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Monthly estimates of provincial unemployment based on the Dutch Labour Force Survey

(LFS) are obtained using time-series models. The LFS uses a rotating panel design so that

in each month the total sample consists of five independent waves. The time-series model

accounts for rotation group bias and serial correlation due to the rotating panel design. We

consider two approaches to time-series modelling: structural time-series modelling and

multilevel modelling. The structural time-series models are fit using a Kalman filter and

smoother whereas the multilevel models are fit using a Gibbs sampler approach. Monthly

unemployment estimates and standard errors based on these models are compared for the

twelve provinces of the Netherlands. Pros and cons of the multilevel approach and

structural time-series approach are discussed. Time-series models are appropriate to

borrow strength over time and space. Modelling the full correlation matrix between

time-series components rapidly increases the numbers of hyperparameters to be

estimated. Modelling common factors is one possibility to obtain more parsimonious

models that still account for cross-sectional correlation. In this paper an evenmore

parsimonious approach is proposed, where domains share one overall trend and a

parameter for the domain specific deviation from this overall trend. By borrowing strength

over time as well as over areas, the time-series models more than halve the standard errors

for the monthly provincial unemployment estimates, as compared to the design-based

variances of the direct estimates. The reduction of the standard errors with equivalent

models under a state space approach is larger, since the uncertainty of using maximum

likelihood estimates for the hyperparameters is ignored. The time-series modelling

approach is particularly appropriate to estimate month-to-month and year-to-year change

of unemployment.

This work was funded by the European Union under grant no 07131.2015.001-2015.257.



1 Introduction

Data from the Dutch Labour Force Survey (LFS) are used to estimate labour status at various

aggregation levels. National estimates are producedmonthly, provincial estimates quarterly,

and municipal estimates annually. Many more figures are produced for several demographic

subgroups.

Until 2015 municipal estimates were produced annually by means of direct generalized

regression estimation (GREG, see e.g. Särndal et al. (1992)), but only for municipalities with at

least 30 thousand inhabitants. For municipalities with 10 to 30 thousand inhabitants,

three-year moving averages of GREG estimates were used in order to reduce the variance. No

estimates were published for municipalities with fewer than 10 thousand inhabitants. To

improve the municipal estimates, a model-based small area estimation (SAE) strategy has

been adopted starting 2015 (Boonstra et al., 2011; Boonstra andMichiels, 2013). The model

used for this purpose is the Battese-Harter-Fuller basic unit-level model (Battese et al., 1988;

Rao, 2003), a linear multilevel model with randommunicipality effects. Based on this model,

estimates of labour status are produced annually for all municipalities.

The continuous nature of the LFS allows to borrow strength not only from other areas, but also

over time. A structural time-series model (STM) is already being used to estimate national

monthly labour status for 6 gender by age classes (van den Brakel and Krieg, 2009, 2015). In

this paper we aim to combine the borrowing of strength over time of the time-series model

with borrowing of strength over space of cross-sectional small area models to produce reliable

monthly estimates of provincial unemployment.

Until now, provincial estimates are produced quarterly using the GREG. In order to produce

figures on a monthly basis, a model-based estimation strategy is necessary to overcome the

problem of too small monthly provincial sample sizes. The models considered are applied at an

aggregate level. First, initial estimates are computed for each province in each month and for

each panel wave using the survey regression estimator that uses auxiliary information to

reduce non-response bias. The initial estimates and their estimated variances are subsequently

modeled in a multilevel or structural time-series model. As a consequence of the LFS panel

design, the initial estimates are autocorrelated and estimates based on follow-up waves are

biased relative to the first wave estimates. Both features need to be accounted for in themodel.

Previous accounts of regional small area estimation of unemployment, where strength is

borrowed over both time and space, include Rao and Yu (1994); Datta et al. (1999); You et al.

(2003); You (2008); Pfeffermann and Burck (1990); Pfeffermann and Tiller (2006), see also Rao

(2003) for an overview. In Boonstra (2014) several multilevel time-series models have been

applied to the estimation of annual unemployment levels for Dutch municipalities.

The time-series multilevel model is fit using a Gibbs sampler. Models with different

combinations of fixed and random effects are compared based on the Deviance Information

Criterion (DIC). For the STM a frequentist approach is followed, where hyperprarameters are

estimated with maximum likelihood. The estimates based onmultilevel and STMmodels and

their standard errors are compared graphically and contrasted with the initial survey regression

estimates. This paper further elaborates on the time-series modelling approach to obtain

stable and precise estimates for level, month-to-month change and year-to-year change for
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unemployment. Connections between structural time-series models andmultilevel models

have been explored before from several points of view in Knorr-Held and Rue (2002), Chan and

Jeliazkov (2009), McCausland et al. (2011), Ruiz-Cárdenas et al. (2012), Piepho and Ogutu

(2014). A comparison betweenmultilevel time-series models and state-space models applied

to time series of the Dutch National Travel Survey is carried out in Bollineni-Balabay et al.

(2016).

This report is structured as follows. In Section 2 the LFS data used in this study are described.

Section 3 describes how the initial estimates are computed. Section 4 discusses the multilevel

and STMmodels used to model the initial estimates. In Section 5 the results based on several

multilevel and STMmodels are compared, including estimates for month-to-month change

and year-to-year change for monthly data. Section 6 contains a discussion of the results as well

as some ideas on further work.

2 Data from the Dutch Labour Force Sur-

vey

The Dutch LFS is a household survey conducted according to a rotating panel design in which

the respondents are interviewed five times at quarterly intervals. In the years considered in this

study, the first wave of the panel consists of data collected by means of computer assisted

personal interviewing (CAPI), whereas the four follow-up waves contain data collected by

means of computer assisted telephone interviewing (CATI). For a more detailed description of

the sampling design, we refer to Boonstra et al. (2008). In more recent years the LFS has

undergone several changes, the most significant being the introduction of internet as an

additional mode of observation in the first wave. These changes have led to discontinuities that

can be accounted for by adding intervention effects to the time-series model (van den Brakel

and Krieg, 2015). The treatment of these discontinuities in the case of monthly provincial

figures is postponed to a future paper.

Fig. 1 illustrates the rotating panel design for fifteen subsequent months. The figure shows that

the waves that constitute a monthly dataset are independent in the sense that they are

composed of different households. Between subsequent quarters there is an overlap of four

waves, inducing positive sampling autocorrelation. The sampling autocorrelation decreases

with the separation between quarters and vanishes for periods more than four quarters apart.

Unfortunately, the different waves give rise to systematic differences in unemployment

estimates. These differences, generally termed rotation group bias (RGB) (Bailar, 1975), when

viewed relative to the first wave, have many possible causes, including selection, mode and

panel effects, see van den Brakel and Krieg (2009).

In the present study we use 72months of LFS data from 2003 to 2008. Data from all five waves

of the rotating panel are used. The Netherlands is divided into twelve provinces which serve as

the domains for which monthly unemployment figures are to be estimated.
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𝑀𝑡 1 2 3 4 5

𝑀𝑡−1 1 2 3 4 5

𝑀𝑡−2 1 2 3 4 5

𝑀𝑡−3 1 2 3 4 5

𝑀𝑡−4 1 2 3 4 5

𝑀𝑡−5 1 2 3 4 5

𝑀𝑡−6 1 2 3 4 5

𝑀𝑡−7 1 2 3 4 5

𝑀𝑡−8 1 2 3 4 5

𝑀𝑡−9 1 2 3 4 5

𝑀𝑡−10 1 2 3 4 5

𝑀𝑡−11 1 2 3 4 5

𝑀𝑡−12 1 2 3 4 5

𝑀𝑡−13 1 2 3 4 5

𝑀𝑡−14 1 2 3 4 5

Figure 1 LFS rotating panel design for months 𝑡 − 14,…,𝑡. Waves are coded with their

corresponding wave number. The 􀅮irst wave is conducted through CAPI whereas the

second to 􀅮ifth waves are conducted through CATI. Vertically aligned squares with

similar colours represent observations from the same households (barring panel

attrition) in different months. Horizontally aligned squares combine into a monthly

dataset.
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Monthly national sample sizes vary between 5 and 7 thousand persons in the first wave and

between 3 and 5 thousand in the fifth wave. Provincial sample sizes are diverse, ranging from

31 to 1949 persons for single wave monthly samples.

LFS data are available at the level of units, i.e. persons. A wealth of auxiliary data from several

registrations is also available at the unit level. Among these auxiliary variables is registered

unemployment, a strong predictor for the unemployment variable of interest. These predictors

are used to compute initial estimates, which are input to the time-series models.

The target variable considered in this study is the fraction of unemployed in a domain, and is

defined as 𝑌􀐕􀐠 = ∑
􀐖∈􀐕 𝑦􀐕􀐖􀐠/𝑁􀐕􀐠, with 𝑦􀐕􀐖􀐠 equal to one if person 𝑗 from province 𝑖 in period 𝑡 is

unemployed and zero otherwise and𝑁􀐕􀐠 the population size in province 𝑖 and period 𝑡.

3 Initial estimates

Let ̂𝑌̄􀐕􀐠􀐜 denote the initial estimate for area 𝑖 and period 𝑡 based on data fromwave 𝑝. The

initial estimates used as input for the time-series small area models are survey regression

estimates (Woodruff, 1966; Battese et al., 1988; Särndal et al., 1992)

̂𝑌̄􀐕􀐠􀐜 = 𝑦̄􀐕􀐠􀐜 + 𝛽̂􀚄􀐠􀐜(𝑋̄􀐕􀐠 − 𝑥̄􀐕􀐠􀐜) , (1)

where 𝑦̄􀐕􀐠􀐜, 𝑥̄􀐕􀐠􀐜 denote sample means, 𝑋̄􀐕􀐠 is the vector of population means of the covariates

𝑥, and 𝛽̂􀐠􀐜 are estimated regression coefficients. The coefficients are estimated separately for

each period and each wave, but they are based on the national samples combining data from

all areas.

Even though the regression coefficients used in (1) are not area-specific, the survey regression

estimate for a particular area is a direct estimate in the sense that it is primarily based on the

data obtained in that area, i.e. on 𝑦̄􀐕􀐠􀐜. The second term in (1) is a correction term that reduces

bias due to selection effects, i.e. differences between the observed data and population with

regard to the distribution of auxiliary variables 𝑥 used in the model. The available auxiliary

variables are listed in Table 1. The model selected to compute the survey regression estimates

is

𝑟𝑢 × (𝑠𝑒𝑥 + 𝑎𝑔𝑒3 + 𝑒𝑡ℎ𝑛) + 𝑟𝑢5 + 𝑠𝑒𝑥 × 𝑎𝑔𝑒5 + ℎℎ𝑡𝑦𝑝𝑒 . (2)

Note the prominent role played by registered unemployment. Despite being based on a very

different concept of unemployment, it is still a strong predictor for the unemployment variable

of interest.

Fig. 2 illustrates the rotation group biases, i.e. the average differences between estimates

based on different rotation groups or waves. Displayed are sample means and survey

regression estimates averaged over all periods and areas, weighted by population sizes. The

use of auxiliary information in the survey regression estimates according to model (2) reduces

selection effects, giving rise to an increase in unemployment estimates. The effect of using

auxiliary information grows with wave number, which makes sense since overall response rates

decrease with wave number. The survey regression estimates based on the four follow-up

waves are on approximately the same level, still well below the first wave level. To a large

extent this remaining difference may well be due to measurement effects. This is further
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variable categories

sex male, female

age3 15-24, 25-44, 45-64

age5 15-24, 25-34, 35-44, 45-54, 55-64

hhtype single, household with children, other

ethn native, Western immigrant, non-Western immigrant

ru registered unemployed or not

ru5 not ru, ru with job, ru< 1 yr, ru 1-4 yrs, ru> 4 yrs

Table 1 Available covariates

supported by the fact that panel attrition is limited, with response fractions close to 90% in

waves two to five, given initial response in the first wave. Fig. 3 displays the survey regression

estimates averaged only over areas, for wave 1 and the average of waves 2 to 5. The figure

suggests that rotation group bias varies over time. Finally, Fig. 4 shows the rotation group bias

per province, averaged over time. The two provinces with highest unemployment, Groningen

and Flevoland, also show a larger rotation group bias.
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Figure 2 Systematic differences between estimates based on different waves

(rotation group biases): sample means vs. survey regression means aggregated over

periods and areas.

The time-series models also require variance estimates corresponding to the initial estimates.

We use cross-sectionally smoothed variance estimates

𝑣( ̂𝑌̄􀐕􀐠􀐜) =
􀗲𝜎􀍯􀐠􀐜/𝑛􀐕􀐠􀐜 , (3)

based on the estimated within-area variances 􀗲𝜎􀍯􀐠􀐜 of the regression residuals pooled over areas,

and the area-specific sample sizes 𝑛􀐕􀐠􀐜.

The panel design induces several non-zero correlations among initial estimates for the same

province and different time periods and waves. These positive correlations are due to partial

overlap of the sets of sample units on which the estimates are based. Such correlations exist

between estimates for the same province in months 𝑡􀍮, 𝑡􀍯 and based on waves 𝑝􀍮, 𝑝􀍯 whenever

𝑡􀍯 − 𝑡􀍮 = 3(𝑝􀍯 − 𝑝􀍮) ≤ 12, see Fig. 1. The covariances between ̂𝑌̄􀐕􀐠􀑦􀐜􀑦 and
̂𝑌̄􀐕􀐠􀑧􀐜􀑧 are estimated
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Figure 3 Systematic differences between survey regression estimates based on

different waves over time. The estimates are aggregated over areas.
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Figure 4 Systematic differences between survey regression estimates based on

different waves by province. The estimates are aggregated over time.
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as (see e.g. Kish (1965))

𝑣( ̂𝑌̄􀐕􀐠􀑦􀐜􀑦 ,
̂𝑌̄􀐕􀐠􀑧􀐜􀑧) =

𝑛􀐕􀐠􀑦􀐜􀑦􀐠􀑧􀐜􀑧

√𝑛􀐕􀐠􀑦􀐜􀑦𝑛􀐕􀐠􀑧􀐜􀑧
𝜌̂􀐠􀑦􀐜􀑦􀐠􀑧􀐜􀑧

√𝑣( ̂𝑌̄􀐕􀐠􀑦􀐜􀑦)𝑣(
̂𝑌̄􀐕􀐠􀑧􀐜􀑧) , (4)

where 𝑛􀐕􀐠􀑦􀐜􀑦􀐠􀑧􀐜􀑧 is the number of units in the overlap, i.e. the number of observations on the

same units in area 𝑖 between period and wave combinations (𝑡􀍮, 𝑝􀍮) and (𝑡􀍯, 𝑝􀍯). The

estimated (auto)correlation coefficient 𝜌̂􀐠􀑦􀐜􀑦􀐠􀑧􀐜􀑧 is computed as the correlation between the

residuals of the linear regression models underlying the survey regression estimators at (𝑡􀍮, 𝑝􀍮)

and (𝑡􀍯, 𝑝􀍯), based on the overlap of both samples over all areas. This way they are pooled over

areas, as are the variances 􀗲𝜎􀍯􀐠􀐜.

