
Statistical Methods (201110)

Jeffrey Hoogland, Mark van der Loo, Jeroen Pannekoek and Sander Scholtus

The Hague/Heerlen

0Data editing

Detection and correction of errors11



Centre for Policy Related Statistics

Publisher
Statistics Netherlands
Henri Faasdreef 312
2492 JP  The Hague

Prepress 
Statistics Netherlands - Grafimedia

Cover
TelDesign, Rotterdam

Information
Telephone +31 88 570 70 70
Telefax +31 70 337 59 94
Via contact form: www.cbs.nl/information

Where to order
E-mail: verkoop@cbs.nl
Telefax +31 45 570 62 68

Internet
www.cbs.nl

© Statistics Netherlands, The Hague/Heerlen, 2011.
Reproduction is permitted. ‘Statistics Netherlands’ must be quoted as source.

Explanation of symbols

.	 = data not available
*	 = provisional figure
**	 = revised provisional figure
x	 = publication prohibited (confidential figure)
–	 = nil or less than half of unit concerned
–	 = (between two figures) inclusive
0 (0,0)	 = less than half of unit concerned
blank	 = not applicable
2010–2011	 = 2010 to 2011 inclusive
2010/2011	 = average of 2010 up to and including 2011
2010/’11	 = crop year, financial year, school year etc. beginning in 2010 and ending in 2011
2008/’09–2010/’11	 = crop year, financial year, etc. 2008/’09 to 2010/’11 inclusive

Due to rounding, some totals may not correspond with the sum of the separate figures.

60165201110 X-37



4

1. Introduction to the theme

1.1 General description and reading guide 

1.1.1 Description of detection and correction

Errors are virtually always present in the data files used at Statistics Netherlands. 

This is true for both the data obtained from Statistics Netherlands’ own observations 

and for data originating from external registers. Insofar as these errors result in bias 

in publication figure estimates, it is important for Statistics Netherlands to detect 

and correct these errors. 

Errors can arise during the observation; if this is the case, there will be a difference 

between the reported value and the actual value. This can occur because the 

respondent does not know the actual value exactly or at all, or has difficulty finding 

this value and therefore makes an estimate. Another possible cause is the difference 

in definitions between the accounting records of companies and Statistics 

Netherlands, because, for example, the financial year differs from the calendar year. 

Furthermore, it is possible that companies simply do not measure information that 

Statistics Netherlands wants to receive. In this case, the respondent will again 

estimate the value or not fill it in at all. Finally, respondents may also read or 

understand questions incorrectly. For example, they may report in euros, while they 

were actually asked to report in thousands of euros, or a respondent may answer 

only for him/herself and not, as asked, for the entire household.

Errors can also arise during the procedure for processing the data after it has been 

collected. At Statistics Netherlands, the collected data goes through different 

processes, such as entering, coding, detection, correction, weighting and tabulation. 

All of these processes can introduce errors into the data. An example of this is that 

the manual entry of data can result in misinterpretations, for example, a ‘1’ is taken 

for a ‘7’ or vice versa. Additionally, there may be errors in the processing software,

or good values may incorrectly be seen as errors during the detection and correction 

process.

Detection and correction methods have various objectives:

1. To identify possible sources of errors so that the statistical process can be 

improved in the future;

2. To provide information about the quality of the data collected and 

published;

3. To detect and correct influential errors in the data collected;

4. To provide complete and consistent data.

Currently at Statistics Netherlands, detection and correction methods are used 

primarily to provide complete and consistent data and to correct errors that have a 
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significant influence on the publication total. In addition, based on the errors found, 

improvements are made to the layout of the questionnaire or additional explanations 

are requested. An analysis of the errors found can also be used to establish 

differences between electronic and written questions and to obtain insight into the 

quality of the administrative data.

Different detection and correction methods and processes have been developed for 

different types of errors. What is important here is the distinction between 

influential errors and non-influential errors and the distinction between systematic 

and random errors.

A distinction can be made between influential and non-influential errors particularly 

in business statistics. Influential errors include the errors that have a significant 

influence on the final publication total. This can arise because the error was made by

a large company that already has a significant influence on the total, or by a smaller 

company that is weighted heavily in the estimate for the total, or because a large 

error was made that will strongly influence the total, such as a thousand-error. It is 

clear that errors that have a large influence on a publication total can lead to 

significant bias; these are also very high-risk for Statistics Netherlands. For this 

reason, it is crucial to detect and correct these errors as effectively as possible. The 

detection and correction process will also have to mainly focus on these errors.

Another breakdown that is often made is that between systematic and random 

errors. A systematic error is an error that is made by multiple respondents, such as 

the abovementioned thousand-errors, or the fact that different respondents stated 

their gross instead of net income data, or the fact that a group of respondents placed 

a minus sign before a figure, while the minus sign was already included on the 

questionnaire. Because these errors are made by multiple respondents in the same 

way, they can produce a systematic bias. If it is known what systematic errors were 

made, then these are often easy to detect and correct. Random errors are errors that 

arise by accident. The most common cause of this is inattentiveness on the part of 

the respondent, the interviewer or the person entering the data. An example of this is 

an error made because two figures were interchanged when writing down the 

answer. When these errors are made non-systematically, the risk of a systematic bias 

arising due to this type of error will be smaller. 

Systematic errors can be both influential (thousand-error) and non-influential (sign 

error in a small value). The same applies for random errors. If, for example, a large 

company fills in too many figures accidentally, this can be influential. However, if a 

smaller company does this, the error could possibly be non-influential. 

In this theme, we discuss detection and correction methods developed to detect and 

correct systematic, random and influential errors. In Section 1.1.2, we will describe 

the different types of methods using a prototype process. We will set out in a general 

manner the different process steps of a possible detection and correction process.
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1.1.2 Problems and solutions

The detection and correction process starts after the data has been collected and 

entered. The specific way that this process is used will vary by statistic. However, 

there is a general strategy that will be followed in broad lines in many processes. 

This general strategy is shown in Figure 1 and provides an overview of the detection

and correction process.

Figure 1. Overview of the detection and correction process1)

1) 
The figures between square brackets refer to the related chapters in this report.

In the first phase of the detection and correction process, identifiable systematic 

errors are detected and corrected. As stated previously, these systematic errors can 

lead to significant bias. Moreover, these errors can often be automatically detected 

and corrected easily and very reliably. It is highly efficient to correct these errors at 

an early stage. The detection and correction of systematic errors is discussed in 

Chapter 2 of this report.

After the identifiable systematic errors have been corrected automatically, a decision 

can be taken to begin manual detection and correction. This process step is 

performed by editors or analysts who are usually supported in this regard by 
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software that allows, for example, edit rules to be applied and values to be changed 

interactively. We therefore refer to both manual editing and interactive editing. This 

form of editing is described in Chapter 3 of this report.

Manual detection and correction is expensive and time consuming. It is therefore 

better to examine only records with influential errors manually so that the 

specialists’ limited time can be used where it is most effective. This means that the 

records that are expected to contain influential errors are selected for interactive 

editing. The other records with less important errors can be edited automatically. If 

the automatic editing is considered very reliable, then records with influential errors

can also be edited automatically. Limiting interactive editing to those records that 

likely contain influential errors which cannot be reliably resolved automatically is 

known as selective editing. This selection process is discussed in Chapter 4 of this 

report. 

Selective editing makes use of expected values for the variables in a record to 

determine if these values deviate from one another. Strongly deviating values can be 

caused by an influential error. In determining these expected values, information is 

used from sources other than the actual file. Oftentimes, data from a previous period 

for the same statistic is used for this purpose. As such, it is possible to start the 

selection process for manual editing during the data collection period, as soon as the 

first records are received. Once all or most of the data has been received, then 

suspect values can also be detected by examining provisional estimates of totals and 

observations that exert a large influence on this. This form of selection is called 

macro editing (see below). 

The automatic correction of random errors and other errors for which the cause 

cannot be established takes place in two steps. First, the best possible determination 

is made of what scores of variables in a record are incorrect. This is trivial if a value 

does not fall in the permissible range, such as a negative income or an improperly 

missing value. As such, the value is then certainly incorrect. In many cases, 

however, there are inconsistencies (violations of edit rules), for which is not clear 

which value or values are responsible. If, for example, an additive property rule 

(such as: the total staff expenditures are equal to the sum of the salaries, insurance 

premiums, training costs and other staff expenditures) is not satisfied, it is not clear 

what value or values in that sum are responsible for the violation of the rule. In the 

automatic detection of errors, the incorrect values are designated (the localisation of 

errors) according to the Fellegi-Holt paradigm, which states: designate as few as 

possible values as incorrect, but ensure that changing these values can result in a 

fully consistent record that satisfies all hard edit rules. The automatic localisation of 

errors based on the Fellegi-Holt paradigm is addressed in Chapter 5 of this report. 

Once the errors have been detected, they are replaced by better values by means of 

imputation. Automatic imputation takes place using models that can predict the 

incorrect or missing values. We will discuss this in detail in the theme Imputation.
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An alternative method that localises automatic errors and imputes new values, the 

‘Nearest-neighbour Imputation Methodology’, is discussed in Chapter 6 of this 

report.

Finally, in the last phase, provisional publication figures are calculated and analysed 

using historic data or external sources. This analysis is also called approval or macro 

editing, and will be discussed in Chapter 7 of this report. If the aggregate figures are 

implausible, the individual records are examined by, for example, further analysing 

outliers or influential records and correcting these as necessary. The errors detected 

at this phase may be errors that were not found in earlier phases of the detection and 

correction process or errors that were actually introduced by the process. In macro

editing, the detection of errors begins at macro level, but the correction always takes 

place in the individual records, therefore at micro level. If the provisional figures are 

plausible, the detection and correction process is concluded.

The process in Figure 1 should be viewed as a prototype. In practice, not all of the 

steps will be undertaken for the different statistics. For example, there are few edit 

rules present for social statistics. As a result, the emphasis of the detection and 

correction process in that case will focus more on the correction for item non-

response by means of imputation. For statistics based on registers, all the data (or a 

large amount of data) often becomes available at the same time. In that case, the 

macro editing can be started immediately. Also, when selecting records for manual 

editing, other criteria are often used than only whether a record contains influential 

errors. As such, important companies are frequently identified as crucial, and their 

data is always inspected manually. Examples of such companies could be those that 

are individually responsible for a significant portion of turnover in their sector. A 

decision can also be made to automatically edit very good imputable variables even 

if they potentially contain influential errors.

1.2 Scope and relationship with other themes

This theme addresses the detection and possible correction of potential errors in 

microdata. The intention of this part of the statistical process is to transform ‘raw’

microdata with errors and inconsistencies into corrected ‘edited’ microdata that is 

suitable for estimating publication figures and further analyses. The estimation 

itself, with its related problems such as determining raising weights, correcting for 

non-response by weighting and dealing with correct outliers, is described in other 

themes in the Methods Series. 

In the theme Data editing: Detection and Correction of Errors, we discuss different 

methods developed to detect errors. This theme also addresses correction techniques 

that are used for the correction of errors in which the filled-in incorrect value 

contains information about the correct value, such as with systematic errors which 

can be explained. In addition, this theme addresses manual correction by experts 

(interactive editing). Correction for item non-response and incorrect values, for 

which the filled-in value does not contain any information about the correct value 
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and therefore has been interpreted as missing, often takes place by means of 

imputation. This subject will be discussed in the theme Imputation.

1.3 Place in the statistical process

As shown in Figure 1, the detection and correction process starts with raw data. This 

is the information as received from respondents and which is then checked, for 

written surveys, and stored in a standard format. In electronic questionnaires and 

CATI observations, certain checks can be conducted during the observation phase, 

which could lead to corrections by the respondent. However, this data is also 

considered as raw data for the detection and correction process, which begins after 

the observation phase.

As described in Section 1.1.2, most detection and correction procedures are 

performed per reporter, without knowledge of the answers from the other reporters 

being needed (however, this does not apply for the selection of influential errors at 

macro level). The detection and correction process can also be partially conducted 

during the data collection phase. This is important primarily for statistical processes

in which a substantial amount of records are edited interactively. For these 

processes, from the perspective of the timeliness of the figures to be provided, it is 

important to start the editing process as early as possible. In statistical processes that 

involve little interactive editing, or which have a short data collection period, the 

detection and correction procedure can also begin after the data collection period.

Both the ‘input’ and the ‘output’ of the detection and correction process consist of a 

file with records per reporter. The detection and correction process transforms raw 

microdata with obvious errors, inconsistencies and missing values into edited 

microdata in which these problems have been resolved as far as possible. The edited 

file is used in the subsequent statistical process for aggregation purposes, for the 

estimation of totals and developments and for further analyses. The detection and 

correction process only makes changes to the microdata. Corrections of aggregate 

figures, such as are made for national accounts, are not part of detection and 

correction, but are part of a subsequent step in the statistical process.

1.4 Definitions

Concept Description

automatic editing A collective name for editing methods in which a computer 
program both detects and corrects the data 

deductive correction A collective name for editing methods in which the necessary 
corrections can clearly be derived from the uncorrected data

detection and correction The detection and improvement of missing and incorrect values 
in a data file

editing See ‘detection and correction’

edit rule A restriction of the values in a data file; data that does not satisfy 
an edit rule will contain errors either with certainty (see ‘hard edit 
rule’), or with high probability (see ‘soft edit rule’)

hard edit rule An edit rule that indicates with certainty that there is an error in 
the data

interactive editing An editing method in which a computer program checks the data 
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and a human editor corrects the data 

influential errors Errors that have a significant influence on the figures to be 
published 

macro editing A collective name for editing methods in which the detection of 
the data takes place on an aggregate level

manual editing See ‘interactive editing’

micro editing A collective name for editing methods in which detection and 
correction takes place at the level of the individual records

score function An indicator of the influence that the interactive editing of a 
record is expected to have on the figure to be published; score 
functions are used to prioritise records for interactive editing 
(see ‘selective editing’)

selective editing A collective name for methods to select records that contain 
possible influential errors for interactive editing; a score function 
is often used in this process

soft edit rule An edit rule that indicates with high probability that there is an 
error in the data; data that does not satisfy a soft edit rule is 
suspect, but not necessarily incorrect
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2. Methods for deductive correction

2.1 Short description

Data collected for compiling statistics frequently contains obvious systematic errors; 

in other words, errors that are made by multiple respondents in the same, 

identifiable way. Such a systematic error can often be detected automatically in a 

simple manner, in particular in comparison to the complex algorithms that are 

needed for the automatic localisation of non-systematic errors (see Chapters 5 and 

6). Furthermore, after a systematic error has been detected, it becomes immediately 

clear which correction is necessary to restore it. For we know, or think we know 

with sufficient certainty, how the error came about.

A separate detection and correction rule is needed for each type of systematic error. 

The exact form of the correction method varies per type of error; there is no standard 

formula. This chapter therefore deviates slightly in terms of structure from the rest 

of the report. Most of the chapter will be used to discuss practical examples (Section 

2.4) instead of general theory (Section 2.3).

The difficulty with using this method lies mainly in determining which systematic 

errors will be present in the data, before this data is actually collected. This can be 

studied based on data from the past. When certain edit rules are violated repeatedly 

in the same way, there is potentially a systematic error. Sometimes, such an 

investigation can bring systematic errors to light that have arisen due to a 

shortcoming in the questionnaire design or a bug in the processing procedure. In that 

case, the questionnaire and/or the procedure must be adapted. To limit the 

occurrence of discontinuities in a published time series, it can be desirable to ‘save 

up’ changes in the questionnaire until a planned redesign of the statistic, and to 

resolve the systematic error with a deductive correction method until that time.

2.2 Applicability

Deductive correction can be used on both quantitative and qualitative variables. 

Deductive methods are initially used to correct systematic errors. Such methods are 

generally not suitable to correct non-systematic (or random) errors. It is 

recommended that systematic errors are dealt with as far as possible at the start of 

the detection and correction process, before any other correction methods are used. 

In any case, it is known how these errors arose and how they can be reversed. The 

rest of the detection and correction process will proceed more efficiently after the 

systematic errors have been resolved deductively.

Errors for which the cause is known with sufficient certainty can be resolved 

deductively. In the case of incorrect assumptions about the error source, the method 

can lead to bias in the estimators. In practice, correction rules (see Section 2.3.1) can 

also be used on non-systematic errors for reasons of efficiency, if the introduced 
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bias is negligible. An example of this is the deductive resolution of rounding errors

(cf. Scholtus, 2008a).

Systematic errors can often be identified by examining frequently occurring 

violations of edit rules. Deductive methods are therefore mainly effective for data 

for which many edit rules have been defined.

2.3 Detailed description

2.3.1 Correction rules

The simplest deductive correction methods can be represented as a single rule:

if ( condition ) then ( change ).          (2.3.1)

Here, condition indicates a combination of values in a record that is not permissible. 

