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Abstract

A small area estimation method is developed to produce monthly unemployment figures at a

provincial level and quarterly figures at a municipal level. To this end a time series multilevel

model is proposed where monthly direct estimates for municipalities and accompanying variance

estimates form the input. Consistent estimates for monthly provincial figures and quarterly

municipal figures are derived by aggregating the monthly municipal predictions obtained with

the time series multilevel model. The model is formulated in an hierarchical Bayesian framework

and fitted using MCMC simulations. The model borrows strength over time and space in several

ways. Municipalities belonging to the same province share a common provincial smooth trend

model. Deviations from this overall trend for the separate municipalities are modelled with local

level models. This is a parsimonious alternative for modelling a full covariance matrix between

the trend innovations. The model also borrows information from auxiliary series derived from a

claimant counts register. Regression coefficients for claimant counts vary between municipalities

by modelling random slopes. The regression coefficients can vary over time by modelling the

innovations of the regression coefficients with random walk or a smooth trend model. Another

way of including cross-sectional correlations is obtained by modelling the spatial effects among

random domain intercepts and among random slopes for the regression coefficients with a

spatial autoregressive model. To allow for the diversity of municipalities and possibly volatile

time-dependence, non-normally distributed municipal random effects and trend innovations are

investigated by using global-local shrinkage priors. It is found that the estimates based on the

time series multilevel models compare favourably to estimates based on cross-sectional

multilevel models that are currently used to produce official annual provincial and municipal

unemployment figures.

Key words: time series multilevel models, Fay-Herriot models, hierarchical Bayesian models,

non-normal priors, global local priors, Gibbs sampler
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1 Introduction

Data from the Dutch Labour Force Survey (LFS) are used to estimate labour status at various

aggregation levels. National estimates are produced monthly, provincial estimates quarterly, and

municipal estimates annually. Many more figures are produced for several demographic subgroups.

Until 2015 municipal estimates were produced annually by means of direct generalized regression

estimation (GREG, see e.g. Särndal et al. (1992)), but only for municipalities with at least 30

thousand inhabitants. For municipalities with 10 to 30 thousand inhabitants, three-year moving

averages of GREG estimates were used in order to reduce the variance. No estimates were

published for municipalities with fewer than 10 thousand inhabitants. To improve the municipal

estimates, a model-based small area estimation (SAE) strategy has been adopted starting 2015

(Boonstra et al., 2011; Boonstra and Michiels, 2013). The model used for this purpose is the

Battese-Harter-Fuller basic unit-level model (Battese et al., 1988; Rao and Molina, 2015), a linear

multilevel model with random municipality effects. Based on this model, estimates of labour status

are produced annually for all provinces and municipalities.

The continuous nature of the LFS allows to borrow strength not only from other areas, but also over

time. A structural time-series model (STM) is already being used since 2010 to estimate monthly

figures about labour status at the national level and a breakdown for six gender by age classes

(van den Brakel and Krieg, 2009, 2015). These official monthly publications are based on a

state-space model that is used as a form of small area estimation by borrowing strength over time,

and that also accounts for rotation group bias (RGB) and serial correlation in the survey errors due

to rotating panel design of the Dutch Labour Force Survey. This model uses five series of GREG

estimates observed in the separate waves of the rotating panel as input series. The model accounts

for RGB by benchmarking the labour force estimates to the level of the first wave of the panel.

The aim of this paper is to obtain improved small area estimates by borrowing strength over both

space and time. The proposed time series multilevel models account for temporal and

cross-sectional correlations, and in addition use related auxiliary series obtained from a register of

claimant counts. Both monthly estimates of provincial unemployment and quarterly estimates of

municipal unemployment are computed based on the same time series model. This implies that

the estimates will be numerically consistent. This is an advantage compared to using different

models for estimates at different aggregation levels.

Previous accounts of regional small area estimation of unemployment, where strength is borrowed

over both time and space, include Rao and Yu (1994); Datta et al. (1999); You et al. (2003); You

(2008a); Pfeffermann and Burck (1990); Pfeffermann and Tiller (2006), see also Rao and Molina

(2015) for an overview. In Boonstra (2014) several multilevel time-series models have been applied

to the estimation of annual unemployment levels for Dutch municipalities. In Boonstra and van den

Brakel (2016) time series small area estimators are developed for monthly provincial

unemployment figures. In that paper a comparison is made between state space models fitted in a

frequentist framework and multilevel time series models fitted with the Gibbs sampler in an

hierarchical Bayesian framework. Based on the results, it was decided to further develop time

series small area estimators for this project using time series multilevel models fitted with a Gibbs

sampler in an hierarchical Bayesian framework.
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The models considered are applied to direct municipal estimates at a monthly frequency and are

extensions of the well-known Fay-Herriot model (Fay and Herriot, 1979). First, direct estimates are

computed for each municipality in each month using the GREG estimator that uses auxiliary

information to reduce non-response bias. In addition the GREG estimates are calibrated to the

official monthly publications at the national level and their breakdown in six domains. In this way

the input series account for RGB in the same way as the monthly national figures. The LFS rotating

panel design induces an autocorrelation structure among the monthly GREG estimates. These

correlations are estimated along with variances for the GREG estimates. The GREG estimates and

their estimated variances and covariances are subsequently modelled in an hierarchical Bayesian

time series multilevel model. The model is augmented with month-specific covariates to ensure

that the small area predictions are consistent with the official monthly publication at the national

level, following an internal benchmarking approach described in Bell et al. (2013).

To borrow strength over time, smooth trend models or local level trend models are defined at

different aggregation levels. To borrow strength over space, the correlation between innovations of

these trend models can be modelled. An alternative and more parsimonious approach is obtained

by defining an overall smooth trend at the provincial level for all municipalities belonging to the

same province (on a monthly frequency). Deviations from this overall trend for the separate

municipalities are modelled with a local level model at municipal level (on a quarterly frequency).

Another way of borrowing strength over space is obtained by modelling spatial effects between

random intercepts of the municipalities.

Regression components can be included to borrow strength from auxiliary series derived from a

claimant count register. Regression coefficients are made domain-specific by modelling random

slopes at the level of municipalities. Since relations between LFS trends and claimant counts are not

necessarily time-invariant, a model with dynamic regression coefficients is considered. This is

achieved by modelling the regression coefficients with a random walk, which is standard in state

space models. As an alternative we also consider a smooth trend model for the time-varying

regression coefficients.

To allow for the diversity of municipalities and for possibly volatile time-dependence, non-normally

distributed random domain effects, spatial effects, trend innovations, and dynamic regression

coefficient innovations are considered. In particular, we consider t-distributions, the horseshoe

prior and Laplace distributions, which can all be understood in terms of scale mixtures of normal

distributions (Andrews and Mallows, 1974).

Models with different combinations of fixed and random effects are compared based on the

Deviance Information Criterion (DIC) (Spiegelhalter et al., 2002) and Widely Applicable Information

Criterion or Watanabe-Akaike Information Criteria (WAIC) (Watanabe, 2010, 2013). In addition we

use posterior predictive checks (Gelman et al., 1996; You, 2008b), and compare with both the direct

estimates and the cross-sectional small area estimates.

This paper contributes to the existing literature on small area estimation by proposing an

hierarchical Bayesian extension of the Fay-Herriot model that borrows strength over time and space

as well as from auxiliary series. The approach is very general and flexible since it allows modelling

correlations between trend innovations, the correlation between random domain effects and the

random slopes of regression coefficients, and allows using spatial correlations and non-normally

distributed random effects as well. The approach is computationally efficient, since it can handle

large data sets. In this application 388 time series with a length of 66 observations are combined in
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a single model. The structure of the finally chosen model is partly based on the output

requirements. The model is defined at the most detailed regional and temporal levels of interest

and estimates at different levels of interest are obtained by aggregation, thus guaranteeing that all

estimates are mutually numerically consistent.

This report is structured as follows. In Section 2 the LFS data used in this study are described.

Section 3 describes how the monthly municipal GREG estimates are computed. Section 4 discusses

the multilevel models used to model the GREG estimates. In Section 5 the results for several

multilevel time series models are compared discussed and compared with the direct estimates and

the cross-sectional small area estimates. Section 6 concludes with a discussion. Details about the

Gibbs sampler used to estimate the models are given in the appendix.

2 Data from the Dutch Labour Force

Survey

The Dutch LFS is a household survey conducted according to a rotating panel design in which the

respondents are interviewed five times at quarterly intervals. In the years considered in this study,

the first wave of the panel consists of data collected by means of web interviewing where the

non-response is followed up by either computer assisted personal interviewing (CAPI) or telephone

interviewing (CATI), whereas for the four follow-up waves data is collected only by means of CATI.

For a more detailed description of the sampling design, we refer to Boonstra et al. (2008). There

have been several changes of design mostly concerning the modes of observation. These changes

have led to discontinuities that can be accounted for by adding intervention effects to the

time-series model (van den Brakel and Krieg, 2015). Here we do not account for any discontinuities

because we only use LFS data from after the last redesign.

The rotating panel design results in partial sample overlap between the subsequent sample

periods, which gives rise to autocorrelation in the sampling errors. Another consequence of the

rotating panel design is that there are systematic differences between the outcomes of the

subsequent waves. This is a well known phenomenon in rotating panel designs and is generally

termed rotation group bias (RGB) (Bailar, 1975). In the Dutch LFS the estimates for the unemployed

labour force in the first wave are systematically higher compared to the follow-up waves, which is

the result of many possible causes, including selection, mode and panel effects, see van den Brakel

and Krieg (2009).

Since 2010 a multivariate structural time series model is used to publish monthly figures about the

Dutch LFS at the national level and a breakdown by gender and three age classes. This model is

used as a form of small area estimation to produce sufficiently precise estimates and accounts for

the two aforementioned aspects of the rotating panel design. The model benchmarks the time

series estimates for the target variables to the level of the first wave, which is considered to be the

most reliable. Additionally the model accounts for the autocorrelation in the sampling error due to

the sample overlap of the panel design.

In the present study we use 66months of LFS data that became available after the last redesign,

from 2012-04 until 2017-09. Data from all five waves of the rotating panel are used. The

CBS | Discussion paper | December 4, 2018 5



Netherlands is divided into twelve provinces and as of 2017 into 388 municipalities. The aim is to

estimate unemployment figures for provinces monthly and for municipalities quarterly. For the

municipal estimates the 2017 classification is used for the whole study period.

The target variable considered is the fraction of unemployed in a domain, and is defined as

𝑌􀐕􀐠 = ∑
􀐖∈􀐕 𝑦􀐕􀐖􀐠/𝑁􀐕􀐠, with 𝑦􀐕􀐖􀐠 equal to one if person 𝑗 from domain 𝑖 in period 𝑡 is unemployed and

zero otherwise and 𝑁􀐕􀐠 the population size in domain 𝑖 and period 𝑡.

The next section discusses the computation of direct estimates and then Section 4 continues with

the description of the multilevel time-series models. These estimates will be compared to each

other and also to the cross-sectional small area estimates (SAE). As mentioned in the introduction,

a cross-sectional SAE method based on the Battese-Harter-Fuller unit-level model is currently used

to produce the official figures on annual municipal unemployment. These estimates along with

estimated standard errors are actually computed quarterly, and so we compare quarterly municipal

estimates based on the time-series models to them. Current annual official figures on provincial

unemployment are also based on a Battese-Harter-Fuller unit-level model, and these will also be

compared to the (quarterly) provincial estimates based on the time-series models. The provincial

cross-sectional SAE estimates are benchmarked to agree with the national-level estimate, and the

municipal SAE estimates are in turn benchmarked to agree with the provincial estimates. This is

necessary because the estimates for the different aggregation levels are based on separate models.

Due to the different nature of the cross-sectional unit-level SAE model compared to the

aggregate-level time-series models discussed in Section 4, there are necessarily some systematic

differences between them regarding the way they deal with non-sampling error such as RGB and

non-response bias. In the cross-sectional models the RGB is handled by including wave number as a

categorical predictor and using the coefficient of the first wave for prediction. Some further

differences exist between the covariates used in the direct monthly estimates discussed below and

the unit-level SAE model, where the latter uses a more extensive set of covariates and thus might

be slightly better in reducing non-response bias. Further details on the cross-sectional SAE

estimation method can be found in Boonstra and Michiels (2013).

3 Direct estimates

Let ̂𝑌̄􀐕􀐠 denote the GREG estimate of the unemplopyment fraction for area 𝑖 in period 𝑡 based on

data observed in all 5 waves of period 𝑡. The GREG estimator can be expressed as (Särndal et al.,

1992)

̂𝑌̄􀐕􀐠 =
∑
􀐖∈􀐟𝑤􀐕􀐖􀐠𝑦􀐕􀐖􀐠𝛿􀐕􀐖􀐠

∑
􀐖∈􀐟𝑤􀐕􀐖􀐠𝛿􀐕􀐖􀐠

, (1)

with 𝛿􀐕􀐖􀐠 a domain indicator which is equal to one if person 𝑗 belongs to domain 𝑖 in period 𝑡, and

𝑤􀐕􀐖􀐠 the regression weight for person 𝑗 from domain 𝑖 in period 𝑡. These weights are derived from a

linear regression model at the household level using several auxiliary variables available from

population registers as explanatory variables, see (Särndal et al., 1992, Chapter 6).

The available auxiliary variables are listed in Table 3.1. The model selected to compute the GREG

estimates is

𝑟𝑢 + 𝑖𝑛𝑐𝑡 + 𝑖𝑛𝑐6 + ℎℎ𝑡𝑦𝑝𝑒 + 𝑟𝑒𝑔𝑖𝑜𝑛 + 𝑒𝑡ℎ𝑛 + 𝑔𝑒𝑛𝑑𝑒𝑟 ∗ 𝑎𝑔𝑒21 +𝑚𝑙𝑓 ∗ 𝑎𝑔𝑒3 ∗ 𝑔𝑒𝑛𝑑𝑒𝑟 (2)
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variable categories

gender male, female

inct type of income: salary, payment, unknown

inc6 yearly income in euros in six categories:

<3.000, 3.000-<10.000, 10.000-<15.000, 15.000-<20.000, 20.000-<30.000, 30.000+

age3 15-24, 25-44, 45-64

age21 0-14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25-29, 30-34, 35-39, 40-44, 45-49,

50-54, 55-59, 60-64, 65-74, 75+

region subdivision of the Netherlands in 43 regions

hhtype single, household with children, other

ethn native, Western immigrant, non-Western immigrant

ru not registered as unemployed, employed and registered,

registered unemployed < 1 year, registered unemployed 1-4 years,

registered unemployed>4 years

mlf monthly labour force estimates: employed, unemployed, not in the labour force

Table 3.1 Auxiliary variables used for GREG weighting

The interactions denoted by '∗' imply that the main effects are also included.