Fig. 5 shows the distribution of all non-zero correlations among the initial estimates. The

densities are shown separately for correlations between initial estimates 1 to 4 quarters apart.

A larger separation in time generally means smaller correlation because of 1) smaller overlap
􀐚􀔍􀔘􀑦􀔔􀑦􀔘􀑧􀔔􀑧

√􀐚􀔍􀔘􀑦􀔔􀑦􀐚􀔍􀔘􀑧􀔔􀑧
due to panel attrition and 2) smaller autocorrelation coefficient 𝜌̂􀐠􀑦􀐜􀑦􀐠􀑧􀐜􀑧, see

equation (4).
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Figure 5 Distribution of non-zero autocorrelations between initial estimates,

grouped by the separation in time (quarters).

Time-series model estimates for monthly provincial unemployment figures will be compared

with direct estimates. The procedure for calculating monthly direct estimates is based on the

approach that was used before 2010 to calculate official rolling quarterly figures for the labour

force. Monthly direct estimates for provinces are calculated as the weightedmean over the five

panel survey regression estimates (1):

̂𝑌̄􀐕􀐠. =

􀍲

∑

􀐜􀍹􀍮

𝛼􀐕􀐠􀐜
̂𝑌̄􀐕􀐠􀐜, (5)
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where 𝛼􀐕􀐠􀐜 are weights based on the variance estimates (3) and are obtained by:

𝛼􀐕􀐠􀐜 =
𝑣( ̂𝑌̄􀐕􀐠􀐜)

􀍸􀍮

∑
􀍲
􀐜􀍹􀍮 𝑣(

̂𝑌̄􀐕􀐠􀐜)
􀍸􀍮
. (6)

To correct for RGB, the direct estimates (5) are multiplied by a ratio, say 𝑓􀐕􀐠, where the

numerator is the mean of the survey regression estimates (1) for the first wave over the last

three years and the denominator is the mean of monthly direct estimates (5) also over the last

three years, i.e.

𝑓􀐕􀐠 =
∑
􀍰􀍲
􀐖􀍹􀍭

̂𝑌̄􀐕(􀐠􀍸􀐖)􀍮

∑
􀍰􀍲
􀐖􀍹􀍭

̂𝑌̄􀐕(􀐠􀍸􀐖).
, (7)

With this correction the direct estimates (5) are benchmarked to the level of the estimates in

the first wave. The observed series start in January 2003. During the first three years of the

series the correction factors 𝑓􀐕􀐠 with 𝑡=January 2006 are used. Finally the corrected monthly

survey regression estimate for month 𝑡 is equal to

̃𝑌̄􀐕􀐠. = 𝑓􀐕􀐠
̂𝑌̄􀐕􀐠. , (8)

with variance

𝑣( ̃𝑌̄􀐕􀐠.) = 𝑓􀍯􀐕􀐠

􀍲

∑

􀐜􀍹􀍮

𝛼􀍯􀐕􀐠􀐜𝑣(
̂𝑌̄􀐕􀐠􀐜) . (9)

4 Time-series small area estimation

To fit a model to all unit-level data of all periods at once would be very challenging, not only

because of the size of the combined dataset, but also because such a model would become

quite complex since it must account for many effects at once. In addition to area and time

effects the model would also need to include person or household effects to account for

repeatedmeasurements of the same persons/households. We therefore specify the time-series

models at the area, i.e. provincial, level for the separate waves. The data for the time-series

model then consist of a set of initial estimates at the area level, computed separately for each

time period and for each wave, as described in Section 3.

Modeling and estimation are then divided into two stages. In the first stage initial estimates are

computed using auxiliary information at the unit level to reduce non-response bias, as

described in Section 3. The initial estimates are accompanied by variance estimates as well as

estimates of covariances between estimates induced by the rotating panel design. In the

second stage a structural or multilevel time-series model is applied to smooth the initial

estimates, reduce standard errors and correct for rotation group bias. The estimated models

are used to make predictions for provincial unemployment fractions, provinical unemployment

trends, andmonth-to-month changes in the trends.
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4.1 Structural time-series model

The first approach considered in this paper is a multivariate structural time-series model where

the series of direct estimates for the separate waves and provinces are the input series. This

approach is used by Statistics Netherlands to produce monthly figures about the Dutch labour

force at national level and a break down in six domains that is based on the cross classification

of gender and age (van den Brakel and Krieg, 2009, 2015). In this section we develop a

structural time-series model for the monthly data at provincial level. Subsequently wemodel

twelve provinces simultaneously to take advantage of temporal and cross-sectional sample

information.

Let ̂𝑌̄􀐕􀐠 = ( ̂𝑌̄􀐕􀐠􀍮, … , ̂𝑌̄􀐕􀐠􀍲)
􀐠 denote the five-dimensional vector containing the survey regression

estimates ̂𝑌̄􀐕􀐠􀐜 defined by (1) in period 𝑡 and domain 𝑖. This vector can bemodeled with the

folowing structural time-series model (Pfeffermann, 1991; van den Brakel and Krieg, 2009):

̂𝑌̄􀐕􀐠 = 𝜄􀍲𝜃􀐕􀐠 + 𝜆􀐕􀐠 + 𝑒􀐕􀐠, (10)

where 𝜄􀍲 denotes a five-dimensional vector with each element equal to 1, 𝜃􀐕􀐠 the true

population parameter for period 𝑡 in domain 𝑖, 𝜆􀐕􀐠 a five-dimensional vector that models the

rotation group bias and 𝑒􀐕􀐠 a five-dimensional vector with sampling errors. The population

parameter 𝜃􀐕􀐠 in (10) is modeled as

𝜃􀐕􀐠 = 𝐿􀐕􀐠 + 𝑆􀐕􀐠 + 𝜖􀐕􀐠, (11)

where 𝐿􀐕􀐠 denotes a stochastic trendmodel to capture low frequency variation (trend plus

business cycle), 𝑆􀐕􀐠 a stochastic seasonal component to model monthly fluctuations and 𝜖􀐕􀐠 a

white noise for the unexplained variation in 𝜃􀐕􀐠. For the stochastic trend component, the

so-called smooth trendmodel is used, which is defined by the following set of equations:

𝐿􀐕􀐠 = 𝐿􀐕􀐠􀍸􀍮 + 𝑅􀐕􀐠􀍸􀍮, (12)

𝑅􀐕􀐠 = 𝑅􀐕􀐠􀍸􀍮 + 𝜂􀐄,􀐕􀐠,

𝜂􀐄,􀐕􀐠
􀐕􀐚􀐐
∼ 𝑁(0, 𝜎􀍯􀐄􀐕).

For the stochastic seasonal component the trigonometric form is used, which has the following

form for a monthly pattern:

𝑆􀐕􀐠 =

􀍳

∑

􀐘􀍹􀍮

𝑆􀐕􀐠􀐘, (13)

where

𝑆􀐕􀐠􀐘 = cos(
𝜋𝑙

6
)𝑆􀐕􀐠􀍸􀍮;􀐘 + sin(

𝜋𝑙

6
)𝑆∗􀐕􀐠􀍸􀍮;􀐘 + 𝜔􀐕􀐠􀐘, 𝜔􀐕􀐠􀐘

􀐕􀐚􀐐
∼ 𝑁(0, 𝜎􀍯􀑙􀔍

),

𝑆∗􀐕􀐠􀐘 = −sin(
𝜋𝑙

6
)𝑆􀐕􀐠􀍸􀍮;􀐘 + cos(

𝜋𝑙

6
)𝑆∗􀐕􀐠􀍸􀍮;􀐘 + 𝜔∗

􀐕􀐠􀐘, 𝜔∗
􀐕􀐠􀐘

􀐕􀐚􀐐
∼ 𝑁(0, 𝜎􀍯􀑙􀔍

), 𝑙 = 1,… , 5,

𝑆􀐕􀐠􀍳 = −𝑆􀐕􀐠􀍸􀍮;􀍳 + 𝜔􀐕􀐠􀍳, 𝜔􀐕􀐠􀍳
􀐕􀐚􀐐
∼ 𝑁(0, 𝜎􀍯􀑙􀔍

).
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The white noise in (11) is defined as 𝜖􀐕􀐠
􀐕􀐚􀐐
∼ 𝑁(0, 𝜎􀍯􀑛􀔍).

Systematic differences between the series of the survey regression estimates observed in the

five waves, i.e. the RGB, are modeled in (10) with 𝜆􀐕􀐠 = (𝜆􀐕􀐠􀍮, 𝜆􀐕􀐠􀍯, 𝜆􀐕􀐠􀍰, 𝜆􀐕􀐠􀍱, 𝜆􀐕􀐠􀍲)
􀐠. To identify

the model, it is assumed that the 𝜆􀐕􀐠􀍮 = 0. This implies that it is assumed that the survey

regression estimates of the first wave are the most reliable approximations for 𝜃􀐕􀐠, see van den

Brakel and Krieg (2009) for a motivation. The remaining components model the systematic

difference between wave 𝑝with respect to the first wave and are modeled as randomwalks. As

a result,

𝜆􀐕􀐠􀍮 = 0, (14)

𝜆􀐕􀐠􀐜 = 𝜆􀐕􀐠􀍸􀍮;􀐜 + 𝜂􀑋,􀐕􀐠􀐜, 𝜂􀑋,􀐕􀐠􀐜
􀐕􀐚􀐐
∼ 𝑁(0, 𝜎􀍯􀑋􀔍), 𝑝 = 2, 3, 4, 5.

The use of randomwalks allows for time dependent patterns in the RGB.

Finally, a time-series model for the survey errors is developed. Let 𝑒􀐕􀐠 =

(𝑒􀐕􀐠􀍮, 𝑒􀐕􀐠􀍯, 𝑒􀐕􀐠􀍰, 𝑒􀐕􀐠􀍱, 𝑒􀐕􀐠􀍲)
􀐠 denote the five-dimensional vector containing the survey errors of

the five waves. The direct estimates for the variance of the survey regression estimates are

used as prior information in the time-series model to account for heteroscedasticity due to

varying sample sizes over time using the following survey error model:

𝑒􀐕􀐠􀐜 = √𝑣( ̂𝑌̄􀐕􀐠􀐜)𝑒̃􀐕􀐠􀐜, (15)

and 𝑣( ̂𝑌̄􀐕􀐠􀐜) defined by (3). The autocorrelation between survey errors due to panel overlap is

modeled with an AR(𝑞) model, where 𝑞 = 𝑝 − 1 denotes the order of the ARmodel and 𝑝 the

number of the wave. This results in the following model for the survey errors:

𝑒̃􀐕􀐠􀍮 = 𝜈􀐕􀐠􀍮, 𝜈􀐕􀐠􀍮
􀐕􀐚􀐐
∼ 𝑁(0, 𝜎􀍯􀑍􀔍􀑦), (16)

𝑒̃􀐕􀐠􀍯 = 𝜚􀐕􀐠􀍮􀍯𝑒̃􀐕􀐠􀍸􀍰;􀍮 + 𝜈􀐕􀐠􀍯, 𝜈􀐕􀐠􀍯
􀐕􀐚􀐐
∼ 𝑁(0, 𝜎􀍯􀑍􀔍􀑧),

𝑒̃􀐕􀐠􀍰 = 𝜚􀐕􀐠􀍯􀍰𝑒̃􀐕􀐠􀍸􀍰;􀍯 + 𝜚􀐕􀐠􀍮􀍰𝑒̃􀐕􀐠􀍸􀍳;􀍮 + 𝜈􀐕􀐠􀍰, 𝜈􀐕􀐠􀍰
􀐕􀐚􀐐
∼ 𝑁(0, 𝜎􀍯􀑍􀔍􀑨),

𝑒̃􀐕􀐠􀍱 = 𝜚􀐕􀐠􀍰􀍱𝑒̃􀐕􀐠􀍸􀍰;􀍰 + 𝜚􀐕􀐠􀍯􀍱𝑒̃􀐕􀐠􀍸􀍳;􀍯 + 𝜚􀐕􀐠􀍮􀍱𝑒̃􀐕􀐠􀍸􀍶;􀍮 + 𝜈􀐕􀐠􀍱, 𝜈􀐕􀐠􀍱
􀐕􀐚􀐐
∼ 𝑁(0, 𝜎􀍯􀑍􀔍􀑩),

𝑒̃􀐕􀐠􀍲 = 𝜚􀐕􀐠􀍱􀍲𝑒̃􀐕􀐠􀍸􀍰;􀍱 + 𝜚􀐕􀐠􀍰􀍲𝑒̃􀐕􀐠􀍸􀍳;􀍰 + 𝜚􀐕􀐠􀍯􀍲𝑒̃􀐕􀐠􀍸􀍶;􀍯 + 𝜚􀐕􀐠􀍮􀍲𝑒̃􀐕􀐠􀍸􀍮􀍯;􀍮 + 𝜈􀐕􀐠􀍲, 𝜈􀐕􀐠􀍲
􀐕􀐚􀐐
∼ 𝑁(0, 𝜎􀍯􀑍􀔍􀑪),

with 𝜚􀐕􀐠􀐜􀐜􀚅 the partial autocorrelation coefficient between waves 𝑝 and 𝑝􀚄 of domain 𝑖 in period

𝑡. These partial autocorrelation coefficients are derived from the correlation coefficients
𝑛􀐕􀐠􀑦􀐜􀑦􀐠􀑧􀐜􀑧

√𝑛􀐕􀐠􀑦􀐜􀑦𝑛􀐕􀐠􀑧􀐜􀑧
𝜌̂􀐠􀑦􀐜􀑦􀐠􀑧􀐜􀑧 (17)

obtained from themicro data as described in Section 3. The Yule-Walker equations are applied

to the correlation coefficients (17) for each wave, domain and time period to obtain estimates

for the partial correlation coefficients 𝜚􀐕􀐠􀐜􀐜􀚅, (Box et al., 2008). Finally an AR(1) model is chosen

for wave 2 through 5 to model the autocorrelation in the survey errors. Strictly spoken this is an

AR(3) model with the first partial autocorrelations for time periods 𝑡 − 1 and 𝑡 − 2 set equal to

zero, because of the monthly frequency of the data and the quarterly correlation pattern of the

observations. From (15) it follows for the first waves that 𝑉𝑎𝑟(𝑒̃􀐕􀐠􀍮) = 𝜎􀍯􀑍􀔍􀑦 and

𝑉𝑎𝑟(𝑒􀐕􀐠􀍮) = 𝑣( ̂𝑌̄􀐕􀐠􀍮)𝜎
􀍯
􀑍􀔍􀑦

. For the preceding waves it holds that
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𝑉𝑎𝑟(𝑒̃􀐕􀐠􀐜) = 𝜎􀍯􀑍􀔍􀔔/(1 − 𝜚􀐕􀐠(􀐜􀍸􀍮)􀐜) and 𝑉𝑎𝑟(𝑒􀐕􀐠􀐜) = 𝑣( ̂𝑌̄􀐕􀐠􀐜)𝜎
􀍯
􀑍􀔍􀔔
/(1 − 𝜚􀐕􀐠(􀐜􀍸􀍮)􀐜). The variances

𝜎􀍯􀑍􀔍􀔔 are scaling parameters with values close to one for the first wave and close to

1/𝑇∑
􀐆
􀐠􀍹􀍮(1 − 𝜚􀐕􀐠(􀐜􀍸􀍮)􀐜) for the other waves, where 𝑇 denotes the length of the observed

series.

