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In the production of official statistics it is a common problem that there is a time lag between

the date on which collection of source data is finalised and the date on which all administrative

and technical processes of quality assurance and of data cleaning are completed. This is true

both for survey-based statistics and for register based statistics. This time lag can be

sufficiently large that a requirement for timely production of statistics cannot be met without

some form of forward extrapolation intended to produce official statistics as they are expected

to be at the date of publication. This is commonly referred to as 'nowcasting' of time series.

There are a number of ways in which such extrapolation might be achieved, for instance with

(only) partially complete data or not fully quality assured data relevant to the time interval

between 𝑛𝑜𝑤 and 𝑛𝑜𝑤 − 𝑡𝑖𝑚𝑒𝑙𝑎𝑔. Another option is to use related leading indicators. This

paper focuses on a technique which uses a linear decomposition to separate out trend,

seasonal influences, and noise (cf. Perrrucci and Pijpers (2017)) to facilitate a forward

extrapolation of the trend and seasonal components, including an estimation of the confidence

interval. The method is demonstrated using a time series for numbers of unemployment

benefits recipients in the Netherlands, available on the Statistics Netherlands website.

1 Introduction

A key concept in time series analysis is the decomposition of a given time series into a trend

component, a seasonal component and noise. Seasonality consists of movements of the series

throughout the year, with similar intensity in different years. It means that seasonal effects are

expected to be predictable with moderate or small uncertainty. Many techniques exist to deal

with analysis of time series and extensive descriptions can be found in Harvey (1989), or Durbin

and Koopman (2012). Within official statistics the X13-ARIMA and JDemetra software packages

incorporate a number of techniques for seasonal adjustment (Caporello and Maravall, 2004;

Grudkowska, 2015, 2017). A recent comprehensive overview of issues and methods in the area

of official statistics time series is van den Brakel et al. (2015, 2017). The longer term trends may

or may not have cyclical behaviour on long time scales but over those time scales the margins of

uncertainty are likely to be larger than for the seasonal effects. However, for shorter time scales

these variations are, by definition, more coherent, so that extrapolation over time scales of less

than a year is feasible. The highest frequency, stochastic, signal in a time series might be

amenable to modeling using ARIMA techniques, but is otherwise a source of uncertainty, which

ultimately limits the extent over which extrapolation and hence nowcasting is possible.

Viewed in this way, the problem of nowcasting can be approached as an application of seasonal

adjustment, with separate distinct extrapolation techniques applied to two of the components in

the decomposition (trend and seasonal). The noise component of this decomposition is used to

evaluate the confidence intervals around the extrapolated time series which is also the

determining factor for the extent to which nowcasting without auxiliary information is feasible.

These three components are determined using a linear filtering technique described in Perrrucci

and Pijpers (2017), precisely because its linearity is advantageous in the nowcasting.

To demonstrate the performance of this scheme, it is applied to a time series of the number of

unemployment benefits in the Netherlands (source: www.cbs.nl/Statline) which is a

register-based time series, available monthly from January 1998 onwards.
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2 Decomposition

The decomposition of the time series 𝑌, sampled at the discrete times 𝑡􀐕, with regular spacing, is

the usual separation into trend+cycle 𝐶, seasonal 𝑆, and noise components 𝐻:

𝑌(𝑡􀐕) = 𝐶(𝑡􀐕) + 𝑆(𝑡􀐕) + 𝐻(𝑡􀐕) (1)

The application to the unemployment benefits data is shown in fig. 2.1 and 2.2. The numbers

shown are in 1000's of benefits (: "WW uitkeringen"). The decomposition is performed using
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Figure 2.1 The unadjusted data (black symbols) and the trend 𝐶 (blue line)

determined using the linear 􀅮ilter. The numbers of bene􀅮its, WW uitkeringen, are

expressed in units of one thousand.

the linear filter presented in Perrrucci and Pijpers (2017). For convenience the relevant filter

weights, and the Fourier transform of these weights are reproduced in the appendix. In fig. 2.2

the data is shown, after removing the trend, ie. 𝑌 − 𝐶 ≡ 𝑆 + 𝐻 (black symbols). Also shown is

just the seasonal term 𝑆 (blue line). From this figure it is evident that while there is a clear

seasonal influence, the overall pattern is not perfectly constant. For instance, the amplitude of

the seasonal variation appears to be systematically larger after 2010, than it was before 2010,

perhaps reverting to a smaller amplitude in the most recent year.
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Figure 2.2 The data after removal of the trend+cycle (black symbols) component; ie.

the sum of the seasonal and noise components. Also shown is the seasonal component

𝑆 (blue line) determined using the linear 􀅮ilter. The numbers of bene􀅮its, WW

uitkeringen, are expressed in units of one thousand.

3 Extrapolation technique

3.1 seasonal term

The linear filtering process described in detail in Perrrucci and Pijpers (2017) and briefly in the

appendix, shows that it is in essence taking a moving weighted average of the raw time series,

over a window and with weights arranged symmetrically around the time for which this average

is calculated. As a result, for the filter properties used here, the seasonal component for the first

18 months of the time series and for the most recent 18 months cannot be determined directly

since it would require data belonging to times before the measurements started or data that

have not yet been possible to measure. For these subranges, the seasonal term is estimated

instead using the procedure outlined below, and this estimation is shown together with the

output of the filtering procedure in fig. 2.2.

From fig. 2.2 it is clear that while there is a pattern of intra-year variation, it does not perfectly

reproduce from one year to the next. Other data might or might not behave more regularly. For

this reason it appears that the most robust approach is to determine the average value of the

seasonal component for each calendar month𝑚, and also the r.m.s. for each of the calendar

months. If there are𝑀􀐙 calendar months𝑚 in the time series with a total number of samples 𝑁,

the average is:

̅𝑆(𝑚) =
1

𝑀􀐙

􀏿􀔑􀍸􀍮

∑

􀐗􀍹􀍭

𝑆(𝑡􀐙􀍷􀍮􀍯􀐗) 𝑚 = 1, ..., 12 19 ≤ (𝑚 + 12𝑘) ≤ 𝑁 − 19 (2)
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and the r.m.s. is determined correspondingly.

𝜎􀐅(𝑚)
􀍯 =

1

𝑀􀐙 − 1

􀏿􀔑􀍸􀍮

∑

􀐗􀍹􀍭

[𝑆(𝑡􀐙􀍷􀍮􀍯􀐗) − ̅𝑆(𝑚)]
􀍯

𝑚 = 1, ..., 12 19 ≤ (𝑚+12𝑘) ≤ 𝑁−19

(3)

For these summations only those months are used that are not near the edges of the time series

(ie. not the first 18 months or the last 18 months), so that there is a direct determination from

the linear filter.

