pair of nodes 𝑎, 𝑏 in a digraph for which both (𝑎, 𝑏) and (𝑏, 𝑎) are
arcs, or, equivalently, for which the edge {𝑎, 𝑏} exists.

Self-dual A network 𝐺 for which 𝐺← = 𝐺. A self-dual network is a graph.
SimplificaƟon of a network The goal of this process is to present the essence of a network. It

either selects the nodes or arcs with the highest ranks (above a threshold 𝛿 > 0, specified by
the user) completed in such a way that the reachability properƟes of the original digraph are
preserved.

Sink A node 𝑣 in a digraph with only ingoing arcs. So for 𝑣 holds: Δ௜௡ > 0 and Δ௢௨௧ = 0.
Source A node 𝑣 in a digraph with only outgoing arcs. So for 𝑣 holds: Δ௜௡ = 0 and Δ௢௨௧ > 0.
Start The node in a graph where a path begins.
Tail The tail of an arc (𝑎, 𝑏) in a digraph is 𝑎. In a graphical representaƟon the arc is typically

depicted as an arrow or directed (curvy) line segment. The tail is the dot (represenƟng an end
node) where the arc starts.

Tour See: Cycle.
TransiƟve closure If 𝐺 = (𝑉,𝐸) is a digraph. 𝐺 is transiƟve if for all nodes 𝑎, 𝑏, 𝑐 in 𝑉 it is the case

that that if (𝑎, 𝑏) and (𝑏, 𝑐) are in 𝐸 then also (𝑎, 𝑐) is in 𝐸. If 𝐺 is not transiƟve we can make
it transiƟve as follows: if 𝑎, 𝑏, 𝑐 are nodes in 𝑉 and (𝑎, 𝑏), (𝑏, 𝑐) ∈ 𝐸 but (𝑎, 𝑐) /∈ 𝐸 then add
(𝑎, 𝑐) to a new arc set 𝐸∗ ⊇ 𝐸. In this way we create a new digraph 𝐺∗ = (𝑉,𝐸∗), of which 𝐺

38) DefiniƟon fromWikipedia https://en.wikipedia.org/wiki/Percolation_theory.
39) This is strictly speaking a misnomer, but it was faithful to how these structues where referred to during the Ɵme when

(13) was wriƩen.

CBS | Discussion paper | July 24, 2019 79

is a subdigraph, that is transiƟve. In fact, 𝐺∗ is the smallest digraph of which 𝐺 is a subdigraph
that is transiƟve. 𝐺∗ is called the transiƟve closure of 𝐺. If 𝐴 is the adjacency matrix of 𝐺 then
𝐴∗ is used to denote the adjacency matrix of 𝐺∗. 𝐴∗ can be computed from 𝐴 using
Warshall’s algorithm (cf. (12)).40) We have: (𝐺∗)∗ = 𝐺∗ and likewise (𝐴∗)∗ = 𝐴∗. For more
properƟes see ’transiƟve reducƟon’.
It is also possible to compute the transiƟve closure using transiƟve reducƟon, as is shown in
(1). In fact this paper shows that compuƟng transiƟve closure or transiƟve reducƟon is of the
same computaƟonal complexity.

TransiƟve reducƟon Let 𝐴 be an adjacency matrix of some digraph 𝐺. The transiƟve reducƟon of
𝐺 is the minimal digraph 𝐺↓ with (𝐺↓)∗ = 𝐺∗. Likewise we define the transiƟve reducƟon of
𝐴, i.e. 𝐴↓, as the minimal adjacency matrix with the same transiƟve closure as 𝐴.
The following commutaƟve properƟes hold for transiƟve closure (∗) and transiƟve reducƟon
(↓) in combinaƟon with transposiƟon (ᇱ):
– (𝐴ᇱ)↓ = (𝐴↓)ᇱ,
– (𝐴ᇱ)∗ = (𝐴∗)ᇱ,
For transiƟve closure (∗) and transiƟve reducƟon (↓) combined the following properƟes hold:
– (𝐴↓)∗ = 𝐴∗,
– (𝐴∗)↓ = 𝐴↓,
For iteraƟon of these operators the following properƟes hold:
– (𝐴∗)∗ = 𝐴∗ (idempotency),
– (𝐴↓)↓ = 𝐴↓ (idempotency),
– (𝐴ᇱ)ᇱ = 𝐴 (involuƟon),
Note that transposiƟon behaves differently from transiƟve closure and transiƟve reducƟon.
– 𝐴 ≤ 𝐵 ⇒ 𝐴∗ ≤ 𝐵∗ (monotonicity),
– 𝐴 ≤ 𝐵 ⇒ 𝐴↓ ≤ 𝐵↓ (monotonicity).
𝐴 and 𝐵 are adjacency matrices of the same order 𝑛 × 𝑛, say. The matrix inequaliƟes used in
the final two properƟes operate element-wise. Similar properƟes hold for the graphs
corresponding to the adjacency matrices. Instead of 𝐺ᇱ we write 𝐺←.
The following condiƟon holds (cf. (1)): 𝐴↓௜௝ = 1 iff 𝐴௜௝ = 1 and (𝐴⊙𝐴∗)௜௝ = 0, which can be
used to compute the transiƟve reducƟon with the help of the transiƟve closure.

Underlying graph of a digraph If 𝐺 = (𝑉,𝐸) is a digraph then the underlying graph
𝐺௨௡ = (𝑉,𝐸௨௡) is the graph with 𝐸௨௡ = {{𝑎, 𝑏}∣𝑎, 𝑏 ∈ 𝑉and (𝑎, 𝑏) ∈ 𝐸 or (𝑏, 𝑎) ∈ 𝐸}.

Unsaturated pair of nodes A pair of nodes 𝑎, 𝑏 in a digraph for which (𝑎, 𝑏) or (𝑏, 𝑎) is an arc
but not both.

Vertex See ’node’.

40) This is intuiƟvely a nice algorithm. From a computaƟonal point, however, it is not so aƩracƟve. More efficient algo-
rithms exis, such as described in (8) or (9).

CBS | Discussion paper | July 24, 2019 80

Colophon
Publisher
StaƟsƟcs Netherlands
Henri Faasdreef 312, 2492 JP The Hague
www.cbs.nl

Prepress
StaƟsƟcs Netherlands, Grafimedia

Design
Edenspiekermann

InformaƟon
Telephone +31 88 570 70 70, fax +31 70 337 59 94
Via contact form: www.cbs.nl/informaƟon

© StaƟsƟcs Netherlands, The Hague/Heerlen/Bonaire 2018.
ReproducƟon is permiƩed, provided StaƟsƟcs Netherlands is quoted as the source