Model (10) uses sample information observed in preceding periods within each domain to

improve the precision of the survey regression estimator and accounts for RGB and serial

correlation induced by the rotating panel design. To take advantage of sample information

across domains, model (10) for the separate domains can be combined in one multivariate

model:

(

̂𝑌̄􀍮􀐠
⋮
̂𝑌̄􀐙􀓫􀐠

) = (

𝜄􀍲𝜃􀍮􀐠
⋮

𝜄􀍲𝜃􀐙􀓫􀐠

) + (

𝜆􀍮􀐠
⋮

𝜆􀐙􀓫􀐠

) + (

𝑒􀍮􀐠
⋮

𝑒􀐙􀓫􀐠

) , (18)

where𝑚􀏳 denotes the number of domains, which is equal to twelve in this application. This

multivariate setting, allows for several ways to use sample information across domains. In this

paper models with cross-sectional correlation between the slope disturbance terms of the

trend (12) are considered, i.e.

𝐶𝑜𝑣(𝜂􀐄,􀐕􀐠, 𝜂􀐄,􀐕􀚅􀐠􀚅) = {

𝜎􀍯􀐄􀐕 𝑖𝑓 𝑖 = 𝑖􀚄 𝑎𝑛𝑑 𝑡 = 𝑡􀚄

𝜍􀐄􀐕􀐕􀚅 𝑖𝑓 𝑖 ≠ 𝑖􀚄 𝑎𝑛𝑑 𝑡 = 𝑡􀚄

0 𝑖𝑓 𝑖 ≠ 𝑖􀚄 𝑎𝑛𝑑 𝑡 ≠ 𝑡􀚄
. (19)

Strong correlation between the slope disturbances across the domains can result in

cointegrated trends. This implies that 𝑞 < 𝑚􀏳 common trends are required to model the

dynamics of the trends for the𝑚􀏳 domains and allows the specification of so-called common

trendmodels, (Koopman et al., 1999; Krieg and van den Brakel, 2012).

Initial STM analyses showed that the seasonal and RGB component turned out to be time

independent. It is therefore not sensible to model correlations between seasonal and RGB

disturbance terms. Since the hyperparameters of the white noise population domain

parameters tend to zero, it turned out to be better to remove this component completely from

the model implying that modelling correlations between population noise is not considered.

Correlation between survey errors for different domains is also not considered, since the

domains are geographical regions fromwhich samples are drawn independently.

As an alternative to a model with a full covariance matrix for the slope disturbances, a trend

model is considered that has one common smooth trend model for all provinces plus𝑚􀏳 − 1

trend components that describe the deviation of each domain from this overall trend. In this

case (11) is given by

𝜃􀍮􀐠 = 𝐿􀐠 + 𝑆􀍮􀐠 + 𝜖􀍮􀐠, (20)

𝜃􀐕􀐠 = 𝐿􀐠 + 𝐿∗􀐕􀐠 + 𝑆􀐕􀐠 + 𝜖􀐕􀐠, 𝑖 = 2,… ,𝑚􀏳.
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In (20), 𝐿􀐠 is the overal smooth trend component, defined by (12), and 𝐿∗􀐕􀐠 the deviation from

the overall trend for the separate domains, which are defined as smooth trendmodels defined

by (12) or local levels, defined as

𝐿∗􀐕􀐠 = 𝐿∗􀐕􀐠􀍸􀍮 + 𝜂􀏾,􀐕􀐠, (21)

𝜂􀏾,􀐕􀐠
􀐕􀐚􀐐
∼ 𝑁(0, 𝜎􀍯􀏾􀐕).

This trendmodel implicitly allows for correlations between the trends of the different domains.

Another more synthetic approach to use sample information across domains is to formulate

seemingly unrelated structural time-series models, which implies that the disturbance terms of

a factor share the same hyperparameter across the domains. This is equivalent to a multilevel

model component with a single common variance parameter. The most synthetic approach to

use sample infromation from other domains is to define the state variables equal over domains.

The parameters to be estimated with the time-series modelling approach are the trend and the

signal. The latter is defined as the trend plus the seasonal component. The time-series

approach is particularly suitable for estimating month-to-month changes. Seasonal patterns

and sampling errors hamper a straightforward interpretation of month-to-month changes of

direct estimates and smoothed signals. Therefore month-to-month changes are calculated for

the trends only. Due to the strong positive correlation between the levels of consecutive

periods, the standard errors of month-to-month changes in the level of the trends are much

smaller than those of e.g. month-to-month changes of the direct estimates. The

month-to-month change of the trend is defined as Δ􀐕􀐠(1) = 𝐿􀐕􀐠 − 𝐿􀐕􀐠􀍸􀍮 for models with

separate trends for the domains or Δ􀐕􀐠(1) = 𝐿􀐠 − 𝐿􀐠􀍸􀍮 + 𝐿∗􀐕􀐠 − 𝐿∗􀐕􀐠􀍸􀍮 for models with an overall

trend and𝑚􀏳 − 1 trends for the deviation from the overall trend for the separate domains. This

modelling approach is also usefull to estimate year to year developments for trend and are

defined as Δ􀐕􀐠(12) = 𝐿􀐕􀐠 − 𝐿􀐕􀐠􀍸􀍮􀍯 or Δ􀐕􀐠(12) = 𝐿􀐠 − 𝐿􀐠􀍸􀍮􀍯 + 𝐿∗􀐕􀐠 − 𝐿∗􀐕􀐠􀍸􀍮􀍯. Year to year

differences are also sensible for signals, since the main part of the seasonal component cancels

out. These developments are defined equivalently to the year to year developments of the

trend.

The aforementioned structural time-series models are analyzed by putting them in the

so-called state-space form. This implies that the STM is expressed in terms of a measurement

equation and a transition equation. The measurement equation states how the observed times

series depend on the underlying state variables (trend, seasonal, RGB and survey errors). The

transition equation describes how the state variables gradually evolve over time. Under the

assumption of normally distributed disturbance terms, the Kalman filter is applied to obtain

optimal estimates for the state variables, including the month-to-month changes for the

trends. For a general introduction of state-space models and the Kalman filter, see Harvey

(1989) or Durbin and Koopman (2001). The Kalman filter assumes that the hyperparameters

are known in advance. In this application the unknown hyperparameters are substituted with

their maximum likelihood (ML) estimates. The uncertainty in the small area predictions of

using ML estimates for the unknown hyperparameters is ignored. The analysis is conducted

with software developed in OxMetrics in combination with the subroutines of SsfPack 3.0,

(Doornik, 2009; Koopman et al., 1999, 2008). All state variables are non-stationary with the

exception of the survey errors. The non-stationary variables are initialized with a diffuse prior,

i.e. the expectations of the initial states are equal to zero and the initial covariance matrix of
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the states is diagonal with elements diverging to infinity. The survey errors are stationary and

therefore initialized with a proper prior. The initial values for the survey errors are equal to zero

and the covariance matrix is available from the aforementionedmodel for the survey errors.

The exact initial solution for the Kalman filter with diffuse initial conditions, proposed by

Koopman (1997) is used. ML estimates for the hyperparameters are obtained using the

numerical optimization procedure maxBFGS in OxMetrics.

If correlations between the slope disturbances of the trends are non-zero, then the correlation

matrix of the transition equation is non-diagonal. Let 𝑉􀐄 denote the𝑚􀏳 ×𝑚􀏳 block of the

covariance matrix of the transition equation that models the variances and covariances of the

slope disturbances of the trend. In the case of strong correlations between the domains, the

rank of 𝑉􀐄 can become smaller than the number of domains𝑚􀏳. Therefore the covariance

matrix is implemented as a Cholesky decomposition, i.e. 𝑉􀐄 = 𝐴􀐄𝐷􀐄𝐴
􀚄
􀐄, with𝐷􀐄 a diagonal

matrix and 𝐴􀐄 a lower triangular matrix with ones on the diagonal. If the slope disturbances for

the𝑚􀏳 domains of a component, are strongly correlated, then this component might be driven

by 𝑞 < 𝑚􀏳 common factors. This implies that 𝑉􀐄 is not of full rank. In the context of structural

time-series models this is often referred to as cointegration. If𝑚􀏳 − 𝑞ML estimates of the

diagonal elements of𝐷􀐠 tend to zero, then the variances of the slope disturbances are obtained

as a linear combination of 𝑞 common trend factors. Also the state variables of the trends for

the𝑚􀏳 domains can be expressed as a linear combination of 𝑞 common factors, up to a time

invariant correction term. See Harvey (1989), Section 8.5 or Koopman et al. (2007), Section 9.1

for more details concerning cointegration and common factor state-space models.

4.2 Time-series multilevel model

For the description of the multilevel time-series model the initial estimates ̂𝑌̄􀐕􀐠􀐜 are combined

into a vector ̂𝑌̄ = ( ̂𝑌̄􀍮􀍮􀍮,
̂𝑌̄􀍮􀍮􀍯, … , ̂𝑌̄􀍮􀍮􀍲,

̂𝑌̄􀍮􀍯􀍮, … )􀚄, i.e., wave index runs faster than time index

which runs faster than area index. The numbers of areas, periods and waves are denoted by

𝑚􀏳,𝑚􀐆 and𝑚􀐂, respectively. The total length of
̂𝑌̄ is therefore

𝑚 = 𝑚􀏳𝑚􀐆𝑚􀐂 = 12(𝑎𝑟𝑒𝑎𝑠) ∗ 72(𝑚𝑜𝑛𝑡ℎ𝑠) ∗ 5(𝑤𝑎𝑣𝑒𝑠) = 4320. Similarly, the variance

estimates 𝑣( ̂𝑌̄􀐕􀐠􀐜) are put in the same order along the diagonal of a𝑚×𝑚 covariancematrixΦ.

The covariance matrixΦ is not diagonal because of the correlations induced by the panel

design. It is a sparse bandmatrix, and the ordering of the vector ̂𝑌̄ is such that it achieves

minimum possible bandwidth, which is advantageous from a numerical computational point of

view. To illustrate, the pattern of non-vanishing elements of the top-left 500 × 500 block ofΦ

is displayed in Fig. 6. This part of the covariancematrix refers to all 72 ∗ 5 estimates for the first

province, and some estimates for the second province. The figure clearly shows the correlation

structure induced by the rotating panel design, as well as independence between estimates for

different provinces, resulting in a block diagonal matrix with a relatively small number of

nonzero bands around the diagonal.

The multilevel models considered for modeling the vector of direct estimates ̂𝑌̄, take the

general linear additive form

̂𝑌̄ = 𝑋𝛽 +∑

􀑁

𝑍(􀑁)𝑣(􀑁) + 𝑒 , (22)
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Figure 6 The top-left 500 × 500 block ofΦ.

where 𝑋 is a𝑚× 𝑝 design matrix for the fixed effects 𝛽, and the 𝑍(􀑁) are𝑚× 𝑞(􀑁) design

matrices for random effect vectors 𝑣(􀑁). The sampling errors 𝑒 = (𝑒􀍮􀍮􀍮, 𝑒􀍮􀍮􀍯, … , 𝑒􀍮􀍮􀍲, 𝑒􀍮􀍯􀍮, … )􀚄

are taken to be normally distributed as

𝑒 ∼ 𝑁(0, Σ) (23)

where Σ = ⊕
􀐙􀓫

􀐕􀍹􀍮𝜆􀐕Φ􀐕 withΦ􀐕 the covariance matrix for the initial estimates for province 𝑖, and

𝜆􀐕 a province-specific variance scale parameter to be estimated. As described in Section 3 the

design variances inΦ = ⊕􀐕Φ􀐕 are pooled over provinces and because of the discrete nature of

the unemployment data they thereby lose some of their dependence on the unemployment

level. It was found that incorporating the variance scale factors 𝜆􀐕 allows the model to rescale

the estimated design variances to a level that better fits the data.

To describe the general model for each vector 𝑣(􀑁) of random effects, we suppress the

superscript 𝛼. Each vector 𝑣 has 𝑞 = 𝑑𝑙 components corresponding to 𝑑 effects allowed to vary

over 𝑙 levels of a factor variable. In particular,

𝑣 ∼ 𝑁(0, 𝐴⊗ 𝑉) , (24)

where 𝑉 and 𝐴 are 𝑑 × 𝑑 and 𝑙 × 𝑙 covariance matrices, respectively. The covariance matrix 𝑉 is

allowed to be parameterised in three different ways. Most generally, it is an unstructured, i.e.

fully parameterised covariance matrix. More parsimonious forms are 𝑉 = diag(𝜎􀍯􀐢;􀍮, … , 𝜎􀍯􀐢;􀐐) or

𝑉 = 𝜎􀍯􀐢 𝐼􀐐. If 𝑑 = 1 the three parameterisations are equivalent. The covariance matrix 𝐴

describes the covariance structure between the levels of the factor variable, and is assumed to

be known. It is typically more convenient to use the precisionmatrix𝑄􀏳 = 𝐴􀍸􀍮 as it is sparse for

many common temporal and spatial correlation structures (Rue and Held, 2005).