Outside of the edges of the time series, and in particular forwards in time, is the epoch for which

the extrapolation becomes a proper nowcast or forecast because no data are yet available. In the

absence of auxiliary data, the option with arguably the least amount of modeling or additional

assumptions, is to continue the same scheme as outlined above for the edges of the time series.

That means that for the first (few) months after the end of the measurements, for the seasonal

component 𝑆 the appropriate average value for that month ̅𝑆 is substituted. It is evident that the

confidence intervals around this value will increase in size as one moves forward in time. This is

addressed in section 4.

In those parts of the time series where the seasonal component can be determined directly using

the linear filters, the noise component is used to determine the confidence intervals for the

seasonal component (see section 4). At the edges of the time series the confidence intervals are

larger because of the extrapolation backward and forward in time; this is shown in fig. 4.1. In

these regions the seasonal component is extrapolated using the above average (eq. (2), and the

confidence intervals are determined using the corresponding r.m.s. (eq. (3)). Note that in order

to use eq. (3), it is necessary to have more than one instance of every calendar month in the

'internal' part of the time series where the filter completely determines the seasonal component.

The implication is that with 18months at beginning and end of the time series plus a minimum

of 24months in between, the minimally required total length of the time series is 60months. If

fewer months are available, i.e. less than 5 years of data, the extrapolation can still be carried

out but it becomes problematic to assess margins of uncertainty. With less than 4 years of data,

even the extrapolation itself may become difficult since then for some calendar month or months

there is no ̅𝑆(𝑚) from Eq. (2). It is therefore not advisable to use this method for nowcasting if

less than 4 years of monthly data is available for establishing trends and seasonal behaviour.

Conversely, if the amount of data is large enough, i.e. a time series with a total length of decade

or more, one can consider whether it is appropriate for the extrapolation forwards to use a

weighting scheme in Eqs. (2) and (3). In this way it would be possible for instance to give more

relative weight to more recent data.

̅𝑆(𝑚) =

􀏿􀔑􀍸􀍮

∑

􀐗􀍹􀍭

𝑤􀐗(𝑚)𝑆(𝑡􀐙􀍷􀍮􀍯􀐗) 𝑚 = 1, ..., 12 19 ≤ (𝑚 + 12𝑘) ≤ 𝑁 − 19

𝜎􀐅(𝑚)
􀍯 =

𝑀􀐙

𝑀􀐙 − 1

􀏿􀔑􀍸􀍮

∑

􀐗􀍹􀍭

𝑤􀐗(𝑚)
􀍯 [𝑆(𝑡􀐙􀍷􀍮􀍯􀐗) − ̅𝑆(𝑚)]

􀍯
/

􀏿􀔑􀍸􀍮

∑

􀐗􀍹􀍭

𝑤􀐗(𝑚)
􀍯

􀏿􀔑􀍸􀍮

∑

􀐗􀍹􀍭

𝑤􀐗(𝑚) ≡ 1 (4)

An example of a weighting scheme, linear in the index 𝑘 enumerating the years, would be:

𝑤􀐗(𝑚) =
1

𝑀􀐙

[1 + 𝛼
2𝑘 −𝑀􀐙

𝑀􀐙

] 0 ≤ 𝛼 < 1 𝑚 = 1, ..., 12 (5)
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The parameter 𝛼 in (5) can be employed to adjust the weighting scheme. The choice 𝛼 = 0might

be considered a 'default' choice, corresponding to uniform weighting (i.e. Eqs. (2) and (3)). As 𝛼

increases, the weighting scheme ensures an increasing relative influence of more recent years. In

practice some experimentation may be necessary for any given series to establish whether

non-uniform weighting is an improvement over uniform weighting and whether there is an

optimal choice for 𝛼. In the example discussed in this paper only uniform weighting, 𝛼 = 0, is

used.

3.2 trend+cycle term

For the same reason that the seasonal term cannot be determined directly in the first and last 18

months of the measured time series, the trend+cycle term also cannot be determined directly in

those same months. However, given the extrapolation of the seasonal term, the trend+cycle

term can be determined by subtracting the extrapolated seasonal term from the raw data and

using Eq. (20) (appendix) to remove the noise. This allows determining the trend term for the

first and last 18 months, because raw data is available. Since the confidence intervals for the

seasonal term are larger in these regions, so are the confidence intervals for the trend+cycle

term, which is addressed in section 4.

Forward in time from the most recent measured data, the trend needs to be extrapolated further

for a complete nowcast or forecast of the time series. Contrary to what is the case for the

seasonal component there is no guidance for the behaviour of Trend+Cycle using the type of

averaging that could be applied to the seasonal term. Instead it makes more sense, given that

this component has been constructed to vary slowly, to fit a low order polynomial to a short

section of the most recent trend+cycle time series and use this polynomial fit to construct the

forward extrapolation.

For a robust extrapolation, as well as a treatment of confidence intervals, it is most convenient to

use a set of orthonormal polynomials for the fitting procedure. The confidence intervals around

each of the points in the trend+cycle time series can be used to determine confidence intervals

for the fitting coefficients. In turn, these are used to determine confidence intervals around the

extrapolation of the trend+cycle series.

The purpose at hand is to enable nowcasting over a time lag that is most likely less than a year.

Statistics Netherlands as a national statistical agency normally does not do forecasts. However,

for national statistical agencies it is very important to detect turning points in trends, i.e. local

minima or maxima, at the earliest opportunity. This implies that a linear extrapolation of the

trend+cycle term has insufficient degrees of freedom. The next lowest degree polynomial with

the same number of even and odd terms has degree 3. Therefore, the fitting function used

consists of at most 4 orthonormal polynomials of resp. degree 0, 1, 2, and 3. The advantage of

using orthonormal polynomials is that each of the 4 linear coefficients determined by fitting to

the end section of the trend+cycle series can be determined statistically independently from the

others, and treatment of errors is therefore particularly straightforward since the error

covariance matrix for those coefficients is diagonal. By construction, the autocorrelation time

scale of the trend+cycle time series is roughly equal to the half-width of the filtering window, i.e.