Note the presence of registered unemployment. Despite being based on a very different concept of

unemployment, it is a strong predictor for the unemployment variable of interest. The last term

contains the official monthly estimates obtained with the state space model. This is a breakdown of

employment status (employed, unemployed, not in the labour force) by gender times three age

classes. This term is included to enforce consistency between the domain estimates on the

municipal and provincial level with the official monthly figures at the national level. As a result, the

GREG estimates, which are based on monthly samples obtained in all five waves, are adjusted for

RGB, consistently with the official monthly publications. More details about RGB and the way it is

handled in the monthly estimates can be found in van den Brakel and Krieg (2009, 2015); Boonstra

and van den Brakel (2016)

The time series models also require variance estimates corresponding to the GREG estimates that

are used as input series for these models. We use the following cross-sectionally smoothed

estimates of the design variances of the GREG estimates,

𝑣( ̂𝑌̄􀐕􀐠) =
1

𝑚􀐕􀐠

1

𝑚􀐠

􀏿􀓫

∑

􀐕􀍹􀍮

𝑚􀐕􀐠𝜎̂
􀍯
􀐕􀐠 ≡ 𝜎̂􀍯􀐠 /𝑚􀐕􀐠 , (3)

with𝑚􀐠 the number of households in the sample of period 𝑡 and𝑚􀐕􀐠 the number of households in

the sample of period 𝑡 belonging to domain 𝑖,𝑀􀏳 the number of municipalities, and

𝜎̂􀍯􀐕􀐠 =
1

𝑁̂􀍯
􀐕􀐠

𝑚􀐠

(𝑚􀐠 − 1)
(

􀐙􀔘

∑

􀐔􀍹􀍮

𝐸̂􀍯􀐕􀐔􀐠 −
1

𝑚􀐠

(

􀐙􀔘

∑

􀐔􀍹􀍮

𝐸̂􀐕􀐔􀐠)

􀍯

) . (4)

Here, 𝐸̂􀐕􀐔􀐠 = ∑
􀐖∈􀐔𝑤􀐕􀐖􀐠𝑒̂􀐕􀐖􀐠 is the sum over the weighted residuals of persons belonging to the same

household, and

𝑁̂􀐕􀐠 =∑

􀐖∈􀐟

𝑤􀐕􀐖􀐠𝛿􀐕􀐖􀐠 (5)

denotes the estimated population size of domain 𝑖. The within-area variances 𝜎̂􀍯􀐕􀐠 are pooled over

the domains to obtain more stable variance estimates.
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The panel design induces several non-zero correlations among initial estimates for the same

province and different time periods and waves. These positive correlations are due to partial

overlap of the sets of sample units on which the estimates are based. Such correlations exist

between estimates for the same municipalities in months 𝑡􀍮, 𝑡􀍯 whenever 𝑡􀍯 − 𝑡􀍮 ≤ 12. The

covariances between ̂𝑌̄􀐕􀐠􀑦 and
̂𝑌̄􀐕􀐠􀑧 are estimated as (see e.g. Kish (1965))

𝑣( ̂𝑌̄􀐕􀐠􀑦 ,
̂𝑌̄􀐕􀐠􀑧) =

𝑚􀐕􀐠􀑦􀐠􀑧

√𝑚􀐕􀐠􀑦
𝑚􀐕􀐠􀑧

𝜌̂􀐠􀑦􀐠􀑧
√𝑣( ̂𝑌̄􀐕􀐠􀑦)𝑣(

̂𝑌̄􀐕􀐠􀑧) , (6)

where𝑚􀐕􀐠􀑦􀐠􀑧
is the number of units in the overlap, i.e. the number of observations on the same

units in area 𝑖 for periods (𝑡􀍮) and (𝑡􀍯). The estimated (auto)correlation coefficient 𝜌̂􀐠􀑦􀐠􀑧 is

computed as the correlation between the residuals of the linear regression models underlying the

GREG estimator at 𝑡􀍮 and 𝑡􀍯, based on the overlap of both samples over all areas. This way they are

pooled over areas, as are the variances 𝜎̂􀍯􀐕􀐠.

The Dutch municipalities have very diverse population sizes. The population sizes for the target

population aged 15-75 ranges from less than 700 to almost 700000. This also means that the data is

highly imbalanced over the municipalities. For 158 of the 25608 month-municipality combinations

there is actually no response at all, i.e. 𝑚􀐕􀐠 = 0, and in these cases the direct estimates are not

defined. The data to fit the multi-level models therefore consists of 25608 − 158 = 25450

month-municipality combinations. Based on the fitted models, predictions are computed for all

25608 combinations.

4 Time-series small area estimation

4.1 Time series multilevel models

The multilevel time series models for small area prediction are an extension of the area level model

proposed by Fay and Herriot (1979). The data for the time-series model consist of time series of

GREG estimates at the municpal level as well as variance estimates and covariance estimates

induced by the rotating panel design as described in Section 3. A major advantage of the area level

model is that the GREG estimates account for the sample design and reduce non-repsonse bias. A

unit-level model for all sample periods that accounts for all temporal and cross-sectional effects

would become very complex and challenging to fit.

The multilevel time-series models are applied to smooth the initial estimates, thereby reducing

standard errors for monthly municipal figures by borrowing strenth over time and space and by

using time series of claimant counts at the municipal level as auxiliary series in the model. The

estimated models are used to make predictions for monthly provincial unemployment fractions by

aggregating over the municipalities within provinces and quarterly municipal unemployment

fractions by aggregating over the months within each calendar quarter.

The numbers of areas and time periods at the most detailed level considered, i.e. municipalities

and months, are denoted by𝑀􀏳 and𝑀􀐆, respectively. For the description of the multilevel

time-series model the initial estimates ̂𝑌̄􀐕􀐠 are combined into a vector
̂𝑌̄ = ( ̂𝑌̄􀍮􀍮,

̂𝑌̄􀍮􀍯, … , ̂𝑌̄􀍮􀏿􀓾
, ̂𝑌̄􀍯􀍮, …

̂𝑌̄􀍯􀏿􀓾
, … ̂𝑌̄􀏿􀓫􀍮

, … ̂𝑌̄􀏿􀓫􀏿􀓾
)􀚄, where it is understood that empty

domains are treated as missing.
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The total length of ̂𝑌̄ is therefore𝑀 = 𝑀􀏳 ∗ 𝑀􀐆 = 388(𝑎𝑟𝑒𝑎𝑠) ∗ 66(𝑚𝑜𝑛𝑡ℎ𝑠) = 25608. Similarly,

the variance estimates 𝑣( ̂𝑌̄􀐕􀐠) are put in the same order along the diagonal of a𝑀×𝑀 covariance

matrixΦ. The covariance matrixΦ is not diagonal because of the correlations induced by the panel

design. It is a block diagonal matrix, where the blocks correspond to the municipalities and

variances and covariances are estimated using (3) and (6), respectively.

The multilevel models considered for modeling the vector of direct estimates ̂𝑌̄, take the general

linear additive form

̂𝑌̄ = 𝑋𝛽 +∑

􀑁

𝑍(􀑁)𝑣(􀑁) + 𝑒 , (7)

where 𝑋 is a𝑀× 𝑝 design matrix for a 𝑝-vector of fixed effects 𝛽, and the 𝑍(􀑁) are𝑀× 𝑞(􀑁) design

matrices for 𝑞(􀑁)-dimensional random effect vectors 𝑣(􀑁). Here the sum over 𝛼 runs over several

possible random effect terms at different levels, such as provincial-level smooth trends, municipal

random intercepts, white noise at the municipality-by-month level, etc. This is explained in more

detail in §4.2 below. The sampling errors 𝑒 = (𝑒􀍮􀍮, 𝑒􀍮􀍯, … , 𝑒􀍮􀏿􀓾
, 𝑒􀍯􀍮, …𝑀􀏳𝑀􀐆)

􀚄 are taken to be

normally distributed as

𝑒 ∼ 𝑁(0, Σ) (8)

where either Σ = Φ = ⊕
􀏿􀓫

􀐕􀍹􀍮Φ􀐕 withΦ􀐕 the covariance matrix for the GREG estimates for

municipality 𝑖, or Σ = ⊕
􀏿􀓫

􀐕􀍹􀍮𝜆􀐕Φ􀐕 in which 𝜆􀐕 are municipality-specific variance scale parameters to

be estimated. As described in Section 3 the design variances inΦ are pooled over municipalities

and because of the discrete nature of the unemployment data they thereby lose some of their

dependence on the unemployment level. It was found that incorporating the variance scale factors

𝜆􀐕 allows the model to rescale the estimated design variances to a level that better fits the data.

The variance scale parameters 𝜆􀐕 are assigned independent inverse chi-squared priors with degree

of freedom parameter and scale parameter equal to 1:

𝜆􀐕 ∼ Inv−𝜒􀍯(1, 1) , for 𝑖 = 1,…𝑀􀏳. (9)

Equations (7) and (8) define the likelihood function

𝑝 ( ̂𝑌̄|𝜃, Σ) = 𝑁( ̂𝑌̄|𝜃, Σ) , (10)

where 𝜃 = 𝑋𝛽 + ∑
􀑁 𝑍

(􀑁)𝑣(􀑁) is the month-by-municipality vector of unemployment fractions from

which all quantities of interest can be obtained by aggregation.

For the fixed effects part in (7) we use as a base model

𝑝𝑒𝑟𝑖𝑜𝑑 + 𝑝𝑟𝑜𝑣 ∗ 𝑡 + 𝑢𝑟𝑏 ∗ 𝑐𝑐, (11)

where 𝑝𝑒𝑟𝑖𝑜𝑑 is the categorical variable for month (from 2012-04 to 2017-09), 𝑡 denotes

quantitative time (in months), 𝑝𝑟𝑜𝑣 is the categorical variable for the 12 provinces, 𝑢𝑟𝑏 is the

degree of urbanisation in 5 classes, and 𝑐𝑐 is the fraction of claimant counts. The unemployment

claimant counts are available at the month-by-municipality level, and are not the same as the

registered unemployed variable used for GREG weighting.

The prior used for the 𝑝-vector of fixed effects is very weakly informative,

𝛽 ∼ 𝑁(0, 100𝐼􀐜) , (12)

with 𝐼􀐜 the identity matrix of order 𝑝. The standard error value of 10 is very large with regard to the

scale of the unemployment fraction relative to the covariate scales.
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4.2 Random effect model terms

The second term on the right hand side of (7) consists of a sum of contributions to the linear

predictor by random effects or varying coefficient terms. The random effect vectors 𝑣(􀑁) for

different 𝛼 are assumed to be independent, but the components within a vector 𝑣(􀑁) are possibly

correlated to accommodate temporal or spatial correlation. We refer to Fahrmeir et al. (2004),

Zhao et al. (2006), Rue et al. (2009), as well as Hastie and Tibshirani (1990) and Wood (2017) for

earlier and more extensive discussions of structured additive regression and related models. To

describe the general model for each vector 𝑣(􀑁) of random effects, we suppress superscript 𝛼 in

what follows for notational convenience.

Each random effects vector 𝑣 is assumed to be distributed as

𝑣 ∼ 𝑁(0, 𝐴⊗ 𝑉) , (13)

where 𝑉 and 𝐴 are 𝑑 × 𝑑 and 𝑙 × 𝑙 covariance matrices, respectively, and 𝐴⊗ 𝑉 denotes the

Kronecker product of 𝐴 with 𝑉. The total length of 𝑣 is therefore 𝑞 = 𝑑𝑙, and these coefficients may

be thought of as corresponding to 𝑑 effects allowed to vary over 𝑙 levels of a factor variable, e.g.

provincial intercepts (𝑑 = 12 provinces) varying over time (𝑙 = 66months). The covariance matrix

𝑉 is allowed to be parameterized in three different ways. Most generally, it is an unstructured, i.e.

fully parameterized covariance matrix. More parsimonious forms are 𝑉 = diag(𝜎􀍯􀐢;􀍮, … , 𝜎􀍯􀐢;􀐐) or

𝑉 = 𝜎􀍯􀐢 𝐼􀐐. If 𝑑 = 1 the three parameterizations are equivalent. The covariance matrix 𝐴 describes

the covariance structure between the levels of the factor variable, and is assumed to be known. It is

typically more convenient to use the precision matrix 𝑄􀏳 = 𝐴􀍸􀍮 as it is sparse for many common

temporal and spatial correlation structures (Rue and Held, 2005). The sparsity of both 𝑄􀏳 and the

design matrix 𝑍 is exploited in computations.

The following priors for the (hyper)parameters in 𝑉 are used:

– For a fully parameterized covariance matrix 𝑉 in (13) we use the scaled-inverse Wishart prior as

proposed in O'Malley and Zaslavsky (2008) and recommended by Gelman and Hill (2007).

Conditionally on a 𝑑-dimensional vector parameter 𝜉,

𝑉|𝜉 ∼ Inv −Wishart (𝑉|𝜈, diag(𝜉)Ψdiag(𝜉)) (14)

with 𝜈 = 𝑑 + 1, andΨ = 𝐼􀐐. The vector 𝜉 is assigned a normal distribution 𝑁(0, 𝐼􀐐).

– All other variance parameters appearing in a diagonal matrix 𝑉 in (13) are assigned,

conditionally on an auxiliary parameter 𝜉, inverse chi-squared priors with 1 degree of freedom

and scale parameter 𝜉􀍯. Each parameter 𝜉 is assigned a 𝑁(0, 1) prior. Marginally, the standard

deviation parameters have half-Cauchy priors. Gelman (2006) demonstrates that these priors

are better default priors than the more common inverse gamma priors.