A single smooth trend can be represented as a random intercept (𝑑 = 1) varying over time

(𝑙 = 𝑚􀐆), with temporal correlation determined by the𝑚􀐆 ×𝑚􀐆 band sparse precision matrix
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(see e.g. Rue and Held (2005)),

𝑄􀏳 =

⎛
⎜
⎜
⎜
⎜
⎜

⎝

1 −2 1

−2 5 −4 1

1 −4 6 −4 1

1 −4 6 −4 1

⋱ ⋱ ⋱

1 −4 6 −4 1

−2 5 −4 1

1 −2 1

⎞
⎟
⎟
⎟
⎟
⎟

⎠

. (25)

In this case 𝑉 = 𝜎􀍯􀐢 and the design matrix 𝑍 is the𝑚×𝑚􀐆 indicator matrix for month, i.e. the

matrix with a single 1 in each row for the corresponding month and 0s elsewhere. The sparsity

of both𝑄􀏳 and 𝑍 can be exploited in computations.

The precision matrix (25) has two singular vectors, 𝜄􀐙􀓾
= (1, 1, … , 1) and (1, 2, … ,𝑚􀐆)

􀚄. This

means that the corresponding specification (24) is completely uninformative about the overall

level and linear trend. In order to prevent unidentifiability among various terms in the model,

the overall level and trend can be removed from 𝑣 by imposing the constraints 𝑅𝑣 = 0, where𝑅

is the 2 × 𝑚􀐆 matrix with the two singular vectors as its rows. The overall level and trend are

then included in the vector 𝛽 of fixed effects.

A smooth trend for each province is obtained with 𝑑 = 𝑚􀏳, 𝑙 = 𝑚􀐆, and 𝑉 a𝑚􀏳 ×𝑚􀏳

covariance matrix, either diagonal with a single variance parameter, diagonal with𝑚􀏳 variance

parameters, or unstructured, i.e. fully parametrised in terms of𝑚􀏳 variance parameters and

𝑚􀏳(𝑚􀏳 − 1)/2 correlation parameters. The design matrix is 𝐼􀐙􀓫
⊗ 𝐼􀐙􀓾

⊗ 𝜄􀐙􀓺
in this case.

An alternative trendmodel consists of a single global smooth trend (also known as a second

order randomwalk) supplemented by a local level trend, i.e. an ordinary (first-order) random

walk, for each province. The latter can bemodeled as discussed in the previous paragraph, but

with𝑄􀏳 in (25) replaced by the precision matrix for a first order randomwalk, given by equation

(34) in the appendix. In contrast to the STM approach, it is not necessary to remove one of the

provincial randomwalk trends from themodel for identifiability. The reason for that is that in

themultilevel approach constraints are imposed to ensure that the smooth overall trend as well

as all provincial randomwalk trends sum to zero over time. The constrained components

correspond to a global and provincial intercepts, which are separately included in the model as

fixed effects with one provincial fixed effect excluded.

Seasonal effects can be expressed in terms of correlated random effects (24) as well. The

trigonometric seasonal (13) is equivalent to the balanced dummy variable seasonal model

(Proietti, 2000; Harvey, 2006), corresponding to first-order randomwalks over time for each

month, subject to a sum-to-zero constraint over the months. In this case 𝑑 = 12 (seasons),

𝑉 = 𝜎􀍯􀐢 𝐼􀍮􀍯, and 𝑙 = 𝑚􀐆 with𝑄􀏳 the first-order randomwalk precision matrix (34). The

sum-to-zero constraints over seasons at each time, together with the sum-to-zero constraints

over time of each randomwalk can be imposed as𝑅𝑣 = 0with𝑅 the (𝑚􀐆+12)×12𝑚􀐆matrix

𝑅 = (
𝜄􀚄􀍮􀍯 ⊗ 𝐼􀐙􀓾

𝐼􀍮􀍯 ⊗ 𝜄􀚄􀐙􀓾

) . (26)

Together with fixed effects for each season (again with a sum-to-zero constraint imposed) this

random effect term is equivalent to the trigonometric seasonal. It can be extended to a

seasonal for each province, with a separate variance parameter for each province.
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To account for the RGB, the multilevel model includes fixed effects for waves 2 to 5. These

effects can optionally be modeled dynamically by adding randomwalks over time for each

wave. Another choice to be made is whether the fixed and random effects are crossed with

province.

Further fixed effects can be included in the model, for example those associated with the

auxiliary variables used in the survey regression estimates. Some fixed effect interactions, for

example season× province or wave× province might alternatively be modeled as random

effects to reduce the risk of overfitting.

Finally, a white noise term can be added to the model, to account for unexplained variation by

area and time in the signal.

Model (22) can be regarded as a generalization of the Fay-Herriot area-level model. The

Fay-Herriot model only includes a single vector of uncorrelated random effects over the levels

of a single factor variable (typically areas). The models used in this paper contain various

combinations of uncorrelated and correlated random effects over areas andmonths. Earlier

accounts of multilevel time-series models extending the Fay-Herriot model are Rao and Yu

(1994); Datta et al. (1999); You (2008). Datta et al. (1999) and You (2008) use time-series

models with independent area effects and first-order randomwalks over time for each area. In

Rao and Yu (1994) a model is used with independent random area effects and a stationary

autoregressive AR(1) instead of a randomwalk model over time. In You et al. (2003) the

randomwalk model was found to fit the Canadian unemployment data slightly better than

AR(1) models with autocorrelation parameter fixed at 0.5 or 0.75. Compared to the

aforementioned references a novel feature of our model is that smooth trends are considered

instead of or in addition to first-order randomwalks or autoregressive components. We also

include independent area-by-time random effects as a white noise term accounting for

unexplained variation at the aggregation level of interest.

4.2.1 Estimating the time-series multilevel model

A Bayesian approach is used to fit model (22)-(24). This means we need prior distributions for

all (hyper)parameters in the model. The following priors are used:

– The data-level variance parameters 𝜆􀐕 for 𝑖 = 1,… ,𝑚􀏳 are assigned inverse chi-squared

priors with both degree of freedom parameter and scale parameter equal to 1.

– The fixed effects are assigned a normal prior with zero mean and fixed diagonal variance

matrix with very large values (1e10).

– For a fully parameterized covariance matrix 𝑉 in (24) we use the scaled-inverseWishart prior

as proposed in O’Malley and Zaslavsky (2008) and recommended by Gelman and Hill (2007).

Conditionally on a 𝑑-dimensional vector parameter 𝜉,

𝑉|𝜉 ∼ Inv −Wishart (𝑉|𝜈, diag(𝜉)Ψdiag(𝜉)) (27)

where 𝜈 = 𝑑 + 1 is chosen, andΨ = 𝐼􀐐. The vector 𝜉 is assigned a normal distribution

𝑁(0, 𝐼􀐐).

– All other variance parameters appearing in a diagonal matrix 𝑉 in (24) are assigned,

conditionally on an auxiliary parameter 𝜉, inverse chi-squared priors with 1 degree of

freedom and scale parameter 𝜉􀍯. Each parameter 𝜉 is assigned a𝑁(0, 1) prior. Marginally,

the standard deviation parameters have half-Cauchy priors. Gelman (2006) demonstrates

that these priors are better default priors than themore common inverse chi-squared priors.
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Themodel is fit using Markov Chain Monte Carlo (MCMC) sampling, in particular the Gibbs

sampler (Geman and Geman, 1984; Gelfand and Smith, 1990). The multilevel models

considered belong to the class of additive latent Gaussian models with random effect terms

being Gaussian Markov Random Fields (GMRFs), and wemake use of the sparse matrix and

block sampling techniques described in Rue and Held (2005) for efficiently fitting such models

to the data. Besides that, the parameterization in terms of the above-mentioned auxiliary

parameters 𝜉 (Gelman et al., 2008), greatly improves the convergence of the Gibbs sampler

used. See III for more details on the Gibbs sampler used, including specifications of the full

conditional distributions.

For each model considered, the Gibbs sampler is run in three independent chains with

randomly generated starting values. Each chain is run for 2500 iterations. The first 500 draws

are discarded as a ”burn-in sample”. From the remaining 2000 draws from each chain, we keep

every fifth draw to save memory while reducing the effect of autocorrelation between

successive draws. This leaves 3 ∗ 400 = 1200 draws to compute estimates and standard

errors. The convergence of the MCMC simulation is assessed using trace and autocorrelation

plots as well as the Gelman-Rubin potential scale reduction factor (Gelman and Rubin, 1992),

which diagnoses themixing of the chains. The diagnostics suggest that all chains converge well

within 500 draws. Also, the estimated Monte Carlo simulation errors (accounting for the

remaining autocorrelation in the chains) are small compared to the posterior standard errors

for all parameters, so that the number of retained draws is sufficient for our purposes.

The estimands of interest can be expressed as functions of the parameters, and applying these

functions to the MCMC output for the parameters results in draws from the posteriors for these

estimands. In this paper we summarize those draws in terms of their mean and standard

deviation, serving as estimates and standard errors, respectively. All estimands considered can

be expressed as linear predictors, i.e. as linear combinations of the model parameters.

Estimates and standard errors for the following estimands are computed:

– Signal: the vector 𝜃􀐕􀐠 including all fixed and random effects, except those associated with

waves 2 to 5. These correspond to the fitted values 𝑋𝛽 + ∑
􀑁 𝑍

(􀑁)𝑣(􀑁) associated with each

fifth row 1, 6, 11, … of ̄𝑌̂ and the design matrices.

– Trend: prediction of the long-term trend. This is computed by only incorporating the trend

components of each model in the linear predictor. For most models considered the trend

corresponds to seasonally adjusted figures, i.e. predictions of the signal with all seasonal

effects removed.

– Growth of trend: the differences between trends at two consecutive months.

5 Results

In this section, the results obtained with the structural time-series models andmultilevel

time-series models are described in subsections (5.1) and (5.2) respectively. Before results are

discussed, two discrepancy measures are defined to evaluate and compare the different

models. The first measure is the Mean Relative Bias (MRB) and summarizes the differences
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betweenmodel estimates and direct estimates averaged over time, as percentage of the latter.

For a given model𝑀, the𝑀𝑅𝐵􀐕 is defined as

𝑀𝑅𝐵􀐕 =
∑
􀐠(𝜃̂

􀎊
􀐕􀐠 − 𝜃̂􀎛􀎠􀎩􀎜􀎚􀎫􀐕􀐠 )

∑
􀐠 𝜃̂

􀎛􀎠􀎩􀎜􀎚􀎫
􀐕􀐠

× 100% . (28)

This benchmark measure shows for each province howmuch the model-based estimates

deviate from the direct estimates. The discrepancies should not be too large as onemay expect

that the direct estimates averaged over time are close to the true average level of

unemployment. The second discrepancy measure is the Relative Reduction of the Standard

Errors (RRSE) andmeasures the percentages of reduction in standard error between

model-based and direct estimates, i.e.,

𝑅𝑅𝑆𝐸􀐕 = 100% ×
1

𝑚􀐆

∑

􀐠

(𝑠𝑒(𝜃̂􀎛􀎠􀎩􀎜􀎚􀎫􀐕􀐠 ) − 𝑠𝑒(𝜃̂􀎊􀐕􀐠 ))/𝑠𝑒(𝜃̂
􀎛􀎠􀎩􀎜􀎚􀎫
􀐕􀐠 ) , (29)

for a given model𝑀.

5.1 Results STM

Ten different structural time-series models are compared. Four different trendmodels are

distinguished. The first trend component is a smooth trendmodel without correlations

between the domains (12), abbreviated as T1. The second trendmodel is a smooth trend

model (12) with a full correlation matrix for the slope disturbances (19), abbreviated as T2. The

third trend component is a common smooth trendmodel for all provinces with eleven local

level trend models for the deviation of the domains from this overall trend ((20) in combination

with (21)), abbreviated as T3. The fourth trend model is a common smooth trendmodel for all

provinces with eleven smooth trend models for the deviation of the domains from this overlall

trend ((20) in combination with (12)), abbreviated as T4. In T3 and T4 the province Groningen is

taken equal to the overall trend. The component for the RGB (14) can be domain specific

(indicated with an R) or chosen equal for all domains (no indication for RGB). An alternative

simplicfication is to assume that RGB for waves 2, 3, 4 and 5 are equal but domain specific

(indicated with R2). In a similar way the seasonal component (13) can be chosen domain

specific (indicated with an S) or taken equal for all domains (no indication for seasonal). All

models share the same component for the survey error, i.e. an AR(1) model with time varying

autocorrelation coefficients for wave 2, through 5 to model the autocorrelation in the survey

errors. The following structural time-series models are compared:

– T1SR: Smooth trendmodel and no correlation between slope disturbances, seasonal and

RGB domain specific.

– T2SR: Smooth trendmodel with a full correlation matrix for the slope disturbances,

seasonal and RGB domain specific.

– T2S: Smooth trendmodel with a full correlation matrix for the slope disturbances, seasonal

domain specific, RGB equal over all domains.

– T2R: Smooth trendmodel with a full correlation matrix for the slope disturbances, seasonal

equal over all domains, RGB domain specific.

– T3SR: One common smooth trendmodel for all domains plus eleven local levels for

deviations from the overall trend, seasonal and RGB domain specific.

– T3R: One common smooth trendmodel for all domains plus eleven local levels for

deviations from the overall trend, seasonal equal over all domains, RGB domain specific.
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– T3R2: One common smooth trendmodel for all domains plus eleven local levels for

deviations from the overall trend, seasonal equal over all domains, RGB is domain specific

but assumed to be equal for the four follow-up waves.

– T3: One common smooth trendmodel for all domains plus eleven local levels for deviations

from the overall trend, seasonal and RGB equal over all domains.

– T4SR: One common smooth trendmodel for all domains plus eleven smooth trendmodels

for deviations from the overall trend, seasonal and RGB domain specific.

– T4R: One common smooth trendmodel for all domains plus eleven smooth trendmodels

for deviations from the overall trend, seasonal equal over all domains, RGB domain specific.

For all models, the ML estimates for the hyperparameters of the RGB and the seasonals tend to

zero, which implies that these components are time invariant. Also the ML estimates for the

variance components of the white noise of the population domain parameters tend to zero.

This component is therefore removed frommodel (11). The ML estimates for the variance

components of the survey errors in the first wave vary between 0.93 and 1.90. For the follow-up

waves, the ML estimates vary between 0.86 and 1.80. The variances of the direct estimates are

pooled over the domains (3), which might introduce some bias, e.g. underestimation of the

variance in domains with high unemployment rates. Scaling the variances of the survey errors

with the ML estimates for 𝜎􀍯􀑍􀔍􀔔 is neccessary to correct for this bias.