Subsequently change describes the correction that is made to resolve the 

inconsistency. Rules of this type are known as correction rules.

An example of a correction rule is:

if ( gender = man and ( pregnant = yes or pregnant = ‘empty’ ) )

then pregnant = no.          (2.3.2)

This rule corrects records that do not satisfy the edit rule

if gender = man then pregnant = no.

Take note that the if-then construction is used here in two different ways. In an edit 

rule, the construction describes a condition that the data should satisfy; in a 

correction rule, it describes an action that results in changes in the data.

Another example of a correction rule is:

if ( age < 18 and ( driving licence = yes or driving licence = ‘empty’ ) )

then driving licence = no.          (2.3.3)

This rule can be used to correct records that do not satisfy the edit rule

if age < 18 then driving licence = no.

Furthermore, more general deductive correction methods can, in principle, also be 

expressed as rules in the form (2.3.1). The if condition may then also contain 

information from other records or even from outside the data file to be corrected. 

The detection criterion can be rather complex; see the examples in Section 2.4.

2.3.2 Drawing up deductive corrections

A deductive correction method is intended to resolve an inconsistency that can only 

be resolved in a single way on logical and/or content-related grounds, under a 

certain assumption. If the assumption is correct, the deductive correction method

always produces the actual values. The correction rule (2.3.2) operates, for example, 

under the assumption that the variable gender never contains errors. The same 
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applies for rule (2.3.3) and the variable age. These assumptions can for instance be 

satisfied if gender and age originate from a properly maintained population register.

Deductive correction methods are attractive because of their simplicity. However, 

they may only be used when no important nuances are lost with such a simple 

approach. If the data does not satisfy the assumptions made, deductive correction

leads to biased estimators. For example: if gender or age has an incorrect value in 

some records, then, after applying the correction rules (2.3.2) and (2.3.3), we will 

underestimate the number of pregnancies or the number of driving licence holders 

respectively in the population.

Generally, a given inconsistency can be explained in many different ways. Even in 

the simple examples from Section 2.3.1, with only two variables, we can only 

correct the inconsistencies deductively by ruling out some explanations in advance. 

Deductive correction is generally only applicable if one of the explanations for the 

inconsistency is much more obvious than all the other possible explanations. To 

assess this, knowledge about the content of the data is often necessary.

An idea that is frequently used (sometimes subconsciously) when drawing up 

deductive correction methods is the following: if, for a given inconsistency, there is 

a correction that changes very little with respect to the current values, then it is 

highly probable that this will produce the actual values. Here, ‘changes very little’ 

can relate both to the number of changes and the nature of the changes. This is, in 

fact, a naïve version of the Fellegi-Holt paradigm. (See Chapter 5 for the real 

Fellegi-Holt paradigm.)

To illustrate, the first column of Table 1 shows a record that is inconsistent with 

respect to the edit rule

turnover – costs = profit. (2.3.4)

The inconsistency can be resolved by adapting one of the three variables. The other 

columns of Table 1 show which possible changes this produces (the adapted value is 

shown in bold in each case). Intuitively, the solution in which costs is adapted is the 

most attractive, because changing the value 283 to 238 is less drastic than the other 

proposed corrections. Conversely, it is much more probable that the actual value of 

238 was changed to 283 at some point during the collection and processing of the 

data, than the case that 398 was changed to 353 or 70 to 115. Therefore, we could 

draw up the following rule for deductive correction: if a record does not satisfy 

(2.3.4), but if it does when the digits in one of the amounts provided are reversed, 

then the record should be corrected in this way. When drawing up this correction 

method, we have used the ‘naïve Fellegi-Holt paradigm’ twice: first by not looking 

for solutions in which more than one variable is adapted, and then by choosing the 

least drastic of the remaining solutions.

This principle is addressed several more times in the practical examples in Section 

2.4.
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Table 1. Example of a record to be corrected deductively 

record correction 1 correction 2 correction 3

turnover 353 398 353 353
costs 283 283 238 283
profit 115 115 115 70

2.3.3 Detecting unknown systematic errors

New systematic errors can be detected by analysing violations of edit rules. If an 

edit rule is violated frequently, this can be an indication of the presence of a 

systematic error in the relevant variables. A further analysis of the records that 

violate the edit rule, in which the questionnaire is also examined, can bring the cause 

of the error to light. Once the error has been identified, it is generally quite simple to 

draw up a deductive method to automatically detect and correct the error.

Detecting new systematic errors can only take place once sufficient data has been 

collected. The results are therefore usually too late for the current observation 

period. If the analysis produces new deductive correction methods, then these can be 

built in to the correction process for the data in the next observation period.

As far as systematic errors are concerned, prevention is better than cure. Sometimes 

it is possible to improve the design of the questionnaire so that far fewer respondents

make a certain type of error. If many respondents make errors in the same way, this 

can be an indication that the questions are not presented clearly enough. In some 

cases, it is also possible to adapt the processing procedure to ensure that a certain 

processing error no longer arises. In principle, this approach should be preferred to 

that of making deductive corrections afterwards. However, because there are 

practical objections to the constant adaptation of the questionnaire, it is sufficient 

initially to build in a deductive correction method, and to include the knowledge 

gained in a later redesign of the questionnaire.

To illustrate this, we detect a new systematic error in the data of the Structural 

Business Statistics (SBS) for Wholesale 2001. One of the many edit rules is as 

follows:

LOONSOM110000 + LOONSOM121100 + LOONSOM121200 +
LOONSOM122000 = LOONSOM100000.

Here, LOONSOM100000 (‘loonsom’ means ‘payroll total’) represents the total 

labour costs. The other four variables are the sub-items of this total. 

Table 2 shows several records that violate the edit rule.
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Table 2. Examples of inconsistent records in the SBS for Wholesale 2001

record 1 record 2 record 3 record 4

LOONSOM110000 1 100 364 1 135 901
LOONSOM121100 88 46 196 134
LOONSOM121200 40 34 68 0
LOONSOM122000 42 0 42 0
LOONSOM100000 170 80 306 134

It is striking that, in these records, the items LOONSOM121100, LOONSOM121200

and LOONSOM122000 add up to the total LOONSOM100000. This means that it 

seems that these reporters have ignored the first sub-item LOONSOM110000 in the 

calculation of LOONSOM100000. A closer look at the questionnaire (Figure 2) 

makes it clear why this happened: there is a gap between the answer box for 

LOONSOM110000 and the other boxes. As a result, from how the question is 

phrased, it cannot be clearly determined whether LOONSOM110000 is part of the 

sum or separate from the rest. Most respondents understand from the context what 

the intention is, but in several dozen records, we see the error from Table 2.

Figure 2. Part of the questionnaire SBS Wholesale (to 2005)

We can draw up a correction method that resolves this error deductively. A more 

structural solution consists of removing the cause of the error by adapting the 

questionnaire. This has already been done: the questionnaire from Figure 2 was 

replaced by the SBS 2006. On the new questionnaire, the answer boxes are spaced 

evenly.

2.4 Examples

This section addresses several practical examples of methods already used or at least 

developed for deductive correction. We will first discuss examples from the statistic 

Building Objects in Preparation (Section 2.4.1) and Short Term Statistics (Section 

2.4.2). The other examples originate from the SBS. We will first discuss the 

deductive correction methods in the current processing procedure (Section 2.4.3)

and then three recently developed methods (Sections 2.4.4 to 2.4.6).
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2.4.1 Correction rules for the statistic Building Objects in Preparation

The quarterly statistic Building Objects in Preparation (BOP) follows the 

development of the total construction value of new contracts at architectural firms in 

the Netherlands. In 2007, a new detection and correction process was designed for 

this statistic: see Van der Loo and Pannekoek (2007), from which this example is 

taken.

When filling in the BOP questionnaire, the reporter must answer several questions 

about each building object separately. The reporter must tick a box indicating 

whether the building objects concerns a residence (r), a combined-purpose building1

(c) or neither of these (o for other). Another question concerns n, the total number of 

dwellings in the building. For a combined-purpose building, the percentage of floor 

area intended for residential use (p) is also requested.

The statement contains an error if zero, two, or three of the boxes for r, c and o have 

been ticked. In that case, the type of building object has not been clearly specified. 

In certain situations, this error can be deductively corrected based on n and p.

If the value indicated for n is greater than zero and moreover if p is equal to 100% or 

is not filled in, it is obvious that the building object is a residence. If n is larger than 

zero and furthermore if p is not equal to 0 or 100%, it is obvious that the building 

object is a combined-purpose building. And, finally, if neither n nor p has been 

filled in, or if they have been given the value of 0, then it is highly probable that the 

building object falls in the category ‘other’. These interpretations follow from the 

assumption that the statement must be rendered correct by changing as few values as

possible.

We write r = T if the box for residence has been ticked, and otherwise r = F, and we 

do the same for c and o. The correction rule is now as follows:

if (r,c,o) ∈  { (T,T,T) , (T,T,F) , (T,F,T) , (F,T,T) , (F,F,F) }
then

if ( p = ‘empty’ or p = 100% ) and n > 0

then (r,c,o) = (T,F,F)

if 0% < p < 100% and n > 0

then (r,c,o) = (F,T,F)

if ( p = ‘empty’ or p = 0% ) and ( n = ‘empty’ or n = 0 )

then (r,c,o) = (F,F,T).

This is a small part of the detection and correction process for the statistic BOP.

In the implementation of the detection and correction process for BOP, the 

derivation of the correction always takes place separately from the actual application 

of the correction. Initially, in the above example, only an indicator is created that 

specifies for each record whether a deductive correction is applicable, and if so, 

which one. Only in the next step are the values of r, c and o changed in the record. 

1 A combined-purpose building is used for other purposes in addition to residential purposes.
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As such, the detection and correction process is transparent, so that it is clearly 

visible afterwards exactly what changes have been made to each record.

2.4.2 Correction of thousand-errors in Short Term Statistics

Company surveys usually contain instructions for the reporter that all financial 

amounts must be rounded to thousands of euros. Some respondents ignore these 

instructions and give values that are a factor 1000 larger than they actually mean. It 

is clear that, if these ‘thousand-errors’ are not corrected, the resulting estimates for 

the figures to be published will be too high.

We refer to a uniform thousand-error if all the financial amounts in a record are too 

large by a factor of 1000. It is known that, mainly in longer questionnaires, there are 

also records in which a non-uniform (or partial) thousand-error occurs. A non-

uniform thousand-error can arise if several people each fill out part of the 

questionnaire.

Thousand-errors are detected by comparing one or more amounts provided with 

reference values. The reference data used and the way in which the comparison 

takes place varies per statistic and per statistics bureau. Examples of reference data 

are: a statement from the same respondent from an earlier period, the median of a 

number of similar respondents in an earlier period and the register data about the 

respondent. It is important that this reference data has been previously checked for 

errors.

For Short Term Statistics (STS), thousand-errors are detected as follows (Ter Haar, 

2002). The total turnover indicated by the respondent is compared to the turnover

from the most recent period for which a statement from the respondent is available, 

up to a maximum of six previous periods. The stated turnover for this earlier period 

must also not be equal to zero. There is a thousand-error if the following applies

(where abs(a) is the absolute value of a):

abs(turnovert) > 300 × abs(turnovert–i) > 0, for some { }6,,1 K∈i .

If no data from the respondent from an earlier period is available, then the median of 

the turnover from the previous period in the stratum of the respondent is examined. 

There is a thousand-error if the following applies:

abs(turnovert) > 100 × stratum median(turnovert–1).

If a thousand-error is detected in this way, it is resolved by dividing the total 

turnover and all the sub-items by 1000.

Table 3 shows an example of a record with a thousand-error that was found in this 

way.
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Table 3. Example of a uniform thousand-error

reference data
data before 

correction

data after 

correction

first sub-item turnover 3 331 3 148 249 3 148
second sub-item turnover 709 936 142 936
total turnover 4 040 4 084 391 4 084

2.4.3 Correction of systematic errors at the SBS

The SBS questionnaire contains a large number of financial variables that must 

satisfy a variety of edit rules, such as sub-items that add up to a total and ratios that 

fall within certain bounds. This set of edit rules is a rich source for detecting 

systematic errors in the data. To date (SBS 2007), eight correction methods for 

systematic errors have been implemented, and we will discuss three here. Starting in 

Section 2.4.4, three methods will be examined that will probably be used in the 

future.

The most important systematic error that is automatically corrected by the SBS is 

the uniform thousand-error. The approach is similar to that of the STS (see Section 

2.4.2). Instead of directly comparing the turnover with an earlier period, the ratio 

between the stated turnover and the stated number of people employed is examined. 

A thousand-error is detected when this ratio strongly deviates from the stratum 

median in the previous period, i.e. if 

turnovert / pet > 100 × stratum median(turnovert–1 / pet–1),          (2.4.1)

where pe is the number of people employed.2 In addition, the VAT register data and 

the STS data are used as a reference. For the respondents for which a positive VAT

or STS annual turnover turnover_external is known, it is determined whether the 

following applies:

turnovert > 100 × turnover_externalt.

If yes, then a thousand-error is detected. In both cases, all the financial amounts 

stated are divided by 1000.

2 SBS documentation has revealed that, instead of (2.4.1), the following formula was used:

turnovert / pet > 100 × stratum median(turnovert–1) / stratum median(pet–1).

In general, however, the median of the ratios is not equal to the ratio of the medians. A 

simple example:

median({ 1 , 106 , 106 }) / median({ 1 , 1 , 106 }) = 106 / 1 = 106,

while

median({ 1 / 1 , 106 / 1 , 106 / 106 }) = median({ 1 , 106 , 1 }) = 1.
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A second systematic error at the SBS concerns incorrectly placed minus signs. If a 

value must be subtracted, some respondents indicate this by placing a minus sign 

before the stated amount. This takes place despite the fact that there is already a 

printed minus sign on the survey form. After keying in, the variable incorrectly has a 

negative value. This error is resolved by using the absolute value of the number 

filled in.

Furthermore, the SBS examines records in which sub-items are filled in, while the 

accompanying total is empty. This error is corrected by calculating the total based 

on the edit rule that says that the sub-items must add up to the total. This correction

assumes that any empty sub-items have a value of zero. Pannekoek and Tempelman 

(2005) demonstrate that this assumption is not always satisfied.

2.4.4 Correction of sign errors and interchanged returns and costs

The profit and loss account is a part of the SBS questionnaire where many errors are 

made. The account is composed of balances that must add up to an end balance. In 

addition, some balances are divided into returns and costs. Stated generally, this 

means that the following edit rules apply:
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         (2.4.2)

In this example, 110 ,,, -nxxx K represent the balances, nx the end balance, and rkx ,

and ckx , the returns and costs that are associated with balance kx . To keep the 

notation simple, we assume that only mxx ,,0 K are divided, for some

{ }1,,1,0 -Î nm K . The bottom rule from (2.4.2) is called the external sum rule, 

while the other rules are known as internal sum rules.

Table 4 shows the structure of the profit and loss account from the questionnaire that 

was used to 2005 inclusive by the SBS. The edit rules are indicated by (2.4.2) with 

4=n  and 31 =-= nm . Table 4 also contains three examples of records that are 

inconsistent with respect to (2.4.2).

In example (a), two edit rules are violated: the external sum rule and the internal 

sum rule of the financial result. Remarkably enough, we can cancel out both 

violations by solely changing the value of 1x  from 10 to –10 (see Table 5). The 

obvious choice is to correct the record in this way, because any other solution would 

require changing more than one value.
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Table 4. Examples of sign errors and interchanged returns and costs

Variable Name (a) (b) (c)

x0,r total operating income 2 100 5 100 3 250
x0,c total operating costs 1 950 4 650 3 550
x0 operating result 150 450 300

x1,r financial returns 0 0 110
x1,c financial costs 10 130 10
x1 financial result 10 130 100

x2,r withdrawals and release from provisions 20 20 50
x2,c additions to provisions 5 0 90
x2 balance of provisions 15 20 40

x3,r extraordinary returns 50 15 30
x3,c extraordinary costs 10 25 10
x3 extraordinary result 40 10 20

x4 pre-tax result (end balance) 195 610 –140

Table 5. Corrected version of Table 4. Adapted values are shown in bold.