18months. It is considered sufficient to determine the fitting coefficients for the polynomial fit

to 24months, the smallest integer number of years with a length larger than the autocorrelation

length. The fit of a polynomial of degree 3 (at most) to 24 samples/months of the time series is
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then used to extrapolate up to 12months ahead of the leading edge of the measured series. In

practice the confidence intervals quickly increase in size, so that going any further forward in

time appears to be without merit.

Evidently, the confidence intervals are already larger towards the edges of the time series,

because of the previous step, and continue to increase in size the further forward one

extrapolates into the nowcast/forecast region.

4 Stochastic component and

con􀅮idence intervals

While the trend, cycle and seasonal components do have some stochasticity, what is usually

termed the noise component in a decomposition, or the stochastic component, is purely

stochastic: all other components have non-zero expectation values for some or all sampling

times, but the noise component does not. The stochastic component of the time series is

determined using eq. (19) (see appendix) over that part of the time series where the filtering

procedure allows a direct determination. The same equation (19) can also be applied to the

edges of the time series, after subtraction of the seasonal term, determined as described by eq.

(2). The resulting time series for the (stochastic) residual 𝐻 is shown in fig. 4.1.
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Figure 4.1 The data after removal of the trend+cycle as well as removal of the

seasonal component determined using the linear 􀅮ilter. The residual numbers of

bene􀅮its are the stochastic component 𝐻, expressed in units of one thousand.

In fig. 4.1 the effect of the extrapolation can be seen clearly in the behaviour of 𝐻 at the edges of

the time series: in absolute value 𝐻 reaches larger values by factors of 2 to 4 than in the rest of

the time series. In the present case the stochastic term is a relatively small contribution to the
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overall level of the time series. However, for other time series the trend+cycle 𝐶 or seasonal term

𝑆might be smaller compared to the noise term 𝐻. Evidently, the more a time series consists of,

or is contaminated by, a stochastic component or noise the more difficult it is to do any kind of

nowcasting.

The r.m.s. of 𝐻 is necessary to enable the calculation of confidence margins, not only for the

trend+cycle and seasonal terms, but also for the extrapolations and nowcast. In the Fourier

domain the stochastic component occupies the highest frequency band, ie. for the monthly

cadence and the filter used the band from 5.25 cycles/year up to 6 cycles/year (see fig. 8.1 in the

appendix). The r.m.s. of the noise is equivalent to the power of the noise in that frequency band.

In the absence of further detailed knowledge of the process that has generated that noise, the

least restrictive assumption for its behaviour is to assume that it is white noise, which is to say

that the power in the noise is independent of frequency. This assumption allows a determination

of confidence limits for the seasonal and trend+cycle components. The width of the confidence

interval for the trend+cycle component is, under this assumption, identical to the width of the

confidence interval, ie. the r.m.s., of the noise because the width of the frequency band is the

same for the trend+cycle and for the noise. The width of the frequency band for the seasonal

component is different from the width of the frequency band for the noise. In the case of the

filter shown for the monthly sampled series (fig. 8.1) this bandwidth for the seasonal component

is a factor of 6 wider than the bandwidth for the noise component, and so the variance is also a

factor of 6 larger. In the case of the filter shown for the quarterly sampled series (fig. 8.2) this

bandwidth for the seasonal component is a factor of 2/3 times the bandwidth for the noise

component, and so the variance is equal to 2/3× the variance of the noise component.

Towards the edges of the time series, the above determination of confidence intervals breaks

down, because the seasonal component is determined using the scheme described in section

3.1, with the associated larger uncertainties. The r.m.s. determined in section 3.1 can be used

directly as a measure of the confidence interval for the seasonal term.
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Figure 4.2 The width of the con􀅮idence intervals for the seasonal component (black

symbols) as well as for the trend+cycle (blue line). The numbers of bene􀅮its are

expressed in units of one thousand.
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For the trend+cycle term the width of the confidence interval must increase gradually as more

and more of the filter weights cannot be used, because the required data are missing. The

absolute value of the filter weights from the edge of the filter towards the center, for the

monthly sampling filter, behave approximately as:

|𝑤􀍯􀐗| ≈ 0.04 exp [4 (
20 − 2𝑘

19
)

􀍯

] 𝑘 = 1, .., 9 (6)

The variance for the trend+cycle component gradually increases from its value in the central

range of the time series to a value that is typical for the values of the seasonal component at the

edges, where the behaviour (6) of the envelope of the weights can be used to model this

transition. While this is merely an approximation of the behaviour and other factors influence

the uncertainty, it does capture the dominant behaviour. Fig. 4.2 shows the resulting 1𝜎 widths

of the confidence intervals for the trend+cycle and seasonal components of the time series. In

fig. 4.2 it can be seen that over the first and last 18 months of the time series the dominant

source of uncertainty changes over from being the seasonal component to becoming the

trend+cycle component.

Outside of the measured time series, in the nowcast/forecast region, the contribution to the

width of the confidence interval coming from the seasonal component can be assumed to be

similar to the values at the edges of the measured time series. For the trend component, a

confidence interval for short intervals outside of the measured time series can be obtained by

using the extrapolated polynomial fit and the confidence limits on the fitted coefficients (see

appendix). This way of extrapolating the series into the nowcasting regime and the associated

uncertainties, results in that quickly the uncertainty coming from the trend+cycle extrapolation is

the dominant noise source, and within that it is the highest order term of the fit that eventually

dominates. If a cubic polynomial is used for the extrapolation it is the highest order (cubic) term

that will dominate, even if initially it is quite small. The consequence is that the uncertainty

margin does not increase very much for the first few months into the nowcast region, after which

there is a rapid increase which to the eye appears quite sudden.

4.1 other nowcasting methods

Some methods, such as single exponential smoothing (see eg. NIST and SEMATECH (2012))

explicitly assume that there is a well-defined mean to the time series. This can always be

eliminated from the problem, so that it is equivalent to a time series with 0mean. If it is known

a-priori that there is a well defined mean, uncertainties from extrapolation will not continue to

grow since one can replace the extrapolation at large times with that mean and the uncertainties

do not grow beyond the overall series variance: exponential smoothing used as extrapolation

does so by construction. In reality time series may not have such a well defined mean. In the

framework of exponential smoothing, double or triple smoothing can be carried out to include

respectively trend and seasonal terms. In all of these variations of exponential smoothing, the

weight of the last measured points decreases exponentially with time which implies that,

without adding assumptions about a mean or trend, the uncertainties must increase

exponentially with time. For nowcasting applications, ie. relatively short-term forecasts, the

difference between uncertainties that increase either polynomially (as is the case here) or

exponentially is small and could be in favour of either method, depending on the situation.