More specifically, the following random effect terms are considered for inclusion in (7):

1. Random intercepts for municipality. In this case 𝐴 = 𝐼􀏿􀓫
and 𝑉 = 𝜎􀍯􀍮 , and the corresponding

design matrix is the𝑀×𝑀􀏳 indicator matrix for municipalities. This can be readily extended to

a vector of both municipal random intercepts and slopes for the fraction of claimant counts. In

that case 𝑉 is a 2 × 2 covariance matrix, parameterized by variance parameters for the

intercepts (𝜎􀍯􀍮,􀎠􀎥􀎫) and slopes (𝜎
􀍯
􀍮,􀎪􀎣) and a correlation parameter (𝜌􀍮). The𝑀× (2𝑀􀏳) design

matrix then combines the municipality indicator columns for the intercepts and the same

indicator columns multiplied by the fraction of claimant counts for the slopes.
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2. Spatial municipality effects. Here 𝑉 = 𝜎􀍯􀍯 , and the𝑀􀏳 ×𝑀􀏳 precision matrix 𝑄􀏳 has diagonal

values equal to the number of neighbours 𝑎􀐕 of each municipality, and off-diagonal elements

−1 for neighbouring municipalities and 0 elsewhere. The design matrix is the same as for the

independent random municipality effects. The rank of 𝑄􀏳 is𝑀􀏳 − 𝑐 where 𝑐 is the number of

connected components, i.e. the number of clusters of municipalities that are not neighbouring

any muncipality in another cluster. In the case of the adjacency structure of Dutch municipalities

that we used there are four such disconnected clusters since some of the island municipalities

share no border with the mainland municipalities. The singularity of 𝑄􀏳 is dealt with by

constraining the sum of each cluster's coefficients to be zero. This way the spatial coefficient of

some islands is constrained to zero but this is not a big issue since independent municipal

random effects are always included in the model. This spatial component corresponds to an

intrinsic conditional autoregressive (ICAR) model for the coefficients (Besag and Kooperberg

(1995), Rue and Held (2005)),

𝑣􀐕|𝑣􀐖􀏰􀐕 ∼ 𝑁(
∑
􀐖∈ 􀎥􀎙(􀐕) 𝑣􀐖

𝑎􀐕
,
𝜎􀍯􀍯

𝑎􀐕
) (15)

for each spatial municipality coefficient conditional on the others, nb(𝑖) denoting the

municipalities that neighbour municipality 𝑖. The combination (sum) of independent effects and

spatial ICAR effects has been popularized by the Besag-York-Mollié model (Besag, York, and

Mollie, Besag et al.). As in the case of the independent municipality effects, the spatial

component is extended with random slopes for claimant counts. The matrix 𝑉 is then a 2 × 2

covariance matrix parameterized by 𝜎􀍯􀍯,􀎠􀎥􀎫, 𝜎
􀍯
􀍯,􀎪􀎣 and 𝜌􀍯.

3. Provincial smooth trends over the months. The precision matrix in this case is the𝑀􀐆 ×𝑀􀐆 band

matrix (see e.g. Rue and Held (2005))

𝑄􀏳 =

⎛
⎜
⎜
⎜
⎜
⎜

⎝

1 −2 1

−2 5 −4 1

1 −4 6 −4 1

1 −4 6 −4 1

⋱ ⋱ ⋱

1 −4 6 −4 1

1 −4 5 −2

1 −2 1

⎞
⎟
⎟
⎟
⎟
⎟

⎠

. (16)

A full covariance matrix for the trend innovations can be considered to allow for cross-sectional

correlations, or a diagonal matrix to allow for different variance hyperparameters for the trend

innovations. Both possibilities have been applied but tend to overfit the data. Therefore a

common variance parameter for the 12 provincial trends is used in this application, i.e.

𝑉 = 𝜎􀍯􀍰 𝐼􀍮􀍯. The design matrix is a𝑀× (12𝑀􀐆) indicator matrix for the province-month

combinations. The precision matrix (16) has two singular vectors, 𝜄􀏿􀓾
= (1, 1, … , 1) and

(1, 2, … ,𝑀􀐆)
􀚄. This means that the corresponding specification (13) is completely uninformative

about the overall levels and linear trends by province. In order to prevent unidentifiability

among various terms in the model, the provincial overall levels and linear trends are removed

from 𝑣 by imposing the constraints 𝑅𝑣 = 0, where 𝑅 = 𝐼􀍮􀍯 ⊗𝑅􀎏􀎔􀍯(𝑀􀐆) where 𝑅􀎏􀎔􀍯(𝑀􀐆) is

the 2 ×𝑀􀐆 matrix with the two singular vectors as its rows (Rue and Held, 2005). Note that the

provincial overall levels and linear trends are included in the vector 𝛽 of fixed effects in (11).

4. Municipal random walks over quarters. Here 𝑙 = 𝑀􀐃 = 22, the number of quarters. The
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precision matrix is now the𝑀􀐃 ×𝑀􀐃 band matrix

𝑄􀏳 =

⎛
⎜
⎜
⎜

⎝

1 −1

−1 2 −1

−1 2 −1

⋱ ⋱ ⋱

−1 2 −1

−1 1

⎞
⎟
⎟
⎟

⎠

, (17)

corresponding to a first-order random walk over quarters. For each municipality a random walk

or local level trend is included, so 𝑑 = 𝑀􀏳. Here also we use a common variance parameter for

all municipal random walks, so 𝑉 = 𝜎􀍯􀍱 𝐼􀏿􀓫
. The design matrix is a𝑀× (𝑀􀐃𝑀􀏳) indicator matrix

for the municipality-quarter combinations. Random walks varying by month would also have

been possible, but have not been used since the focus is eventually on municipal estimates at a

quarterly frequency. The random walk precision matrix has a single singular vector

𝑅􀎏􀎔􀍮(𝑀􀐃) = 𝜄􀏿􀓻
= (1, 1, … , 1). Therefore constraints 𝑅𝑣 = 0 are imposed where

𝑅 = 𝐼􀏿􀓫
⊗𝑅􀎏􀎔􀍮(𝑀􀐃) to remove the municipal main effects from 𝑣. These main effects are

represented instead by the municipal random effects.

5. A dynamic regression coefficient for the fraction of claimant counts. We consider both smooth

and local level dynamic regression coefficients, so 𝑄􀏳 is either (17) or (16), of dimension

𝑀􀐆 ×𝑀􀐆. In addition, 𝑉 = 𝜎􀍯􀍲 . The design matrix equals the𝑀×𝑀􀐆 matrix with each column

equal to the fraction of claimant counts multiplied by the indicator variable for the

corresponding month. Constraints 𝑅𝑣 = 0 are imposed where 𝑅 is either 𝑅􀎏􀎔􀍮(𝑀􀐆) or

𝑅􀎏􀎔􀍯(𝑀􀐆) In the case of a smooth dynamic coefficient a linear time trend 𝑐𝑐 ∗ 𝑡 is added to the

fixed effects part (11) of the model.

6. White noise. In order to allow for unexplained variation white noise at the municipal-month

level can be included. So 𝐴 = 𝐼􀏿 and 𝑉 = 𝜎􀍯􀍳 , and the design matrix is 𝐼􀏿.

In a small area estimation context, model (7) can be regarded as a generalization of the Fay-Herriot

area-level model. The Fay-Herriot model only includes a single vector of uncorrelated random

effects over the levels of a single factor variable (typically areas). The models used in this paper

contain various combinations of uncorrelated and correlated random effects over two aggregation

levels of time (month and quarter) and region (munipality and province). Earlier accounts of

multilevel time-series models extending the Fay-Herriot model are Rao and Yu (1994); Datta et al.

(1999); You (2008a). Datta et al. (1999) and You (2008a) use time-series models with independent

area effects and first-order random walks over time for each area. In Rao and Yu (1994) a model is

used with independent random area effects and a stationary autoregressive AR(1) instead of a

random walk model over time. In You et al. (2003) the random walk model was found to fit the

Canadian unemployment data slightly better than AR(1) models with autocorrelation parameter

fixed at 0.5 or 0.75. Compared to the aforementioned references the models considered here

contain more structured random effect terms corresponding to multiple temporal and spatial

aggregation levels. Moreover, smooth trends are considered instead of or in addition to first-order

random walks or autoregressive components, and more flexible ways of shrinkage are considered,

as discussed next.

4.3 Non-normally distributed random effects

We also investigate a generalisation of (13) to non-normal distributions of random effects. There

exists a vast literature on this topic, see for example Carter and Kohn (1996) in the state space

modeling context, Datta and Lahiri (1995) and Fabrizi and Trivisano (2010) in the small area
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estimation context, and Lang et al. (2002) and Brezger et al. (2007) in the context of more general

structured additive regression models. Here we connect to the more recent global-local shrinkage

framework (Carvalho et al., 2010; Polson and Scott, 2010; Tang et al., 2018) and introduce

additional local scale parameters associated with the precision matrix 𝑄􀏳. In order to do so, first

rewrite 𝑄􀏳 = 𝐷􀚄
􀏳𝐷􀏳 where 𝐷􀏳 is an 𝑙􀏶 × 𝑙matrix. For independent random effects 𝑙􀏶 = 𝑙 and

𝐷􀏳 = 𝐼􀐘. For the time-series components, 𝑙􀏶 corresponds to the number of innovations, which is

𝑙 − 1 for a first-order random walk and 𝑙 − 2 for a smooth trend. For a first-order random walk 𝐷􀏳 is

the differencing matrix, which when acting on an 𝑙-vector of coefficients yields the 𝑙 − 1 differences

between subsequent elements. It has values −1 along the main diagonal and 1 along the first

superdiagonal, and otherwise 0. Similarly, for a smooth trend 𝐷􀏳 is a second-order differencing

matrix with values 1 along the main diagonal, −2 along the first superdiagonal and 1 along the

second superdiagonal. For a spatial ICAR component, 𝐷􀏳 is the oriented incidence matrix

corresponding to the graph defining the spatial neighbourhood structure. Here 𝑙􀏶 is the number of

edges of the graph, i.e. the number of different neighbour pairs and is in this case much larger than

𝑙, the number of vertices, i.e. regions. Each row (edge) has a value −1 for the region (column)

defining the start and a value 1 for the region defining the end of the edge.

Now 𝑄􀏳 = 𝐷􀚄
􀏳𝐷􀏳 is replaced by (see Lang et al. (2002))

𝑄̃􀏳 = 𝐷􀚄
􀏳diag(𝜔􀍮, …𝜔􀐘􀓮

)􀍸􀍮𝐷􀏳 (18)

where the 𝑙􀏶 parameters 𝜔􀐗 are local variance parameters. Several distributions can be considered

for the components of 𝜔. We have tried

1. inverse-chi-squared distributions yielding t-distributed innovations

2. independent half-Cauchy distributions on the standard deviation parameters √𝜔􀐗. This leads to

the so-called horseshoe prior for the innovations.

3. exponential distributions. This gives rise to a double exponential or Laplace distribution for the

innovations, and can be viewed as a Bayesian version of lasso shrinkage (Tibshirani, 1996; Park

and Casella, 2008).

In the end we settled for the exponential prior as it seemed to work best in the current application.

4.4 Estimating the time-series multilevel model

The model is fit using Markov Chain Monte Carlo (MCMC) sampling, in particular the Gibbs sampler

(Geman and Geman, 1984; Gelfand and Smith, 1990). The multilevel models considered belong to

the class of additive latent Gaussian models with random effect terms being Gaussian Markov

Random Fields (GMRFs), and we make use of the sparse matrix and block sampling techniques

described in Rue and Held (2005) for efficiently fitting such models to the data. Besides that, the

parameterization in terms of the above-mentioned auxiliary parameters 𝜉 (Gelman et al., 2008),

greatly improves the convergence of the Gibbs sampler used. See Appendix A for more details on

the Gibbs sampler used, including specifications of the full conditional distributions.

For each model considered, the Gibbs sampler is run in three independent chains with randomly

generated starting values. Each chain is run for 2500 iterations. The first 500 draws are discarded as

a "burn-in sample". From the remaining 2000 draws from each chain, we keep every second draw

to save some memory while reducing the effect of autocorrelation between successive draws. This

leaves 3 ∗ 1000 = 3000 draws to compute estimates and standard errors. The convergence of the

MCMC simulation is assessed using trace and autocorrelation plots as well as the Gelman-Rubin
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potential scale reduction factor (Gelman and Rubin, 1992), which diagnoses the mixing of the

chains. The potential scale reduction factors for the model parameters in all models considered are

usually very close to 1, but always below 1.1. Also, the estimated Monte Carlo simulation errors

(accounting for the remaining autocorrelation in the chains) are small compared to the posterior

standard errors for all parameters, so that the number of retained draws is sufficient for our

purposes.

The estimands of interest can be expressed as functions of the parameters, and applying these

functions to the MCMC output for the parameters results in draws from the posteriors for these

estimands. In this paper we summarize those draws in terms of their mean and standard deviation,

serving as estimates and standard errors, respectively. All estimands considered can be expressed

as linear predictors, i.e. as linear combinations of the model parameters. In particular, the MCMC

simulation vectors of the municipality-by-month linear predictor 𝑋𝛽 + ∑
􀑁 𝑍

(􀑁)𝑣(􀑁) are computed.

Afterwards, these are aggregated to the main estimation levels of interest: province-by-month and

municipality-by-quarter.

5 Results

5.1 Measures for model assessment

Several multilevel models of the form (7) have been fitted to the data, and in order to assess the

models we use different criteria. Frequently applied model selection criteria in hierarchical

Bayesian settings are the Widely Applicable Information Criterion or Watanabe-Akaike Information

Criterion (WAIC) (Watanabe, 2010, 2013) and the Deviance Information Criterion (DIC)

(Spiegelhalter et al., 2002). They are popular because they are easy to compute from MCMC

simulation output and because of their ability to make a reasonable trade-off between model fit

and model complexity. The DIC is defined as

DIC = −2 (log 𝑝 ( ̂𝑌̄ | 𝐸􀎧􀎦􀎪􀎫𝜃) − 𝑝􀎁􀎆􀎀) ,

𝑝􀎁􀎆􀎀 = 2(log 𝑝 ( ̂𝑌̄|𝐸􀎧􀎦􀎪􀎫𝜃) − 𝐸􀎧􀎦􀎪􀎫 log 𝑝 (
̂𝑌̄|𝜃)) ,

(19)

where 𝑝 ( ̂𝑌̄|𝐸􀎧􀎦􀎪􀎫𝜃) is the log-likelihood (10) evaluated at the posterior mean 𝐸􀎧􀎦􀎪􀎫𝜃 of the model

parameters, and 𝑝􀎁􀎆􀎀 is an estimate of the effective number of model parameters. The effective

number of model parameters is used as a penalty for model complexity and is closely related to the

effective number of parameters proposed by Hodges and Sargent (2001) for linear multilevel

models where each fixed effect contributes one degree of freedom and random effects contribute a

value in the range between zero and the number of random effects, depending on the size of the

variance component(s). Models with lower DIC values are preferred.