The ML estimates for the hyperparameters for the trend components are summarized in Table

2 for model T1SR, T2SR, T3SR and T4SR. Hyperparameters for similar trendmodels where the

RGB or seasonal component is equal over the domains have almost similar hyperparameter

estimates for the trend. For T2SR only the eigenvalues of the diagonal elements of𝐷􀐄 from the

Cholesky decomposition are presented. In Table 3 the corresponding correlation matrix for the

slope disturbances is given.

For model T1SR the hyperparameters for slope disturbances for the 12 domains are of the

same order. For model T2SR it follows that the dynamics of these 12 domains can bemodelled

with only 2 underlying common trends. The hyperparameters of the overall trends in T3SR and

T4SR are of the same order as the domain specific trend hyperparameters of T1SR. The

hyperparameters of the domain specific deviations from the overall trend are larger under the

local level model (T3SR) compared to the smooth trendmodel (T4SR).

Models are compared using the loglikelihoods. To account for differences in model complexity,

Akaike Information Criteria (AIC) and Bayes Information Criteria (BIC) are used, Durbin and

Koopman (2001), Section 7.4. Results are summarized in Table 4. Parsimonious models where

the seasonals or RGB are equal over the domains are preferred by the AIC or BIC criteria. Note,

however, that the likelihoods are not completely comparable betweenmodels. To obtain

comparable likelihoods, the first 24 months of the series are ignored in the computation of the

likelihood for all models. Some of the likelihoods are nevertheless odd. For example the

likelihood of T2SR is smaller than the likelihood of T2S, although T2SR contains more model

parameters. This is probably the result of large and complex time-series models in combination

with relatively short time series, which gives rise to flat likelihood functions. Also from this

point of view, sparse models that avoid over-fitting are still favorable, which is in line with the

results of the AIC and BIC values in Table 4.

Modelling correlations between slope disturbances of the trend results in a significant model

improvement. Model T1SR, e.g. is nested within T2SR and a likelihood ratio test clearly favours

Statistics Netherlands | Discussion paper 2016|10 21



Trend component T1SR T2SR T3SR T4SR

Overall 1.48e-04 1.51E-04

Grn 2.26e-04 1.94e-04

Frsl 1.61e-04 5.73e-10 3.19e-04 3.04e-10

Drn 2.19e-04 0 2.32e-04 1.64e-09

Ovr 1.37e-04 0 1.50e-04 4.50e-10

Flv 2.98e-04 0 1.35e-03 1.41e-04

Gld 1.56e-04 0 1.97e-08 1.12e-09

Utr 1.33e-04 0 3.79e-04 4.73e-07

N-H 1.60e-04 0 3.07e-04 1.63e-10

Z-H 1.59e-04 0 2.60e-04 1.65e-07

Zln 1.30e-04 0 3.93e-04 4.23e-10

N-B 1.39e-04 0 3.11e-04 3.03e-07

Lmb 1.31e-04 0 1.06e-09 1.01e-09

Table 2 ML hyperparameter estimates trend components.

dom. Grn Frsl Drn Ovr Flv Gld Utr N-H Z-H Zln N-B

Frsl 1.000

Drn 0.977 0.977

Ovr 0.999 0.999 0.968

Flv 1.000 1.000 0.979 0.999

Gld 0.991 0.991 0.997 0.985 0.992

Utr 1.000 1.000 0.983 0.997 1.000 0.995

N-H 1.000 1.000 0.983 0.998 1.000 0.994 1.000

Z-H 0.999 0.999 0.964 1.000 0.998 0.983 0.997 0.997

Zln 1.000 1.000 0.981 0.998 1.000 0.994 1.000 1.000 0.997

N-B 0.997 0.997 0.991 0.992 0.997 0.999 0.999 0.999 0.991 0.998

Lmb 0.986 0.986 0.928 0.992 0.984 0.955 0.980 0.981 0.993 0.982 0.969

Table 3 Correlation matrix slope disturbances (diagonal elements are omitted)

Model log likelihood states hyperparameters AIC BIC

T1SR 9813.82 204 24 -399.41 -390.52

T2SR 9862.86 204 35 -400.99 -391.68

T2S 9879.03 160 35 -403.50 -395.90

T2R 9859.97 83 35 -405.92 -401.32

T3SR 9855.35 193 24 -401.60 -393.14

T3R 9851.62 72 24 -406.48 -402.74

T3R2 9871.65 36 24 -408.82 -406.48

T3 9881.16 28 24 --409.55 -407.52

T4SR 9857.47 204 24 -401.23 -392.34

T4R 9853.65 83 24 -406.11 -401.94

Table 4 AIC and BIC for the structural time-series models.
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the latter. The correlations between the slope disturbances of the domains are very strong as

follows from Table 3. The rank of this 12 × 12 covariance matrix equals two, which implies that

the covariance matrix is actually driven by two underlying common factors. This also follows

from Table 2 where only 2 out of the 12 eigenvalues are unequal to zero. As a result the full

covariance matrix for the slope disturbances of the 12 domains is actually modelled with 23

instead of 78 hyperparameters.

In Table 5 the MRB, defined by (28), for the ten different models are shown. Models that

assume that the RGB is equal over the domains, i.e. T2S and T3, have large relative biases for

some of the domains. Large biases occur in the domains where unemployment is large (e.g.

Groningen) or small (e.g. Utrecht) compared to the national average. A possible compromise

between parsimony and bias is to assume that the RGB is equal for the four follow-up waves but

still domain specific (T3R2). For this model the bias is small, with the exception of Gelderland.

Grn Frs Drn Ovr Flv Gld Utr N-H Z-H Zln N-B Lmb

T1SR 1.1 0.5 2.0 -0.2 0.1 3.4 0.1 0.6 1.7 -2.1 0.5 2.1

T2SR 1.2 0.7 2.2 -0.1 0.2 3.5 0.2 0.6 1.7 -2.1 0.5 2.1

T2S -3.1 3.1 0.7 0.9 -4.4 2.8 2.4 0.8 0.5 1.7 1.8 1.5

T2R 0.9 0.8 1.8 -0.2 -0.4 3.4 0.1 0.6 1.7 -1.6 0.6 2.2

T3SR 0.8 0.6 2.0 -0.2 -0.3 3.5 0.3 0.5 1.7 -2.0 0.6 2.0

T3R2 -0.1 1.3 2.1 -0.6 -0.8 3.6 0.9 0.6 1.5 -1.1 1.0 1.2

T3R 0.5 0.7 1.8 -0.2 -0.8 3.5 0.3 0.5 1.6 -1.5 0.7 2.1

T3 -4.0 2.5 0.1 0.9 -5.0 2.8 2.3 0.7 0.6 2.5 2.0 1.3

T4SR 0.8 0.7 2.1 -0.2 -0.0 3.5 0.2 0.6 1.7 -1.9 0.5 2.1

T4R 0.6 0.7 1.8 -0.2 -0.6 3.4 0.1 0.6 1.7 -1.3 0.7 2.1

Table 5 Mean Relative Bias averaged (28) over time (%), per province for structural

time-series models.

In Figure 7 and 8 the smoothed trends and standard errors of models T1SR, T2SR and T2S are

compared. The month-to-month development of the trend and the standard errors for these

three models are compared in Figures 9 and 10. The smoothed trends obtained with the

common trendmodel are slightly more flexible compared to a model without correlation

between the slope disturbances. This is clearly visible in the month-to-month change of the

trends. Modeling the correlation between slope disturbances clearly reduces the standard error

of the trend and the month-to-month change of the trend. Assuming that the RGB is equal for

all domains (model T2S) clearly affects the level of the trend and further reduces the standard

error, mainly since the number of state variables are reduced. The difference between the

trend under T2SR and T2S is a level shift. This clearly follows from themonth-to-month

changes of the trend under model T2SR and T2S, which are exactly equal. According to AIC

and BIC the reduction of the number of state variables by assuming equal RGB for all domains

is an improvement of the model. In this application, however, interest is focused on the model

fit for the separate domains. Assuming that the RGB is equal over all domains is on average

efficient for overall goodness of fit measures, like AIC and BIC, but not necessarily for all

separate domains. The bias introduced in the trends of some of the domains by taking the RGB

equal over the domains is undesirable.

In Figure 11 and 12 the smoothed trends and standard errors of models T2SR, T3SR and T4SR

are compared. The month-to-month development of the trend and the standard errors for

these three models are compared in Figures 13 and 14. The trends obtained with one overall
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smooth trend plus eleven trends for the domain deviations of the overall trend resemble trends

obtained with the common trendmodel. In this application, where only two common trends

are required to model the dynamics of the trends observed in the twelve domains is reasonably

well approximated with the two alternative trends. This is an empirical finding that cannot be

generalized to other situations, particularly whenmore common factors are required. The

common trendmodel, however, has the smallest standard errors for the trend. Furthermore,

the trends under the model with a local level for the domain deviations from the overall trend

are in some domains more volatile compared to the other twomodels. This is most obvious in

themonth-to-month changes of the trend. It is a general feature for trendmodels with random

levels to have more volatile trends, Durbin and Koopman (2001), Chapter 3. The more flexible

trendmodel of T3 also results in a higher standard error of the month-to-month changes.

Assuming that the seasonals are equal for all domains is another way of reducing the number of

state variables and avoid over-fitting of the data. This assumption does not affect the level of

the trend since the MRB is small (see Table 5) and results in a significant improvement of the

model according to AIC and BIC. Particularly if interest is focused on trend estimates, some bias

in the seasonal patterns are acceptable and a model with a trend based on T2, or T4, with the

seasonal component assumed equal over the domains, might be a good compromise between

amodel that accounts sufficiently for differences between domains andmodel parsimony to

avoid over-fitting of the data.

In Figure 15 and 16 the smoothed trends and standard errors of models T2R, T3 and T4R are

compared. The month-to-month development of the trend and the standard errors for these

three models are compared in Figures 17 and 18. Model T3 is the most parsimonious model

that is the best model according to AIC and BIC. Particularly the assumption of equal RGB

results in biased trend estimates in some of the domains (see Table 5). The local level

component used to model the deviations of the domain-specific trend from the overall trend

makes the trends more volatile, which is especially visible in the month-to-month changes.

There are some differences between the trends and themonth-to-month changes of the trends

for models T2R and T4R. It might be expected that the common trendmodel better fits the

dynamics of the trends since it is based on the full covariance matrix of the slope disturbances,

while T4 and also T3 implicitly attempt to capture this covariance structure.

To further illustrate the advantages of using time-series models for estimating change, Figure

19 compares the year-to-year change of the trends under models T2R and T3R2 and the direct

estimates. Since the seasonal effects under the STM approach are time invariant, the

year-to-year changes for the signals are exactly equal to the year-to-year changes of the trends.

Note that for year-to-year changes, it makes sense to use direct estimates since seasonal

effects cancel out. Figure 20 compares the standard errors of these year-to-year changes.

Estimates for year-to-year changes are, compared to the direct estimates, very stable and

precise and greatly improve the direct estimates for year-to-year change.

Finally in Figure 21 and 22 the smoothed signals and standard errors for models T2SR and T2R

are compared. Amain part of the volatility in the series of the direct estimates are sampling

errors that are removed from the smoothed signals under T2SR and T2R. Assuming that the

seasonals are equal over the domains, results in a less pronounced seasonal pattern. The

smoothed signal under T2R has indeed a less pronounced seasonal component than T2SR. The

reduction in standard errors under both models compared to the direct estimates under T2SR

varies between 40 and 50 percent. Under model T2R the reduction is more than 60 percent.
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Table 6 shows the RRSE, defined by (29), for the ten structural time-series models. Table 7

contains the averages of standard errors for signal, trend, and growth (time-differences of

trend). The average is taken over all months and provinces. Modelling the correlation between

the trends explicitly (Model T2) or implicitly (Model T3 or T4) reduces the standard errors for

the trend and signal significantly. The time-series modelling approach is particularly

appropriate to estimate month-to-month changes through the trend component. The

precision of the month-to-month changes, however, strongly depends on the choice of the

trendmodel. A local level trend model (T3) results in more volatile trends and has a clearly

larger standard error for the month-to-month change. Parsimonious models where RGB or the

seasonal components are assumed equal over the domains result in further strong standard

error reductions at the cost of introducing bias in the trend or the seasonal patterns.

Grn Frs Drn Ovr Flv Gld Utr N-H Z-H Zln N-B Lmb

T1SR 36 36 38 42 43 44 47 47 45 50 47 43

T2SR 43 42 43 48 49 49 53 53 50 54 53 48

T2S 49 48 51 53 55 54 58 56 54 58 56 54

T2R 64 63 62 65 66 63 68 68 63 73 67 64

T3SR 45 41 45 48 42 51 49 50 48 53 49 50

T3R 67 62 63 66 56 61 62 64 65 70 60 66

T3R2 68 63 64 67 57 62 62 65 65 70 60 67

T3 79 74 76 75 65 69 69 69 69 76 63 76

T4SR 43 41 45 48 45 50 49 53 50 54 51 49

T4R 65 63 64 65 62 62 63 68 63 73 63 65

Table 6 Relative reductions in standard error (29) compared to those of the direct

estimates (%), per province for the structural time-series models.

se(signal) se(trend) se(growth)

direct 100

T1SR 57 41 6

T2SR 51 33 4

T2S 46 23 4

T2R 34 33 4

T3SR 53 35 9

T3R 36 35 9

T3R2 36 34 9

T3 28 26 9

T4SR 52 34 4

T4R 35 34 4

Table 7 Means of standard errors over all months and provinces relative to themean

of the direct estimator's standard errors (%) for the structural time-series models.
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Figure 10 Comparison of standard errors.
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Figure 11 Comparison of estimates.
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Figure 12 Comparison of standard errors.
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Figure 13 Comparison of estimates.

Statistics Netherlands | Discussion paper 2016|10 32



● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●
●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

●

●

Groningen Drenthe

Flevoland Utrecht

Zuid−Holland Zeeland

0.00015

0.00020

0.00025

0.00030

0.00015

0.00020

0.00025

0.00030

0.00035

5e−04

1e−03

1e−04

2e−04

3e−04

4e−04

0.00015

0.00020

0.00025

0.00030

0.00035

2e−04

3e−04

4e−04

Jan
2004

Jan
2005

Jan
2006

Jan
2007

Jan
2008

Jan
2004

Jan
2005

Jan
2006

Jan
2007

Jan
2008

month

s
ta

n
d

a
rd

 e
rr

o
r

se(growth)
● STS T2SR

STS T3SR

STS T4SR

Figure 14 Comparison of standard errors.
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Figure 15 Comparison of estimates.
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Figure 16 Comparison of standard errors.
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Figure 17 Comparison of estimates.
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Figure 22 Comparison of standard errors.