Structural Time series models (STM) and Kalman filters (cf. Harvey (1989) and van den Brakel

et al. (2015)) may make more use of autocorrelation characteristics of the stochastic component.

For some timeseries that use of the noise autocorrelation by these methods can enable
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extending the range in time over which acceptable forecasts can be constructed. It will depend

on the particular timeseries and nowcast/forecast needs whether the additional level of

complexity of the analysis of those methods is warranted. It is planned to compare various

nowcasting methods in terms of the quality of nowcasts, which will be reported on separately.

5 Outlier diagnostic
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Figure 5.1 The outlier diagnostic evaluated for all points in the measured time

series where the trend+cycle, seasonal, and stochastic contributions can be

determined directly from the 􀅮iltering procedure. Outside this range, near the edges

of the time series, the diagnostic has no meaningful interpretation. The scale is set so

that a value exceeding 1 corresponds the the 99% con􀅮idence level that there is an

outlier at/near that point

With the time series for the stochastic component in hand (see fig. 4.1) it is possible to calculate

the contribution𝐻(𝑡􀐕)
􀍯 at each time 𝑡􀐕 to the total variance of the stochastic component, for that

range of the time series where a direct determination is possible using the linear filtering.

Outside of this range there is no reliable method to determine whether a measurement is an

outlier.

The ratio of 𝐻􀍯 at 𝑡􀐕 to the total variance can be shown to satisfy a 𝜒􀍯 distribution with one

degree of freedom. The appropriate corresponding scale from its distribution function can then

be used to construct a diagnostic function for outliers, which is shown in fig. 5.1 for the time

series at hand. The scale is chosen such that a value of 1 corresponds to a 99% confidence level.

This means that any peak that exceeds this level has a probability of < 1% to arise from purely

random variations.

Note that the filtering process has the consequence that the variations have a correlation

timespan of roughly half the width of the filter. A single outlier could therefore produce several
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adjacent peaks all exceeding the threshold. The diagnostic is therefore useful for the detection of

potential outliers, but has less value for the construction of an automated removal of such

outliers. Such techniques are outside the scope of this paper. Other forms of disruption of the

measured time series, such as abrupt level or slope changes do produce a signature in this

diagnostic, but will display a more complex signature. In such cases a combined examination of

trend and stochastic components is required to deal with such issues. A framework for dealing

with such breaks, such as eg. caused by transitions in data collection can be found in van den

Brakel et al. (2017).

6 The nowcast

6.1 extrapolation and con􀅮idence interval
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Figure 6.1 The original time series (black symbols) and the sum of the extrapolation

of the trend+cycle and seasonal components (blue line) for up to 12 months beyond

the last measurement. The area shaded in blue around the extrapolated time series

shows the con􀅮idence interval. The numbers of bene􀅮its are expressed in units of one

thousand.

With the decomposition presented in sections 2 and 4 and the extrapolation scheme described in

section 3 the time series of unemployment benefits (WW uitkeringen) can be forecast. In fig. 6.1

the resulting fit and extrapolation is shown, together with the measured data. The width of the

confidence interval is indicated by the light blue shaded area around the extrapolated line, which

has both the trend+cycle and seasonal contributions.

From fig. 6.1 it is seen that the width of the confidence interval increases rapidly. At the last

measured point of the time series the confidence interval for this time series is 4.5 thousand. At

the nowcast/forecast 12 months ahead of this time, the width of this interval is already 97

thousand, which effectively renders the forecast useless. At the nowcast/forecast 6 months
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ahead, the width of this interval is 23 thousand, which is of the same order as the amplitude of

the seasonal effects (fig. 2.2) and roughly 10% of the total variation in the time series (fig. 6.1).

Arguably the extent to which a nowcast provides informative extrapolations, for a time series

with this amount of stochastic contributions, is certainly no more than 6 months. At a

nowcast/forecast 3 months ahead, the width of this interval is 7.3 thousand which would appear

acceptable for many purposes. In principle these uncertainties, and the extent into the future

over which informative forecasts can be made, depend on the character of the trend around that

point. If, for instance, the most recent epochs of the time series do not show any inflections or

extrema in the trend component, it may well be that a nowcast or forecast can be carried out

rather further into the future than is the case for this example.

6.2 testing

In order to test whether this extrapolation and its confidence intervals are reliable, a test has

been performed where the same time series is truncated, successively at all sampling points

between 61 and 219, where the total length of the time series in number of sampling points is

232. For each of these truncated series the entire filtering and fitting process and the

extrapolation is repeated, using only the part of the time series up to the truncation point.

Table 6.1 Average Z score and r.m.s. for the 􀅮irst 12 months of the nowcast/forecast

of theWW uitkeringen time series

m 𝑍(𝑚) √𝑍􀍯(𝑚)

0 0.01194 0.63799

1 -0.04700 0.97054

2 -0.02995 1.0317

3 -0.02977 1.0929

4 -0.03519 1.1283

5 -0.03803 1.1277

6 -0.03762 1.1079

7 -0.03850 1.0883

8 -0.04114 1.0761

9 -0.04282 1.0597

10 -0.04304 1.0375

11 -0.04237 1.0132

For these truncated time series the actual value is known. This means that the extrapolation 𝑌􀐑

of the time series at point 𝑡􀐕􀍷􀐗 from the series truncated at 𝑡􀐕 can be compared with the actual

value 𝑦, and a Z-score can be calculated:

𝑍􀐕(𝑚) ≡
𝑌􀐑(𝑡􀐕􀍷􀐙) − 𝑦(𝑡􀐕􀍷􀐙)

𝜎􀐑(𝑡􀐕􀍷􀐙)
𝑚 = 0, ..., 11 𝑖 = 61, .., 219 (7)

For each 𝑘 there are therefore 𝑛􀐠 = 159 Z-scores. The average and r.m.s. of these Z scores is

then:

𝑍(𝑚) ≡
1

𝑛􀐠

􀍳􀍮􀍷􀐚􀔘

∑

􀐕􀍹􀍳􀍮

𝑍􀐕(𝑚)

𝑍􀍯(𝑚) ≡
1

𝑛􀐠

􀍳􀍮􀍷􀐚􀔘

∑

􀐕􀍹􀍳􀍮

𝑍􀐕(𝑚)
􀍯 (8)

A statistically significant non-zero value of 𝑍 would imply that the scheme is biased and

systematically over- or underestimates the time series. For all 𝑘 the |𝑍| < 0.05 and therefore no
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statistically significant bias is found (see table 6.1). If the value of 𝑍􀍯 deviates significantly from 1,

this would imply that the confidence intervals are systematically underestimated (𝑍􀍯 > 1) or

overestimated (𝑍􀍯 < 1). For all𝑚 ≥ 1 the value of 𝑍􀍯 does not deviate significantly from 1. For

𝑚 = 0 the value is √𝑍􀍯 ≈ 0.64 which implies that right at the last measured point of the time

series, the width of the confidence interval appears to be somewhat overestimated. Over the

entire nowcast/forecast range the performance of the extrapolation scheme appears satisfactory.