We use two WAIC measures differing by their estimate of the effective number of model
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parameters (Gelman et al., 2014),

WAIC􀐗 = −2

􀏿

∑

􀐕􀍹􀍮

log 𝐸􀎧􀎦􀎪􀎫𝑝 (
̂𝑌̄􀐕|𝜃) + 2𝑝􀎔􀍾􀎆􀎀,􀐗 , 𝑘 = 1, 2

𝑝􀎔􀍾􀎆􀎀,􀍮 = 2(

􀏿

∑

􀐕􀍹􀍮

(log 𝐸􀎧􀎦􀎪􀎫𝑝 (
̂𝑌̄􀐕|𝜃) − 𝐸􀎧􀎦􀎪􀎫 log 𝑝 (

̂𝑌̄􀐕|𝜃))) ,

𝑝􀎔􀍾􀎆􀎀,􀍯 =

􀏿

∑

􀐕􀍹􀍮

var􀎧􀎦􀎪􀎫 (𝑝 (
̂𝑌̄􀐕|𝜃)) .

(20)

Here 𝑝 ( ̂𝑌̄􀐕|𝜃) is the pointwise-likelihood for month-municipality combination 𝑖, and var􀎧􀎦􀎪􀎫
denotes the variance with respect to the posterior distribution for the model parameters. The

WAIC is often seen as an improvement on the DIC, because 𝑝􀎔􀍾􀎆􀎀,􀍮 and 𝑝􀎔􀍾􀎆􀎀,􀍯 cannot become

negative, unlike 𝑝􀎁􀎆􀎀, and WAIC is also defined for singular models (Vehtari et al., 2017). Models

with lower WAIC values are preferred.

Model adequacy is also evaluated using posterior predictive checks. This implies that draws from

the posterior predictive distribution are simulated and compared with the originally observed data

to study systematic discrepancies and to evaluate how well a model is able to reproduce certain

aspects of the observed data (Gelman et al., 1996). Posterior predictive p-values are calculated for

four different test statistics. They are defined as 𝑝􀐗 = Pr(𝑇􀐗(
̃𝑌̄) ≥ 𝑇􀐗(

̂𝑌̄)| ̂𝑌̄), where 𝑇􀐗 is a test

statistic and ̃𝑌̄ denotes replicate data based on the posterior predicitive distribution. The posterior

predictive p-values are estimated from the MCMC output as the average over the 𝑆Monte Carlo

samples

𝑝̂􀐗 =
1

𝑆

􀐅

∑

􀐟􀍹􀍮

𝐼 (𝑇􀐗(
̃𝑌̄
􀐟
) ≥ 𝑇􀐗(

̂𝑌̄)) ,

with 𝐼(𝐴) the indicator function with value one if the condition 𝐴 is fulfilled and zero otherwise.

Ideally, a model should be able to reproduce important aspects of the observed data, which is the

case if the observed 𝑇􀐗(
̂𝑌̄) is in the bulk of the histogram of replicates 𝑇􀐗(

̃𝑌̄
􀐟
). Therefore p-values

close to zero or one are indications of a poor fit regarding the test statistic. Posterior predictive

p-values are computed for the following test statistics:

1. 𝑇􀍮(𝑦) =
􀍮

􀏿􀍸􀍮
∑
􀏿
􀐕􀍹􀍮(𝑦􀐕 − 𝑦̄)􀍯, the unweighted variance of the (replicate) data-vector. Here 𝑦̄ is

the mean of 𝑦􀐕.

2. 𝑇􀍯(𝑦) =
􀍮

∑
􀔍 􀐀􀔍

∑
􀏿
􀐕􀍹􀍮𝑁􀐕(𝑦􀐕 − 𝑦̄)􀍯, i.e. a weighted variance where the weights are the municipal

population sizes 𝑁􀐕.

3. 𝑇􀍰(𝑦) = 𝑦̄ , the unweighted mean of the (replicate) data-vector.

4. 𝑇􀍱(𝑦) =
􀍮

∑
􀔍 􀐀􀔍

∑
􀏿
􀐕􀍹􀍮𝑁􀐕𝑦􀐕 , i.e. a weighted mean where the weights are the municipal population

sizes 𝑁􀐕.

Finally, we define the following two discrepancy measures to evaluate and compare the time-series

multilevel models, as well as compare them with the quarterly cross-sectional estimates based on a

unit-level small area estimation model. The first measure is the Mean Relative Bias (MRB) and

summarizes the differences between model estimates and direct estimates averaged over time, as

percentage of the latter. For a given model𝑀, the𝑀𝑅𝐵􀐕 is defined as

𝑀𝑅𝐵􀐕 =
∑
􀐠(𝜃̂

􀎊
􀐕􀐠 − 𝜃̂􀎛􀎠􀎩􀎜􀎚􀎫􀐕􀐠 )

∑
􀐠 𝜃̂

􀎛􀎠􀎩􀎜􀎚􀎫
􀐕􀐠

× 100% . (21)
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This benchmark measure shows for each region 𝑖 how much the model-based estimates deviate

from the direct estimates. The discrepancies should not be too large as one may expect that the

direct estimates averaged over time are close to the true average level of unemployment. The

second discrepancy measure is the Relative Reduction of the Standard Errors (RRSE) and measures

the percentages of reduction in standard error of the model-based compared to the direct

estimates, i.e.,

𝑅𝑅𝑆𝐸􀐕 = 100% ×
1

𝑀􀐆

∑

􀐠

(𝑠𝑒(𝜃̂􀎛􀎠􀎩􀎜􀎚􀎫􀐕􀐠 ) − 𝑠𝑒(𝜃̂􀎊􀐕􀐠 ))/𝑠𝑒(𝜃̂
􀎛􀎠􀎩􀎜􀎚􀎫
􀐕􀐠 ) , (22)

for a given model𝑀. Both measures are evaluated at the two regional levels of provinces and

municipalities. Note however that for the RRSE measure it can make a difference whether the

time-averaging in 22 is over months or quarters. For the provincial estimates both will be

considered.

5.2 Model results

In this section results for eleven different models are presented. An overview of the models is given

in Table 5.1. See Section 4 for the description of the general model form, and in particular

Subsection 4.2 for a detailed description of the random effect model components used. Table 5.2

shows the posterior means of the variance components of these random effect terms under the

models considered.

The first three, baseline, models are abbreviated as BLM1, BLM2 and BLM3. All three models have

the same base fixed effects model part defined by (11) and (12). The variable 𝑝𝑒𝑟𝑖𝑜𝑑 is included

because the monthly national-level aggregates of the direct estimates correspond to the officially

published labour force figures obtained themselves using a time-series model, and so any further

smoothing over time at the national level is not desired. The component 𝑝𝑟𝑜𝑣 ∗ 𝑡 is a linear trend

for seperate provinces and is part of the smooth trend model for provinces discussed below. The

component 𝑢𝑟𝑏 ∗ 𝑐𝑐 corresponds to the fraction of claimant counts for each of five degrees of

urbanisation. The models BLM1, BLM2 and BLM3 share the same trend model. This consists of

separate smooth trend models for the provinces with a scalar variance structure, denoted RW2P.

This implies that the innovations for the trend share the same variance hyperparameter and no

correlations between provinces are assumed. All municipalities belonging to the same province

share the same provincial smooth trend. Deviations from this overall trend are modeled with

municipality-specific local level trends, denoted RW1M. A scalar variance structure is assumed also

for the innovations of the municipality trends. This is a parsimoneous alternative for a trend model

with a full covariance matrix for the trend innovations of municipalities as the provincial trends

induce a positive correlation between municipal trends within the same province (Boonstra and

van den Brakel, 2016). The model is used to compute monthly provincial unemployment figures

and quarterly municipal unemployment figures. Therefore the provincial trends are modelled at a

monthly frequency and the municipal trends are modelled at a quarterly frequency. This implies

that the provincial smooth trends generate a new innovation each month, while the municipal local

level trends produce only one new innovation for the three months within each quarter. Finally the

overall municipal levels are represented in each model as random intercepts.

The first model BLM1 uses Σ = Φ = ⊕􀐕Φ􀐕 in (8), i.e. the matrix with estimated design-variances

and covariances pooled over municipalities, as discussed in Section 3. Model BLM2 is the same but

uses instead Σ = ⊕􀐕𝜆􀐕Φ􀐕 for the survey errors. This covariance matrix is parameterized in terms of

municipal scale factors 𝜆􀐕, and turns out to fit the data better, as can be seen from the information

CBS | Discussion paper | December 4, 2018 16



Model name fixed effects random effects sampling error variance

BLM1 𝑝𝑒𝑟𝑖𝑜𝑑 + 𝑝𝑟𝑜𝑣 ∗ 𝑡 + 𝑢𝑟𝑏 ∗ 𝑐𝑐 MI + RW2P + RW1M no scaling

BLM2 𝑝𝑒𝑟𝑖𝑜𝑑 + 𝑝𝑟𝑜𝑣 ∗ 𝑡 + 𝑢𝑟𝑏 ∗ 𝑐𝑐 MI + RW2P + RW1M scaling

BLM3 𝑝𝑒𝑟𝑖𝑜𝑑 ∶ 𝑣𝑛 + 𝑝𝑟𝑜𝑣 ∗ 𝑡 + 𝑢𝑟𝑏 ∗ 𝑐𝑐 MI + RW2P + RW1M scaling

Model name Description

DR1 BLM3 + local level dynamic regression coefficient for 𝑐𝑐

DR2 BLM3 + smooth dynamic regression coefficient for 𝑐𝑐

DR2RS DR2 + random slopes for 𝑐𝑐 at municipal level

GL1 BLM3 with Laplace prior for municipal random effects

DR2RSL DR2RS with Laplace priors for municipal random effects and dynamic regression coeff.

SPDR2RS DR2RS + spatial random municipal intercepts and slopes for 𝑐𝑐

WN BLM3 + white noise

WNSPDR2RSL SPDR2RS with the Laplace priors of DR2RSL + white noise

Table 5.1 Summary of the time-series models considered. The abbreviations for the

random effects terms of the baseline models BLM1, BLM2, BLM3 stand for municipal

random intercepts (MI), smooth provincial trends (RW2P) and local level municipal

trends with quarterly innovations (RW1M).

𝜎􀍮,􀎠􀎥􀎫 𝜎􀍮,􀎪􀎣 𝜌􀍮 𝜎􀍯,􀎠􀎥􀎫 𝜎􀍯,􀎪􀎣 𝜌􀍯 𝜎􀍰 𝜎􀍱 𝜎􀍲 𝜎􀍳
BLM1 0.41 0.005 0.056

BLM2 0.46 0.003 0.122

BLM3 0.25 0.004 0.132

DR1 0.25 0.003 0.124 3.0

DR2 0.25 0.003 0.125 0.45

DR2RS 0.16 8.0 -16 0.003 0.126 0.45

GL1 0.27 0.004 0.128

DR2RSL 0.17 8.4 -10 0.003 0.123 0.43

SPDR2RS 0.12 4.9 -19 0.22 9.7 -12.0 0.003 0.127 0.50

WN 0.26 0.004 0.147 0.61

WNSPDR2RSL 0.14 6.7 -18 0.49 20.0 -7.8 0.003 0.139 0.46 0.61

Table 5.2 Posterior means (×100) of variance components under the models

considered. The parameter names correspond to the random effect model components

introduced in Section 4.2.

criteria in Table 5.3. Figure 5.1 shows that the estimated scale factors are almost linearly related to

the unemployment fraction, and therefore they restore the dependence between estimate and

variance that was removed by pooling the design variances over municipalities, which was done

because of the large sampling variances of the estimated design variances themselves.

The posterior predictive p-values in Table 5.4 also show a defect of model BLM1: it takes the value 1

for the variance (weighted or unweighted), meaning that predicted data based on model BLM1 has

too much variablility compared to the original data. Model BLM2 is somewhat better in this respect

(p-values around 0.8), but it has very low p-values for the means of the estimates, meaning that

predicted data based on model BLM2 tend to be negatively biased. This is clear also from Figure

5.2, which shows the monthly national aggregates for direct estimates and model estimates based

on BLM2 and BLM3.

The bias of BLM2 at the national level is clearly undesirable. Model BLM3 removes this bias, at least

approximately, by exploiting the internal benchmarking approach described in Bell et al. (2013).

Loosely speaking, by including fixed effects for the columns of Σ𝑊 for a given𝑀×𝑞matrix𝑊 in the
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Figure 5.1 Posterior means of the variance factors 𝜆􀐕 of model BLM2, versus the

time-averages of the direct estimates for the municipalities. The dot size relates to the

population size of a municipality.
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Figure 5.2 Monthly time-series of national aggregates of direct estimates (black dots)

and model estimates based on models BLM2 (blue line) and BLM3 (red dashed line).