Statistics Netherlands | Discussion paper 2016|10 41



5.2 Results multilevel models

The ten models T1SR to T4R on page 20 fitted using STM have also been fitted using the

Bayesian multilevel approach. In II the multilevel models are specificied in terms of the fixed

and random effect components included. One difference between the two approaches is that

the Bayesian approach accounts for uncertainty in the hyperparameters by considering their

posterior distributions, implying that variance parameters do not actually become zero, as

frequently happens for the maximum likelihood estimates in the STM approach. For

comparison purposes, however, effects absent from the STMmodel due to zero maximum

likelihood estimates have also been suppressed in the corresponding multilevel models. In

addition to these ten models we consider one more model with extra terms including a

dynamic RGB component as well as a white noise term.

Differences between STM andmultilevel estimates based on the ten models considered can

arise because of

– the different estimation methods, maximum likelihood versus MCMC

– the different modeling of survey errors. In the multilevel models the survey errors’

covariance matrix is taken to be Σ = ⊕
􀐙􀓫

􀐕􀍹􀍮𝜆􀐕Φ􀐕 withΦ􀐕 the covariance matrix of estimated

design variances for the initial estimates for province 𝑖, and 𝜆􀐕 scaling factors, one for each

province. In the STMmodels the survey errors are allowed to depend onmore parameters,

as shown in equation (16), though eventually an AR(1) model is used to approximate these

dependencies.

– the slightly different parameterizations of the trend components. For the trend in model T3,

for example, the province of Groningen is singled out by the STMmodel used, because no

local level component is added for that province.

The estimates and, to a lesser extent, the standard errors based on the multilevel models are

quite similar to the STM results for the corresponding models, as can be seen from figures

23-34, showing the estimates and standard errors for the signals, trends, andmonth-to-month

differences. In order to save space these results are only presented for twomodels, namely T2R

and T3R2, but the qualitative differences between STM andmultilevel results are quite

consistent over all models.

Particularly the estimates of the signal are very similar for STM andmultilevel models (Figures

23 and 29). The small differences are due to slightly more flexible trends in the estimated

multilevel models. Larger differences can be seen in the standard errors of the signal (Figures

24 and 30): the multilevel models yield almost always larger standard errors for provinces with

high unemployment levels (left column of the figures), whereas for provinces with smaller

unemployment levels (right column of the figures) the differences are less pronounced and for

somemodels the multilevel standard errors are smaller than the STM ones (for example for

model T1SR, results not shown).

Concerning the trends, the differences between STM andmultilevel estimates are again quite

small (Figures 25 and 31), although it can be seen that the multilevel estimates are slightly

more flexible. The standard errors for the trends are mostly larger for the multilevel model

(Figures 26 and 32), especially for provinces with high unemployment. Also, the multilevel

standard errors showmore variation over time.
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The somewhat larger flexibility of the multilevel trends is more clearly visible in the figures

comparing the month-to-month differences (Figures 27 and especially 33). The standard errors

of these differences are for all models notably larger in the multilevel case, see Figures 28 and

34. In some cases the difference is larger than a factor two. The multilevel standard errors are

more variable over time as well. We have checked that the larger variation over time of the

multilevel standard errors is not an artifact of Monte Carlo simulation error. Model T3R2 has

also been estimated using 9000 instead of 1200 draws, and the results remained approximately

the same. Only the fluctuations of the standard errors for month-to-month changes for

unemployment in Flevoland became visibly smaller, but not much (not shown).
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Figure 23 Comparison of estimates.
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Figure 24 Comparison of standard errors.
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Figure 25 Comparison of estimates.
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Figure 26 Comparison of standard errors.
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Figure 27 Comparison of estimates.
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Figure 28 Comparison of standard errors.
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Figure 29 Comparison of estimates.
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Figure 32 Comparison of standard errors.
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Trend component T1SR T2SR T3SR T4SR

Overall 1.9e-4 2.0e-4

Grn 3.6e-4 2.9e-4 7.8e-4 1.4e-4

Frsl 2.7e-4 2.1e-4 5.7e-4 6.2e-5

Drn 3.1e-4 2.6e-4 5.1e-4 9.1e-5

Ovr 1.8e-4 1.6e-4 2.5e-4 4.6e-5

Flv 4.1e-4 3.4e-4 1.3e-3 2.2e-4

Gld 1.9e-4 1.7e-4 2.9e-4 3.9e-5

Utr 2.2e-4 1.6e-4 5.2e-4 1.1e-4

N-H 2.2e-4 1.9e-4 3.8e-4 3.6e-5

Z-H 2.0e-4 1.8e-4 3.8e-4 5.3e-5

Zln 2.0e-4 1.6e-4 6.3e-4 6.5e-5

N-B 1.8e-4 1.5e-4 3.9e-4 5.7e-5

Lmb 1.8e-4 1.6e-4 2.4e-4 4.2e-5

Table 8 Posterior means of standard errors for the multilevel models' trend

components.

The larger flexibility of the multilevel model trends is most likely due to the relatively large

uncertainty about the variance parameters for the trend, which is accounted for in the Bayesian

multilevel approach but ignored in the maximum likelihood STM approach. The posterior

distributions for the trend variance parameters are also somewhat right-skewed. The posterior

means for the standard deviations listed in Table 8 are always larger than the maximum

likelihood estimates for the corresponding STM hyperparameters (Table 2). For the models

with trend type 2, i.e. with a fully parametrized covariancematrix over provinces, themultilevel

models show positive correlations among the provinces, as do the STMmaximum likelihood

estimates, but the latter are muchmore concentrated near 1 (Table 3), whereas the posterior

means for correlations in the corresponding multilevel model T2SR are all between 0.45 and

0.8.

The standard errors for the quantities of interest under the multilevel model are generally

larger than those under the STMmodels. This also is most likely due to the fact that the

hyperparameter uncertainty is taken into account by the Bayesian multilevel approach.

Table 9 contains values of the DIC model selection criterion (Spiegelhalter et al., 2002), the

associated effective number of model parameters, and the posterior mean of the

log-likelihood. The parsimonious model T3 is selected as the most favourable model by the DIC

criterion. So in this case the DIC criterion selects the samemodel, as the AIC and BIC criteria for

the STMmodels. An advantage of DIC is that it uses an effective number of model parameters

depending on the size of random effects, instead of just the number of model parameters used

in AIC/BIC.

Table 10 shows the MRBmeasures defined in equation (28) for the estimates based on the

multilevel models. The results are quite similar to those based on the STMmodel, see Table 5.

Again, the parsimonious model T3 selected as best by DIC comes with larger average bias over

time for the provinces Groningen and Flevoland, which have the highest rates of

unemployment. Model T3R2 has much smaller average biases for Groningen and Flevoland

compared to model T3 (but slightly larger bias for Gelderland). Since its DIC value is not that

much higher than for model T3, model T3R2 seems to be a good compromise betweenmodels
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DIC p_DIC mean llh

T1SR -29054 255 14655

T2SR -29076 235 14656

T2S -29129 196 14662

T2R -29164 118 14641

T3SR -29081 242 14662

T3R2 -29217 94 14655

T3R -29174 126 14650

T3 -29230 82 14656

T4SR -29084 228 14656

T4R -29170 109 14640

Table 9 DIC, effective number of model parameters and posterior mean of

log-likelihood.

T3 and T3R, being more parsimonious than T3R and respecting provincial differences better

than model T3.

Grn Frs Drn Ovr Flv Gld Utr N-H Z-H Zln N-B Lmb

T1SR 1.0 0.7 3.0 -0.5 0.1 3.1 -0.1 0.5 1.5 -2.1 0.1 2.6

T2SR 0.8 0.8 2.9 -0.5 0.3 3.1 -0.2 0.5 1.5 -1.8 0.1 2.6

T2S -2.9 2.4 0.8 1.2 -3.8 2.5 1.5 0.7 0.2 2.0 1.5 1.2

T2R 0.7 0.5 2.7 -0.6 -0.0 3.1 -0.2 0.4 1.5 -1.8 0.4 2.5

T3SR 0.8 0.5 2.7 -0.4 -0.3 3.1 -0.0 0.3 1.4 -2.1 0.4 2.5

T3R 0.5 0.6 2.5 -0.4 -0.4 3.0 0.0 0.4 1.5 -1.9 0.5 2.4

T3R2 0.3 0.8 2.4 -0.7 -0.6 3.1 0.1 0.5 1.3 -1.6 0.6 2.0

T3 -3.4 2.0 0.3 1.2 -4.7 2.4 1.8 0.5 0.3 2.3 1.8 1.2

T4SR 0.8 0.8 2.9 -0.4 -0.1 3.1 -0.1 0.5 1.4 -2.0 0.2 2.6

T4R 0.8 0.6 2.7 -0.5 -0.4 3.2 -0.2 0.4 1.6 -1.7 0.4 2.5

Table 10 Mean Relative Bias averaged (28) over time (%), per province for

multilevel models

Table 11 shows the RRSE defined in (29) between the multilevel time-series model (signal)

estimates and the direct estimates. Table 12 contains the averages of standard errors for

signal, trend andmonth-to-month differences in the trend. The average is taken over all

months and provinces. The results are again similar to the STM results, see Tables 6 and 7,

although especially the standard errors of month-to-month changes are larger under the

multilevel models.

5.2.1 A model with additional random effects

Many of the variance parameters of the general STMmodel discussed in Section 4.1 were

estimated at zero by maximum likelihood. This means that the trigonometric seasonal reduces

to fixed effect dummies for the seasons, that a white noise term is absent, and that RGB

corrections are time invariant. In the multilevel models considered so far, we have removed

these same effects as well, in order to get more comparable results. We now consider an

extendedmultilevel model where some of these effects as well as other random effects are

included. Unlike maximum likelihood estimation, the Bayesian approach accounts for the

uncertainty about the variance parameters, so that once random effects terms are included

their effect will never be zero, although it can still be small.
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Grn Frs Drn Ovr Flv Gld Utr N-H Z-H Zln N-B Lmb

T1SR 33 45 45 46 41 47 51 45 41 55 48 45

T2SR 35 47 46 50 44 49 53 47 43 56 51 47

T2S 40 50 51 53 48 53 56 51 45 59 53 52

T2R 53 62 62 62 61 60 63 59 55 69 60 61

T3SR 36 47 49 50 41 50 51 47 42 55 48 50

T3R 55 62 65 65 57 57 62 60 55 68 58 64

T3R2 55 62 65 65 56 57 62 60 55 67 59 64

T3 62 68 71 71 61 61 66 64 59 73 62 71

T4SR 37 49 48 50 44 51 52 49 43 57 50 49

T4R 56 65 65 63 61 63 63 63 57 71 60 63

Table 11 Reductions in standard error compared to those of the direct estimates

(%), per province, for the multilevel time-series models

se(signal) se(trend) se(growth)

direct 100

T1SR 55 41 8

T2SR 52 37 6

T2S 49 33 7

T2R 39 38 6

T3SR 53 38 15

T3R 39 38 15

T3R2 39 38 15

T3 34 32 15

T4SR 51 36 6

T4R 37 36 6

Table 12 Means of standard errors over all months and provinces relative to the

mean of the direct estimator's standard errors (%) for the multilevel time-series

models

To investigate, we fit an extended version of model T3R2 where the linear predictor is extended

with

– a white noise term with a single variance parameter, 𝜖􀐕􀐠
􀎠􀎥􀎛
∼ 𝑁(0, 𝜎􀍯􀑛 )

– the balanced dummy seasonal effect as described earlier. We only include an overall such

effect, as it turned out that including one for each province tends to overfit the data.

– a dynamic RGB component as described in Section 4.1. Again, we only include an overall

effect, not one for each province. The effects corresponding to the first wave are

constrained to zero.

– season by province random effects, summing to zero over the seasons for each province

Note that this extendedmodel specification includes all second order interactions among the

variables month, season, wave and area, except wave by season. Model T3R2 includes wave by

area fixed effects differentiating only between wave 1 and follow-up waves. It was found that

including wave by area random effects instead of fixed effects had a much smaller bias

reducing effect for the provinces Groningen and Flevoland.

The results from this extendedmodel, abbreviated by T3R2e are compared to those of models

T3R2 and T3SR, and shown in Figures 35-40.
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From Figure 35 it is clear that the estimates of the signal based on the extendedmodel are

quite close to the estimates for model T3R2. So the additional estimated random effects are

small. Figure 36 shows that for the signal standard errors the results based on the extended

model T3R2e are between those of models T3R2 and T3SR, but much closer to the former for

most provinces. The DIC value for model T3R2e is -29260 (with 161 effective model

parameters), which is well below the DIC value for model T3R2 (Table 9). It turns out that this

improvement in the DIC is almost entirely due to the dynamic RGB component. The other

additional random components of model T3R2e hardly affect the DIC value. Apparently,

modelling the RGB as a dynamic effect results in a markedly better fit, despite the zero

maximum likelihood estimates that were found for the variance of the time-dependence of

RGB effects in the STMmodel. Referring back to Figure 3, it is not really surprising that some

time-dependence of RGB results in a better fit.

Figure 37 shows the trends for the three models. For model T3R2e we have defined the trend

by the predictions based only on the trend components in the model, excluding not only all

seasonal effects, but also the white noise term. The trend for model T3R2e deviates slightly

from those of models T3R2 and T3SR, presumably because of the (indirect) effect of the

dynamic RGB component. The standard errors of the trend for model T3R2e are qualitatively

similar to those for model T3R2, although somewhat larger for province Zuid-Holland, see

Figure 38. The month-to-month changes in unemployment are also similar between the three

models (Figure 39). However, their standard errors are quite different, as shown in Figure 40.