7 Using auxiliary information

In general nowcasting problems, auxiliary information may be available such as a related time

series. This might for instance be a leading indicator, or incomplete data for more recent

reporting periods. Since the method described here is linear, some forms of auxiliary information

are relatively straightforward to incorporate to produce an improved nowcast.

7.1 single linear equality constraint

One of the simplest forms of auxiliary information is having a single additional time series

available, together with a linear relationship between the two time series, ie. between two

measured time series 𝑌􀍮 and 𝑌􀍯 there is a relationship with the form:

𝑎𝑌􀍮(𝑡) + 𝑏𝑌􀍯(𝑡) = 𝑐 (9)

where 𝑎, 𝑏 and 𝑐 are known constants. In this case it is convenient to formulate two time series

𝑍􀍮 and 𝑍􀍯:

𝑍􀍮(𝑡) ≡ 𝑎𝑌􀍮(𝑡) + 𝑏𝑌􀍯(𝑡)

𝑍􀍯(𝑡) ≡ −𝑏𝑌􀍮(𝑡) + 𝑎𝑌􀍯(𝑡) (10)

where it is clear that in defining 𝑍􀍮, use is made of the linear constraint so that 𝑍􀍮(𝑡) = 𝑐. The

definition of 𝑍􀍯 is chosen such that it is a linear combination of 𝑌􀍮 and 𝑌􀍯 that is orthogonal to

the linear combination used in defining 𝑍􀍮. By defining 𝑍􀍮 and 𝑍􀍯 in this way, it is straightforward

to demonstrate that there is an inverse of this relationship:

𝑌􀍮(𝑡) ≡
1

𝑎􀍯 + 𝑏􀍯
[𝑎𝑍􀍮(𝑡) − 𝑏𝑍􀍯(𝑡)] =

1

𝑎􀍯 + 𝑏􀍯
[𝑎𝑐 − 𝑏𝑍􀍯(𝑡)]

𝑌􀍯(𝑡) ≡
1

𝑎􀍯 + 𝑏􀍯
[𝑏𝑍􀍮(𝑡) + 𝑎𝑍􀍯(𝑡)] =

1

𝑎􀍯 + 𝑏􀍯
[𝑏𝑐 + 𝑎𝑍􀍯(𝑡)] (11)

Because of the linearity of the decomposition method, the same relationship that holds between

𝑍􀍯 and 𝑌􀍮 or 𝑍􀍯 and 𝑌􀍯 also holds between the separate Trend+Cycle, Seasonal, and Noise

components of these time series. This means that one can construct the time series 𝑍􀍯 from the

measured series 𝑌􀍮 and 𝑌􀍯 using eq. (10), perform the decomposition and nowcast for the single

time series 𝑍􀍯 and reconstruct the decompositions and nowcasts for the 𝑌􀍮 and 𝑌􀍯 using eq. (11).

This same method can also be used to deal with mixed frequency data (see also Foroni and

Marcellino (2013)) or time series where a partially complete (auxiliary) series is available earlier

than a definitive one. At whichever time 𝑡􀐕 either 𝑦􀍮􀐕 or 𝑦􀍯􀐕 is not available (not measured) the

constraint equation 𝑍􀍮(𝑡􀐕) = 𝑐, in combination whichever of the 𝑦􀍮􀐕, 𝑦􀍯􀐕 that is available, can be

used to nevertheless construct an appropriate value for 𝑍􀍯(𝑡􀐕). If for instance one time series
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extends further forward in time than the other, the available information can be used effectively

for a nowcast for both time series.

7.2 multiple linear equality constraints

The case of a single equality constraint can easily be generalised to a situation in which there are

multiple auxiliary variables and equality constraints that are linearly independent. If they are not

linearly independent, then one or more auxiliary variables and constraints could be removed

from the problem without costs in terms of the quality of nowcasts. If there are𝑀 variables

𝑌􀍮, 𝑌􀍯, ..., 𝑌􀏿 and𝑀−𝑁 equality constraints, then a set of variables 𝑍􀍮, ..., 𝑍􀏿 can be constructed.

Define 𝑌 to be the vector containing the𝑀 variables 𝑌, and the vector 𝑍 the vector of 𝑍 variables

then:

𝑍 = 𝐴 ⋅ 𝑌 (12)

which is the equivalent of eq. (10). The first𝑀−𝑁 rows express each of the𝑀−𝑁 equality

constraints. The final 𝑁 rows are constructed to be orthogonal to the first𝑀−𝑁 rows, which is

always possible. The matrix𝑀×𝑀matrix 𝐴 is invertible, given the assumption that all the

constraints imposed are linearly independent. This means that:

𝑌 = 𝐴􀍸􀍮 ⋅ 𝑍 = 𝐴􀍸􀍮 ⋅

⎛
⎜
⎜
⎜
⎜
⎜

⎝

𝑐􀍮
𝑐􀍯
..

𝑐􀏿􀍸􀐀
𝑍􀏿􀍸􀐀􀍷􀍮(𝑡)

𝑍􀏿􀍸􀐀􀍷􀍯(𝑡)

..

𝑍􀏿(𝑡)

⎞
⎟
⎟
⎟
⎟
⎟

⎠

(13)

so that in this case, 𝑁 time series decompositions are necessary, of the time series

𝑍􀏿􀍸􀐀􀍷􀍮(𝑡)...𝑍􀏿(𝑡). The time series for the 𝑌, separately for each decomposition component

whenever this is required, are constructed using the inverse relationship (13).

7.3 inequality constraints

In most cases an inequality constraint can be transformed to an equality constraint with the

same form as eq. (10), where 𝑐 is a parameter rather than a simple constant. The same

procedure is followed as in the previous sections for single or multiple constraints. The

procedures to construct time series decompositions and nowcasts are the same as before, but

the parameters 𝑐 arising from the inequality constraints of course do affect the components for

all the 𝑌 since there are undetermined degrees of freedom.