Variable Name (a) (b) (c)

x0,r total operating income 2 100 5 100 3 250
x0,c total operating costs 1 950 4 650 3 550
x0 operating result 150 450 –300

x1,r financial returns 0 130 110
x1,c financial costs 10 0 10
x1 financial result –10 130 100

x2,r withdrawals and release from provisions 20 20 90
x2,c additions to provisions 5 0 50
x2 balance of provisions 15 20 40

x3,r extraordinary returns 50 25 30
x3,c extraordinary costs 10 15 10
x3 extraordinary result 40 10 20

x4 pre-tax result (end balance) 195 610 –140

In example (b), two internal sum rules are violated. The obvious way to make this 

record consistent is: interchange the values of rx ,1  and cx ,1  and interchange the 

values of rx ,3  and cx ,3  (see Table 5). This correction uses amounts filled in by the 

respondent and therefore is preferred to a solution in which synthetic values are 

imputed.

The types of inconsistencies in example (a) and (b) are called sign errors and 

interchanged returns and costs respectively. For the sake of brevity, we also use 
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‘sign error’ as the umbrella term. These errors are related and therefore must be 

detected simultaneously.

There is a sign error if the following two conditions have been satisfied:

• The record does not satisfy (2.4.2).

• The record can be adapted by only changing the signs of balances and 

interchanging returns and costs, so that it does satisfy (2.4.2).

In this process, the total operating income ( rx ,0 ) and total operating costs ( cx ,0 ) 

must not be interchanged, because these are also associated with items outside the 

profit and loss account by means of other edit rules than (2.4.2). Furthermore, 

because of the structure of the questionnaire, it is highly improbable that the 

respondent would confuse these two answers.

A mathematical formulation of the above conditions is that an inconsistent record 

contains a sign error if the following system of equations has a solution 

( ) { }1,1,,;, 10 −∈mn ttss KK :
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If such a solution is found, it is also immediately clear how the sign error can be 

corrected. For each 1−=js , the sign of the accompanying jx must be changed, and 

for each 1−=kt , rkx ,  and ckx , must be interchanged. It is not difficult to see that 

the resulting record satisfies (2.4.2). We point out that a variable 0t is missing in 

(2.4.3) because rx ,0  and cx ,0 are not eligible to be interchanged. Apart from the 

motivation presented above, there is also a technical reason for this: the first

equation in (2.4.3) now uniquely fixes the value of 0s . By fixing one of the 

variables, we prevent that we can reconstruct a solution to (2.4.3) to an alternative 

solution by multiplying all variables by –1.

Applied to example (c) from Table 4, (2.4.3) becomes:
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This system has the following solution:
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( )1,1,1;1,1,1,1,1 32143210 =−======−= tttsssss .

Therefore, example (c) contains a sign error. To correct this, we must change the 

value of 0x from 300 to –300, and interchange the values of rx ,2  and cx ,2 . Table 5 

shows that these changes do indeed produce a consistent record.

In summary, the method to detect and correct sign errors and interchanged returns 

and costs in the SBS profit and loss account is as follows:

1. Given a record that does not satisfy (2.4.2), determine system (2.4.3).

2. Find the3 solution ( ) { }1,1,,;, 10 −∈mn ttss KK of (2.4.3), if it exists. Stop if 

(2.4.3) does not have a solution, and otherwise continue with step 3.

3. For nj ,,0 K=  and for mk ,,1 K= : change the sign of jx if 1−=js , and 

interchange the values of rkx ,  and ckx , if 1−=kt .

The only non-trivial step in this scheme is step 2, the resolution of system (2.4.3). 

Given that n  and m are small, the solution can be found in principle by 

systematically trying all 12 1 −++mn  combinations of nss ,,0 K  and mtt ,,1 K . In 

Scholtus (2007), the solution of (2.4.3) is rewritten as a binary linear programming 

problem that can be resolved with standard software.

2.4.5 Correction of cumulation errors

Another error that regularly occurs in the SBS profit and loss account is the so-

called cumulation error. Table 6 shows three examples of records with a cumulation 

error. The error occurs because the respondent fills in the profit and loss account

‘cumulatively’. In example (a) and (b), this occurs consistently, but this is not the 

case in example (c). Furthermore, financial returns and costs are also interchanged

in example (c).

Say that a given record does not satisfy the external sum rule or the k th internal sum 

rule, for some { }1,,1 −∈ nk K , but that the following does apply:

ckrkkk xxxx ,,1 −+= − .          (2.4.4)

In that case, there is a cumulation error, which can be corrected by replacing the 

values of kx , rkx ,  and ckx ,  by 

1−−=′ kkk xxx ,          rkrk xx ,, =′ ,          ckck xx ,, =′ .

3 Appendix A of Scholtus (2008a) proves that (2.4.3) has no more than a single solution 

under very mild conditions.
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Table 6. Examples of cumulation errors

Variable Name (a) (b) (c)

x0,r total operating income 6 700 8 300 6 900
x0,c total operating costs 5 650 5 400 6 150
x0 operating result 1 050 2 900 750

x1,r financial returns 0 0 0
x1,c financial costs 0 150 40
x1 financial result 1 050 2 750 790

x2,r withdrawals and release from provisions 0 0 0
x2,c additions to provisions 0 30 0
x2 balance of provisions 1 050 2 720 0

x3,r extraordinary returns 0 0 0
x3,c extraordinary costs 0 110 0
x3 extraordinary result 1 050 2 610 0

x4 pre-tax result (end balance) 1 050 2 610 790

From (2.4.4), it follows immediately that ckrkk xxx ,, ′−′=′ . By performing this step 

successively for each { }1,,1 −∈ nk K , example (a) and (b) can be made fully 

consistent. Here, incidentally, the original value of 1−kx  must be substituted in 

(2.4.4) for all k, and not 1−′kx .

To also take account of possible sign errors, instead of (2.4.4), it must be examined 

whether ( ) { }1,1, −∈µλ  exist, such that the following applies:

)( ,,1 ckrkkk xxxx −+= − µλ .          (2.4.5)

If so, then the record contains a cumulation error. If 1−=λ , then kx also has an 

incorrect sign, and if 1−=µ , then rkx ,  and ckx , have been interchanged. The 

cumulation error and the sign error are corrected by replacing kx , rkx ,  and ckx , by:
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Note that rkrk xx ,, =′ if 1=µ  and ckrk xx ,, =′ if 1−=µ , and something similar for 

ckx ,′ . From (2.4.5), it follows that ckrkk xxx ,, ′−′=′ .

For example: in example (c), we see that

)()1()40(7507901 ,1,101 cr xxxx −⋅−+=−−==⋅ ,
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in other words, (2.4.5) applies for ( )1,1 −== µλ . According to (2.4.6), the error can 

be corrected by selecting: 40011 =−=′ xxx , 40,1,1 ==′ cr xx  and 0,1,1 ==′ rc xx . 

Now cr xxx ,1,11 ′−′=′  does indeed apply. Because there are no other errors in this 

record, this correction immediately satisfies the external sum rule.

A slightly more detailed elaboration of this method can be found in 

Scholtus (2008a).

2.4.6 Correction of simple typing errors

In Section 2.3.2, we saw an example in which an inconsistency was resolved 

deductively by assuming that the respondent had accidentally interchanged two 

digits (by writing ‘283’ instead of ‘238’). Interchanging two subsequent digits is an 

example of a simple typing error. Other examples are:

• Adding a digit (for example: ‘46297’ instead of ‘4627’);

• Forgetting a digit (for example: ‘427’ instead of ‘4627’);

• Replacing a digit (for example: ‘4687’ instead of ‘4627’).

Simple typing errors are easy to make and therefore occur frequently in practice. A 

review of data from the SBS Wholesale 2007 revealed, for example, that nearly 10% 

of all inconsistencies in linear equations could be explained by one of the four errors 

mentioned above (Scholtus, 2009).

In the event that the data must satisfy a single linear equation, simple typing errors

can easily be detected, such as in the example from Section 2.3.2. Van de Pol et al.

(1997) address this situation in detail. In the SBS edit rules, however, there is a 

system of linear equations that are connected with one another. In addition to edit 

rule (2.3.4), turnover and costs, for example, must be equal to the sum of several 

sub-items. A deductive method to correct simple typing errors in this more complex 

situation is described by Scholtus (2009). We will discuss this method here using 

only an example.

Say that a record consists of eleven variables that must satisfy five edit rules:
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The following record violates the second, fourth and fifth edit rules: 

 
137184219979411127632316115681161452

1110987654321 xxxxxxxxxxx

To see if one or more inconsistencies can be explained as simple typing errors, we 

first determine which variables only occur in violated linear equations. After all 

these are the only variables that we can change deductively without introducing new 
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inconsistencies. In this example these are the variables that only occur in the second, 

fourth and fifth edit rules, and these are 4x , 9x , 10x  and 11x .

For each stated variable, we go through the linear equations in which it occurs. For 

each edit rule, we determine which value the variable in question should be given to 

eliminate the inconsistency. Please note: such a value always exists if the edit rule is

in the form of a linear equation. Next, we compare the new value with the filled-in 

value. If the change can be explained as simple typing error, then we keep the 

proposed change, otherwise we do not. After going through all the edit rules, we 

look at how often each proposed value has been stated.

In this example, 4x only occurs in the second edit rule. To satisfy this rule, we 

would have to fill in the value 116~
4 =x . The current value is 161, and the new value

can be explained as a simple typing error: two successive digits have been 

interchanged. This means that it is plausible that the actual value of 116 has been 

changed to the observed value of 161 due to a typing error.

Variable 9x occurs in both the fourth and the fifth edit rules. Both rules can be 

satisfied by filling in the value of 1979~
9 =x . This value can also be explained by a 

simple typing error: the actual value of 1979 was likely changed to the observed 

value of 19979 because an additional digit was accidentally added.

For 10x , we see 19842~
10 =x . From this value, the observed value of 1842 can be 

found by leaving out a digit. This could also be a simple typing error.

Finally, the necessary value of 11x , 18137~
11 =x , cannot be explained by one of the 

abovementioned simple typing errors. This means that we are not addressing 11x

further here.

Next, a choice must be made from the possible typing errors found. It is clear that, 

for each variable, no more than one new value can be selected. Furthermore, it is not 

useful to change two variables that are present in the same linear equation: on 

balance, the edit rule continues to be violated. Given these two limitations, we 

choose the combination of proposed changes that leads to a maximum number of 

resolved inconsistencies.

In the example, we have found no more than one new value for each variable, 

therefore the first limitation does not play a role. Further consideration of the edit 

rules demonstrates that 4x does not occur in the same rule as 9x  and 10x , but that 

9x  and 10x do occur together in an equation. There are therefore two possible 

choices: either to change 4x  and 9x , or 4x  and 10x . The number of resolved 

inconsistencies in these choices is three and two respectively. We therefore choose 

the first combination of deductive corrections. The resulting record is:

13718421979411127632311615681161452

~~
1110987654321 xxxxxxxxxxx

This record satisfies all the edit rules.
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A detailed description of this algorithm for the deductive correction of simple typing 

errors can be found in Scholtus (2009).

2.5 Quality indicators

As previously stated, people always make assumptions about the data when drawing 

up a deductive correction method. If these assumptions are valid, the method

produces the best possible corrections. However, if the assumptions are unrealistic, 

the method can introduce bias. It is therefore important to investigate whether the 

data satisfies the assumptions made.

An indicator of the usefulness of a deductive correction method is the number of 

errors that it resolves in a realistic data file. Another aspect concerns the gain in 

efficiency that is achieved because a number of records – after the implementation 

of the deductive method – need a lesser amount of detection and correction, or a less 

intensive form. An example of this can be found in the detection and correction 

process of the SBS, where there is a choice between manual (‘expensive’) and 

automatic editing (‘inexpensive’). The deductive corrections described in Section 

2.4.3 create a situation where more records are suitable for the automated variant.
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3. Interactive editing

3.1 Short description

In interactive or manual editing, an editor makes corrections to a record, using a 

program that detects errors and shows which variables are involved in a violated edit 

rule. It is then the editor’s decision to select which variable should be corrected and 

what the correct value of this variable could be. At Statistics Netherlands and many 

other statistical bureaus, BLAISE is used for this purpose. For telephone or personal 

interviews, the editing can be started during the data entry. Drawing up editing 

instructions beforehand is recommended to guarantee the quality of the editing.

3.2 Applicability

To clarify the objective of interactive editing, a distinction is initially made among 

several types of values.

The true value is obtained through an ideal measurement and processing procedure, 

i.e. the value that we obtain if the reporter provides figures according to the right 

definition and using the right accounting records, and that are not changed during 

the processing procedure. However, we do not know the true value, and therefore 

we also do not know if we have observed it.

What we can attain is a correct value, namely if a sector expert considers this 

correct based on the available information, or on the information available at 

Statistics Netherlands about values of related variables and records and an extensive 

set of editing rules. Whether this ‘correct’ value approximates the true value 

depends on the available information, the skill of the editor, the quality of the 

editing instructions and the extent to which these instructions are followed.

In many cases, however, we cannot obtain anything better than an acceptable value, 

which means that it satisfies the hard edit rules. If an editor only resolves hard 

errors, then this produces an acceptable value. This also applies if a record is edited 

automatically. In that case, only hard errors are resolved; see Chapter 5.

The objective of interactive editing is to make values in a record correct. In the 

event of severe time pressure, a situation can arise where a limited number of 

variables are checked exhaustively and the other variables are made no more than 

acceptable during the micro editing phase. This choice must be made by the project 

manager, not the editor. Influential errors that remain in the micro editing must still 

be edited interactively during the macro editing.

Interactive editing is particularly effective if the data can only be partly edited 

automatically or if the quality of interactively edited data is significantly better. 

Another advantage is that, during interactive editing, you can search for information 

on, for example, the internet or in a completed written questionnaire. Reporters can 

be telephoned in case of primary observation. This is only recommended if it is 



28

crucial for insight into the statistical process or the quality of a publication figure. 

Interactive editing also offers the opportunity to recognise error patterns that occur 

regularly. It can then be examined whether these error patterns can be automatically 

edited (in advance) in the subsequent process. 

An important condition is that a set of edit rules is available with which mutual 

relationships and the range of variables (or ratios thereof) can be checked. In 

addition, a program should be available that can go through the edit rules and make 

a distinction between hard and soft errors. This program must also be able to show 

reference values for a record; see Section 3.3.

3.3 Detailed description

3.3.1 Introduction

When interviewing people, a form can be immediately edited interactively if a 

computer-assisted interviewing (CAI) system, such as BLAISE, is used. 

Inconsistencies can be detected by the CAI system and corrected by the interviewer 

in consultation with the interviewee. For companies, this is only possible if they are 

visited by the field staff. If a company submits a form, it is advisable to only 

interactively edit the form if it contains potential influential values. This can be 

determined using score functions; see Chapter 3. The editor can examine these 

scores to determine which variables contain potential influential errors. 

If a survey completed by a reporter is received by Statistics Netherlands, an 

automatic correction round takes place first, during which obvious errors are 

corrected. In the interactive correction of pre-edited data, the remaining incorrect 

values are improved by contacting the reporter or by making use of expert 

knowledge in combination with reference data, such as other data from the same 

reporter (from a previous period, another survey or accounting records), the 

reporter’s original statement or representative values of trends for similar reporters.

In the interactive correction of a survey with related variables, changing a value of a 

variable can result in the violation of other edit rules. In this case, other variable will 

also have to be corrected. In any case, an editor will have to ensure that the data 

satisfies all the hard edit rules. The editor must determine which variable in a 

violated edit rule must be corrected, and what the correct value is.

In the interactive correction of a short-term statistic, it can be examined, for 

example, whether an influential suspect value fits in the seasonal pattern for similar 

units. For economic statistics, account can be taken of the general picture of the 

economic development in recent periods.

3.3.2 Drawing up editing instructions

It is not sufficient to have a programme that shows the variables of the records to be 

checked, indicates why a record has been selected, which edit rules have been 

violated, and makes visible the related variables from other sources and earlier 
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periods or process steps. It is important to draw up editing instructions to prevent an 

editor from using an incorrect editing strategy. 

Editing instructions must contain at least the following components:

− An explanation of the observation and processing procedure that has taken 

place.

− Instructions about the order in which the selected records should be dealt with. 

If the interactive editing is part of macro editing, then analysis instructions are 

also necessary. This indicates how records (and extra records) can be selected.

− For selective editing, an explanation is needed about the selection criterion and 

how this can be used to detect errors in a record.

− An overview of the type of errors that can occur in the data, such as NACE

(Standard Industrial Classification) errors, size class errors, measurement errors 

and processing errors.

− Tips about detecting a certain error. In statistics about multiple related variables, 

you can search for scatter plots and complex units. This is also possible for other 

statistics if connections can be made with related variables from other sources. 

For short-term statistics, the seasonal pattern of a record can be compared with 

the seasonal pattern for the sector.

− Suggestions about additional information that can be looked up; for example, 

using a register of statistical units, sector organisations, the internet or Cdfoon. 

Googling a company name helps, for example, to determine whether there is a 

NACE error.

− For each type of error, there should be an indication of how the error can be 

corrected. A correction rule may be specified for systematic errors.