The extendedmodel T3R2e has larger standard errors for Utrecht and Zeeland, but smaller for

the other displayed provinces. For the provinces not shown the differences are smaller, though

there is one province (Gelderland) where the standard errors based on T3SR are about 25%

smaller than the standard errors based on the other twomodels.
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Figure 38 Comparison of standard errors.
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Figure 39 Comparison of estimates.
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Figure 40 Comparison of standard errors.
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6 Discussion

A time-series small area estimation model has been applied to a large amount of survey data,

comprising 6 years of Dutch LFS data, to estimate monthly unemployment fractions for 12

provinces over this period. Estimation is carried out in two stages in order to limit the

computational burden andmodel complexity. First, the unit-level data are aggregated to the

month by province level by means of a survey regression estimator that reduces non-response

bias. The Dutch LFS is a rotating panel survey with five waves differing according to their

time-in-panel, and initial survey regression estimates are computed for each wave. The

resulting set of initial estimates together with estimates of their standard errors and

correlations are input for the time-series SAEmodel, which borrows strength over provinces

and over time to yield improved estimates. Besides, the model accounts for rotation group bias

relative to the first wave by modeling it as a measurement error, and accounts for the serial

correlation in the survey errors. Twomodelling approaches are applied and compared. The first

one is a state-space model estimated with a Kalman filter where the unknown

hyperparameters are replaced by their maximum likelihood estimates. The second one is a

multilevel time-series approach. A Bayesian approach is taken, and the model is fit using a

Gibbs sampler. Sparse matrices are used for fast generation of draws from the full conditional

distributions, while multiplicative redundant reparameterizations are used to speed up

convergence of the sampler.

The time-series models that do not account for cross-sectional correlations and borrow

strength over time only, already show amajor reduction of the standard errors compared to

the direct estimates. A further small decrease of the standard errors is obtained by borrowing

strength over space through cross-sectional correlations in the time-series models. In this

paper analyses are based on smoothed estimates, which implies that time-series model

estimates are based on the completely observed series. However, a regular production process

will normally produce estimates for the current, latest period only. In that case the reduction of

standard errors brought about by the time-series model is smaller, because strength over time

is only borrowed from the past. Another great advantage of the time-series model approach

concerns the estimation of change. Under the multilevel model estimates of change and their

standard errors can be easily computed, especially when the model fit is in the form of an

MCMC simulation. Under the state-space approach, estimates of change follow directly from

the Kalman filter recursion by keeping the required state variables from the past in the state

vector. The desired estimate for the change, including its standard error, follows from the

contrast of the specific state variables. Time-series models are particularly appropriate for

making estimates of change. Month-to-month and year-to-year change of monthly data are

very stable and precise, which is a consequence of the strong positive correlation between level

estimates. Nevertheless, the stability of the estimates of change strongly depends on the

choice of the trendmodel. Local level models result in more volatile trend estimates and thus

also more volatile estimates of change and naturally have a higher standard error compared to

smooth trendmodels.

Annual estimates and year-to-year estimates for annual change can be derived as linear

combinations from themonthly figures. A topic for further research is to compare these

estimates obtained from the time-series modelling approach with direct estimates, which are

in general also very reliable at national and provincial level.
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In this paper different trendmodels are considered that model correlation between domains

with the purpose to borrow strength over time. The most complex approach is to specify a full

covariance matrix for the disturbance terms of the trend component. One way to construct

parsimonious models is to take advantage of cointegration. In the case of strong correlation

between domains the covariance matrix will be of reduced rank, which means that the trends

of the𝑚􀏳 domains are driven by less than𝑚􀏳 common trends. In this application two common

trends are sufficient to model the dynamics of the twelve provinces, resulting in a strong

reduction of the number of hyperparameters required tomodel the cross-sectional correlations

between the domains. In order to further reduce the number of state and hyperparameters

alternative trendmodels are considered that implicitly account for cross-sectional correlations.

Under this approach all domains share the same trend. Each domain has a domain specific

trend to account the deviation between the overall trend and the domain specific trend. This

can be seen as a simplified form of a common trendmodel. In this application the trends

obtained under this alternative trend model results in comparable estimates for the trends and

standard errors. So this approach might be a practical attractive alternative for common trend

models. For example if the number of domains is large or the number of common factors is

larger, then the proposed trendmodels are less complex compared to general common trend

models.

A difference between the multilevel models and state space models is that under the former,

model components are more often found to be time varying, while under the state-space

approach most components, with the exception of the trend, are estimated as time invariant.

This is a result of the method of model fitting. Under the frequentist approach, used to fit

state-space models, maximum likelihood estimates for most of the hyperparameters are

estimated zero. Under the hierarchical Bayesian approach the entire distribution of the

variance parameters is simulated resulting in mean values for these hyperparameters that are

always positive. A consequence of this feature is that the covariances between the trend

disturbances are smaller under the hierarchical Bayesian approach, which makes it difficult to

detect cointegration and construct common factor models. An advantage of the hierarchical

Bayesian approach is that the standard errors of the domain predictions account for the

uncertainty of replacing the unknown hyperparameters for their estimates. As a result the

standard errors obtained under the hierarchical Bayesian approach of comparable models are

slightly higher andmore realistic compared to the state-space approach. For the state-space

approach several bootstrap methods are available to account for hyperparameter uncertainty

(Pfeffermann and Tiller, 2005). These procedures are not applied in this paper.

Another advantage of the multilevel approach is the possibility to use DIC or the conditional

AIC that uses the effective degrees of freedom, defined as the trace of the Hat matrix that

maps the observed data to the predicted values, as a penalty for model complexity. This also

accounts for the size of the random effects in the multilevel models.

From a computational point of view, there are some differences between themethods too. The

STM Kalman filter approach can be used online, producing new filtered estimates by updating

previous predictions when data for a newmonth arrives. The Gibbs sampler multilevel

approach used here produces estimates for the whole time-series at once. It must be

re-estimated completely when data for a newmonth arrives. However, due to the use of sparse

matrices and redundant reparameterization the multilevel approach is quite competitive

computationally, see also Knorr-Held and Rue (2002). An advantage of the simultaneous

multilevel estimation is that constraints over time can easily be imposed. For example,
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imposing sum-to-zero constraints over time allows to include local level provincial trends for all

provinces in addition to a global smooth trend with no resulting identification issues.

The time-series standard errors are very smooth, and a more thoroughmodel evaluation is

necessary to find out whether that is appropriate or whether the time-series model underfits

the unemployment data or is open to improvement in other ways. There are many ways in

which the time-series SAEmodel may be extended to further improve the estimates and

standard errors. For example, it may be an improvement to use a logarithmic link function in

the model formulation as in You (2008). Effects would then bemultiplicative instead of

additive. Another improvement would come from amore extensive modeling of the sampling

variances (You and Chapman, 2006; You, 2008; Gómez-Rubio et al., 2010). The models can also

be improved by including additional auxiliary information at the province by month level, for

instance registered unemployment. In Datta et al. (1999) similar effects associated with

unemployment insurance are modeled as varying over areas, although not over time.

Another issue is that survey redesigns can occur. The Dutch LFS has undergone redesigns in

2010 and 2012, which have led to changes in non-sampling error and consequent level changes

in the time-series of direct unemployment estimates. To account for such changes,

intervention variablesmay be added (van den Brakel and Krieg, 2015) as additional components

in the measurement part of model (10). A last practical issue is that of benchmarking the

detailed estimates obtained from the multilevel time-series model so as to agree with

estimates at a higher level of aggregation. The estimates at a high level of aggregation are

often estimated prior to the detailed figures, using different methods; in the case of the Dutch

LFS, national unemployment figures are currently estimated using a structural time-series

model. To obtain a consistent set of published estimates the detailed figures can be minimally

adjusted so as to agree with these national estimates. Another possibility is to derive national

monthly figures from the domain estimates by aggregation. If estimates for multiple related

target variables are based on separate models, more consistency relations may have to be

imposed. For the purpose of benchmarking and imposing more general consistency relations

various methods are available, see for example Bell et al. (2013) and references therein.
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Appendices
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I Multilevel and structural formulations

of time-series models

To clarify the relation between the multilevel and structural approaches to time-series models,

we use the example of the simple local level model, which, in its structural formulation is given

by (see e.g. Durbin and Koopman (2001))

𝑦􀐠 = 𝛼􀐠 + 𝜖􀐠 , 𝜖􀐠 ∼ 𝑁(0, 𝜎􀍯􀑛 ) , (30)

𝛼􀐠􀍷􀍮 = 𝛼􀐠 + 𝜂􀐠 , 𝜂􀐠 ∼ 𝑁(0, 𝜎􀍯􀑇 ) , (31)

for 𝑡 = 1,… , 𝑇where 𝜖􀐠 and 𝜂􀐠 are all independent.

A multilevel specification of the local level model can be stated in terms of the vectors

𝛼 = (𝛼􀍮, … , 𝛼􀐆)
􀚄 and similarly defined 𝑦 and 𝜖, as

𝑦 = 𝛼 + 𝜖 , 𝜖 ∼ 𝑁(0, 𝜎􀍯􀑛 𝐼􀐆) , (32)

𝛼 ∼ 𝑁(0, 𝜎􀍯􀑇𝑄
􀍸􀍮) , (33)

where 𝐼􀐆 is the 𝑇-dimensional identity matrix, and
􀍮

􀑒􀑧􀔿
𝑄 is the precision matrix of 𝛼 given by

𝑄 =

⎛
⎜
⎜
⎜

⎝

1 −1

−1 2 −1

−1 2 −1

⋱ ⋱ ⋱

−1 2 −1

−1 1

⎞
⎟
⎟
⎟

⎠

. (34)

The reason for expressing the multivariate normal distribution for 𝛼 in terms of its precision

matrix instead of its covariance matrix is that it is directly related to the conditional

independence structure of the randomwalk. The precision matrix in this case is a simple band

matrix with bandwidth equal to 1, and thus very sparse for large 𝑇.

To see that the multilevel and structural specifications define the samemodel, consider the

covariance matrix of 𝛼 implied by (31). Given 𝛼􀍮 we have

cov(𝛼􀐟, 𝛼􀐠|𝛼􀍮) = min(𝑠 − 1, 𝑡 − 1)𝜎􀍯􀑇 . If an independent prior 𝛼􀍮 ∼ 𝑁(𝑎􀍮, 𝑣􀍮𝜎
􀍯
􀑇 ) is assigned,

then the elements of the covariance matrix are

𝑉􀑁;􀐟􀐠 = c𝑜𝑣(𝛼􀐟, 𝛼􀐠) = (𝑣􀍮 +min(𝑠 − 1, 𝑡 − 1)) 𝜎􀍯􀑇 . This matrix can be inverted to give

𝑄􀑁 = 𝜎􀍯􀑇𝑉
􀍸􀍮
􀑁 =

⎛
⎜
⎜
⎜

⎝

1 + 1/𝑣􀍮 −1

−1 2 −1

−1 2 −1

⋱ ⋱ ⋱

−1 2 −1

−1 1

⎞
⎟
⎟
⎟

⎠

. (35)

In the diffuse prior limit 𝑣􀍮 → ∞, which in Durbin and Koopman (2001) gives the so-called exact

initial Kalman filter,𝑄􀑁 reduces to𝑄, thus restoring the symmetry over time. In this limit the

precision matrix remains well-defined, although it becomes singular, as𝑄𝜄􀐆 = 0􀐆, where 𝜄􀐆 and

0􀐆 are 𝑇-vectors of 1s and 0s. The resulting prior (33) is improper, and the associated random

walk model component is an intrinsic autoregressive model (Besag and Kooperberg, 1995; Rue

and Held, 2005). The prior impropriety corresponds to the non-informativeness about the
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overall level of the randomwalk. It is customary to add an intercept to the multilevel model to

capture the mean level of the series,

𝑦􀐠 = 𝜇 + 𝛼􀐠 + 𝜖􀐠 , 𝜖􀐠 ∼ 𝑁(0, 𝜎􀍯􀑛 ) , (36)

with a non-informative prior on 𝜇. For identification and interpretability reasons, a sum-to-zero

constraint is then imposed on 𝛼:

𝜄􀚄􀐆𝛼 = 0 . (37)

Now 𝛼 is more easily recognized as a random effect term distributed around zero, although

temporally correlated.

II Multilevel model speci􀅮ications

Here we specify the fixed and random effect components used in the multilevel models. In the

ten models T1SR to T4R the first two characters determine the random trend component(s)

and the remaining ones determine the fixed effects used in the model. The trend components

are summarized in Table 13, the fixed effects in Table 14.

The random effect components are described in terms of the general specification described in

Section 4.2, in paricular equation (24), i.e. in terms of their parameterized variance matrix 𝑉,

precision matrix𝑄􀏳 = 𝐴􀍸􀍮, and constraint matrix 𝑅 that is imposed on the random effect

coefficient vector. The matrix 𝑉 can be a diagonal matrix, a fully parameterized unstructured

covariance matrix or just a scalar variance parameter. This is indicated in the corresponding

column in Table 13 with the dimension of 𝑉 appended between parentheses. Recall that𝑚􀏳 is

the number of areas, i.e. provinces. The precision matrix𝑄􀏳 is given in the next column, in

which𝑄􀐄􀐉􀍮 stands for a first-order randomwalk precision matrix defined in equation (34) and

𝑄􀐄􀐉􀍯 for a second-order randomwalk precisionmatrix defined in equation (25). The dimension

is appended between parentheses and as all randomwalks are defined over time, it is always

𝑚􀐆. The last column lists the constraint matrices, which stem from the singular vectors of the

precision matrices𝑄􀏳. Here 𝑅􀐄􀐉􀍮(𝑚􀐆) is a row-vector of𝑚􀐆 ones, and 𝑅􀐄􀐉􀍯(𝑚􀐆) is a 2 × 𝑚􀐆

matrix with ones on the first row and 1, 2, … ,𝑚􀐆 on the second row.

trendmodel component 𝑉 𝑄􀏳 𝑅

T1 provincial trend diagonal(𝑚􀏳) 𝑄􀐄􀐉􀍯(𝑚􀐆) 𝐼􀐙􀓫
⊗𝑅􀐄􀐉􀍯(𝑚􀐆)

T2 provincial trend unstructured(𝑚􀏳) 𝑄􀐄􀐉􀍯(𝑚􀐆) 𝐼􀐙􀓫
⊗𝑅􀐄􀐉􀍯(𝑚􀐆)

T3 global trend scalar(1) 𝑄􀐄􀐉􀍯(𝑚􀐆) 𝑅􀐄􀐉􀍯(𝑚􀐆)

provincial trend diagonal(𝑚􀏳) 𝑄􀐄􀐉􀍮(𝑚􀐆) 𝐼􀐙􀓫
⊗𝑅􀐄􀐉􀍮(𝑚􀐆)

T4 global trend scalar(1) 𝑄􀐄􀐉􀍯(𝑚􀐆) 𝑅􀐄􀐉􀍯(𝑚􀐆)

provincial trend diagonal(𝑚􀏳) 𝑄􀐄􀐉􀍯(𝑚􀐆) 𝐼􀐙􀓫
⊗𝑅􀐄􀐉􀍯(𝑚􀐆)

Table 13 Random effect components de􀅮ining the four different trendmodels

The fixed effects in Table 14 are specified in terms of the variables province (12 categories),

time (a single quantitative variable taking values 1,…𝑚􀐆), season (12 categories), wave (5

categories) and wave2 (2 categories, distinguishing only between first and follow-up wave).
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fixed effects model fixed effects

SR province× (time + season + wave)

S province× (time + season) + wave

R province× (time + wave) + season

R2 province× (time + wave2) + season + wave

no S or R specified (as in model T3) province× time + season + wave

Table 14 Fixed effects used in the models

IIIGibbs sampler for the multilevel time-

series model

For notational convenience we rewrite model (22) as

𝑦 = 𝜂 + 𝑒 (38)

where 𝑦 = ̂𝑌̄ is the data vector consisting of𝑚 initial estimates, 𝜂 is a linear predictor built from

various fixed and random effect terms, and 𝑒 is a vector of survey errors, modeled as

𝑒 ∼ 𝑁(0,⊕
􀐙􀓫

􀐕􀍹􀍮𝜆􀐕Φ􀐕) , (39)

in terms of a covariance matricesΦ􀐕 depending on initial variance estimates treated as known,

and scale factors 𝜆􀐕, one for each area 𝑖 = 1,… ,𝑚􀏳.