CBS | Discussion paper | December 4, 2018 18



DIC pDIC WAIC1 pWAIC1 WAIC2 pWAIC2 mean llh

BLM1 -102522 256 -99967 508 -99935 524 51389

BLM2 -104676 755 -100903 1519 -100537 1703 52716

BLM3 -104719 686 -101091 1328 -100774 1486 52702

DR1 -104716 682 -101094 1317 -100777 1476 52699

DR2 -104720 678 -101097 1314 -100781 1472 52699

DR2RS -104720 683 -101103 1326 -100788 1483 52702

GL1 -104730 690 -101102 1342 -100781 1502 52710

DR2RSL -104734 683 -101113 1335 -100795 1494 52709

SPDR2RS -104729 684 -101115 1329 -100798 1487 52707

WN -104895 2126 -101226 2638 -100352 3075 53511

WNSPDR2RSL -104923 2168 -101270 2689 -100383 3133 53546

Table 5.3 Information criteria and effective numbers of model parameters for all

models: DIC and two versions of WAIC. The last column displays the posterior mean of

the log-likelihood.

var weighted var mean weighted mean

BLM1 1.00 1.00 0.82 0.53

BLM2 0.83 0.80 0.12 0.05

BLM3 0.87 0.80 0.77 0.45

DR1 0.87 0.79 0.76 0.46

DR2 0.86 0.82 0.75 0.44

DR2RS 0.87 0.83 0.74 0.46

GL1 0.87 0.82 0.74 0.45

DR2RSL 0.86 0.85 0.71 0.46

SPDR2RS 0.90 0.83 0.71 0.47

WN 0.79 0.72 0.74 0.47

WNSPDR2RSL 0.80 0.75 0.71 0.47

Table 5.4 Posterior predictive p-values for mean and variance of the estimates, both

unweighted and weighted by municipal population sizes.

model, the model predictions 𝜃̂ satisfy the benchmark conditions𝑊􀚄𝜃̂ = 𝑊􀚄 ̂𝑌̄. Choosing𝑊 to be

the𝑀×𝑀􀐆 indicator-matrix for month with each column multiplied by the𝑀-vector 𝑁 of

population sizes we get the desired benchmark restrictions. For the Σ in the predictor matrix Σ𝑊 a

plug-in estimate Σ̂ = ⊕􀐕𝜆̂􀐕Φ􀐕 is used, where 𝜆̂􀐕 are the posterior means obtained from model

BLM2. To include this in the fixed effects part of the model, define the quantitative covariate 𝑣𝑛 to

be the vector Σ𝑁, and replace 𝑝𝑒𝑟𝑖𝑜𝑑 in (11) by 𝑝𝑒𝑟𝑖𝑜𝑑 ∶ 𝑣𝑛, where the ':' indicates that no main

effects for 𝑝𝑒𝑟𝑖𝑜𝑑 are included. (We are using the R language (R Core Team, 2018) conventions for

model formulae). The variable 𝑣𝑛 turned out to contain for some of the smallest municipalities and

a few months several outlying values, which have been removed by cutting off all values below 20

and above 200. This prevents a few unrealistic predictions for these month-municipality

combinations, but otherwise has little effect. Note that using 𝑣𝑛 as a covariate also means that for

prediction for non-observed month-municipality combinations a value for this variable must be

available. In these cases a variance estimate of 1 has been used for computing 𝑣𝑛, which is

relatively large compared to the variance estimates for non-missing month-municipality

combinations. Figure 5.2 shows that the national-level bias is indeed almost non-existent for BLM3.

There are only slight discrepancies due to using the above-mentioned cut-off values, using the

plug-in estimate for 𝜆􀐕 from model BLM2, and more generally Monte Carlo error of the MCMC

estimates. Model BLM1 has only slightly larger national-level bias than model BLM3. This is not
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shown in the figure, but is consistent with the posterior predictive p-value close to 0.5 for the

weighted mean in Table 5.4. BLM1 also approximates the internal benchmark condition, since Σ𝑁

for BLM1 is well-represented by the fixed effects term 𝑝𝑒𝑟𝑖𝑜𝑑, due to the fact that pooled variances

are used and sampling fractions are equal over municipalities.

Based on the above comparison, model BLM3 is the best of the baseline models. We next compare

different extensions of BLM3. The first extension is to allow for a time-varying regression coefficient

for the fraction of claimant counts at the national level. This is realised by including random effects

term 5 described in Section 4.2 with either first or second-order random walk innovations. These

models are abbreviated as DR1 and DR2, respectively. Figure 5.3 shows the estimated time trends

of both models. They are composed of the posterior means of the main effect for claimant counts

plus the varying effects, and in case of the second-order random walk also the linear time trend

fixed effect. In terms of the model-fit measures the dynamic regression coefficient does not change

much, except that the WAIC measures suggest that especially the smooth dynamic regression

coefficient of model DR2 yields a small improvement over model BLM3.
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Figure 5.3 Posterior mean of the regression coef􀅮icient for claimant counts varying

over month, based on 􀅮irst-order (black) and second-order (red, dashed) randomwalks.

The next model considered is a further extension of DR2 with claimant count slopes varying by

municipality. A full 2 × 2 covariance matrix is used to model the variances of and correlation

between municipal slopes and intercepts, as described under random effect term number 1 in

Section 4.2. This model is abbreviated as DR2RS. Its WAIC values are slightly smaller (better) than

for model DR2, but otherwise the model assessment measures are similar.

Another modification considered is the use of non-normal priors for random effects. Model GL1 is

model BLM3 where the normal distribution for the municipality random effects is replaced by a

Laplace distribution. The Laplace distribution places more mass around zero and has fatter tails
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than the normal distribution. This is illustrated by Figure 5.4 where the posterior means of the

municipal random intercepts are displayed for models BLM3 and GL1. The Laplace prior hardly

shrinks small municipality intercepts further to zero, but does allow a few more extreme values.

The smallest value corresponds to a very small municipality with small monthly sample sizes, which

happens to have no observations of unemployed persons in the study period. The two largest

values correspond to two large cities Groningen and Rotterdam. We have also tried to use a

horseshoe prior, which is more extreme in the sense that it places even more mass around zero and

has even fatter tails than the Laplace distribution, and is very suitable in a sparse situation where

many effects are in fact zero. As mentioned in Section 4.2 the horseshoe prior did not work as well

as the Laplace prior, perhaps because most random municipality effects are actually nonzero.

According to the information criteria, the Laplace priors of model GL1 yield a small improvement

over model BLM3, see Table 5.3.

The next model listed in Table 5.1, DR2RSL, combines model DR2RS with the Laplace global local

prior of model GL1. The Laplace prior is used both for the municipal random intercepts and slopes

and for the innovations of the smooth dynamic regression coefficient for claimant counts. From

Table 5.3 it can be seen that the two small improvements of models DR2RS and GL1 over the

baseline model BLM3 result in a larger improvement of DR2RSL regarding the information criteria.

Another potential model improvement is to account for the spatial neighbourhood structure of

municipalities, by including spatial correlations over municipalities in addition to the clustering of

municipalities within provinces already implicitly accounted for in the models. Model SPDR2RS is an

extension of model DR2RS in which besides the unstructured (iid) municipal random intercepts and

slopes for claimant counts also the same effects with spatial ICAR correlation are included. The

posterior mean estimates of these four types of effects under this model are displayed in Figure 5.5

(plots have been made using R package tmap (Tennekes, 2018)). Compared to model DR2RS, this

model yields a modest improvement regarding the information criteria of about 10 units.

The models considered thus far do not contain a white noise term, i.e. an unstructured random

effects term at the data-level of municipality-by-month. Such a term might capture some remaining

unstructured contributions to the signal (the linear predictor), instead of perhaps attributing them

to the sampling noise. To study this, we first consider model WN, which is model BLM3 extended by

a white noise term. Table 5.3 shows that the white noise term results in a large increase of the

effective number of model parameters as estimated by 𝑝􀎁􀎆􀎀, 𝑝􀎔􀍾􀎆􀎀,􀍮 and 𝑝􀎔􀍾􀎆􀎀,􀍯. At the same

time the model fit becomes much better. However, the information criteria considered disagree

about the trade-off between model-fit and model complexity. According to DIC and WAIC1, WN is a

much better model, whereas according to WAIC2 it is much worse than BLM3. The discrepancy

between WAIC1 and WAIC2 is due to the large difference in the estimated effective number of

model parameters, but it is not clear to us which estimate is to be preferred in this case. Looking at

the other model evaluation measures, we see from Table 5.4 that adding white noise yields

posterior predictive p-values for the variance statistics a little closer to 0.5, implying that the spread

of data generated by model WN is closer to that of the observed data. A more notable difference is

that the RRSE measures at both provincial and municipal levels (Tables 5.6 and 5.8) become smaller.

So the estimated standard errors under model WN are larger than under model BLM3, which seems

reasonable. The white noise term decreases the risk of underfitting and obtaining over-optimistic

standard errors. We have also tried to include an unstructured random effects term at the

province-by-month level, but this did not seem to be an improvement and had no noticeable effect

on the RRSE values. Figure 5.6 shows the small but noticeable difference between models BLM3

and WN regarding their flexibility; the latter tends to follow the direct estimates more closely.
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The last model considered combines all model extensions that have been found to be

improvements: the dynamic smooth regression coefficient and random slopes for claimant counts

with Laplace priors, spatial municipal intercepts and slopes with Laplace priors, and white noise.

This is the model with lowest DIC and WAIC1. Its WAIC2 is lower than that of WN, but still high

compared to the other models. This is due to the white noise term, which has an adversarial effect

on WAIC2 but otherwise seems to be an improvement. So we choose this model as the model to

base inferences on.

Figures 5.7 and 5.8 show the monthly provincial estimates based on the chosen model, and

compare them to the direct GREG estimates and the cross-sectional SAE estimates. Note that the

latter are only available per quarter. It is clear that the estimates based on the time-series multilevel

model capture the mean level over time of the GREG estimates better than do the cross-sectional

estimates. The difference is especially large for the provinces Groningen, Friesland and Flevoland,

where the cross-sectional estimates are negatively biased relative to the GREG estimates, and the

province Zeeland where the cross-sectional estimates are positively biased relative to the GREG

estimates. This is also apparent from Table 5.5, which contains the mean relative bias measures

defined in (21), computed at the provincial level. It can also be seen that the estimated standard

errors based on the time-series multilevel model are smaller than the standard errors based on the

cross-sectional model, even though the latter refer to quarters. This is in agreement with Table 5.6,

which contains the percentage reduction of standard errors relative to those of the direct estimates

at both quarterly and monthly levels. Table 5.6 demonstrates that the gain relative to the direct

estimates is larger at the more disaggregated monthly level, as one would expect.

GR FR DR OV FL GD UT NH ZH ZL NB LB

CS-SAE -9.6 -10.7 -4.2 -0.4 -9.9 0.2 2.3 0.9 0.5 12.8 1.6 -1.5

BLM1 -1.0 0.5 -0.8 0.3 1.3 0.3 -0.5 0.1 0.1 -0.2 -0.4 0.9

BLM2 -3.2 -3.0 -1.6 -0.7 0.7 -1.5 -0.8 -1.0 -1.8 -0.7 -1.2 -0.5

BLM3 -2.1 -1.1 0.3 1.2 1.3 -0.2 0.3 0.2 -0.9 1.2 -0.1 0.9

DR1 -1.9 -1.1 0.3 1.2 1.4 -0.2 0.2 0.3 -0.9 1.3 -0.1 1.0

DR2 -2.0 -1.1 0.3 1.1 1.3 -0.2 0.2 0.3 -0.9 1.4 -0.1 1.0

DR2RS -2.1 -1.0 0.2 1.1 1.6 -0.2 0.2 0.3 -0.8 1.1 -0.1 0.9

GL1 -1.8 -1.1 0.2 1.1 1.3 -0.1 0.3 0.2 -0.8 1.1 -0.1 0.9

DR2RSL -1.8 -0.8 0.1 1.0 1.5 -0.1 0.2 0.3 -0.8 1.3 -0.1 0.8

SPDR2RS -2.1 -1.2 0.3 1.0 1.4 -0.1 0.4 0.2 -0.8 1.4 0.0 0.8

WN -1.3 -1.1 0.1 1.1 1.5 -0.1 -0.0 0.0 -0.5 1.2 -0.3 0.9

WNSPDR2RSL -1.3 -0.9 0.2 1.0 1.5 -0.1 -0.0 0.1 -0.4 1.2 -0.3 0.7

Table 5.5 Mean relative biases (in %) as de􀅮ined in (21) for the cross-sectional SAE

estimates (􀅮irst line) and the different time-series models, at the provincial level.

Similar conclusions can be drawn from Tables 5.7 and 5.8 concerning the municipal-level estimates:

the (mean over municipalities of the) mean relative bias of the time-series model estimates is

clearly smaller than that for the cross-sectional SAE model. The estimated standard errors are also

smaller under the time-series model compared to the cross-sectional model, though the

differences are not as large as in the provincial-level case. Figure 5.9 shows that the cross-sectional

SAE method shrinks the estimates more towards the mean than does the time-series model. Note

that the figure only displays time-averages. Naturally, the bias-variance trade-off is made differently

by the time-series model because it can make use of more information over time.

We are primarily interested in quarterly municipal estimates even though the time-series models

considered also provide monthly estimates. Figures 5.10 and 5.11 compare the quarterly estimates
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GR FR DR OV FL GD UT NH ZH ZL NB LB

quarterly

CS-SAE 31.7 34.0 38.4 27.8 35.9 18.2 23.7 12.0 7.9 40.0 15.2 24.9

BLM1 50.2 49.6 52.9 47.8 51.9 41.2 45.7 38.9 35.2 53.3 39.6 45.8

BLM2 49.6 51.1 55.1 51.3 46.6 47.1 48.6 41.5 37.7 63.0 45.7 50.4

BLM3 46.5 49.5 54.4 48.8 44.3 46.7 48.3 36.5 28.8 63.4 45.3 49.8

DR1 47.2 50.2 54.4 49.6 45.1 47.9 48.7 36.8 28.9 63.8 45.9 50.7

DR2 47.6 50.8 55.1 50.1 44.5 48.1 49.1 37.2 29.8 64.3 46.1 50.8

DR2RS 47.8 50.7 55.4 50.4 45.2 48.6 49.0 37.5 29.7 64.5 46.6 51.2

GL1 46.6 50.2 54.0 48.5 43.3 46.7 47.9 36.3 29.2 63.1 45.3 49.7

DR2RSL 48.6 50.6 55.4 50.3 44.6 48.6 49.6 37.2 30.1 64.6 46.4 50.9

SPDR2RS 47.6 50.7 54.5 50.2 44.5 48.5 48.7 37.4 29.5 64.2 46.1 50.7

WN 42.2 46.5 50.7 46.2 38.4 44.5 44.3 37.0 30.1 60.3 43.3 46.4

WNSPDR2RSL 44.0 47.8 51.4 47.0 39.0 46.1 45.5 37.8 30.6 61.6 43.7 47.3

monthly

BLM1 67.1 66.8 69.3 63.2 69.7 55.6 61.3 52.6 48.1 70.5 53.2 61.8

BLM2 66.8 68.7 70.9 65.5 67.1 59.5 63.6 54.9 50.4 76.2 57.0 64.9

BLM3 64.1 65.7 70.2 63.7 63.0 60.4 63.3 49.0 39.9 77.3 58.1 64.8

DR1 64.5 66.1 70.1 64.0 63.3 60.9 63.6 49.1 39.8 77.5 58.3 65.1

DR2 64.7 66.4 70.6 64.3 63.2 61.1 63.8 49.4 40.4 77.8 58.5 65.3

DR2RS 64.7 66.3 70.7 64.4 63.5 61.2 63.7 49.4 40.2 77.9 58.7 65.5

GL1 64.1 66.0 70.0 63.6 62.5 60.4 63.2 48.9 40.0 77.1 58.1 64.7

DR2RSL 65.1 66.2 70.7 64.3 63.1 61.3 64.0 49.3 40.4 78.0 58.6 65.3

SPDR2RS 64.6 66.3 70.2 64.3 63.1 61.2 63.6 49.4 40.2 77.8 58.5 65.2

WN 56.0 60.4 63.7 57.7 53.1 55.3 54.7 44.3 37.5 71.8 53.4 59.0

WNSPDR2RSL 56.4 60.7 63.9 58.0 53.4 56.3 55.2 44.6 38.1 72.6 53.6 59.6

Table 5.6 Mean RRSE (in%) for quarterly and monthly municipal model-based

estimates. The 􀅮irst line contains the measures for the cross-sectional SAE estimates,

which are only available quarterly. For the time-series multilevel models the measures

are given at both temporal aggregation levels.

based on the selected time-series model with the direct estimates and estimates based on the

cross-sectional SAE model for a selection of municipalities ordered by decreasing population size.