− Instructions about recording the editing actions taken; for example, using a 

comments field in the editing tool. If a NACE error or size class error has been 

observed, then it must be clear whether this must be communicated to the 

people that manage the population frame.

3.4 Quality indicators

To determine whether interactive editing will improve the microdata and publication 

figures, a number of aspects can be examined:

1. Percentage and number of records that do not satisfy an edit rule before 

interactive editing;

2. Percentage and number of records that do not satisfy an edit rule after interactive 

editing;

3. Publication figure calculated based on pre-edited data for interactively edited 

records and acceptable data for automatically edited records;

4. Publication figure calculated based on interactively edited data.
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The difference between indicators 1 and 2 provides an understanding of the extent to 

which violations of edit rules are resolved by interactive correction. The difference 

between indicators 3 and 4 indicates the effect of interactive editing on the 

publication figure. 
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4. Selective editing

4.1 Short description

Manual or interactive editing is one of the most time-consuming and expensive parts 

of the statistical processing procedure for business statistics. In the past, all records 

were frequently manually edited, which led to high costs and long turnaround times. 

This was a stimulus for research into possibilities to limit the manual work. In the 

last two decades, this research has revealed that it is neither necessary nor desirable 

to edit all records manually. For many records, manual corrections have a negligible 

influence on the ultimate publication figures, such as estimates of population/sub-

population totals or developments. Manual editing can therefore be limited to those 

records for which corrections do actually affect the publication figures; this focused 

restriction is known as selective editing. The intention of selective editing is to limit 

manual editing in order to reduce costs, decrease the turnaround time, and reduce the 

response burden with only a minimum loss of quality in the publication figures.

In selective editing, each record is assigned a score that indicates the extent of the 

expected influence on the publication figures if the record were manually edited. 

The records with high scores (significant influence) have the highest priority for 

manual editing. For low scores, under a certain limit value, manual editing is no 

longer necessary. Methods that can be used to determine the scores and methods to 

establish the limit value are part of the selective editing methodology that is 

discussed in this chapter. 

The figures below illustrate the declining influence of successively less important 

corrections on the estimates of totals (taken from Hoogland et al., 2002). The 

estimated totals are shown as a function of the number of edited records, in which 

the records were edited in the order of decreasing influence on this estimate. The left 

diagram in Figure 3 concerns the estimate of the number of employees in the 

building industry in a subdomain with 1700 respondents. This figure shows that the 

correction of more than 40 records does not have any additional impact on the 

estimate of the population total. The right diagram in Figure 3 shows that the 

estimate of the number of employees in civil engineering in a subdomain with 900 

respondents hardly changes once the 20 records with the largest errors have been 

corrected. These figures present examples for which manual editing can be limited 

to a small part of the records. The extent of manual editing is unlikely to remain as 

strongly limited in all situations as in these examples. However, from the 

perspective of efficiency, it is virtually always useful to utilise manual editing

selectively. Methods to determine which records are suitable for manual editing and 

which records do not need this will be discussed in this chapter.



32

Figure 3. Estimated number of employees as a function of the number of edited 

records, for which editing was performed in the order of impact on the total. The 

first display is based on a large publication cell (about 1700 respondents), the 

second display is based on a medium-sized publication cell (about 900 respondents).

4.2 Applicability

Selective editing is used almost exclusively for business statistics and numerical 

variables. The impact of the editing on publication figures varies significantly 

between companies, simply because they vary – often significantly – in size, and 

therefore have a very different share in the estimate of the total. This is less true for

social statistics. Each individual has approximately the same importance for the 

estimate of a total, and this importance is expressed in the raising weights that vary 

minimally between respondents. Still, individual records with strongly deviating 

values, such as extremely high incomes, can be detected and manually checked.

While it is worthwhile to perform selective editing for virtually all economic 

statistics, this does not always have to take place at micro level. An alternative is 

macro editing (see Chapter 7). An advantage of selective editing at micro level

instead of macro editing is that the editing can be started during the data collection 

period. An advantage of editing at macro level is that the major errors can be better 

detected once all the data has been received.

In the processing procedure, the records are selected for manual editing after the 

systematic errors have been corrected (see Chapter 2). This is an automatic 

correction round in which major errors (such as thousand-errors) are often corrected. 

If such errors are not corrected first, they will be recognised during selective editing

as influential errors and the records involved will be routed to the editors. Clearly, it 

is inefficient to burden the editors with these errors that can be resolved 

automatically.

4.3 Detailed description

4.3.1 Introduction

The most important tool in the selective editing process is the score function. This 

function allocates scores to individual records, based on which the records are given 
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a priority for manual editing. The records with the highest scores are eligible for 

editing first. Such scores are, in principle, the same as what is called the ‘plausibility 

index’ at Statistics Netherlands. The only difference is that, in the plausibility index, 

low values correspond to a high priority for manual editing, while the opposite is 

true for the regular score functions. 

A score for a record can be composed of a number of different sub-scores or local 

scores. These are often separate scores for each of the major variables. These scores 

provide an indication of the expected effect of the editing of those variables for the 

estimates of the important target parameters, such as the totals of those variables and

developments in those totals. A local score for a variable j in a record i generally has 

the following form,

sij = importanceij × riskij

The risk factor is determined by comparing the raw value of the variable with a so-

called reference value. The reference value gives an indication of the value that 

could be expected, and is determined based on information from sources other than 

the current data set, such as a previous version of the same survey, other surveys or 

registers with similar variables. The degree to which a value deviates from the 

reference value determines the risk. The risk is high if the deviation is large; the raw 

value could then possibly be an error and, in that case, could also lead to a large 

correction. If the deviation is small, there is no reason to assume that the value could 

be an error. Moreover, if this were the case, then the correction would probably be 

small. The importance factor demonstrates how much the record contributes to the 

estimate of the publication figure. This factor is mainly related to the size of a 

company; a small correction in terms of percentage in the value of a large company 

could still have a substantial impact on a publication figure.

The local scores described above are related to the estimate for a target parameter. 

These scores are therefore also called estimator-related scores. Another type of 

scores is based on violations of edit rules (edits), such as the number of errors or the 

number of empty fields that should not be empty (partial non-response), which are 

both indicators of aspects of the quality of a record. This last type of scores is called 

edit-related scores. Section 4.3.3 demonstrates that edit-related and estimator-related

scores can be combined into a single record score. 

The following steps must be taken to implement a selective editing strategy:

• Defining local scores based on available reference values that approximate

the expected values as closely as possible. Section 4.3.2 discusses several 

frequently used local score functions.

• Combining the local scores into a record score or global score. This is 

discussed in Section 4.3.3.

• Establishing a limit value for the record scores that can be used to select the 

records to be manually edited. The determination of the limit value is 

discussed in Section 4.3.4. The other records will be edited automatically. 

Automatic editing is discussed in Chapters 5 and 6.
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4.3.2 Local score functions for totals and developments

The two most important target parameters in business statistics are totals of 

populations/subpopulations and developments within populations/subpopulations. 

This section discusses frequently used score functions for each of these target 

parameters. Most of the local score functions used in practice can be understood as 

variants of the functions discussed here, for which the importance or risk component 

is sometimes adapted to a specific situation. 

To construct a score function that focuses on the effects of the editing on the 

estimate of totals, we first take a look at the usual estimator for the population total 

of a target variable yj. This estimator can be written as

∑ Î
=

si ijij ywY ˆˆ , (4.3.1)

where s is the set of responding units and wi are weights that correct for unequal 

inclusion probabilities and non-response. The ijŷ  in (4.3.1) are edited values; in 

other words, they have gone through an editing process in which some of the raw 

values, say ijy , were replaced by editors or by an automated process with better 

values ijŷ . The effect of the editing of a single record on the ultimate estimate can 

be expressed as the difference 

)ˆ( ijijiij yyw -=d .          (4.3.2)

The variable ijd contains the unknown corrected value of ijŷ  and therefore cannot 

be calculated. For this reason, ijŷ is approximated by a reference value. The 

reference value serves as an assessment gauge for the quality of the raw value. The 

literature refers to the reference value also as the ‘anticipated value’. The list below 

contains frequently used sources for reference values:

· Edited data from the same company from an earlier version the same

survey, possibly multiplied by an estimate of the development between the 

current and previous observation. This source is much more important for 

short-term statistics than for annual statistics, because the overlap between 

the samples for consecutive periods is much larger in this context. 

· Data from the same company from another survey or a registration. For 

Structural Business Statistics, data from, for example, Short Term Statistics, 

can be used, and tax data can be used for both.

· Data about a homogeneous subgroup of similar companies. For Structural 

Business Statistics, for example, the median of the edited data from a 

previous period in the same subdomain is used. Subdomain are often formed 

by SBI categories and size classes, or combinations thereof.

Besides the unknown corrected value, (4.3.2) also contains a weight wi that is not 

yet known. Because the weights wi correct for both unequal inclusion probabilities 

and non-response, they can only be calculated if the non-response is known, 
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therefore after the period in which the data is collected. However, the editing already 

begins during this period. A score function for selective editing therefore cannot 

make use of these weights. As a solution, it is common to approximate the weights 

wi using the ‘initial weights’, say vi, that only compensate for the unequal inclusion 

probabilities and which can already be calculated once the sample design is known: 

namely, as the inverse of these inclusion probabilities. If an estimate of the expected 

non-response can be made in advance, this can be used when determining the 

weights. Using the reference value and the initial weights, the effect of the editing

on the estimate of the total can be quantified by the score function

,~/~~~
ijijijijijijiijijiij rbyyyyvyyvs ×=−×=−= (4.3.3)

where ijy~ is the reference value. As (4.3.3) demonstrates, this score function can be 

described as the product of an ‘importance factor’ bij and a ‘risk factor’ rij. The 

importance factor is the share of the record i in the total estimate based on the 

reference values, and the risk factor is the absolute value of the relative deviation of 

the observed value compared to the reference value. The risk rij represents the 

expected extent of change due to the editing. The relative importance ∑i ijij bb / is 

often used instead of the importance ijb . Because jiji ii ij Yyvb
~~ ==∑∑ , the 

resulting score jijij Yss
~

/=′ can be understood as a scaled version of ijs ; by dividing 

by an estimate of the total (based on the reference values), the score becomes 

independent of the measurement unit. This scaling makes the scores for different 

variables easier to compare, which offers advantages when local scores are 

combined into a record score (see section 4.3.3).

Please note that the score defined in this manner takes on higher values as the risk 

increases, and as the importance rises, thus as the probability of an influential error

increases the record becomes eligible for manual editing earlier in the process. In 

Structural Business Statistics at Statistics Netherlands, the scores are transformed 

into scores on a scale of 1 to 10, in which 10 stands for a very plausible value of ijy

and 1 for a very implausible value. After this transformation, the scores are called

‘plausibility indicators’.

Another known score function is obtained by basing the risk factor on the ratio 

between the raw value and the reference value instead of the absolute difference as 

in (4.3.3). This risk factor, proposed by Hidiroglou and Berthelot (1986) is defined 

as follows:

1~,
~
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ij
ij y

y

y

y
r . (4.3.4)

Because of this definition, upwards multiplicative deviations of the reference value

count just as heavily as downwards multiplicative deviations, and the minimum

value is 0, for ijy = ijy~ . 
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Sometimes, the ratios between variables in a record are more suitable for detecting 

deviating values than the separate variables themselves. Examples of this are the 

ratio between a company’s turnover and its number of employees or the ratio 

between the price of a house and the number of square metres. The turnover per 

employee and the price per square metre show much less fluctuation than the 

turnover and the price. It is therefore easier to distinguish between deviating values, 

except for if the numerator and the denominator deviate in the same direction. Score 

functions based on ratios can be obtained by replacing ijy  and ijy~  in the risk factor

in (4.3.3) or (4.3.4) by the raw value and the reference value of the ratio 

respectively.

For some statistics, such as short-term statistics, the most prominent target 

parameters are developments for populations/subpopulations. In these cases, it is 

common to choose a score function that is geared towards detecting companies with 

deviating developments. The development in a target variable yj between the current 

time t and a previous time t – 1, for a company i is 1,, ˆˆˆ −= tijtijij yyo . We assume that 

the t – 1 data has already been edited and that the intention of the score function to 

be calculated is solely to selectively edit the current data. The raw value of the 

development is therefore 1,, ˆ −= tijtijij yyo . A risk factor in a score function will 

attempt to detect deviating values of the individual developments oij by comparing 

these with a reference value ijo~ . For the reference value, Hidiroglou and Berthelot 

(1986) choose the median of the oij in a subdomain. The disadvantage of this is that 

editing can only be commenced when sufficient response has been received to 

determine this median. As an alternative, Latouche and Berthelot (1992) therefore 

select the median of the individual developments between t – 2 and t – 1, which is 

useful if the development between t and t – 1 resembles that between t – 1 and t – 2. 

In the short-term statistics at Statistics Netherlands, the reference value is obtained 

by first determining a reference value for tijy ,ˆ and then by calculating the reference 

value for the development as 1,, ˆ~~
−= tijtijij yyo . The reference value tijy ,

~ is 

determined by extrapolation from 1,ˆ −tijy with the help of a seasonal pattern estimated 

from earlier data. A reference value can be used to determine a risk factor, for 

which, in the case of developments, a multiplicative form is usually used, such as 

(4.3.4).

A score function can now be formed by multiplying rij by an importance factor; for 

this, Hidiroglou and Berthelot use the unweighted version of

( )[ ]c
tijtitijtiij ywyvb 1,1,,, ˆ,max −−= , (4.3.5)

with 0 ≤ c ≤ 1. Using the parameter c, the influence of the importance can be 

determined; the influence of the importance declines for lower values for c. Based 

on empirical research at Statistics Canada, Latouche and Berthelot suggest choosing 

the value 0.5 for c. The maximum function in (4.3.5) has the result that an error in 

tijy , tends to overestimate rather than underestimate the importance. After all, a 
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reported value of tijy , that is too low can never lead to an importance smaller than 

1,ˆ −tijy , while an overly high value of tijy , can, in principle, increase the importance 

to an unlimited extent. A scaled version of a score with an importance factor

according to (4.3.5) can be obtained by dividing tijti yv ,,  and 1,1, ˆ −− tijti yw  in (4.3.5) by 

estimates for their total, tjY ,

~
 and 1,

ˆ
−tjY respectively. The estimated t – 1 total is 

simply ∑ −−− =
i tijtitj ywY 1,1,1, ˆˆ . Because it is assumed that all the data is not yet 

available, the actual total must be approximated, for example, by an estimate based 

on reference values and initial weights: ∑=
i tijtitj yvY ,,,

~~
. The scaled version of the 

importance factor can be written as
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4.3.3 Combining local scores into a global score

A score at record level is needed to select – or not select – a record for manual 

editing. This global score combines the information from the local scores about the 

expected influence of the editing of different variables in the record into a single 

score that indicates the importance of the manual editing for the entire record.

When combining the scores, it is important that the order of magnitude of the scores

is comparable, because otherwise the different scores will unintentionally be given a 

different weight in the global score. It is therefore common to scale the scores so 

that that they are easier to compare. One method for this is described in the previous 

section. Another method involves dividing the score by the standard deviation of the 

reference values, ( )~(/ jij ys σ ); see Lawrence and McKenzie (2000). This second 

method has the advantage that deviations in variables with a large dispersion are 

given scores that are not as high, and therefore tend to be characterised less quickly 

as suspect than deviations in variables with a smaller dispersion. 

Various methods have been proposed to combine the standardised scores into a 

global score. Often, the sum of the local scores is used (Latouche and Berthelot, 

1992). Records with many deviating values consequently are given high scores and 

therefore high priority for manual editing. This is an advantage because editing

multiple variables in the same record is relatively less work than editing a single 

variable in a record, certainly if additional contact takes place with the respondent

for this purpose. The result of the method is that records with a high number of yet 

less strongly deviating values will tend to be manually edited earlier than records 

with a low number of strongly deviating values. If it is desirable that a strongly 

deviating value for a single variable in an otherwise non-suspect record should still 

be manually edited, the sum of the local scores is not a good criterion.

As an alternative for the sum of the local scores, Lawrence and McKenzie (2000) 

propose using the maximum of the scaled scores. The advantage of this is that the 
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method for each variable guarantees that deviating values above a certain limit will 

be inspected manually. The disadvantage of this safe strategy is that a distinction 

will no longer be made between records with a single serious deviation and records 

with many similarly serious deviations. As a compromise between the sum and the 

maximum, Farwell (2005) proposes using the Euclidian metric. These three 

proposals can be generalised to combining the local scores into a global score 

according to the so-called Minkowski metric (see Hedlin, 2008) given by

( ) ααα /1

1

)( ∑ =
= J

j iji sS , (4.3.7)

where J is the number of local scores. The parameter α in (4.3.7) determines the 

influence of high values of the local scores on the global score; this influence 

increases with α. For α = 1, (4.3.7) is the sum of the local scores and for α = ∞, 

(4.3.7) is equal to the maximum of the local scores, only the largest value still 

counts in this case. For α = 2, (4.3.7) is the Euclidian metric.