A slight variation on this is a constraint where two time series 𝑌􀍮 and 𝑌􀍯 are correlated in the

sense that their trends are the same, and perhaps also the seasonal components, but not the

noise component. This normally means that a solution is sought for which:

∑

􀐕

[𝑎𝑦􀍮􀐕 + 𝑦􀍯􀐕]
􀍯

(14)

is minimised, which is the case if:

𝑎 = −
∑
􀐕 𝑦􀍮􀐕𝑦􀍯􀐕

∑
􀐕 𝑦

􀍯
􀍮􀐕

(15)
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This then leads to a form of Eq. (10) where 𝑎 is given by Eq. (15) and 𝑏 = 1. The trend (and

seasonal) components of the time series for the 𝑌 are then reconstructed using (11) by setting

𝑐 = 0 and substituting the trend (or seasonal component) of 𝑍􀍯. This type of quadratic

minimisation is one example of adjustment of separate time series, in order to produce mutually

consistent series, for which a now classical reference is Denton (1971).

7.4 non-linear constraints

In some nowcasting or time-series problems, there may be non-linear relationships between

several measured time series. In many cases it is possible to express this as:

𝑓􀍮 (𝑌􀍮, 𝑌􀍯, ..., 𝑌􀏿) = 0

𝑓􀍯 (𝑌􀍮, 𝑌􀍯, ..., 𝑌􀏿) = 0

... (16)

𝑓􀏿􀍸􀍮 (𝑌􀍮, ..., 𝑌􀏿) = 0

While it is possible that non-linear techniques provide robust solutions to particular cases,

another possible approach is to linearise around a solution 𝑌∗􀍮 , 𝑌
∗
􀍯 , ..., 𝑌

∗
􀐙 of the system. The 𝑌∗􀐕 are

defined as being the (as yet unknown) solution of eq. (16). The linearisation around that then

yields:

𝜕𝑓􀍮

𝜕𝑌􀍮
(𝑌􀍮 − 𝑌∗􀍮 ) +

𝜕𝑓􀍮

𝜕𝑌􀍯
(𝑌􀍯 − 𝑌∗􀍯 ) + ... +

𝜕𝑓􀍮

𝜕𝑌􀏿
(𝑌􀏿 − 𝑌∗􀏿) = 𝑓􀍮 (𝑌􀍮, 𝑌􀍯, ..., 𝑌􀏿)

𝜕𝑓􀍯

𝜕𝑌􀍮
(𝑌􀍮 − 𝑌∗􀍮 ) +

𝜕𝑓􀍯

𝜕𝑌􀍯
(𝑌􀍯 − 𝑌∗􀍯 ) + ... +

𝜕𝑓􀍯

𝜕𝑌􀏿
(𝑌􀏿 − 𝑌∗􀏿) = 𝑓􀍯 (𝑌􀍮, 𝑌􀍯, ..., 𝑌􀏿)

... (17)

𝜕𝑓􀏿􀍸􀍮

𝜕𝑌􀍮
(𝑌􀍮 − 𝑌∗􀍮 ) +

𝜕𝑓􀏿􀍸􀍮

𝜕𝑌􀍯
(𝑌􀍯 − 𝑌∗􀍯 ) + ... +

𝜕𝑓􀏿􀍸􀍮

𝜕𝑌􀏿
(𝑌􀏿 − 𝑌∗􀏿) = 𝑓􀏿􀍸􀍮 (𝑌􀍮, 𝑌􀍯, ..., 𝑌􀏿)

In this way the problem is reduced to one that has the same form as discussed in section 7.2,

because each of the partial derivatives is one element of the matrix 𝐴 of section 7.2. The final

row of that matrix 𝐴 is again constructed to be orthogonal to all previous rows. The same

techniques can then be used to find estimated solutions for each 𝑌∗􀐕 . However, in this case

iteration is necessary, because the combination of the 𝑌∗􀐕 thus constructed might not satisfy all

the non-linear constraints exactly. This is essentially a multidimensional Newton-Raphson

procedure, to be executed for each sample time 𝑡. Once a satisfactory solution has been found,

ie. the iteration procedure has produced deviations 𝑌􀐕 − 𝑌∗􀐕 smaller than some pre-set value, the

decomposition and nowcast can proceed as before.

8 Discussion

This paper presents a method for the nowcasting of time series by extrapolation of the time

series without auxiliary information. The procedures to extend this method it to cases where

auxiliary information is present are briefly presented as well. An application to a time series

without auxiliary information is presented.

In practice the nowcasting problem for the real time series of WW uitkeringen used as an

example in this paper does have auxiliary information. There are data available, not presented in
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this paper, which are direct extracts from (decentralized) government administrations. The issue

lies in that this register is continually updated, and in any given month some of these updates are

a consequence of measures or procedures which suffer administrative delays. Such updates of

an administrative nature produce changes which affect some variables in the register for several

months into the past. A time series for such variables, corrected for the changes due to

administratively delayed registry updates, will tend to lag by typically 2 to 3 months compared to

the time series that are direct database extracts. An application of this method that uses both the

direct registration and later corrections to it, i.e. the auxiliary information provided by separate

related time series, is beyond the scope of the present work but is to be taken up at a later stage.

This means that the nowcast problem for the particular example of Dutch unemployment

benefits (WW uitkeringen) can be framed to refer only to the relative or absolute difference

between the time series without and with this accounting for administrative delays. If such a

difference implies, for instance, a change in the number of benefits of typically less than 10% of

the total number, then the extrapolation uncertainty could be reduced by perhaps the same

factor of 10, depending on the relative power in the noise and in the trend+cycle and seasonal

components. Over the necessary range for a nowcast of roughly 3 months, to span the lag

between the direct 'registration time series' and the time series 'corrected for administrative

delays', nowcasts would then have associated confidence intervals in the range of 750.

It should be noted that the seasonal component determined from the filtering (fig 2.2 in section

2) is a combination of calendar effects and 'intrinsic' variation. For many time series in official

statistics, the values of the series correlate with the number of working days in a calendar month,

which vary from year to year. For the purposes of investigating the causes underlying particular

patterns, such calendar effects are of very limited interest. It is therefore likely that for in-depth

research into the causes of seasonal variations, one would wish to still correct the seasonal

component determined by this filtering, by decorrelating with eg. the number of working days in

each calendar month. Such a decorrelation is relatively straightforward to carry out, in particular

since this could be done on a time series from which the trend+cycle term has already been

removed and a 'clean' seasonal component is available.