For the largest municipalities (Figure 5.10) the model-based estimates are generally close to the

direct estimates. There are some systematic differences for example for Groningen where the

model-based estimates are mostly below the direct estimates. This is the case also for the

time-series model despite the fact that for Groningen the random intercept and slope for claimant

counts are large and positive, and the random effects distribution is Laplace. For some

municipalities systematic differences between time-series and cross-sectional model-based

estimates are visible, for example for Enschede, Roermond (Figure 5.10) and Appingedam (Figure

5.11). In most but not all of such cases the time-series model estimates are closer to the average of

the direct estimates. The last municipality displayed in Figure 5.11 is Schiermonnikoog, an island

with fewer than 1000 inhabitants. The information coming from the direct estimates is very sparse

in this case: the sample sizes are very small and over the period considered no unemployed have

been among the respondents, and in some months there has been no response at all. It is also a

municipality with a strong seasonal pattern in the claimant count register data. This pattern is also

visible in the model-based estimates, especially the time-series ones.
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Min. 1st Qu. Median Mean 3rd Qu. Max.

CS-SAE -47.4 -8.7 1.6 7.7 16.8 213.0

BLM1 -39.4 -5.2 1.2 5.7 10.8 186.3

BLM2 -43.3 -6.2 0.2 2.1 6.6 166.7

BLM3 -31.4 -6.1 1.0 4.1 9.5 166.6

DR1 -30.9 -6.1 1.1 4.2 9.7 166.8

DR2 -31.3 -6.1 1.2 4.1 9.4 167.9

DR2RS -32.3 -6.3 1.0 4.1 8.8 165.9

GL1 -30.0 -6.1 1.1 4.1 9.3 166.5

DR2RSL -31.3 -6.1 0.9 4.0 9.0 164.4

SPDR2RS -33.2 -5.5 1.1 3.9 8.2 169.5

WN -30.2 -5.8 1.0 4.0 9.0 165.5

WNSPDR2RSL -32.0 -5.2 0.9 3.8 8.2 169.3

Table 5.7 Summary statistics of mean relative biases (in%) for municipalities, for the

cross-sectional SAE estimates (􀅮irst line) and the different time-series models.

Min. 1st Qu. Median Mean 3rd Qu. Max.

CS-SAE 20.4 68.3 74.5 72.4 78.8 91.3

BLM1 53.8 77.5 81.4 80.4 84.5 93.1

BLM2 43.8 75.2 79.8 78.2 83.0 92.7

BLM3 37.6 78.8 83.3 81.3 86.3 94.1

DR1 36.9 79.2 83.7 81.6 86.5 94.2

DR2 38.3 79.2 83.7 81.6 86.4 94.2

DR2RS 37.2 78.7 83.4 81.3 86.4 94.2

GL1 35.1 78.7 83.2 81.1 86.1 94.0

DR2RSL 35.2 78.5 83.4 81.2 86.3 93.7

SPDR2RS 37.6 78.9 83.5 81.3 86.3 94.3

WN 25.6 70.4 76.8 74.2 80.8 92.4

WNSPDR2RSL 24.4 70.5 76.9 74.3 81.1 92.1

Table 5.8 Summary statistics of mean RRSE (in%) for quarterly municipal

model-based estimates. The 􀅮irst line contains the measures for the cross-sectional SAE

estimates.
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Figure 5.4 Posterior means of the municipal intercepts based on model BLM3

(normal) and model GL1 (Laplace).
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Figure 5.5 Municipal random intercepts (upper) as well as slopes for claimant counts

(lower). Both independent (unstructured) effects (left) and ICAR spatial effects (right)

are shown. Note that the intercept sizes have been multiplied by 100 for better

readability.
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Figure 5.6 Monthly estimates for one of the provinces, Groningen, based onmodels

BLM3 (above) andWN (below). The thin dashed lines represent the lower and upper

limits of approximate 95% intervals. The green line is the fraction of claimant counts.
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Figure 5.7 Estimates for the northern and eastern provinces. GREG (black) and

time-series model estimates (red) are monthly, whereas the cross-sectional small area

estimates are available only on a quarterly basis. The thin red dashed lines represent

the lower and upper limits of approximate 95% intervals for the time-series model

estimates. The blue bars represent approximate 95% intervals for the cross-sectional

SAE estimates.
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Figure 5.8 Estimates for the southern and western provinces. GREG (black) and

time-series model estimates (red) are monthly, whereas the cross-sectional small area

estimates are available only on a quarterly basis. The thin red dashed lines represent

the lower and upper limits of approximate 95% intervals for the time-series model

estimates. The blue bars represent approximate 95% intervals for the cross-sectional

SAE estimates.
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Figure 5.9 Scatterplot of model-based vs direct municipal estimates averaged over

time.
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Figure 5.10 Time-series of quarterly estimates for a selection of large to medium-sized

municipalities. The thin dashed lines represent the lower and upper limits of

approximate 95% intervals for the time-series and cross-sectional model-based

estimates. For reference the claimant count series is also displayed.
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Figure 5.11 Time-series of quarterly estimates for a selection of medium-sized to

small municipalities. The thin dashed lines represent the lower and upper limits of

approximate 95% intervals for the time-series and cross-sectional model-based

estimates. For reference the claimant count series is also displayed.
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6 Discussion

In most countries labour force figures are based on surveys, which are used to produce multiple

output tables. Monthly figures are typically produced at a high regional level due to the lack of

sufficient sample data. But also for quarterly and annual figures there is an increasing demand for

detailed publications at a level for which the sample mass becomes too small to apply standard

design-based estimation techniques. Over the last decade the use of model-based small area

estimation methods has become more and more accepted in the production of official statistics.

Since 2010 Statistics Netherlands indeed uses a multivariate structural time series model (STM) for

the publication of official monthly labour force figures at a high regional level. Since 2015 a

Battese-Harter-Fuller unit-level model is in place for the production of annual provincial and

municipal unemployment figures. A consequence of using different models for different output

tables is that numerical consistency between marginals of the various output tables is disturbed.

In this paper a small area estimation strategy is developed that avoids consistency problems

between different output tables. The models developed take into account the aggregation levels of

interest by means of various random effects terms. The main interest focuses on monthly provincial

unemployment and quarterly municipal unemployment. Therefore a time series multilevel model is

specified at the most detailed level of month-by-municipality. From the estimated model, monthly

provincial estimates are obtained by aggregating monthly municipal predictions over municipalities

and quarterly municipal figures by aggregating the same predictions over months.

Input for this model consists of municipal GREG estimates for unemployment. These estimates are

calibrated to the monthly figures published with the multivariate STM, which entails a correction

for rotation group bias. The time series multilevel model also uses pooled design variances of the

GREG estimates as well as design covariances to account for the serial correlation in the sampling

errors due to the sample overlap of the rotating panel design.

The input series are direct estimates at the most detailed level. To obtain more accurate small area

predictions, a time series multilevel model is developed in an hierarchical Bayesian framework and

fitted with the Gibbs sampler. A first finding is that pooling the design variances disturbs the

dependency between the standard errors and the level of the estimates. This relation is restored

with a parameterized design covariance matrix, by including scale factors for the municipalities in

the covariance matrix of the sampling errors. To achieve numerical consistency with the monthly

figures at the national level we apply an internal benchmarking procedure, which uses a weighted

version of the parameterized design covariance matrix as a predictor matrix that augments the

fixed effects design matrix of the model. A plug-in estimate for this parameterized design

covariance matrix is obtained by fitting an initial time series model to derive the posterior means of

the municipal scale parameters.

The finally selected time series model borrows strength over time and space by defining

independent smooth trend models for the provinces. All municipalities within a province share the

same smooth trend model. Each municipality has a separate local level trend to account for

deviations from the overall provincial trend. In this way (positive) correlations between trend

innovations of municipalities within provinces are modelled indirectly. This is a parsimonious

alternative for a model with a full covariance matrix among the trend innovations. The time series

multilevel model also borrows strength from claimant count series that are included as a dynamic

regression component, allowed to vary over time according to a first or second-order random walk.
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The claimant count coefficients can also vary between municipalities by means of a random slope

component, and the model allows for correlations between the municipal intercepts and slopes. A

further extension of the model is realised by including spatial correlations among the random

intercepts and among the random slopes for claimant counts using a spatial ICAR model.

In addition, it is investigated to what extent non-normal priors for random effects further improve

the model fit over standard normal priors. It turns out that Laplace distributions work well for a

number of random effect terms, and they are preferred over t-distributed and horseshoe priors in

this application. The Laplace prior is more flexible than the normal prior as it allows for a few

outlying random effects and does not seem to overshrink random effects to zero.

Estimates based on the selected time series model improve on the cross-sectional SAE estimates

that are currently computed quarterly based on a unit-level Battese-Harter-Fuller model, and

published annually. Predictions based on the time series multilevel model are more in line with the

level of the GREG series. In other words, on average over time, the bias in the time series multilevel

model predictions is smaller than that of the cross-sectional SAE estimates. This is true for both

municipal and provincial levels. In addition the time series multilevel model results in a decrease in

the standard errors of the model predictions. The decrease is modest at the municipal level, but

substantial at the provincial level. More precisely, the time series multilevel model standard errors

for quarterly provincial figures are on average 45% smaller than the standard errors of the direct

estimates. The average reduction based on the cross-sectional SAE model is about 25%. For the

municipal figures the average reduction of the standard errors is 74% based on the time series

multilevel model and 72% based on the cross-sectional SAE model. The time series model also

produces monthly provincial estimates. For these estimates the average reduction of standard

errors compared to the standard errors of the direct estimates is about 56%.

Another advantage of the time series multilevel models is that they produce numerically consistent

estimates at both municipal and provincial levels and at monthly and quarterly temporal

aggregation levels. Currently, the cross-sectional SAE method is applied separately for

municipalities and provinces, and an extra benchmark procedure is necessary to get a consistent

set of estimates. Note, however, that the predictions obtained with the time series multilevel

model are only approximately consistent with the published monthly national figures. This is in part

because the internal benchmarking procedure uses a plug-in estimate of the parameterized

covariance matrix of the sampling errors. But exact numerical consistency would not be possible

anyway using a simulation-based approach because of Monte Carlo error. In the end a final

'cosmetic' benchmark update remains necessary for exact numerical consistency with published

national figures.

The current model accounts indirectly for seasonal effects, since the domain predictions are

benchmarked to the GREG estimates at the national level. These GREG estimates are themselves

calibrated to the monthly STM estimates at the national level, where seasonal effects are explicitly

included in the model. A point for further research is to extend the model with seasonal effects.

Some first attempts, however, did not result in an improved overall model fit. If seasonally adjusted

regional figures are of interest, then it is important to include regional seasonal effects nonetheless.

However, a difficulty in obtaining seasonally adjusted figures is that a seasonal effect is present in

the claimant count series too. An alternative would be to treat the claimant count series as a

dependent series with its own trend and seasonal effects, and allow for correlations between the

trend and possibly seasonal innovations of the LFS unemployment and claimant counts.
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Finally, a further obvious model extension is to account for the effects of the survey redesigns of the

LFS in 2010 and 2012. These redesigns have led to changes in non-sampling error and consequently

to level changes in the time series of direct unemployment estimates. To account for such changes,

intervention variables may be added as additional model components. It must then be investigated

whether discontinuities should be modelled as fixed or random effects and whether non-normal

priors result in better fits. An alternative would be to account for the redesign effects by using

GREG input series that have already been adjusted for these effects.
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Appendix

A Gibbs sampler for the multilevel

time-series model

For notational convenience we rewrite model (7) as

𝑦 = 𝜂 + 𝑒 (A.1)

where 𝑦 = ̂𝑌̄ is the data vector consisting of𝑀 GREG estimates, 𝜂 is a linear predictor built from

various fixed and random effect terms, and 𝑒 is a vector of survey errors, modeled as

𝑒 ∼ 𝑁(0,⊕
􀏿􀓫

􀐕􀍹􀍮𝜆􀐕Φ􀐕) , (A.2)

in terms of a covariance matricesΦ􀐕 depending on initial variance estimates treated as known, and

scale factors 𝜆􀐕, one for each area 𝑖 = 1,… ,𝑀􀏳.