For extensive questionnaires, such as the Structural Business Statistics, not all of the 

variables are equally important. Totals of turnover and numbers of employees are

much more important than breakdowns of components of the operating costs. In 

such cases, weights are assigned to the local scores in the summation (4.3.7), and 

these weights express those differences in importance. In Structural Business 

Statistics, for example, content experts assign weights, for which the choice is 

between 0, 1, 10 and 100.

In formula (4.3.7), estimator-related score functions are combined. In addition, 

however, there are sometimes edit-related score functions, such as the number of 

hard errors or the number of improperly empty fields (partial non-response), which 

also say something about the quality of a record. The edit-related scores must then

be added to the global score. This can be done by treating them in the same way as 

the estimator-related scores and, after the appropriate scaling and possibly with their 

own weights, adding them to the summation in (4.3.7). Another possibility is to first 

combine the edit-related scores with their own metric, and to add these combined

scores to the combined estimator-related scores (see Section 4.4.2 for an example).

4.3.4 Determining the threshold value for the global score and pseudo-bias

The ultimate goal of a global score function is to select records for manual editing. 

If the editing can wait until after the observation period, the manual editing can take 

place according to the prioritisation of the global score until estimates of the most 

important target parameters no longer change substantially as a result (compare with 

Figure 3). Because manual editing is time consuming, this approach leads to 

unacceptably long turnaround times, especially for statistics with larger amounts of 

data and variables. To start manual editing during the data collection phase, it is 

necessary to take a decision, based on the score per record, without comparison with 

the scores of the other records, to edit or not edit the record manually. With this 

goal, a threshold value for the record score is determined such that records with a 
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score higher than the threshold value are edited manually and records with a score 

lower than the threshold value are edited automatically or not at all.

The usual method to determine a threshold value utilises a simulation study that 

investigates the effect of different threshold values, and therefore varying degrees of 

manual editing, on the bias in the most important target parameters. Such a 

simulation is based on a set of raw data and the associated data edited completely 

manually. This data must be comparable to the data on which the threshold values 

are going to be used. The usual choice for this is the data from an earlier version of 

the survey. 

For the simulation study, global scores for the records with raw data are first 

calculated using the selected methods, then these records are put in order according 

to these scores. A simulation is then carried out in which only the first p% of the 

records are selected for manual editing. This is done by replacing for that first p% of 

the file the raw values by the edited values. We indicate the sub-file with the edited

records by Hp. 

Next, the difference is determined between the estimate of the total of a variable

based on the p%-edited file and based on the fully edited file. The absolute value of 

the relative difference between these estimates is called the absolute pseudo-bias 

(Latouche and Berthelot, 1992), given by

∑
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)( . (4.3.8)

As (4.3.8) demonstrates, the absolute pseudo-bias is determined by the difference in 

the totals of the edited values and the non-edited values for the part of the records 

not selected for manual editing. If the result of the editing is that all errors (and only

errors) are corrected, then (4.3.8) is the relative bias that arises because not all of the 

records are edited. Because it is not certain whether the editing reproduces the actual 

values, (4.3.8) is an approximation of this bias and is therefore called the pseudo-

bias.

The pseudo-bias in the case of p%-editing can also be seen as an estimate of the 

gains in accuracy that can be achieved by also editing the rest (1 – p%) of the 

records. By calculating the pseudo-bias for a large number of different values of p,

an impression is obtained of the gains in accuracy as a function of p. If the sorting of 

the records based on the score has the desired effect, then these gains will decline as 

p increases. For some value for p, it will then be decided that the remaining pseudo-

bias is small enough and that it is not worthwhile to edit more records. The record 

score corresponding with this value for p is then the threshold value.

The pseudo-bias as described above is based on a comparison between manually

edited data and raw data, and therefore assumes either that editing will take place 

manually or not at all. In many cases, however, automatic editing takes place instead 

of no editing whatsoever. If we assume that, in any case, automatic editing does not 

lead to more bias than no editing at all, the abovementioned pseudo-bias can be 
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understood as an upper limit for the pseudo-bias in situations in which automatic 

editing is used.

4.4 Examples

This section examines several practical examples of selective editing and parts of 

this process. We first address the construction of a plausibility index for short-term 

statistics (§ 4.4.1) and then provide a short description of the plausibility index of 

the survey Building Objects in Preparation (§ 4.4.2). These practical examples serve 

only as an illustration of the techniques, and therefore not all of the implementation 

details are addressed. More extensive explanations can be found in Van Duin, 2003 

(plausibility index for short-term statistics), and Van der Loo and Pannekoek, 2007 

(plausibility index of the survey Building Objects in Preparation). 

4.4.1 Score function for Short Term Statistics

The most important variable in Short Term Statistics (STSs) is the turnover, and the 

most important target parameter is the development in this turnover between 

consecutive periods (months or quarters). In the standard production process for 

these statistics at Statistics Netherlands (IMPECT 2), selective editing is carried out 

for which the selection is determined exclusively by the variable ‘turnover’. 

The selection process makes use of variants of the importance and risk factors that 

were discussed in Section (4.3.2). The risk factor is the ratio of the observed 

turnover development between t and t – 1 and a reference value for this 

development: 

t
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i,t o

o
r ~= , with titii,t yyo ,, ˆ/= .

Note that, in this definition of a risk factor, in contrast to that in (4.3.4), both values 

much greater than 1 and values much smaller than 1 are ‘suspect’. 

To determine the reference value, the median for a number of past years is 

calculated for the turnover development between t – 1 and t. For a monthly statistic, 

t and t – 1 are always the same months but from different years, and for a quarterly 

statistic, t and t – 1 are always the same quarters, but from different years. Next, the 

geometric mean is calculated over the years, of these developments from the past. 

The reference value is determined by multiplying this geometric mean by a 

correction factor for the difference in the number of workdays in t – 1 and t.

The importance factor is the scaled importance according to (4.3.6), therefore the 

maximum of the contribution to the t – 1 total and an estimate for the contribution to 

the current total. Instead of t – 1, however, we look here at t – 2, so
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We look at t – 2 because, for the period t – 1, an approved total may not yet be 

available. The approximation for the current total tY
~

is obtained by multiplying the 

estimated total for t – 2 by the estimated turnover development according to the 

reference value as calculated above. 

Using the above risk and importance factors tir ,  and tib , , records are selected for 

interactive editing. The strategy followed here is different from that in the strategy 

described in §4.3.1. Instead of combining the risk and importance factors into a 

score and then applying the selection using a threshold value for this score, separate 

threshold values for the importance and risk factors are used here. This selection 

process is summarised in the following two steps:

1. If tib ,  > 1minb then interactive editing is performed, independently of the value of

tir , . The value of 1minb is chosen such that a small number of very important 

companies is selected for which it is worthwhile to always have them checked by an 

editor. For the STSs, this only relates to a couple of variables, therefore a record can 

be checked quickly.

2. The following applies for the other records:

Only if tib ,  > 2minb  and ( tir ,  < minr  of tir , > maxr ), then interactive editing is 

performed. Note that both tir ,  < minr  and tir , > maxr indicate a large risk.

In the second step, the same as for the previously discussed approach, if the risk and

the importance are high, then interactive editing is performed. In contrast to the 

previously discussed approach, however, there are fewer ‘compensation 

opportunities’ here. In the score function approach, a record with a low risk can still 

be given a high score, and therefore be selected for interactive editing if the 

importance is high enough. This is not possible in the approach used here; if the risk

falls in the interval [ minr , maxr ], the record is plausible and it is not edited 

interactively. In addition, if tib ,  < 2minb , then the record is unimportant and is not 

edited interactively, no matter how high the risk is.

4.4.2 Plausibility index for the survey Building Objects in Preparation

The quarterly survey Building Objects in Preparation (BOP) follows the 

development of the total construction value of new contracts at architectural firms in 

the Netherlands, and is used as a quick indicator for developments in the 

construction industry (see also Section 2.4.1 where the deductive corrections in the 

editing process of this survey are discussed). The budget of such a contract is the 

main variable for this survey. This is used to make estimates of the total budget for 

building objects in the classes defined by the combinations of type of building 

(residence, non-residence, combined-purpose building) and type of work (new 

construction, renovation). It is therefore of primary importance to correct errors in 

the reported budget. The budgets of the building objects show a very large 

dispersion, which makes it difficult to detect deviating values. The budget per 
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square metre, however, shows a much smaller dispersion. Strongly deviating values

for the budget per square metre are therefore an indication for potentially incorrect 

details in the budget (or the number of square metres). Therefore, a risk factor was 

selected based on the deviation of the budget per square metre of a building object

compared to the median for the class concerned. If, for a construction project i in 

class k, we indicate the budget by cki and the area in square metres by aki , then the 

square metre price can be defined as xki = cki/aki. The risk factor can be written as 









=

k

ki

ki

k
ik x

x

x

x
r ~,

~
max ,

where kx~ is the median of the square metre price of the building objects in class k. 

This is a risk factor of the form (4.3.4) (only the constant –1 is omitted here, which 

does not have consequences for the order of the records in terms of their risk). 

An importance factor must represent the importance of respondent i for the 

estimator of the total of the target variable. The total budget per class, kY , is 

estimated by 

kikii kikii kik xawywY ∑∑ ==ˆ ,

where kiw is the raising weight. The importance of a record for the estimator of the

total budget can therefore be expressed in the importance factor kikiki awb = , and the 

risk and importance factors can be combined into the score function

kiki
Y

ki rbs =)( .

This score function per class is scaled by dividing it by the maximum per class. 

In addition to looking for influential suspect values of the budget per square metre, 

the selective editing of the BOP also looks for hard errors. These can be values that 

fall outside the permitted range (such as percentages of residential area that are not 

between 0 and 100) or missing values in the variables Budget or Number of 

residences. They can also be conflicting values, such as stating several object types 

for a single building object or filling in a percentage (<100%) of residential area for 

a building object that is a residence. In total, 13 types of hard errors have been 

defined. The number of hard errors is a sign of the quality of the record, and a score 

function is also defined for this: 

∑ =
= J

j j
E

j
E

ki Egs
1

)()( ,

in which jE =1 if a hard error of type jE occurs, and otherwise 0. With the weights

)(E
jg , the relative importance of the different hard errors can be established. The 

weights are scaled such that 1)( =∑ j

E
jg . As a result, the score for hard errors falls 

between 0 and 1. By combining the two score functions in a weighted manner, the 

final score function results:
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kiki sgsgs += .

with 121 =+ gg .

This score function is an estimator-related score )(Y
kis combined with an edit-related

score )(E
kis , where the relative importance of these two components is represented by 

the weights g2 and g1 respectively.
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5. Error localisation based on the Fellegi-Holt paradigm

5.1 Short description

With this method, a data file is checked record by record using predefined edit rules. 

If a record violates one or more edit rules, the method produces a number of fields 

that can be imputed so that no more rules are violated. The imputation itself is not 

part of the method. 

When selecting the fields, the – generalised – Fellegi-Holt paradigm is assumed. 

This means that the smallest (weighted) number of fields is selected which will 

allow the record to be imputed consistently. Designating the fields to be imputed is 

called error localisation, and this can be performed in an automated manner. The 

edit rules can be both arithmetic (such as checking sums) and logical in nature (for 

example: if gender = man then pregnant = no). Combinations are also possible. 

At Statistics Netherlands, software has been developed to perform this automated 

error localisation, in the form of SLICE/CherryPie.

5.2 Applicability

This method is intended to detect incorrectly filled in fields in a record. The method

can be used on data files that have numerical, categorical or both data types. For 

numerical data, edit rules must consist of linear relationships between the variables

(see 5.3.1). For categorical data, any relationship can be established between 

variables. It is essential that edit rules can be checked per record. For example, an 

edit rule for which the value in a field is compared with the average value for that 

field over the entire file is not a valid edit rule. This does mean that this error 

localisation method can be used before all the data has been received.

The generalised Fellegi-Holt paradigm can be used for every survey, even though it 

is not suitable for all types of errors. For some inconsistencies, such as unit errors 

(for example, unit of measure-errors), interchanged signs and interchanged columns, 

it is better to use deductive correction, such as described in Chapter 2. The most 

important difference between deductive correction and the method described here is 

that deductive correction makes use of the stated values in fields to localise errors,

and the current method does not. If the value in a field can provide an indication 

about the error that has arisen (and therefore the solution), it is better to use 

deductive correction. In addition to the above examples, interchanged figures and 

comma errors are other examples of this type.

In error localisation according to the generalised Fellegi-Holt paradigm, no 

distinction is made between hard and soft edit rules: all rules are treated as hard edit 

rules. Hard edit rules are rules that are established by arithmetic or logical 

relationships, such as turnover = profit + costs. Hard edit rules define value 

combinations that are certainly wrong. Soft edit rules indicate whether a value, or 
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value combination, is unlikely, such as costs / turnover 6.0≥ . In error localisation, 

all records that violate one or more edit rules are viewed as certainly wrong. If too 

many soft edit rules are defined, there is a danger of over-editing: the unjustified 

adaptation of correctly filled-in data. See, for example, Di Zio et al. (2005).

5.3 Detailed description

The description provided here focuses mainly on automated error localisation, in 

which a field choice is determined for each record on the fly. For surveys with few 

questions, based on the generalised Fellegi-Holt paradigm, a field choice can be 

established manually per combination of violations. This took place, for example, in 

the editing of the statistic Building Objects in Preparation (Van der Loo and 

Pannekoek, 2007), in which five variables play a role. If the number of variables and 

the relationships between them increase, the complexity of the error localisation

problem rises quickly. For this reason, at Statistics Netherlands, software for error 

localisation has been developed in the form of SLICE (De Waal, 2005a). SLICE can 

be used to process large and complex surveys. SLICE is used, for example, when 

processing the data in Structural Business Statistics (De Jong, 2002).

This chapter is structured as follows. In Section 5.3.1, we describe the formulation 

of records and edit rules. In Section 5.3.2, we provide an overview of the attributes 

of the error localisation problem and its solution. To resolve the error localisation 

problem, it is necessary to derive (automatically) from explicitly defined edit rules 

the rules that logically follow from them. The techniques for this are described in 

Section 5.3.3. This – rather technical – section may be skipped when reading the 

document for the first time. The subsequent section (5.3.4) is dedicated to the 

solution as implemented by Statistics Netherlands: the branch-and-bound algorithm. 

This section is also rather technical and may also be skipped. Finally, we examine 

the SLICE/CherryPie software developed by Statistics Netherlands, which can be 

used to resolve error localisation problems. 

5.3.1 Records and edit rules

A record is a row of fields or variables from a questionnaire. A record x can be 

represented as ),,,( 21 nxxxx K= . The values that can be taken by variable ix are 

called the domain iD . Examples are ix = gender with },{ womanmanDi = , ix =

number of residences with =iD N or ix = profit with iD  = R. The total domain D , 

in which all possible records fall can be written as ),,,( 21 nDDDD K= .

Edit rules indicate what conditions variables or variable combinations must satisfy 

in a data file per rule. Edit rules are often called editing rules or edits or edit checks. 

All edit rules must be checkable per record, and must therefore not depend on values 

in fields of other records. 

The types of edit rules that can be used can be distinguished based on the types of 

data to which they relate:
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- Numerical data. Can be checked based on linear relationships such as 

0≥turnover , or profit + costs = turnover. The general form of a linear edit 

rule is as follows:

∑
=

≥
n

i
jiji bxa

1

    or ∑
=

=
n

i
jiji bxa

1

,

where j numbers the edit rules, jia are linear coefficients and jb are 

constants. Note that rules such as costs / turnover 6.0≥  are also linear edit 

rules, because they can be written in the form costs – 0.6 · turnover 0≥ .

- Categorical data. Any combination of categorical data can be ruled out. 

The rules are often written in if-then form, for example: if gender = man 

then pregnant = no.

- Combinations of both. These are also written in if-then form, for example: 

if marital status = married then age 16≥ .

If an edit rule e explicitly relates to variable ix , we say that ix occurs in e . 

Conversely, we say that e contains ix . Note that an edit rule establishes a subset of 

all possible records in D , for which all records in that subset contain at least one 

error (see also Section 5.3.3).

To resolve the error localisation problem, it is important that account is taken not 

only of the predefined rules, but also the rules that logically arise from them. Rules 

that are defined by the user are called explicit edit rules, and rules that are derived 

from them are known as implicit edit rules. For example, given the edit rules 

21 xx >  and 32 xx > , then the implicit rule 31 xx > is derived from this. It is not 

necessary (not even possible for linear rules) to generate all implicit edit rules. 