The extent to which a nowcast is feasible clearly depends strongly on the power in the stochastic

component compared to the other components in the decomposition of the time series, and also

on the amount and type of auxiliary information that is available. The methods presented here

are implemented in the form of an R module which has no adjustable parameters and is fast. It is

therefore very little effort to carry out this analysis on any given time series to asses to what

extent the method provides acceptable nowcasts, or whether computationally more complex

methods and/or further auxiliary information are required. It is planned to compare various

nowcasting methods in terms of the quality of nowcasts, which will be reported on separately.
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Appendices

Linear 􀅮iltering: monthly cadence

In general, filtering in the time domain of a regularly sampled time series can be written in the

form of a weighted average:

𝑦􀐖 =

􀐚

∑

􀐗􀍹􀍸􀐙

𝑤􀐗𝑦􀐖􀍷􀐗 (18)

where the weights 𝑤􀐗 are the filter factors. This is a general form, allowing for asymmetric

filtering. For instance, in causal filters, 𝑛 = 0, so that only information from the previous and

present observations of a time point is used and none from the successive ones (this is necessary

when estimating time series components in the last time point available). While𝑚 and/or 𝑛

could in principle be infinite, this has no practical purpose in the current context. Also, in the

context of seasonal filtering it is more usual to employ symmetric filters so that not only𝑚 = 𝑛

but also 𝑤􀍸􀐗 = 𝑤􀐗. In Perrrucci and Pijpers (2017) the following filter factors for the even values

of 𝑘 are proposed for a time series with monthly sampling (see table 8.1), for all odd values of 𝑘

the 𝑤􀐗 are identical to 0. The additional property that the weights are zero for all odd values of

Table 8.1 Filter weights for a band-pass 􀅮ilter designed to extract seasonal behaviour

from a time series with monthly sampling.

k 𝑤􀐗 = 𝑤􀍸􀐗

0 0.7358026

2 -0.2219532

4 -0.1504270

6 -0.0659661

8 0

10 0.0309203

12 0.0302373

14 0.0143577

16 0

18 -0.0050703

𝑘 produces an additional advantage: the high frequency section of the spectrum can be

determined in a very simple second step, which is evidently statistically independent. If 𝑦̃ is the

time series from which the seasonal component has been removed with the above filter, then

the high frequency component ℎ is obtained by taking:

ℎ􀐕 = (2𝑦􀐕 − 𝑦􀐕 − 𝑦̃􀐕􀍷􀍮)/4 (19)

In essence this is because this scheme can be seen to be equivalent to an additional high-pass

filtering step. The trend+cycle time series 𝑐 (without high frequency contributions) is obtained

from:

𝑐􀐕 = (2𝑦􀐕 + 𝑦􀐕 + 𝑦̃􀐕􀍷􀍮)/4 (20)

which is a low-pass filter. With the weights of Table 8.1 it is clear that after 18 months any

seasonal adjusted time series 𝑦̃will not change, when using this filter alone. Figure 8.1 shows the

response function of the filter in the frequency domain: it is designed to block signal with

frequencies below about 0.75 cycles/year and also signal with frequencies above about 5.25

cycles/year.
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Figure 8.1 The band-pass 􀅮ilter designed for seasonal adjustment, monthly sampling

cadence. A 􀅮ilter value of 1 implies that all signal at these frequencies is passed

through, whereas a value of 0 implies all signal is blocked.

The transition between passing or blocking signal could be made sharper, but this would have

the cost of having non-zero weights 𝑤􀐗 for larger values of 𝑘. That would mean that at the edges

of the measured time series there would be larger sections where no seasonal adjustment could

be done because data outside of the measured series would be required. The chosen set is in

this sense a compromise.

Linear 􀅮iltering: quarterly cadence

The reasoning applied to produce the filter factors for a time series that is sampled monthly can

be extended to cover other cases such as sampling of once per quarter. However, the practical

use of filtering is more limited. There are two main reasons for this.

Firstly, the Nyquist frequency for quarterly sampled time series is lower than for monthly

sampled series. Where for time series sampled monthly there is access to signal with frequencies

up to 6 cycles/year, for quarterly sampled time series this upper limit is 2 cycles/year. Periodic

signal that is part of a seasonal pattern with frequencies between 2 and 6 cycles/year simply

cannot be measured with quarterly sampled series.

Secondly, to achieve a similar sharpness of the transition between blocking and passing signal as

is obtained for the monthly sampled series, the weights 𝑤􀐗 are non-zero over a larger range of 𝑘.

As can be seen from the table 8.2, the maximum 𝑘 is now 34 rather than 18 samples. Combined

with the fact that the spacing between the quarterly samples is 3 months rather than 1 month,

the full width of the time window with non-zero weights is now 204months = 17 years, rather

than the 3 years for monthly sampled series.

The implication is that while not impossible in principle, performing seasonal adjustment with

time series that are sampled at a cadence of once per quarter requires full lengths of time series

that are only rarely available in official statistics, and have a time lag of 8.5 years which is not

acceptable in most applications where official statistics are used as part of the evidence base for

government policy.
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Table 8.2 Filter weights for a band-pass 􀅮ilter designed to extract seasonal behaviour

from a time series with quarterly sampling.

k 𝑤􀐗 = 𝑤􀍸􀐗

0 0.2466000

2 -0.2223010

4 0.1523522

6 -0.0680700

8 0

10 0.0339000

12 -0.0345890

14 0.0172851

16 0

18 -0.0069606

20 0.0044180

22 0.0000731

24 0

26 -0.0024583

28 0.0041327

30 -0.0030270

32 0

34 0.0019446
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Figure 8.2 The band-pass 􀅮ilter designed for seasonal adjustment, quarterly

sampling cadence. A 􀅮ilter value of 1 implies that all signal at these frequencies is

passed through, whereas a value of 0 implies all signal is blocked. The region between

2 and 6 cycles/year is inaccessible.

orthonormal polynomials

A set of functions 𝑓􀐗(𝑥) 𝑘 ∈ {1, ..., 𝐾} on a finite interval in 𝑥 of [𝑎, 𝑏] that have the property that:

0 =

􀐎

∫

􀐍

𝑓􀐗(𝑥)𝑓􀐗􀚅(𝑥)𝑑𝑥 𝑘 ≠ 𝑘􀚄 (21)

are orthogonal. There are a number of ways in which they can be defined. All such sets have the

convenient property that if they are used for the purposes of fitting to measured data, the fitting

process of each orthogonal function can be carried out completely independently of all other

components. This also implies that adding more or fewer of such orthogonal functions when
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fitting to data, will not alter the values of any fitting coefficients already obtained.