All quantities of interest considered can be expressed as linear combinations of the fixed and

random effects. Let 𝜃 be such a vector of quantities of interest. Inference about 𝜃 is based on its

posterior distribution 𝑝(𝜃|𝑦). This distribution cannot be obtained in closed form and cannot be

directly sampled from. Therefore we use a Markov chain Monte Carlo (MCMC) method, and in

particular the Gibbs sampler (Geman and Geman, 1984; Gelfand and Smith, 1990). Using the Gibbs

sampler we sample from the joint posterior 𝑝(𝜓| ̂𝑌̄) where 𝜓 is the vector of all model parameters,

including 𝜆, 𝛽 and the parameters associated with each random effects term. The joint posterior is

determined by the model and prior specifications,

𝑝(𝜓|𝑦) ∝ 𝑝(𝜓)𝑝(𝑦|𝜓) , (A.3)

up to a normalization constant. The Gibbs sampler generates samples from this posterior

distribution, and from these samples and the definition of the parameters of interest 𝜃 we obtain

posterior samples for the latter.

The Gibbs sampler iteratively samples from the full conditional distributions

𝑝(𝜓􀐓|𝑦, 𝜓􀍮, … , 𝜓􀐓􀍸􀍮, 𝜓􀐓􀍷􀍮, … , 𝜓􀏹), for a suitable decomposition of 𝜓 in blocks 𝜓􀐓, 𝑔 = 1,… , 𝐺.

The full conditionals for the class of linear multilevel models considered in this paper are easy to

sample from: they are normal for all (fixed or random) coefficients and inverse chi-squared or

inverse-Wishart for the variance parameters. With 𝐺 the number of parameter blocks and 𝐾 the

number of simulations, the Gibbs sampling algorithm is as follows:

choose starting values 𝜓
(􀍭)
􀐓 for 𝑔 = 1,… , 𝐺

for 𝑘 in 1 to 𝐾

for 𝑔 in 1 to 𝐺

draw 𝜓
(􀐗)
􀐓 from 𝑝(𝜓􀐓|𝑦, 𝜓

(􀐗)
􀍮 , … , 𝜓

(􀐗)
􀐓􀍸􀍮, 𝜓

(􀐗􀍸􀍮)
􀐓􀍷􀍮 , … , 𝜓

(􀐗􀍸􀍮)
􀏹 )

After convergence, samples can be considered draws from 𝑝(𝜓|𝑦).

Below we give the full conditional distributions for all model parameters. The vector 𝛽 of fixed

effects is sampled in a single block, and each random effect term 𝑣(􀑁) is considered a block as well.

CBS | Discussion paper | December 4, 2018 39



A.1 Full conditional distributions

For the vector of data-level variance parameters we use as prior

𝜆􀐕
􀎠􀎥􀎛
∼ Inv−𝜒􀍯(1, 1) , (A.4)

for 𝑖 = 1,… ,𝑀􀏳. We have thatΦ = ⊕
􀏿􀓫

􀐕􀍹􀍮Φ􀐕, since initial estimates for different areas are

uncorrelated. The full conditional for 𝜆􀐕 is then

𝑝(𝜆􀐕|𝑦, .) ∝ 𝑝(𝜆􀐕)𝑁 (𝑒|0, 𝜆􀐕Φ􀐕) , (A.5)

independently for 𝑖 = 1,… ,𝑀􀏳, where 𝑒 = 𝑦 − 𝜂 is the vector of residuals. We use the notation '.'

in 𝑝(𝜆􀐕|𝑦, .) to denote conditioning on all other parameters. This yields inverse chi-squared

distributions

𝑝(𝜆􀐕|𝑦, .) = Inv−𝜒􀍯(𝜆􀐕|𝑑􀐕, 𝑠􀐕) ,

𝑑􀐕 = 𝑛􀐕 + 1 ,

𝑠􀐕 =
1

𝑑􀐕
(1 + 𝑒􀚄{􀐕}Φ

􀍸􀍮
􀐕 𝑒{􀐕}) ,

(A.6)

where subscript {𝑖} denotes the data units associated with municipality 𝑖, and 𝑛􀐕 is the number of

those units. In our case 𝑛􀐕 equals the number of months for which the response for municipality 𝑖 is

non-empty, which means that 𝑛􀐕 = 𝑀􀐆 for most municipalities.

Given a prior distribution 𝑝(𝛽) = 𝑁(𝛽|𝑏􀍭, Ω􀑂), the full conditional distribution for the vector 𝛽 of

fixed effects is

𝑝(𝛽|𝑦, .) = 𝑁(𝛽|𝐸􀑂, 𝑉􀑂) ,

𝑉􀑂 = (𝑋􀚄Σ􀍸􀍮𝑋 + Ω􀍸􀍮
􀑂 )

􀍸􀍮

,

𝐸􀑂 = 𝑉􀑂 (𝑋
􀚄Σ􀍸􀍮𝑒􀑂 + Ω􀍸􀍮􀑂 𝑏􀍭) ,

where Σ = ⊕
􀏿􀓫

􀐕􀍹􀍮𝜆􀐕Φ􀐕 and 𝑒􀑂 = 𝑦 − 𝜂 + 𝑋𝛽 is the vector of 'partial' residuals.

Next, we turn to the full conditional distributions associated with a generic random effect

component 𝑍(􀑁)𝑣(􀑁). In the description below, the superscript 𝛼 is omitted.

Let 𝑍 be a𝑀× 𝑞 design matrix corresponding to 𝑑 effects that can vary over the 𝑙 levels of a factor

variable. Let 𝑣 be the corresponding 𝑞-vector of random effects,

𝑣 = (𝑣􀐕􀐗)
􀚄
􀐕􀍹􀍮…􀐘 ; 􀐗􀍹􀍮…􀐐 = (𝑣􀍮􀍮, 𝑣􀍮􀍯, … )􀚄, where by convention the last index runs fastest. The

random effect contribution to the linear predictor is 𝑍𝑣.

We use redundant multiplicative parameterization, which improves convergence of the Gibbs

sampler (Gelman et al., 2008), and yields more robust prior distributions for the variance

parameters (Gelman, 2006). For that purpose, a 𝑑-dimensional parameter vector 𝜉 and a 𝑞-vector 𝑣̃

of raw random effects are introduced, which combine to form the original coefficients as

𝑣 = Δ􀑎𝑣̃ Δ􀑎 = 𝐼􀐘 ⊗diag(𝜉) = diag(𝑊𝜉) , (A.7)

where𝑊 = 𝜄􀐘 ⊗ 𝐼􀐐 is a 𝑞 × 𝑑 indicator-matrix, and 𝜄􀐘 is an 𝑙-vector of ones.

Priors on 𝜉 and 𝑣̃ are

𝜉 ∼ 𝑁(0, 𝐼􀐐) ,

𝑣̃ ∼ 𝑁(0, 𝐴⊗ 𝑉̃) ,
(A.8)
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where 𝐴 is a given, possibly degenerate 𝑙 × 𝑙 covariance matrix, and 𝑉̃ a parameterized 𝑑 × 𝑑

covariance matrix.

Three different parameterizations of 𝑉̃ are considered:

a.) 𝑉̃ is an unstructured covariance matrix with prior

𝑉̃ ∼ Inv −Wish(𝜈􀐢, Ψ􀐢) , (A.9)

with degrees of freedom 𝜈􀐢, by default taken to be 𝑑 + 1, and 𝑑 × 𝑑 scale matrixΨ􀐢, by default

equal to 𝐼􀐐.

b.) 𝑉̃ = diag(𝜎̃􀍯􀐢;􀍮… 𝜎̃􀍯􀐢;􀐐), a diagonal variance matrix with independent inverse chi-squared priors

on the variances,

𝜎̃􀍯􀐢;􀐗
􀎠􀎥􀎛
∼ Inv−𝜒􀍯(𝜈􀐢;􀐗, 𝑠

􀍯
􀐢;􀐗) (A.10)

c.) 𝑉̃ = 𝜎̃􀍯􀐢 𝐼􀐐. The prior for the single common variance parameter 𝜎̃􀍯􀐢 is

𝜎̃􀍯􀐢 ∼ Inv−𝜒􀍯(𝜈􀐢, 𝑠
􀍯
􀐢) . (A.11)

Note that if 𝑑 = 1, parameterizations a.) and b.) reduce to c.), provided thatΨ􀐢 is identified with

𝜈􀐢𝑠
􀍯
􀐢 .

The prior for the original coefficients 𝑣 is, given 𝜉 and 𝑉̃,

𝑣 ∼ 𝑁(0, 𝐴⊗ 𝑉) 𝑉 = diag(𝜉) 𝑉̃ diag(𝜉) . (A.12)

The 𝑙 × 𝑙matrix 𝐴 describes the covariance structure between the levels of the factor variable. It is

specified in terms of its inverse 𝑄􀏳, which directly reflects the conditional dependence structure

between the levels and is usually sparse.

The precision matrix 𝑄􀏳 may be singular. The singular vectors of 𝑄􀏳 correspond to directions along

which the prior is constant, i.e. non-informative. Let 𝑅􀏳 be the 𝑙 × 𝑟matrix of singular vectors such

that 𝑄􀏳𝑅􀏳 = 0. The matrix 𝑅 = 𝑅􀏳 ⊗ 𝐼􀐐 may then be used as a constraint matrix to impose

𝑅𝑣̃ = 0, or equivalently 𝑅𝑣 = 0, so that other terms in the model remain identifiable.

First we derive the full conditional for 𝜉, followed by that of 𝑉̃ and 𝑣̃. For 𝜉,

𝑝(𝜉|𝑦, .) ∝ 𝑁(𝜉|0, 𝐼􀐐)𝑁(𝑦|𝑍Δ􀑎𝑣̃ + … , Σ) (A.13)

Now

Δ􀑎𝑣̃ = diag(𝑊𝜉)𝑣̃ = diag(𝑣̃)𝑊𝜉 = Δ􀐢̃𝜉 , (A.14)

where Δ􀐢̃ = diag(𝑣̃)𝑊. Therefore,

𝑝(𝜉|𝑦, .) = 𝑁(𝜉|𝐸􀑎, 𝑉􀑎)

𝑉􀑎 = (Δ􀚄􀐢̃𝑍
􀚄Σ􀍸􀍮𝑍Δ􀐢̃ + 𝐼􀐐)

􀍸􀍮

𝐸􀑎 = (Δ􀚄􀐢̃𝑍
􀚄Σ􀍸􀍮𝑍Δ􀐢̃ + 𝐼􀐐)

􀍸􀍮
Δ􀚄􀐢̃𝑍

􀚄Σ􀍸􀍮𝑒􀐢 ,

(A.15)

where 𝑒􀐢 = 𝑦 − 𝜂 + 𝑍𝑣. Note that everything can be expressed in terms of 𝑣 instead of 𝑣̃ by using

𝑣̃ = Δ􀍸􀍮􀑎 𝑣. For 𝑑 = 1 or in the case that 𝑉̃ = 𝜎􀍯􀐢 𝐼􀐐 is defined in terms of a single variance

parameter, (A.15) reduces to

𝑝(𝜉|𝑦, .) = 𝑁(𝜉|𝐸􀑎, 𝑉􀑎)

𝑉􀑎 = (𝑣̃􀚄𝑍􀚄Σ􀍸􀍮𝑍𝑣̃ + 1)
􀍸􀍮

𝐸􀑎 = (𝑣̃􀚄𝑍􀚄Σ􀍸􀍮𝑍𝑣̃ + 1)
􀍸􀍮
𝑣̃􀚄𝑍􀚄Σ􀍸􀍮𝑒􀐢 .

(A.16)
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For the full conditional distribution for 𝑉̃ we distinguish between three situations:

a.) In the case that 𝑉̃ is a fully parameterised covariance matrix with an inverse Wishart prior,

𝑝(𝑉̃|𝑦, .) ∝ Inv −Wish(𝑉̃|𝜈􀐢, Ψ􀐢)𝑁(𝑣̃|0, 𝐴 ⊗ 𝑉̃)

∝ |𝐴⊗ 𝑉̃|
􀍸􀍮/􀍯

𝑒
􀍸
􀑦

􀑧
􀐢̃􀚅(􀐃􀓫⊗􀐈̃􀑰􀑦)􀐢̃

× |𝑉̃|
􀍸(􀑍􀔚􀍷􀐐􀍷􀍮)/􀍯

𝑒
􀍸
􀑦

􀑧
􀎫􀎩(􀏈􀔚􀐈̃

􀑰􀑦)

∝ |𝑉̃|
􀍸(􀑍􀔚􀍷􀐘

∗􀍷􀐐􀍷􀍮)/􀍯
𝑒
􀍸
􀑦

􀑧
􀎫􀎩[(􀏈􀔚􀍷􀐢̃

􀚅
􀓷􀐃􀓫􀐢̃􀓷)􀐈̃

􀑰􀑦]
,

(A.17)

where 𝑣̃􀏿 is the 𝑙 × 𝑑matrix such that 𝑣̃ = vec(𝑣̃􀚄􀏿), i.e. the matrix composed of stacking the 𝑙

row vectors 𝑣̃􀚄􀐕 . If the precision matrix 𝑄􀏳 = 𝐴􀍸􀍮 is singular and constraints associated with all

singular vectors are imposed on 𝑣̃ or 𝑣, then 𝑙∗ should be taken equal to the rank of 𝑄􀏳.
1)

Otherwise 𝑙∗ = 𝑙. We used the relation

|𝐶 ⊗ 𝐷| = |𝐶|􀎩􀎘􀎥􀎢(􀏶)|𝐷|􀎩􀎘􀎥􀎢(􀏵) , (A.18)

as well as the relations tr(𝐶􀚄𝐷) = vec(𝐶)􀚄vec(𝐷) and vec(𝐶𝐷𝐸) = (𝐸􀚄⊗𝐶)vec(𝐷) from which

follows

𝑣̃􀚄 (𝑄􀏳 ⊗ 𝑉̃􀍸􀍮) 𝑣̃ = vec(𝑣̃􀚄􀏿)
􀚄 (𝑄􀏳 ⊗ 𝑉̃􀍸􀍮) vec(𝑣̃􀚄􀏿)

= vec(𝑣̃􀚄􀏿)
􀚄vec(𝑉̃􀍸􀍮𝑣̃􀚄􀏿𝑄􀏳) = tr(𝑣̃􀏿𝑉̃

􀍸􀍮𝑣̃􀚄􀏿𝑄􀏳)

= tr(𝑣̃􀚄􀏿𝑄􀏳𝑣̃􀏿𝑉̃
􀍸􀍮) .