Fellegi and Holt (1976) demonstrated that it is sufficient to derive the so-called 

essentially new edit rules (see Section 5.3.3). 

5.3.2 Error localisation

Error localisation involves designating one or more fields in a record, such that after

adapting the content of these fields, the record no longer violates any edit rules. It is 

important to understand that it is not certain that the actual error (made by the 

respondent) will be found. An assumption is always made in designating the 

‘incorrect’ values. The generalised Fellegi-Holt paradigm is based on such an 

assumption, and can be summarised as follows: if a record x violates one or more 

edit rules, we look for the set of fields G that satisfy:

(G1) The content of the fields Gg ∈ can be adapted, such that record x no 

longer violates any explicit or essentially new edit rules. 

(G2) The value of ∑
∈ Gg

gw )( is minimised.
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Here )(gw are reliability weights for the fields g in G . A higher value for )(gw

means that field g is considered to be filled in better. Testing the reliability weights

is not possible in the error localisation method. The validity of the selected 

reliability weights must therefore be investigated separately. See, for example,

Hoogland and Smit (2008).

A special case arises when the same value is chosen for all weights )(gw , for 

example 1)( =gw for all g . In that case, we still have error localisation based on

the original Fellegi-Holt paradigm. The set G then consists of the smallest set of 

fields with which the record can be consistently imputed. In that case, it can be 

proven (Fellegi and Holt, 1976) that G is given by the smallest possible set of 

variables that covers all violated explicit and essentially new edit rules. That means 

the smallest set of fields for which each field occurs in at least one of the violated 

explicit and essentially new rules. The assumption behind this is that errors are made 

randomly, and that the largest set of consistently completed fields is filled in 

truthfully.

A final option involves not making an extra assumption about the best solution for 

the error localisation problem, and selecting a random solution from all sets of fields 

that satisfy the requirement (G1).

Even if the generalised Fellegi-Holt paradigm is used, the error localisation problem

can have multiple solutions. To generate a unique solution in that case, use can 

therefore be made of a hierarchical combination of selection principles. For 

example: (1) Generate the solutions mGGG ,,, 21 K according to the generalised

Fellegi-Holt paradigm. (2) If the solution is not unique )1( >m , then select a 

random solution from the m possibilities. Another method could be: (1) Generate 

the solutions mGGG ,,, 21 K according to generalised Fellegi-Holt paradigm. (2) If 

the solution is not unique )1( >m , then select the solution with the smallest number 

of fields. (3) If the solution is still not unique, then select one randomly from 

remaining solutions. See also Stoop (2003) for more selection mechanisms. 

Assuming the generalised Fellegi-Holt paradigm, there are different algorithms to 

find the possible solutions mGGG ,,, 21 K . The method implemented at Statistics 

Netherlands in CherryPie (a part of SLICE) is based on the so-called branch-and-

bound algorithm (De Waal, 2003; 2008). Summarised briefly, this algorithm is used 

to test whether each relevant combination of fields can satisfy the requirement (G1). 

The relevant combinations can be covered using a binary tree. Then, based on the 

selection principles or a combination thereof, a choice can be made from the 

possible solutions. This algorithm is described in Section 5.3.4. The algorithm uses a 

record and a set of edit rules as input. The output consists of a set of fields that can 

be consistently imputed. The complexity (the extent to which the execution time of 

the algorithm increases with the input) of the branch-and-bound algorithm is rather 

high. First, constructing the tree has an asymptotic (maximum) complexity of 

)2( nΟ  in the number of variables. This means: each extra variable that occurs in an 
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edit rule can double the execution time. During the construction of the tree, 

variables from edit rules must be eliminated in each step. For categorical variables, 

this is a problem with complexity )2( skΟ , where sk is the number of edit rules that 

sx contains. The exact execution time therefore rises quickly with the number of 

variables and the number of edit rules. Because the execution time rises so quickly, 

a decision was made to use a time limit of several minutes for the implementation of

this method for Structural Business Statistics. Records for which no solution is 

found after this amount of time are then edited manually.

Measures can be taken to reduce the execution time, namely by keeping n and/or k

as small as possible. First, a data file can be pre-processed, so that as many as 

possible deductive corrections have already been applied. The branch-and-bound

algorithm finishes more quickly when fewer rules have been violated. Second, the 

columns of the files that are not related to one another by correction rules can be 

treated as separate blocks (reduction of n ). Third, the binary tree in SLICE is built 

cleverly: the order in which it is constructed was chosen such that solution can 

usually be found quickly, and branches that do not offer any solutions, or any 

solutions better than those found previously, are broken off (De Waal, 2005b; 

Daalmans, 2000). Finally, in electronic observation, account can be taken of the 

editing process by building editing rules into the questionnaire. By building hard 

edit rules into, for example, web forms, the number of edit rules violated is reduced 

for the later editing process. By making smart choices about the edit rules to be built 

in, the number of variables that the branch-and-bound algorithm must take account 

of can be decreased (see also Van der Loo, 2008).

5.3.3 Eliminating variables

It is possible to use logical or arithmetic calculations to generate implicit edit rules 

from a given number of explicit rules. For example, take a look at the following two 

linear edit rules:

e1: costs + profit – turnover = 0

e2: costs – 0.6 · turnover ≥ 0

By solving the costs from 1e , and substituting this in 2e , we obtain

⋅4.0:3e turnover – profit ≥ 0

The new rule 3e does not contain the variable costs, while 1e  and 2e do. We say 

that the variable costs has been eliminated. The general procedure to derive linear

edit rules is called Fourier-Motzkin elimination (see, for example, De Waal, 2003, 

page 46). The method consists of solving a variable from one of the linear

equations/inequalities, after which the solution is substituted into the other edit 

rules, taking account of the signs of the inequalities. 

There is another procedure for categorical (logical) edit rules. For this purpose, we 

first define the normal form for categorical edit rules. Each edit rule for categorical
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variables can be written as a combination of subsets of the domains niDi ≤≤1, , 

namely:

),,,( 21
j

n
jj

j FFFe K= , where each i
j

i DF ⊆ .

The subsets are defined such that, if a record jex ∈ , then x violates edit rule je . 

Take, as an example, a file with the fields =1x marital status, =2x age and =3x

relationship to head of household. The domains pertaining to these variables are 

indicated by:

=1D {married, unmarried, widowed, divorced}

}16,16{2 ≥<=D ,

=3D {spouse, child, other}

The edit rule that says that someone younger than 16 years of age cannot be married 

looks as follows in normal form:

=1e ({married}, {< 16}, {spouse, child, other})

The edit rule that says that someone who is not married cannot be a spouse is 

represented in this notation as

=2e  ({unmarried, widowed, divorced}, {< 16, ≥ 16}, {spouse})

In other words, an edit rule establishes a subset of the total domain D in which all 

records in that subset contain at least one error. An edit rule je contains exactly 

those variables ix for which i
j

i DF ⊂  ( i
j

i DF ≠ ). Therefore, rule 1e  in the example

contains the variables marital status and age, and rule 2e contains marital status

and relationship to head of household. 

In view of the two edit rules from the example, it is intuitively clear that someone 

who is younger than 16 years of age cannot be a spouse or a head of household. This 

rule can indeed be formally derived from 1e  and 2e . The general procedure 

proceeds as follows. Given two edit rules je  and ke , a new implied edit rule

),( kjFs can be formed by means of the operation

),,,,,,,,(

),(

11112211
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FFFFFFFFFFFF

kjF

∩∩∪∩∩∩

=

++−− KK

where økjFs =),( if øFF k
i

j
i =∩ for one or more of the fields ix , with si ≠ .

The rules je  and ke are called generating edit rules and sx is known as the 

generating field. It is easy to see that ),( kjFs is indeed an edit rule. Namely, if 

),( kjFx s∈ , then it follows from the definition that jex ∈ , and/or kex ∈ . Because 

),( kjFs is an edit rule, it directly follows that implied edit rules can be used to 
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produce new implied rules. The formula for ),( kjFs can therefore be simply 

generalised to )(EFs with E a set of edit rules. It is possible that the resulting edit 

rule no longer contains the variable sx . This happens, for example, when 

s
k

s
j

s DFF =∪ , and is called the elimination of sx . The result is that, if a record

violates the rule ),( kjFs , this record, without any adaptation of sx can be corrected 

such that both rules je  and ke are satisfied. 

In the example, the variable marital status can be eliminated by forming the rule 

)2,1(1F in the following way:

=)2,1(1F
({married, unmarried, widowed, divorced}, {< 16}, {spouse})

This rule can indeed be interpreted as: someone younger than 16 years of age cannot 

be the spouse of the head of the household. A record )2,1(1Fx ∈ cannot be corrected 

for 1e  and 2e by adapting the variable marital status. Namely, if, in x , the value 

married is substituted for marital status, x violates both 1e  and 2e ; if another value

is substituted, x violates rule 2e .

Edit rules that contain both categorical and numerical data can be written in a 

general form. To this end, we first write a record as 

),,,,,,,(),( 2121 mnnnn yyyvvvyvx +++== KK , with categorical variables iv  and 

numerical variables iy . The general form for edit rules is then provided by 

combining the normal form of categorical rules with linear edit rules using an if-

then statement:

:je  IF jFv ∈ THEN }:{ jj byayy ≥⋅∈ • ,

where jF is a subset of all possible combinations of categorical variables. The 

THEN condition is a linear condition for y with ),,,( 21 jmjjj aaaa K=• . Note that 

linear equations can also be represented in this notation, because each linear

equation can be written as two linear inequalities. 

For a numerical variable sy , these rules can be combined into an implied edit rule as 

follows:

),( kjFs  = IF kj FFv ∩∈  THEN }:{
~

byãyy ≥⋅∈ ,

where ã  and 
~

b are the linear coefficients and constant which are obtained by 

eliminating sy from the THEN conditions of je  and ke using Fourier-Motzkin 

elimination. To resolve the error localisation problem, it is not necessary to generate 

implicit rules from such general edit rules in which the generating field is a

categorical variable. The branch-and-bound algorithm is constructed such that 

categorical variables are only dealt with after all numerical variables have been 

processed (see also the following section).
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As stated above, it is important to know not just the explicit edit rules, but also the 

implicit ones, for the error localisation problem. In general, the number of implicit

edit rules can be extremely large or even infinite. However, Fellegi and Holt (1976) 

prove that it is sufficient to know a finite number of essentially new edit rules. An 

implicit edit rule ),( kjFs  is an essentially new edit rule if

(E1) sx does not occur in ),( kjFs and,

(E2) there is no edit rule of which ),( kjFs is a subset.

The first requirement says that edit rules are essentially new ones if a variable from 

the generating rules is eliminated. The second requirement establishes that 

redundant edit rules are not essentially new. Note, once again, that je  and ke can 

also be implicit rules. 

5.3.4 The branch-and-bound algorithm

If a record ),,,( 21 nxxxx K= violates one or more edit rules, a binary tree is used to 

find the set of possible error patterns. A binary tree is a frequently used data 

structure from computer science and is composed of nodes that are linked using 

directed edges, or arrows. There is a unique starting node, which is called the root. 

Two edges originate from the root, which connects the root node with two nodes, 

which are called children. Each node in the tree has a maximum of two children: the 

left child and the right child. Each child has exactly one parent. A node that has no 

children is called a leaf, and is found at the end of the tree.

A set of edit rules and a single variable are associated with each node, except for the 

root. The root contains all explicit edit rules, and no variable. The tree is constructed 

from the root by treating the candidate variables nxxx ,,, 21 K one by one, as 

follows. Select variable 1x . In the left child of the root, it is assumed that 1x

contains the correct value, and in the right child, it is assumed that 1x contains an 

error. Next, a set of correction rules is generated for the left child and the right child. 

For the left child, the correction rules are copied from the parent, and the value for 

1x is substituted from the record in those rules. The rules that remain must be valid 

for the non-selected variables nxxx ,,, 32 K if 1x is not adapted. After substituting 

the value in 1x , some editing rules can produce internal contradictions (for example,

‘ 10 ≥ ’). In that case, the children of this node cannot result in a solution of the 

localisation problem and this branch is broken off. If there is no internal

contradiction, the branch can be continued. A situation may arise in which the set of 

edit rules contains tautologies, such as ‘1 = 1’. These rules can be eliminated 

because they do not contain any variables. For the right child, the variable 1x is 

eliminated from the edit rules of the parent, using the methods from the previous 

section. The resulting set of edit rules in the right child are the edit rules that the 

variables nxxx ,,, 32 K must satisfy, whatever value is substituted for 1x . Next, the 
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tree is continued by selecting 2x , and generating a left child and a right child for 

each child, as above. This continues until all variables nxxx ,,, 21 K have been 

selected. The leaves that ultimately have variable nx and for which the related set of 

edit rules does not have internal conflicts correspond to a solution G for the 

localisation problem that satisfies requirement (G1). It can also be proven that this 

procedure finds precisely all of the solutions, see theorems 1 and 2 from De Waal

and Quere (2003). Each solution is given by moving along the unique path from the 

root to the leaf and keeping track of which variables are fixed and which have been 

eliminated. After this, one of the possible solutions must be selected using one of the 

selection principles stated earlier. It is not necessary to find all of the possible 

solutions that satisfy (G1). Namely, if, in one of the branches, the sum of the 

reliability weights of the eliminated variables is larger than that of a solution found 

earlier, this branch does not need to be continued. By continually retaining the 

solution with the smallest sum to reliability weights, it becomes more efficient to 

search for solutions that satisfy both the requirements (G1) and (G2). 

It should also be noted that, above, it was assumed that a value was substituted for 

all fields nxxx ,,, 21 K for the record concerned. If item non-response occurs, the 

empty fields can be eliminated in the original set of edit rules, because they must 

still be imputed in any case. For the other variables and rules, the tree can be 

constructed as described above.

The algorithm described above is a basic procedure. In practice (SLICE), additional 

adaptations were made, and we will discuss some of them here. First, the numerical 

variables were processed earlier than the categorical variables to prevent several 

technical difficulties in the elimination of variables (De Waal, 2005b). Second, for 

each record, an attempt can be made to go through the variables in the most 

favourable order possible, to ensure that solutions are found as quickly as possible 

(see Daalmans, 2000; De Waal, 2005b). Third, in addition to reliability weights, the 

status ‘locked’ can be assigned to variables. In this case, the algorithm looks for 

solutions for which the variable concerned is not adapted. See also De Jong (2002). 

5.3.5 Software at Statistics Netherlands: SLICE/CherryPie

SLICE 1.6 has been available at Statistics Netherlands since 2007. We refer to De 

Waal (2005a,b) for a detailed description; we only provide a short overview here of 

the options offered by SLICE.

SLICE is the software library for automatic editing developed at Statistics 

Netherlands. The different functions of SLICE are included in modules. The module 

CherryPie is able to resolve error localisation problems based on the generalised

Fellegi-Holt paradigm. CherryPie can work with both numerical and categorical 

data, and can deal with linear, categorical and combined edit rules, as described in 

Section 5.3.1. The rules can be drawn up in the CherryPie script language developed 

for this purpose, but there is also a module with which rules can be imported from 

Blaise. There is also an imputation module for numerical data, which can implement 
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simple imputation methods based on ratio estimators. After imputation, the records 

do not always satisfy all the edit rules, because this is not explicitly accounted for in 

the imputation method. For this reason, there is an extra module (AdaptValues) that 

adapts the imputed values. It is possible to use SLICE in combination with other 

software for imputation. De Jong (2002) provides an extensive overview of the 

options offered by SLICE.

SLICE itself does not have a graphical or other user interface, but consists of a 

library of routines in the form of a .dll (dynamically linked library) file that can be 

utilised from other programs. This setup makes SLICE very flexible in its use. There 

is also a demonstration program available (SLICEDemo, see Sluis, 2004) that 

allows SLICE functionality to be tested. 

5.4 Example

As an example, we will elaborate a small part of the editing process for the statistic

Building Objects in Preparation (BOP) (see Van der Loo and Pannekoek, 2007). In 

BOP, architectural firms are asked about new assignments. They are asked about 

such things as the type of building object },,{ ocrt ∈ , in which r stands for 

residence(s), c for combined-purpose buildings (part residence and part other use)

and o for other buildings. Questions are also posed about the percentage of living 

area ]100,0[∈p  (in the case of a combined-purpose building) and the number of 

residences ∈n N. It is obvious that, for the category ‘other’, both the percentage of 

living area and the number of residences must be equal to 0. In the notation of the 

previous sections, this leads to the following edit rules:

).],100,0[,(

)],100,0(,(

2

1

+=

=

N

N

oe

oe

Here, 1e says that, for other buildings, the percentage cannot be larger than 0, and 

2e says that, for other buildings, the number of residences cannot be larger than 0. 