The discrete equivalent of the above continuous description is:

0 =

􀐀

∑

􀐕􀍹􀍮

𝑓􀐗(𝑥􀐕)𝑓􀐗􀚅(𝑥􀐕) 𝑘 ≠ 𝑘􀚄 (22)

In addition one can normalise each function such that:

1 =

􀐀

∑

􀐕􀍹􀍮

[𝑓􀐗(𝑥􀐕)]
􀍯

(23)

which can be a convenient property in terms of stability of fit. For convenience the moments of

the set of values 𝑥􀐕 are defined as follows:

𝑥 =
1

𝑁
∑

􀐕

𝑥􀐕

𝑠􀍯 =
1

𝑁
∑

􀐕

(𝑥􀐕 − 𝑥)
􀍯

𝑆 =
1

𝑁
∑

􀐕

(𝑥􀐕 − 𝑥)
􀍰

(24)

𝐾 =
1

𝑁
∑

􀐕

(𝑥􀐕 − 𝑥)
􀍱

𝑆􀐜 =
1

𝑁
∑

􀐕

(𝑥􀐕 − 𝑥)
􀐜

𝑝 ≥ 5

In order to obtain normalised functions from these 𝑓􀐗 the most straightforward route is to

evaluate the sums in (23) and divide each 𝑓􀐗 by the square root of the appropriate sum. For the

first two polynomials the evaluation is trivial, and the normalised versions of the functions are:

𝑓􀍭(𝑥) = 1

𝑓􀍮(𝑥) =
𝑥 − 𝑥

√𝑠􀍯
(25)

For 𝑓􀍯 the summation (23) evaluates to 𝐾 − (𝑠􀍯)􀍯 − 𝑆􀍯/𝑠􀍯 so that the normalised equivalent of

𝑓􀍯 is:

𝑓􀍯(𝑥) =
(𝑥 − 𝑥)

􀍯
− 𝑆/𝑠􀍯 (𝑥 − 𝑥) − 𝑠􀍯

√𝐾 − (𝑠􀍯)􀍯 − 𝑆􀍯/𝑠􀍯
(26)

The next orthogonal polynomial has degree 3 and has the form:

𝑓􀍰(𝑥) = (𝑥 − 𝑥)􀍰 − 𝑆 + 𝛽(𝑥 − 𝑥) + 𝛾 [(𝑥 − 𝑥)􀍯 − 𝑠􀍯] (27)

in which the values of 𝛽 and 𝛾 are:

𝛽 =
−𝐾 [𝐾 − (𝑠􀍯)

􀍯
] + 𝑆 [𝑆􀍲 − 𝑠􀍯𝑆]

𝑠􀍯 [𝐾 − (𝑠􀍯)
􀍯
] − 𝑆􀍯

𝛾 =
[𝐾 + (𝑠􀍯)􀍯] 𝑆 − 𝑠􀍯𝑆􀍲

𝑠􀍯 [𝐾 − (𝑠􀍯)
􀍯
] − 𝑆􀍯

(28)
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For a perfectly regular spacing of the 𝑥􀐕 the odd moments 𝑆 and 𝑆􀍲 both reduce to 0, so that the

expressions for 𝛽 and 𝛾 will simplify to:

𝛽 = −
𝐾

𝑠􀍯

𝛾 = 0 (29)

For 𝑓􀍰 the summation (23) evaluates to:

1

𝑁
∑

􀐕

[𝑓􀍰(𝑥􀐕)]
􀍯

= 𝑆􀍳 − 𝑆􀍯 + 𝛽 [2𝐾 + 𝛽𝑠􀍯] + 𝛾 [2𝑆􀍲 − 2𝑠􀍯𝑆 + 2𝛽𝑆 + 𝛾𝐾]

= 𝑆􀍳 −
𝐾􀍯

𝑠􀍯
− 𝑆􀍯 + 2𝛾 [𝑆􀍲 − 𝑠􀍯𝑆 −

𝐾𝑆

𝑠􀍯
] + 𝛾􀍯

𝐾𝑠􀍯 − (𝑠􀍯)􀍰 − 𝑆􀍯

𝑠􀍯

= 𝑆􀍳 −
𝐾􀍯

𝑠􀍯
− 𝑆􀍯 − 𝛾􀍯

𝐾𝑠􀍯 − (𝑠􀍯)􀍰 − 𝑆􀍯

𝑠􀍯
(30)

= 𝑆􀍳 −
𝐾􀍯

𝑠􀍯
− 𝑆􀍯 −

{[𝐾 + (𝑠􀍯)􀍯] 𝑆 − 𝑠􀍯𝑆􀍲}
􀍯

(𝑠􀍯)􀍯 [𝐾 − (𝑠􀍯)
􀍯
] − 𝑠􀍯𝑆􀍯

Therefore dividing 𝑓􀍰 by the square root of this factor results in a normalised version of 𝑓􀍰. For a

perfectly regular spacing, or a spacing which is symmetric around 𝑥, the odd moments

𝑆 = 𝑆􀍲 = 0 from which it follows that 𝛾 = 0 so that equation (30) reduces to:

1

𝑁
∑

􀐕

[𝑓􀍰(𝑥􀐕)]
􀍯
= 𝑆􀍳 −

𝐾􀍯

𝑠􀍯
(31)

Least squares fitting of a set of values 𝑦􀐕 with errors with standard deviation 𝜎 at the sampling

points 𝑥􀐕, where the errors are uncorrelated between the different sampling points, using these

functions as base set leads to:

𝑎􀐗 =
1

𝑁
∑

􀐕

𝑦􀐕𝑓􀐗(𝑥􀐕)

𝑐𝑜𝑣(𝑎􀐗, 𝑎􀐗􀚅) = ∑

􀐕

𝜎􀍯𝑓􀐗(𝑥􀐕)𝑓􀐗􀚅(𝑥􀐕) (𝑏𝑒𝑐𝑎𝑢𝑠𝑒 𝑐𝑜𝑣(𝑦􀐕, 𝑦􀐕􀚅) = 0 ∀ 𝑖 ≠ 𝑖􀚄) (32)

= 𝛿􀐗􀐗􀚅
𝜎􀍯

𝑁

This is easily generalised to the case of heteroscedastic (uncorrelated) errors with unequal

standard deviations 𝜎􀐕 at the sampling points.
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