(A.19)

So in the case of an unstructured covariance matrix 𝑉̃,

𝑝(𝑉̃|𝑦, .) = Inv −Wish(𝑉̃|𝜈􀐢􀍮, Ψ􀐢􀍮)

𝜈􀐢􀍮 = 𝜈􀐢 + 𝑙∗

Ψ􀐢􀍮 = Ψ􀐢 + 𝑣̃􀚄􀏿𝑄􀏳𝑣̃􀏿 .

(A.20)

Note that 𝑉 is obtained from (A.12), or more immediately by drawing from an inverse Wishart

distribution with the same degrees of freedom, but with scale matrix

diag(𝜉)Ψ􀐢diag(𝜉) + 𝑣􀚄􀏿𝑄􀏳𝑣􀏿 , (A.21)

where 𝑣􀏿 = 𝑣̃􀏿diag(𝜉).

b.) In the case that 𝑉̃ is diagonal and independent inverse chi-squared priors are assigned to the

variance parameters 𝜎̃􀍯􀐢;􀐗 for 𝑘 = 1,… , 𝑑,

𝑝(𝜎̃􀍯􀐢;􀍮… 𝜎̃􀍯􀐢;􀐝􀑥|𝑦, .) ∝

􀐝􀑥

∏

􀐗􀍹􀍮

(𝜎̃􀍯􀐢;􀐗)
􀍸
􀕅􀔚;􀔏

􀑧 𝑒
􀍸
􀕅􀔚;􀔏􀔗

􀑧
􀔚;􀔏

􀑧􀕊̃􀑧
􀔚;􀔏 (𝜎̃􀍯􀐢;􀐗)

􀍸􀐘∗/􀍯𝑒
􀍸

􀑦

􀑧􀕊̃􀑧
􀔚;􀔏

(􀐢̃􀚅􀓷􀐃􀓫􀐢̃􀓷)􀔏􀔏
,

since in this case

𝑣̃􀚄(𝑉̃􀍸􀍮 ⊗𝑄􀏳)𝑣̃ = 𝑣̃􀚄 (⊕􀐐
􀐗􀍹􀍮

1

𝜎􀍯􀐢;􀐗
𝑄􀏳) 𝑣̃ =

􀐐

∑

􀐗􀍹􀍮

1

𝜎̃􀍯􀐢;􀐗
(𝑣̃􀚄􀏿𝑄􀏳𝑣̃􀏿)􀐗􀐗

.

1) All full conditionals are expressed in terms of the precision matrix 􀐃􀓫, and not in terms of the covariance matrix 􀏳.

Strictly speaking, the latter as inverse of􀐃􀓫 is not well-defined, although it can still be understood as a pseudo-inverse.
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Therefore,

𝑝(𝜎̃􀍯􀐢;􀍮… 𝜎̃􀍯􀐢;􀐐|𝑦, .) =

􀐐

∏

􀐗􀍹􀍮

Inv−𝜒􀍯(𝜎̃􀍯􀐢;􀐗|𝜈􀐢􀍮;􀐗, 𝑠
􀍯
􀐢􀍮;􀐗)

𝜈􀐢􀍮;􀐗 = 𝜈􀐢;􀐗 + 𝑙∗

𝑠􀍯􀐢􀍮;􀐗 =
1

𝜈􀐢􀍮;􀐗
(𝜈􀐢;􀐗𝑠

􀍯
􀐢;􀐗 + (𝑣̃􀚄􀏿𝑄􀏳𝑣̃􀏿)􀐗􀐗) .

(A.22)

The original variance parameters are obtained by drawing independently from inverse

chi-squared distributions with the same degrees of freedom, but with scale parameters

1

𝜈􀐢􀍮;􀐗
(𝜈􀐢;􀐗𝑠

􀍯
􀐢;􀐗𝜉

􀍯
􀐗 + (𝑣􀚄􀏿𝑄􀏳𝑣􀏿)􀐗􀐗) (A.23)

c.) In the case that 𝑉̃ = 𝜎̃􀍯􀐢 𝐼􀐐,

𝑝(𝜎̃􀍯􀐢 |𝑦, .) ∝ (𝜎̃􀍯􀐢 )
􀍸
􀕅􀔚

􀑧 𝑒
􀍸
􀕅􀔚􀔗

􀑧
􀔚

􀑧􀕊̃􀑧􀔚 (𝜎̃􀍯􀐢 )
􀍸􀐐􀐘∗/􀍯𝑒

􀍸
􀑦

􀑧􀕊̃􀑧􀔚
􀎫􀎩(􀐢̃􀚅􀓷􀐃􀓫􀐢̃􀓷)

(A.24)

and so

𝑝(𝜎̃􀍯􀐢 |𝑦, .) = Inv−𝜒􀍯(𝜎̃􀍯􀐢 |𝜈􀐢􀍮, 𝑠
􀍯
􀐢􀍮)

𝜈􀐢􀍮 = 𝜈􀐢 + 𝑑𝑙∗

𝑠􀍯􀐢􀍮 =
1

𝜈􀐢􀍮
(𝜈􀐢𝑠

􀍯
􀐢 + tr(𝑣̃􀚄􀏿𝑄􀏳𝑣̃􀏿)) .

(A.25)

The original variance parameter is 𝜎􀍯􀐢 = 𝜉􀍯𝜎̃􀍯􀐢 .

Finally, the full conditional distribution for the vector 𝑣̃ of random effects is

𝑝(𝑣̃|𝑦, .) ∝ 𝑁(𝑣̃|0, 𝐴 ⊗ 𝑉̃)𝑁(𝑦|𝑍Δ􀑎𝑣̃ + … , Σ) , (A.26)

implying

𝑝(𝑣̃|𝑦, .) = 𝑁(𝑣̃|𝐸􀐢̃, 𝑉􀐢̃)

𝑉􀐢̃ = (Δ􀚄􀑎𝑍
􀚄Σ􀍸􀍮𝑍Δ􀑎 + 𝑄􀏳 ⊗ 𝑉̃􀍸􀍮)

􀍸􀍮

𝐸􀐢̃ = (Δ􀚄􀑎𝑍
􀚄Σ􀍸􀍮𝑍Δ􀑎 + 𝑄􀏳 ⊗ 𝑉̃􀍸􀍮)

􀍸􀍮

Δ􀚄􀑎𝑍
􀚄Σ􀍸􀍮𝑒􀐢 .

(A.27)

Note that Δ􀚄􀑎 = Δ􀑎 as it is a diagonal matrix. Since 𝑣 = Δ􀑎𝑣̃ and 𝑉 = diag(𝜉)𝑉̃diag(𝜉), we can

immediately obtain 𝑣 (conditional on 𝜉 and 𝑉̃) by drawing from

𝑝(𝑣|𝑦, .) = 𝑁(𝑣|𝐸􀐢, 𝑉􀐢)

𝑉􀐢 = (𝑍􀚄Σ􀍸􀍮𝑍 + 𝑄􀏳 ⊗𝑉􀍸􀍮)
􀍸􀍮

𝐸􀐢 = (𝑍􀚄Σ􀍸􀍮𝑍 + 𝑄􀏳 ⊗𝑉􀍸􀍮)
􀍸􀍮
𝑍􀚄Σ􀍸􀍮𝑒􀐢 .

(A.28)

Constraints are imposed by modifying draws of 𝑣̃ or 𝑣 as follows (Rue and Held, 2005),

𝑣 → 𝑣∗ = 𝑣 − 𝑉􀐢𝑅 (𝑅
􀚄𝑉􀐢𝑅)

􀍸􀍮
𝑅􀚄𝑣 , (A.29)

so that 𝑅􀚄𝑣∗ = 0.
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A.2 Global-local shrinkage

In the case that global-local shrinkage priors are used, the precision matrix 𝑄􀏳 in the full

conditionals listed above is a function of 𝑙􀏶 local variance scale parameters 𝜔􀐗,

𝑄􀏳 = 𝐷􀚄
􀏳diag(𝜔􀍮, …𝜔􀐘􀓮

)􀍸􀍮𝐷􀏳 , (A.30)

where 𝐷􀏳 is a given 𝑙􀏶 × 𝑙matrix, see Section 4.3 in the main text. The local variance factors are

assigned independent priors 𝑝(𝜔) = ∏
􀐘􀓮
􀐕􀍹􀍮 𝑝(𝜔􀐕). The full conditional for 𝜔 is

𝑝(𝜔|𝑦, .) ∝ 𝑝(𝜔)𝑁(𝑣̃|0, 𝐴 ⊗ 𝑉̃)

∝ (

􀐘􀓮

∏

􀐕􀍹􀍮

𝑝(𝜔􀐕)𝜔
􀍸􀐐/􀍯
􀐕 )𝑒

􀍸
􀑦

􀑧
􀐢̃􀚅((􀏶􀚅􀓫 􀎛􀎠􀎘􀎞(􀑙􀑦,…,􀑙􀔐􀓮

)􀑰􀑦 􀏶􀓫)⊗􀐈̃􀑰􀑦)􀐢̃

= (

􀐘􀓮

∏

􀐕􀍹􀍮

𝑝(𝜔􀐕)𝜔
􀍸􀐐/􀍯
􀐕 )𝑒

􀍸
􀑦

􀑧
􀎫􀎩(􀐢̃􀚅􀓷􀏶

􀚅
􀓫 􀎛􀎠􀎘􀎞(􀑙􀑦,…,􀑙􀔐􀓮

)􀑰􀑦 􀏶􀓫􀐢̃􀓷􀐈̃
􀑰􀑦)

= (

􀐘􀓮

∏

􀐕􀍹􀍮

𝑝(𝜔􀐕)𝜔
􀍸􀐐/􀍯
􀐕 )𝑒

􀍸
􀑦

􀑧
􀎫􀎩(􀏶􀓫􀐢̃􀓷􀐈̃

􀑰􀑦􀐢̃􀚅􀓷􀏶
􀚅
􀓫 􀎛􀎠􀎘􀎞(􀑙􀑦,…,􀑙􀔐􀓮

)􀑰􀑦 )

=

􀐘􀓮

∏

􀐕􀍹􀍮

𝑝(𝜔􀐕)𝜔
􀍸􀐐/􀍯
􀐕 𝑒

􀍸
􀑦

􀑧
􀏿􀔍􀔍/􀑙􀔍 ,

(A.31)

where𝑀 = 𝐷􀏳𝑣̃􀏿𝑉̃
􀍸􀍮𝑣̃􀚄􀏿𝐷

􀚄
􀏳. The Laplace priors considered result from taking 𝑝(𝜔􀐕) to be

(independent) exponential distributions. In particular, with

𝑝(𝜔􀐕) = 𝑒􀍸􀑙􀔍 , (A.32)

the full conditionals for 𝜔􀐕 are independent and given by

𝑝(𝜔􀐕|𝑦, .) ∝ 𝜔
􀍸􀐐/􀍯
􀐕 𝑒

􀍸(􀑙􀔍􀍷
􀓷􀔍􀔍

􀑧

􀑦

􀕑􀔍
)
. (A.33)

This can be recognized as a generalized inverse Gaussian (GiG) distribution, whose density for

general parameter values 𝑎 ≥ 0, 𝑏 ≥ 0 and 𝑝 is defined as

GiG(𝑥|𝑎, 𝑏, 𝑝) =
(𝑎/𝑏)􀐜/􀍯

2𝐾􀐜(√𝑎𝑏)
𝑥􀐜􀍸􀍮𝑒

􀍸
􀑦

􀑧
(􀐍􀐤􀍷􀐎/􀐤)

, (A.34)

for 𝑥 > 0. Here 𝐾􀐜 is a modified Bessel function of the second kind. So the full conditionals for 𝜔􀐕

are GiG with parameters 𝑎􀐕 = 2, 𝑏􀐕 = 𝑀􀐕􀐕 and 𝑝􀐕 = 1 − 𝑑/2.

Taking inverse chi-squared distributions as priors for 𝜔􀐕 results in Student-t distributed innovations.

In particular, with

𝑝(𝜔􀐕) = Inv−𝜒􀍯(𝜔􀐕|𝜈􀑙, 1) , (A.35)

the full conditional for 𝜔􀐕 is again inverse chi-squared

𝑝(𝜔􀐕|𝑦, .) = Inv−𝜒􀍯 (𝜔􀐕|𝜈􀑙 + 𝑑,
𝜈􀑙 +𝑀􀐕􀐕

𝜈􀑙 + 𝑑
) . (A.36)

Finally, a horseshoe prior for the innovations is obtained with independent half-Cauchy priors on

the standard deviations √𝜔􀐕. A convenient representation for these priors is the following scale

CBS | Discussion paper | December 4, 2018 44



mixture of inverse chi-squared distributions for the variances 𝜔􀐕:

𝑝(𝜔􀐕|𝜅􀐕) = Inv−𝜒􀍯 (𝜔􀐕|1,
1

𝜅􀐕
) , 𝑝(𝜅􀐕) = Inv−𝜒􀍯(1, 1) , (A.37)

where 𝜅􀐕 are additional (independent) auxiliary parameters. This mixture representation leads to a

simple Gibbs sampler in terms of inverse chi-squared full conditionals (Makalic and Schmidt, 2016):

𝑝(𝜔􀐕|𝑦, .) = Inv−𝜒􀍯 (𝜔􀐕|𝑑 + 1,
𝑀􀐕􀐕 + 1/𝜅􀐕

𝑑 + 1
) ,

𝑝(𝜅􀐕|𝑦, .) = Inv−𝜒􀍯 (𝜅􀐕|2,
1 + 1/𝜔􀐕

2
) .

(A.38)

A.3 Implementation

The above Gibbs sampler for the broad class of multilevel models as described has been

implemented in R (R Core Team, 2018), and is being developed into an R package called mcmcsae

(Boonstra, 2018). The package makes extensive use of the sparse matrix facilities provided by

package Matrix (Bates and Maechler, 2010) and also of some dense and sparse matrix routines of

the C++ library Eigen (Guennebaud et al., 2010), via R packages Rcpp (Eddelbuettel and Francois,

2011) and RcppEigen (Bates and Eddelbuettel, 2013). R package GiGrvg (Leydold and Hormann,

2017) is used to sample from the generalized inverse Gaussian full conditional distributions (A.33).
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