We select all reliability weights equal to 1. In this case, there are no essentially new 

implied edit rules. Check in particular that 11 )2,1( eF ⊂ , to ensure that that this does 

not satisfy either of the requirements (E1) or (E2). Further, verify that 22 )2,1( eF =

and 13 )2,1( eF = , so that these rules also do not satisfy (E2). Now consider a record

)0%,10,(or = . This record only violates explicit rule 1e . Rule 1e contains the fields

t  and p such that two minimal covering sets are possible, namely }{1 tG =  and 

}.{2 pG = Finally, consider a record )3%,10,(' or = . This record violates both 1e

and 2e . The only variable that occurs in both violated edit rules is the type of 

building t , so that there is only one optimum solution, namely }{tG = .

5.5 Characteristics

We also note that the error detection method based on the Fellegi-Holt paradigm is 

suitable for parallel processing by several servers. As all records are processed 
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independently, the processing time scales virtually in a linear fashion with the 

number of servers that can be deployed.

5.6 Quality indicators

The method works better if the errors actually made are detected. Using simulations, 

an impression can be obtained of whether this is indeed the case. It is possible, for 

example, to introduce realistic errors into a ‘perfect’ data file to determine under 

which conditions they are found using SLICE. 

A second aspect can be the efficiency with which the branch-and-bound algorithm

finds solutions for the error localisation problem. This can be checked in SLICE 

more or less by adapting reliability weights, or by designating variables as ‘locked’. 
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6. Error localisation with the Nearest-neighbour Imputation
Methodology

6.1 Short description

The Nearest-neighbour Imputation Methodology (NIM) is an alternative method for 

automatic error localisation at record level. In contrast to the method from Chapter

5, the NIM is not based on the Fellegi-Holt paradigm, but on a principle derived 

from this. The NIM determines not only a solution to the error localisation problem

– in other words, a set of fields that can be imputed to ensure that all edit rules are 

satisfied – but also the values to be imputed. In this regard, one can view this 

method also as an imputation method. In fact, the NIM is an extension of hot-deck 

donor imputation based on a distance function (see Chapter 6 in the theme

Imputation), intended for the situation in which the data may still contain errors.

For each record that does not satisfy all the edit rules, the NIM draws up a list of 

donor records that (according to some distance function) closely resemble the record 

to be imputed. Using the donor records, the NIM determines ways to indicate errors

in the record, so that the incorrect fields can be imputed with the accompanying 

values from a donor record, in such a way that all the edit rules are satisfied. Finally, 

the NIM selects the best of all proposed imputed versions of the record, according to 

a criterion that is explained in Section 6.3.

To apply the NIM, software called CANCEIS (CANadian Census Edit & Imputation 

System) developed by Statistics Canada is available at Statistics Netherlands.

6.2 Applicability

The NIM was developed at Statistics Canada for a single goal: the detection and 

correction of the census taken every five years (see, for example, Bankier et al., 

1994). This is evident from several characteristics of the method:

• The NIM is able to process extremely large data sets quickly. An important 

condition, however, is that sufficient error-free donor records are available. 

This is exactly the situation that arises in a census: millions of records of 

which most of them contain no errors. The NIM is not a suitable method to 

use in a situation where almost all the records contain errors. In that case, 

the same records would be used as donor records repeatedly.

• The NIM can process both numerical and categorical data, and also a 

combination of both. The method is, however, mainly suitable for data sets 

with mainly categorical variables (and possibly a few numerical variables), 

such as in a census. The method is not suitable for completely numerical 

data sets that must satisfy linear equations, such as in Structural Business 

Statistics. In that case, it is nearly impossible to find a suitable donor from 

which a record can be imputed to satisfy the linear equations. 
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• The NIM uses the statistical attributes of the set of donor records as an 

approximation for the statistical attributes of the entire population. The 

method is therefore initially intended for statistics based on a complete 

count, such as the census. Data obtained from a random sample generally 

only provide a correct reflection of the entire population if raising weights

are used. This is not possible with the current form of the NIM.

6.3 Detailed description

6.3.1 Records and edit rules

Just as in Chapter 5, we assume a data file with records from n fields, which we 

notate as ),,( 1 nxxx K= . As stated in Section 6.2, a record may contain both 

categorical and numerical fields for the NIM.

For the localisation of errors, we use edit rules that indicate which values and 

combinations of values are not permitted. The implementation of the NIM in the 

current version of CANCEIS assumes that all edit rules have the following general 

form:

if ( 1∆  and 2∆  and )(L  and S∆  ) then ∅ .          (6.3.1)

In numerical fields, each s∆ represents a linear proposition of the form

s∆ : snsns bxaxa <L++11 ,

in which one of the operators ≠=≥≤>< ,,,,, must be substituted for the symbol < . 

In categorical fields, each s∆ has the form

s∆ : s
ii Fx ∈ , for some },,1{ ni K∈ ,

where s
iF is a subset of the domain of ix , analogous to Section 5.3.3. A record does 

not satisfy edit rule (6.3.1), and therefore contains an error, if all propositions 

S∆∆ ,,1 K are evaluated as true when the values from the record are substituted.

To illustrate, we continually refer in this section to a small example with four fields: 

== ),,,( 4321 xxxxx (Age, Income, Marital Status, Relationship to Head of 

Household). The first two fields are numerical with the non-negative integers as the 

domain. The last two fields are categorical. Variable 3x has the possible values of 

Married, Unmarried, Widowed and Divorced. Variable 4x has the possible values 

of Spouse, Child and Other.

In this example, there are three edit rules that the records must satisfy. Written in 

words, these rules are as follows:

1. People younger than 18 years of age cannot be or have been married.

2. People younger than 12 years of age do not have an income above 0 euros. 

3. People who are not married cannot be the spouse of the head of the 

household.



57

We write the three edit rules as follows in the general form (6.3.1):

1. if ( 181 <x  and },,{3 DivorcedWidowedMarriedx ∈  ) then ∅ .

2. if ( 121 <x  and 02 >x  ) then ∅ .

3. if ( },,{3 DivorcedWidowedUnmarriedx ∈  and }{4 Spousex ∈  )   then ∅ .

Readers can work out for themselves that these two formulations describe the same 

rules.

6.3.2 Donor selection

To determine the extent to which two records resemble one another, we define a 

global distance function. The distance between the records ),,( )1()1(
1

)1(
nxxx K=  and 

),,( )2()2(
1

)2(
nxxx K=  is

∑
=

=
n

i
iiii xxDwxxD

1

)2()1()2()1( ),(),( ,          (6.3.2)

where 0≥iw is the weight of variable ix , and ),( )2()1(
iii xxD the distance between

the values )1(
ix  and )2(

ix . For each variable, a local distance function is chosen, with 

the only conditions that 1),(0 )2()1( ≤≤ iii xxD  and that 0),( )2()1( =iii xxD if )2()1(
ii xx = ,

and a weight that expresses the importance of the variable. A higher value of iw

means that variable ix has a greater influence on the distance function. To eliminate 

a variable from (6.3.2), we select 0=iw .

In the first step of the NIM, all records in the data file are checked using the edit 

rules selected by the user. Records that violate at least one edit rule apparently 

contain errors, and are subjected to automatic error localisation in the second step. 

All other records are placed in the so-called donor pool, in other words, the set of 

potential donor records. To use the NIM successfully, the donor pool must contain 

the vast majority of the records from the data file (see section 6.2).

The records that were designated for error localisation in the first step of the NIM

are dealt with one by one in the second step. Given a record with errors )(Fx , the 

NIM looks for records )(Dx in the donor pool with the smallest possible distance 

),( )()( DF xxD . To keep the calculation time low, not all of the records from the 

donor pool are examined, but only the records that are located close to )(Fx in the 

original data file. The underlying assumption is that the data file is sorted in such a 

way that records that are located close together are more alike than records that are 

located far apart. In the case of the Canadian census, it is common, for example, to 

sort the data file based on geographic attributes. The DN  records with the smallest 

distance ),( )()( DF xxD are retained as potential donors, with DN as an adjustable 

parameter.

In the example with four variables from section 6.3.1,
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),,25000,9( )(
4

)(
3

)(
2

)(
1

)( SpousexUnmarriedxxxx FFFFF =====

is a record that does not satisfy all the edit rules, for this record violates both the 

second and the third rule. An example of a record that does satisfy all the edit rules,

and which is therefore suitable as a donor record, is

),,0,8( )(
4

)(
3

)(
2

)(
1

)( ChildxUnmarriedxxxx DDDDD ===== .

6.3.3 Generating imputation actions

After the potential donors for record )(Fx are selected from the donor pool, the NIM

tries to resolve the errors in )(Fx by replacing some values by the associated values

from a donor record )(Dx . Adopting values from a donor in another record is called 

an imputation action. We notate an imputation action formally as 

),,( )()( δDF xxI = , where δ presents a vector of binary variables, ),,( 1 nδδδ K= , 

with 1=iδ if the value )(F
ix is replaced by )(D

ix , and otherwise 0=iδ .

The result of the imputation action ),,( )()( δDF xxI = is an adapted record 

),,( )()(
1

)( A
n

AA xxx K= , with

)()()( )1( F
ii

D
ii

A
i xxx δδ −+= , ni ,,1 K= .

It is clear that we can disregard variables for which )()( D
i

F
i xx = when generating

imputation actions.

An imputation action is referred to as feasible if it produces an adapted record )( Ax

that satisfies all the edit rules. The NIM finds all feasible imputation actions that are 

generated by the DN potential donors. Oftentimes, a donor record generates 

multiple feasible imputation actions.

In the example discussed previously, we obtain a feasible imputation action for )(Fx

by adopting the values of 2x  and 4x from )(Dx . The adapted record is in that case

),,0,9( )(
4

)(
3

)(
2

)(
1

)( ChildxUnmarriedxxxx AAAAA =====

and it is simple to establish that this record satisfies the three edit rules. In formal 

notation, we write this imputation action as ))1,0,1,0(,,( )()( == δDF xxI .

Because Unmarriedxx DF == )(
3

)(
3 , in this example, only the three variables 1x , 

2x  and 4x can be used to generate useful imputation actions. In total, there are 

therefore 7123 =− possible imputation actions. Only two of these imputation 

actions are feasible; the only feasible imputation action in addition to the one 

previously stated imputes the variables 1x , 2x  and 4x , with the result:

),,0,8( )(
4

)(
3

)(
2

)(
1

)( ChildxUnmarriedxxxx AAAAA ===== .
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6.3.4 Selecting from feasible imputation actions

In the example from Section 6.3.3, the following is true for the last imputation 

action: )()( DA xx = . In general, there is always an imputation action with this attribute

(select 1=iδ for all ni ,,1 K= ), and it is by definition feasible. Finding a feasible 

imputation action is therefore very simple. However, the goal of the NIM is more 

ambitious, and involves finding the best possible feasible imputation action. By 

‘best possible’, in NIM the feasible imputation action ),,( )()( δDF xxI = is meant, 

with the following two attributes: 

(B1) )( Ax resembles )(Fx  as much as possible.

(B2) )( Ax resembles )(Dx  as much as possible.

On the one hand, it is desirable that a feasible imputation action changes as little as 

possible in the original record; that is the rationale behind attribute (B1), which 

brings to mind the Fellegi-Holt paradigm from Chapter 5. On the other hand, the 

adapted record is artificial; it is composed of two different records. We know that 

the combination of values in the adapted record is not in conflict with the edit rules, 

but it is possible that this combination of values is very rare in the population4. Such 

imputation actions are not very plausible. As the adapted record increasingly 

resembles the donor record, the plausibility of the adapted record increases, because 

it resembles an error-free record that was obtained naturally; this is the rationale 

behind attribute (B2).

As an example, we examine the following record that does not satisfy edit rule 3 

from Section 6.3.1:

),,30000,56( )(
4

)(
3

)(
2

)(
1

)( SpousexUnmarriedxxxx FFFFF ===== ,

and two potential donor records:

),,28000,59( )1,(
4

)1,(
3

)1,(
2

)1,(
1

)1,( SpousexMarriedxxxx DDDDD ===== ,

),,30000,21( )2,(
4

)2,(
3

)2,(
2

)2,(
1

)2,( ChildxUnmarriedxxxx DDDDD ===== .

Two feasible imputation actions are: impute )1,(
3

Dx  or impute )2,(
4

Dx . The 

accompanying adapted records are:

),,30000,56( )1,(
4

)1,(
3

)1,(
2

)1,(
1

)1,( SpousexMarriedxxxx AAAAA ===== ,

),,30000,56( )2,(
4

)2,(
3

)2,(
2

)2,(
1

)2,( ChildxUnmarriedxxxx AAAAA ===== .

4 Cf. the distinction between hard and soft edit rules (Section 5.2). In automatic error 

localisation based on the NIM, all edit rules are interpreted as hard rules, the same as in error 

localisation based on the Fellegi-Holt paradigm. For this reason, soft edit rules cannot be 

used in the NIM to identify unusual value combinations, as can be done in interactive 

editing.
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The records )1,( Ax  and )2,( Ax both satisfy the edit rules. In both cases, only one 

variable from the original record was changed. In the population, however, there 

will be far more 56-year-olds who are married to the head of the household that they 

are a part of, than 56-year-olds who are a child of the head of the household. Please 

note: donor record )2,(Dx itself does not belong to a 56-year-old who is a child of the 

head of the household, but such a record arises if the values from )(Fx  and )2,(Dx are 

combined.

For every feasible imputation action ),,( )()( δDF xxI = , the NIM determines the 

following measure:

),()1(),()( )()()()( DAAF xxDxxDI ααµ −+= .

Here, ),( )()( AF xxD  and ),( )()( DA xxD are defined by means of (6.3.2), and α is a 

parameter to be selected by the user with 121 ≤<α . The best possible imputation 

action is now defined as the imputation action with the smallest value of )(Iµ . The 

choice of α determines whether, and if so, to what extent, we are looking at the 

plausibility of the adapted record: with 1=α , the NIM only looks at attribute (B1), 

with 1<α , attribute (B2) also plays a role. In the detection and correction of the 

Canadian census, the values 75.0=α and 9.0=α have been used.

By considering ),( )()( DA xxD  in the assessment of feasible imputation actions, the 

hope is that the NIM is able to retain univariate and multivariate distributions in the 

population. An adapted record )( Ax with some combination of values that is present 

in, say, 5% of all donor records, is expected to also have a small ),( )()( DA xxD  in 

approximately 5% of the cases. In the other 95% of the cases, ),( )()( DA xxD is large 

and the associated feasible imputation action will probably not be selected. In this 

context, it is assumed that the donor pool is a good reflection of the population as a 

whole.

Suppose that, for the feasible imputation actions in a record, the smallest value of 

)(Iµ is equal to minµ . In the terminology of the NIM, a feasible imputation action is 

called a near minimum change imputation action (NMCIA) if it satisfies

min)( γµµ ≤I ,

where 1≥γ is a parameter to be selected by the user. For each record, only the 

NMCIAs are retained. One can select γ  slightly larger than 1, because feasible 

imputation actions with )(Iµ close to minµ are only minimally worse than the best 

possible imputation action. The retention of such imputation actions helps to prevent 

that the same donor records are used repeatedly for the imputation. The value of 

1.1=γ has been used for the census in Canada.

Finally, the NIM makes a random selection from the list with NMCIAs in a record. 

The associated adapted record )( Ax replaces )(Fx  in the output. In this way, all 

records that do not satisfy the edit rules are dealt with one by one.
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6.3.5 Software: CANCEIS

For use of the NIM at statistical bureaus, Statistics Canada has made the CANCEIS 

software available free of charge. CANCEIS is still undergoing development using 

the experiences from the Canadian census. The description below is based on 

CANCEIS version 4.5 from 2006, which is available at Statistics Netherlands. See 

also CANCEIS (2006).

CANCEIS consists of three modules. The first module analyses edit rules and 

functions only as support for the other modules. The Derive Module is used to 

perform derivations and deductive corrections using correction rules (see Chapter

2). Finally, the Hotdeck Module contains an implementation of the NIM. This 

implementation is an efficient algorithm used to search for feasible imputation 

actions; see Bankier (2006) for an extensive explanation of this algorithm.

The input of CANCEIS consists of a number of ASCII files, including the raw data 

file and a file with edit rules of the type (6.3.1). The edit rules must be formulated in 

the form of Decision Logic Tables (DLTs). A DLT consists of rows and columns. 

Each column except for the first one corresponds to an edit rule. The first column

contains all propositions s∆ which occur in the edit rules, and each row relates to 

the proposition in its first column. The inner part of a DLT is composed of the

elements ‘Y’, ‘N’ and ‘–’, which indicate whether and, if so, how a proposition

occurs in a certain edit rule: ‘Y’ means that the proposition itself occurs, ‘N’ means 

that the negation of the proposition occurs, and ‘–’ means that the proposition does 

not occur.

To illustrate, we write out the three edit rules from section 6.3.1 in a DLT:

1 2 3
x1 < 18 Y - -
x1 < 12 - Y -
x2 > 0 - Y -
x3 = Unmarried N - -
x3 = Married - - N
x4 = Spouse - - Y

For more examples of DLTs, see CANCEIS (2006) and Scholtus (2008b).

6.4 Example

At Statistics Netherlands, CANCEIS was tested for use in the production of 

demographic statistics based on the Municipal Personal Records Database. The 

situation is somewhat comparable with the Canadian census: there is a more or less 

complete population file with a large number of records, in which errors occur

sporadically. The NIM seems to be a suitable choice for this purpose, because 

sufficient donor records are available. See Pannekoek et al. (2008) and Scholtus 

(2008b) for more information about this application of CANCEIS.
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6.5 Quality indicators

The quality of a method for automatic error localisation is initially determined by 

the extent to which incorrect fields are correctly identified. Because the NIM also 

contains an imputation method, the extent to which the imputations correspond to 

the actual values is also important. As such, there may be interest in both the quality

of the individual imputations and in the extent to which the imputed data correctly 

represents certain population distributions. In practice, all these attributes can only 

be measured using simulations, in which known errors and missing values are put 

into a ‘perfect’ data file.

Another aspect of the quality of the NIM involves the efficiency of the search 

algorithm. Users themselves can influence the calculation time needed to a certain 

extent, by their choices for parameter DN  and for the number of records in the 

vicinity of )(Fx that are examined during the search for potential donors (see Section

6.3.2).
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7. Macro editing

7.1 Aggregate method

7.1.1 Short description

In the aggregate method, aggregates are first calculated, usually the publication 

figures. If the calculated aggregates clearly deviate from what was expected, for 

example, based on previous data, then a lower aggregation level is examined and the 

underlying records are checked and possibly corrected. For aggregates that deviate 

only a little from what is expected, further checks can be performed to determine 

whether an aggregate is correct. Aggregates can be incorrect due to influential errors 

or incorrect weights. 

7.1.2 Applicability

The goal of the aggregate method is to approve publication figures. For this purpose, 

a lower aggregation level can be considered to determine the stability of the figures, 

for example, per size class. If levels or growth rates deviate from the expectation, 

then potential influential errors can be detected using score functions. 

It is essential to look at aggregates, especially if the observed data is incomplete and 

therefore imputed or raised. In addition to problems with the microdata, there can 

also be problems with the imputation or weighting method. Influential errors can be 

missed or introduced during micro editing. The aggregate method is mainly useful if 

influential errors occur structurally in microedited data, or if there are structural 

problems with weights or imputations.

The conditions for the aggregate method are:

− Systematic errors (very clear and less clear errors) are eliminated during micro 

editing. 

− Each record has an observation or imputation available, or there is a weight

available for each observed record;

− There are not too many influential errors in the microedited data. Or, useful 

aggregates can be determined;

− There is a reference framework. Or, there is reference data or an editor has 

sufficient sector knowledge to assess aggregates.

A publication figure may be plausible, but that does not mean it is correct. There 

may still be influential errors in the data. It is therefore recommended to combine 

the aggregate method with the distribution method; see Section 7.2. The distribution 

method can also be used to determine whether there are still systematic or influential 
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errors in the data. Furthermore, outliers can be detected with the distribution 

method.

7.1.3 Detailed description

There are various reasons why publication figures deviate from the expectation.

− There may be influential measurement or processing errors in the data;

− There may be problems with the weight framework or the weight method;

− There may be unexpected developments which are in fact real.

To determine whether the microdata must be examined further, the relative 

deviation of an aggregate for variable yj in period t can be calculated compared to a 

reference aggregate s
jŶ : 

s
j

s
j

t
j

Y
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ˆ
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,           (7.1.1) 
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The reference aggregate can be determined based on another source or the same 

source for a previous period s. 

You can also search for a ratio between two related variables yj and yk. A ratio is, in 

principle, more stable and easier to interpret than the variables separately. The 

relative deviation of a ratio can be determined as follows:
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If aggregates or ratios deviate too much from the expectation, then it is advisable to 

re-examine the underlying data. This can be done using the distribution method; see 

Section 7.2. Score functions can also be used to detect possible influential errors; 

see Section 4.3.2. A big advantage is that the weights and aggregates for the 

reporting period are available at that time. Using score functions, the influence of a 

record can be adequately included in the error detection.

In (7.1.1) and (7.1.3), no account is taken of the sample variance of aggregates. If an 

estimate for the standard deviation of the difference in aggregates and ratios 

respectively is available, then the relative deviations below can be determined:
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7.1.4 Example

Using a method developed at Statistics Netherlands, based on VAT turnover levels 

and developments, an estimate can be made of the turnover of the small and 

medium-sized businesses in the Retail trade. In this example, we focus on the 

quarterly turnover of menswear shops during five quarters; see Table 7. The 

aggregates were determined before the influential suspect values were checked, 

which were detected using score functions. VAT turnover figures were eliminated if 

the editor thought that these were incorrect. It is difficult to correct VAT turnover 

figures, because these were not observed by Statistics Netherlands or according to 

CBS definitions, and contacting the reporters was not allowed.

Table 7. Estimated total quarterly turnover and turnover development of menswear 

shops in size class 10-40 for 1st quarter 2008 to 1st quarter 2009

Period Total turnover 

(in mln euros)

Quarter-on-

quarter 

development 

Development 

compared to 1st

quarter 2008

1st quarter 2008 120 - -

2nd quarter 2008 154 29.1% 29.1%

3rd quarter 2008 136 -12.3% 13.2%

4th quarter 2008 174 28.3% 45.3%

1st quarter 2009 115 -33.6% -3.6%

At first glance, the quarterly turnover figures seem plausible. Due to the sales in 

June and December, there is a relatively large amount of turnover in the second and 

fourth quarters. A quarterly turnover of 120 million is achieved if an adult man 

spends an average of 20 euros per quarter in a small to medium-sized menswear 

shop.

The quarter-on-quarter developments in Table 7 therefore fit in with the expected 

seasonal pattern for menswear shops. The same development is visible per size 

class. A negative year-on-year development for the 1st quarter in 2009 also fits in 

with the financial crisis situation. The developments therefore seem plausible. 

However, we should also look at influential suspect values, because the margin in 

which a development is plausible is quite large. The goal is to approximate the true 

development. 

7.1.5 Quality indicators

We can calculate (7.1.1) and (7.1.4) before and after macro editing and determine 

the extent to which the relative deviation of an aggregate has decreased. The same 

applies for (7.1.3) and (7.1.5) if we are looking at ratios. If the relative deviation 
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remains comparable, then macro editing has had only little impact. However, it is 

possible that an aggregate/ratio approximates the actual situation, because a 

deviation compared to a reference aggregate/ratio can be correct. In this case, the 

macro editing may have led to the following: 

− There is more confidence in the observed deviation at macro level;

− Improvements took place at micro level. This leads to better reference values for 

the editing of the following period.

Four percentages can be determined for one or more variables in the checked 

records:

− Percentage of records with an error detected;

− Percentage of records with an influential error detected; 

− Percentage of records with a non-representative (correct) outlier detected;

− Percentage of records with a representative (correct) outlier detected.

7.2 Distribution method

7.2.1 Short description

In the distribution method, values of variables in a group of records are compared 

with one another using the univariate and multivariate distribution of these 

variables. This can be done with graphic tools or statistical measures. The outliers, 

the most suspect records, are then checked. If outliers turn out to be influential 

incorrect values, they are corrected. If an outlier is considered correct, then the 

question is whether it is representative for the population. In a sample of, for 

example, 1 in 10, an outlier is representative if nine comparable outliers occur in the 

population outside of the sample. If an outlier is not considered representative, then 

the weight is adapted. Methods for detecting outliers are discussed in Krieg and 

Smeets (2009).

7.2.2 Applicability

The primary goal is to detect influential errors which were missed or introduced 

during micro editing. The distribution method can be used for quantitative variables. 

If the distribution of the variables is not symmetric, then it is better to first transform 

the data, so that it better represents a normal distribution. Various distribution 

methods can otherwise create a biased impression.

7.2.3 Detailed description

For outlier detection, use can be made of various statistical measures (Project group 

Mesoanalyse, 2009). These provide insight into the distribution of the microdata and 

can be used to establish notable and/or structural changes in the microdata. 
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By themselves, statistical measures do not issue a judgement about the quality of the 

data. If, for example, there is a large distribution, this does not necessarily mean that 

the quality is poor. If the distribution in a publication cell is significantly larger 

compared to earlier periods, this can indeed indicate that the quality is not as high. 

The measures below relate to a publication cell or a part thereof. 

Representative value of a variable in the response:

• Average. This is often used, but is sensitive to outliers. 

• Moving average. This is used, for example, the calculation of the “yardstick” for 
International Trade. The values for earlier (edited) periods are included in this.

Robust representative value in the response:

• Truncated average. If the value of a variable is smaller than c or larger than d, 
then eliminate the value. Now calculate the average. Truncation can be done 
one-sided (only a lower or upper limit) or two-sided.

• Censored average. If the value of a variable is smaller than c, then value = c. If 
the value of a variable is larger than d, then value = d. Now calculate the 
average. This can be done one-sided (only a lower or upper limit) or two-sided.

• Median. This is the value that lies at the midpoint of the data sorted based on the 
variable. This is extremely robust against outliers, especially if there are equal 
numbers of too low and too high values. 

Measure for dispersion (of a variable) in the response:

• Variance. This measure is used very often, but is sensitive to outliers and does 
not have the same scale as the average.

• Standard deviation (s.d.). This is also sensitive to outliers, but has the same 
scale as the average. This measure is equal to the root of the variance.

• Range. The difference between the minimum and maximum value.

Robust measure for dispersion in the response:

• Interquartile distance. The difference between the first quartile and third 
quartile of the cumulative distribution of a variable. This is used in box plots. 
This and the measure below are useful for symmetrical distributions. 

• (100 – α)% percentile minus the α% percentile. α = 25 indicates the interquartile 
distance. If there are many observations, then it is more convenient to use, for 
example, α = 5. 

• Third quartile minus second quartile. This is a dispersion measure for the values 
that are larger than the median. Just like the measure below, this is very useful 
in an asymmetrical distribution. 

• Second quartile minus first quartile. This is a dispersion measure for the values 
that are smaller than the median (second quartile). 

Measure for dispersion of the estimate of a population attribute: 

• Standard error of the estimator. If this cannot be determined analytically, then it 
can be determined empirically using bootstrap or jackknife techniques.
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Other distribution attributes:

• Minimum. The minimum value of a variable in the response. If, for example, 
this is negative and the variable can only be positive, then this means that part of 
the data is inconsistent.

• Maximum. The maximum value of a variable in the response. If, for example, 
this is extremely large, then this means that at least one value is suspect.

• Skewness. This indicates the extent to which the distribution of a variable is 
asymmetric. If the right tail area of the distribution is longer than the left tail 
area, then the skewness is positive. If the opposite is true, then the skewness is 
negative. Skewness can be caused by outliers. 

• Kurtosis. This is high if the tail areas of the distribution are relatively long. 
Outliers lead to a high kurtosis.

Sufficient records must be available to reliably determine a distribution attribute. To 

accurately determine an interquartile distance, for example, more than 20 values are 

needed. A distribution attribute is particularly relevant if we combine it with other 

distribution attributes or compare the same attribute for different periods. The goal 

is to obtain a better understanding of the development in the publication figures. 

It is interesting to compare each distribution attribute with the same attribute for an 

earlier period. If the attribute has changed considerably, then that is suspect. 

Relevant combinations of distribution attributes are:

• Range divided by interquartile distance
• Average divided by median
• Average divided by truncated/censored average
• Variance at t divided by variance at t – 1

If one of these is large, then there is at least one outlier.

Graphic tools, such as scatter and box plots, are also used to determine outliers. 

These Explorative Data Analysis (EDA) techniques are broadly applicable (Tukey, 

1977) and available, for example, via Excel and SPSS. DesJardins (1997) illustrates 

applications of and useful additions to traditional EDA techniques.

There are also mathematical techniques to detect outliers such as the Mahalanobis 

distance; see Hoogland, Houbiers and De Waal (2002). Regression techniques can 

be used to obtain an impression of the relation between two variables. Standard 

regression techniques can produce a biased picture of the relation if there are 

outliers. In that case, it is better to use robust regression techniques. There are 

various robust regression techniques, such as M-estimators (Huber, 1981), the least 

median of squares method (Rousseeuw, 1984), the reweighted least squares method 

(Rousseeuw and Leroy, 1987) and generalised S-estimators (Croux, Rousseeuw and 

Hössjer, 1994). A number of these techniques are available in R, S-Plus, STATA 

and Matlab. M-estimators reduce the influence of outliers, but a single outlier may 

still be sufficient to disrupt these estimators. Several techniques are robust against 

outliers in the dependent variable, but not robust against outliers in the explanatory 

variables.
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7.2.4 Example

At Statistics Netherlands, tax data is used increasingly often to compile business 

statistics. We are interested, for example, in the year-on-year development of VAT 

quarterly turnover figures. At record level, for the editing, we look at the VAT 

turnover and the growth rate; in other words, the VAT turnover in the reporting 

period divided by the VAT turnover in the reference period.

A histogram can be created to obtain an impression of the distribution of the VAT 

data; see Figure 4. Various attributes of the distribution can also be determined; see 

Table 8. The interquartile distance is a robust measure for the distribution. This 

means that this is not sensitive to outliers. Table 8 shows that at least one negative 

value occurs in size classes 21 and 30, and that the maximum turnover in size class 

10 is conspicuously high. In addition, the VAT turnover has an asymmetrical 

distribution for size classes 10-30. This may be the result of outliers, certainly with 

skewness higher than 2.5 or smaller than –2.5. A kurtosis greater than 10 also 

indicates outliers.

Figure 4. Histogram of VAT quarterly turnover figures for 4th quarter 2008 for 

publication cell 47110; size class 22

Table 8. Minimum, maximum, 1st, 2nd and 3rd quartile, interquartile distance (IQD), 

skewness and kurtosis of VAT turnover (in thousands of euros) of quarterly turnover 

figures of supermarkets in 4th quarter of 2008
[First row diagram below: SC / Min. / Max. / Quart 1 / Quart 2 / Quart 3 / IQD / Skewn. / 

Kurt.]

GK Min. Max. Kwart 1 Kwart 2 Kwart 3 IKA Scheefh. Kurt.

10 0 2569 14 34 62 48 16,5 320,1

21 -177 1663 33 69 117 84 7,8 85,3

22 0 1349 91 163 273 182 2,0 9,1

30 -74 1873 212 331 492 280 2,1 6,9

40 0 2609 478 778 1343 865 0,6 -0,3

50 0 5245 1651 1960 2715 1064 0,5 1,3
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If the data is very asymmetrically distributed, then it is advisable to first apply 

logarithmic transformation before performing graphic analyses. This will mainly 

apply for the growth rate. After this transformation, asymmetrically distributed data 

may be more symmetrically distributed, apart from outliers. In Figure 5, this can be 

seen for the VAT quarterly turnover of several supermarkets. We can now also 

observe that ten turnover figures in this size class are relatively small. 

Figure 5. Histogram of logarithm of VAT quarterly turnover figures for 4th quarter 

2008 for publication cell 47110; size class 22

Suspect values can be detected using the diagrams listed below.

− Histogram of the values in a publication cell or stratum for year t.

− Scatter plot of the level or the growth rate for year t compared to the level or 
growth rate for year t – 1. In this case, we see only units for which a level or 
growth rate is available in the reporting period in the years t and t – 1. 

− Two box plots (one-dimensional plot to detect outliers) next to each other: one 
with the level or growth rate for year t and one with the level or growth rate for 
year t – 1. Box plots for previous years may also be added. 

Figure 6 shows an example made with SPSS with VAT turnover after a log 

transformation. This concerns box plots for supermarkets in three size classes. The 

‘*’ are extreme outliers, and the ‘o’ less extreme outliers. You can give each outlier 

a value (for example the enterprise id) so that you can find the record in the 

microdata. A large number of outliers on the lower half of a box plot indicates that 

the data is also not symmetrically distributed after a log transformation, and that we 

now have a distribution with a ‘long left tail area’.
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Figure 6. Box plots per size class of log10 (gross turnover) of supermarkets
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