Three vectors of quantities of interest are considered, and all of them can be expressed as

linear combinations of the fixed and random effects. Let 𝜃 be such a vector of parameters of

interest. Inference about 𝜃 is based on its posterior distribution 𝑝(𝜃|𝑦). This distribution

cannot be obtained in closed form and cannot be directly sampled from. Therefore we use a

Markov chain Monte Carlo (MCMC) method, and in particular the Gibbs sampler (Geman and

Geman, 1984; Gelfand and Smith, 1990). Using the Gibbs sampler we sample from the joint

posterior 𝑝(𝜓| ̂𝑌̄)where𝜓 is the vector of all model parameters, including 𝜆, 𝛽 and the

parameters associated with each random effect term. The joint posterior is determined by the

model and prior specifications,

𝑝(𝜓|𝑦) ∝ 𝑝(𝜓)𝑝(𝑦|𝜓) , (40)

up to a normalization constant. The Gibbs sampler generates samples from this posterior

distribution, and from these samples and the definition of the parameters of interest 𝜃we

obtain posterior samples for the latter.

The Gibbs sampler does not directly sample from the joint posterior. Instead, it iteratively

samples from the full conditional distributions 𝑝(𝜓􀐓|𝑦, 𝜓􀍮, … , 𝜓􀐓􀍸􀍮, 𝜓􀐓􀍷􀍮, … , 𝜓􀏹), for a

suitable decomposition of𝜓 in blocks𝜓􀐓, 𝑔 = 1,… , 𝐺. The full conditionals for the class of

linear multilevel models considered in this paper are easy to sample from: they are normal for

all (fixed or random) coefficients and inverse chi-squared or inverse-Wishart for the variance

parameters. With 𝐺 the number of parameter blocks and𝐾 the number of simulations, the

Gibbs sampling algorithm is as follows:

choose starting values𝜓
(􀍭)
􀐓 for 𝑔 = 1,… , 𝐺

for 𝑘 in 1 to𝐾
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for 𝑔 in 1 to 𝐺

draw𝜓
(􀐗)
􀐓 from 𝑝(𝜓􀐓|𝑦, 𝜓

(􀐗)
􀍮 , … , 𝜓

(􀐗)
􀐓􀍸􀍮, 𝜓

(􀐗􀍸􀍮)
􀐓􀍷􀍮 , … , 𝜓

(􀐗􀍸􀍮)
􀏹 )

After convergence, samples can be considered draws from 𝑝(𝜓|𝑦).

Below we give the full conditional distributions for all model parameters. The vector 𝛽 of fixed

effects is sampled in a single block, and each random effect term 𝑣(􀑁) is considered a block as

well.

III.0.2 Full conditional distributions

For the vector of data-level variance parameters we use as prior

𝜆􀐕
􀎠􀎥􀎛
∼ Inv−𝜒􀍯(1, 1) , (41)

for 𝑖 = 1,… ,𝑚. We have thatΦ = ⊕
􀐙􀓫

􀐕􀍹􀍮Φ􀐕, since initial estimates for different areas are

uncorrelated. The full conditional for 𝜆􀐕 is then

𝑝(𝜆􀐕|𝑦, .) ∝ 𝑝(𝜆􀐕)𝑁 (𝑒|0, 𝜆􀐕Φ􀐕) , (42)

independently for 𝑖 = 1,… ,𝑚􀏳, where 𝑒 = 𝑦 − 𝜂 is the vector of residuals. We use the notation

. in 𝑝(𝜆􀐕|𝑦, .) to denote conditioning on all other parameters. This yields inverse chi-squared

distributions

𝑝(𝜆􀐕|𝑦, .) = Inv−𝜒􀍯(𝜆􀐕|𝑑􀐕, 𝑠􀐕) ,

𝑑􀐕 = 𝑛􀐕 + 1 ,

𝑠􀐕 =
1

𝑑􀐕
(1 + 𝑒􀚄{􀐕}Φ

􀍸􀍮
􀐕 𝑒{􀐕}) ,

(43)

where subscript {𝑖} denotes taking the elements associated with the 𝑖th level of factor 𝑓, and 𝑛􀐕
is the number of those elements. In our case all 𝑛􀐕 = 𝑚/𝑚􀏳 for all 𝑖.

Given a prior distribution 𝑝(𝛽) = 𝑁(𝛽|𝑏􀍭, Ω􀑂), the full conditional distribution for the vector 𝛽

of fixed effects is

𝑝(𝛽|𝑦, .) = 𝑁(𝛽|𝐸􀑂, 𝑉􀑂) ,

𝑉􀑂 = (𝑋􀚄Σ􀍸􀍮𝑋 + Ω􀍸􀍮
􀑂 )

􀍸􀍮

,

𝐸􀑂 = 𝑉􀑂 (𝑋
􀚄Σ􀍸􀍮𝑒􀑂 + Ω􀍸􀍮

􀑂 𝑏􀍭) ,

where Σ = ⊕
􀐙􀓫

􀐕􀍹􀍮𝜆􀐕Φ􀐕 and 𝑒􀑂 = 𝑦 − 𝜂 + 𝑋𝛽 is the vector of ’partial’ residuals.

Next, we turn to the full conditional distributions associated with a generic random effect

component 𝑍(􀑁)𝑣(􀑁). In the description below, the superscript 𝛼 is omitted.

Let 𝑍 be a 𝑛 × 𝑞 design matrix corresponding to 𝑑 effects that can vary over the 𝑙 levels of a

factor variable. Let 𝑣 be the corresponding 𝑞-vector of random effects,

𝑣 = (𝑣􀐕􀐗)
􀚄
􀐕􀍹􀍮…􀐘 ; 􀐗􀍹􀍮…􀐐 = (𝑣􀍮􀍮, 𝑣􀍮􀍯, … )􀚄, where by convention the last index runs fastest. The

random effect contribution to the linear predictor is 𝑍𝑣.

We use redundant multiplicative parameterization, which improves convergence of the Gibbs

sampler (Gelman et al., 2008), and yields more robust prior distributions for the variance

parameters (Gelman, 2006). For that purpose, a 𝑑-dimensional parameter vector 𝜉 and a
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𝑞-vector 𝑣̃ of raw random effects are introduced, which combine to form the original

coefficients as

𝑣 = Δ􀑎𝑣̃ Δ􀑎 = 𝐼􀐘 ⊗diag(𝜉) = diag(𝑊𝜉) , (44)

where𝑊 = 𝜄􀐘 ⊗ 𝐼􀐐 is a 𝑞 × 𝑑 indicator matrix, and 𝜄􀐘 is an 𝑙-vector of ones.

Priors on 𝜉 and 𝑣̃ are

𝜉 ∼ 𝑁(0, 𝐼􀐐) ,

𝑣̃ ∼ 𝑁(0, 𝐴⊗ 𝑉̃) ,
(45)

where 𝐴 is a given, possibly degenerate 𝑙 × 𝑙 covariance matrix, and 𝑉̃ a parameterized 𝑑 × 𝑑

covariance matrix.

Three different parametrizations of 𝑉̃ are considered:

a.) 𝑉̃ is an unstructured covariance matrix with prior

𝑉̃ ∼ Inv −Wish(𝜈􀐢, Ψ􀐢) , (46)

with degrees of freedom 𝜈􀐢, by default taken to be 𝑑 + 1, and 𝑑 × 𝑑 scale matrixΨ􀐢, by

default equal to 𝐼􀐐.

b.) 𝑉̃ = diag(𝜎̃􀍯􀐢;􀍮… 𝜎̃􀍯􀐢;􀐐), a diagonal variance matrix with independent inverse chi-squared

priors on the variances,

𝜎̃􀍯􀐢;􀐗
􀎠􀎥􀎛
∼ Inv−𝜒􀍯(𝜈􀐢;􀐗, 𝑠

􀍯
􀐢;􀐗) (47)

c.) 𝑉̃ = 𝜎̃􀍯􀐢 𝐼􀐐. The prior for the single common variance parameter 𝜎̃􀍯􀐢 is

𝜎̃􀍯􀐢 ∼ Inv−𝜒􀍯(𝜈􀐢, 𝑠
􀍯
􀐢) . (48)

Note that if 𝑑 = 1, parameterizations a.) and b.) reduce to c.), provided thatΨ􀐢 is identified

with 𝜈􀐢𝑠
􀍯
􀐢 .

The prior for the original coefficients 𝑣 is, given 𝜉 and 𝑉̃,

𝑣 ∼ 𝑁(0, 𝐴⊗ 𝑉) 𝑉 = diag(𝜉) 𝑉̃ diag(𝜉) . (49)

The 𝑙 × 𝑙matrix 𝐴 describes the covariance structure between the levels of the factor variable.

It is specified in terms of its inverse𝑄􀏳, which directly reflects the conditional dependence

structure between the levels and is usually sparse.

The precision matrix𝑄􀏳 may be singular. The singular vectors of𝑄􀏳 correspond to directions

along which the prior is constant, i.e. non-informative. Let 𝑅􀏳 be the 𝑙 × 𝑟matrix of singular

vectors such that𝑄􀏳𝑅􀏳 = 0. The matrix 𝑅 = 𝑅􀏳 ⊗ 𝐼􀐐 may then be used as a constraint matrix

to impose𝑅𝑣̃ = 0, or equivalently𝑅𝑣 = 0, so that other terms in themodel remain identifiable.

First we derive the full conditional for 𝜉, followed by that of 𝑉̃ and 𝑣̃. For 𝜉,

𝑝(𝜉|𝑦, .) ∝ 𝑁(𝜉|0, 𝐼􀐐)𝑁(𝑦|𝑍Δ􀑎𝑣̃ + … , Σ) (50)

Now

Δ􀑎𝑣̃ = diag(𝑊𝜉)𝑣̃ = diag(𝑣̃)𝑊𝜉 = Δ􀐢̃𝜉 , (51)

where Δ􀐢̃ = diag(𝑣̃)𝑊. Therefore,

𝑝(𝜉|𝑦, .) = 𝑁(𝜉|𝐸􀑎, 𝑉􀑎)

𝑉􀑎 = (Δ􀚄􀐢̃𝑍
􀚄Σ􀍸􀍮𝑍Δ􀐢̃ + 𝐼􀐐)

􀍸􀍮

𝐸􀑎 = (Δ􀚄􀐢̃𝑍
􀚄Σ􀍸􀍮𝑍Δ􀐢̃ + 𝐼􀐐)

􀍸􀍮
Δ􀚄􀐢̃𝑍

􀚄Σ􀍸􀍮𝑒􀐢 ,

(52)
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where 𝑒􀐢 = 𝑦 − 𝜂 + 𝑍𝑣. Note that everything can be expressed in terms of 𝑣 instead of 𝑣̃ by

using 𝑣̃ = Δ􀍸􀍮􀑎 𝑣. For 𝑑 = 1 or in the case that 𝑉̃ = 𝜎􀍯􀐢 𝐼􀐐 is defined in terms of a single variance

parameter, (52) reduces to

𝑝(𝜉|𝑦, .) = 𝑁(𝜉|𝐸􀑎, 𝑉􀑎)

𝑉􀑎 = (𝑣̃􀚄𝑍􀚄Σ􀍸􀍮𝑍𝑣̃ + 1)
􀍸􀍮

𝐸􀑎 = (𝑣̃􀚄𝑍􀚄Σ􀍸􀍮𝑍𝑣̃ + 1)
􀍸􀍮
𝑣̃􀚄𝑍􀚄Σ􀍸􀍮𝑒􀐢 .

(53)

For the full conditional distribution for 𝑉̃we distinguish between three situations:

a.) In the case that 𝑉̃ is a fully parameterised covariance matrix with an inverse Wishart prior,

𝑝(𝑉̃|𝑦, .) ∝ Inv −Wish(𝑉̃|𝜈􀐢, Ψ􀐢)𝑁(𝑣̃|0, 𝐴 ⊗ 𝑉̃)

∝ |𝐴⊗ 𝑉̃|
􀍸􀍮/􀍯

𝑒
􀍸
􀑦

􀑧
􀐢̃􀚅(􀐃􀓫⊗􀐈̃􀑰􀑦)􀐢̃

× |𝑉̃|
􀍸(􀑍􀔚􀍷􀐐􀍷􀍮)/􀍯

𝑒
􀍸
􀑦

􀑧
􀎫􀎩(􀏈􀔚􀐈̃

􀑰􀑦)

∝ |𝑉̃|
􀍸(􀑍􀔚􀍷􀐘

∗􀍷􀐐􀍷􀍮)/􀍯
𝑒
􀍸
􀑦

􀑧
􀎫􀎩[(􀏈􀔚􀍷􀐢̃

􀚅
􀓷􀐃􀓫􀐢̃􀓷)􀐈̃

􀑰􀑦]
,

(54)

where 𝑣̃􀏿 is the 𝑙 × 𝑑matrix such that 𝑣̃ = vec(𝑣̃􀚄􀏿), i.e. the matrix composed of stacking

the 𝑙 row vectors 𝑣̃􀚄􀐕 . If the precision matrix𝑄􀏳 = 𝐴􀍸􀍮 is singular and constraints associated

with all singular vectors are imposed on 𝑣̃ or 𝑣, then 𝑙∗ should be taken equal to the rank of

𝑄􀏳.
1) Otherwise 𝑙∗ = 𝑙. We used the relation

|𝐶 ⊗ 𝐷| = |𝐶|􀎩􀎘􀎥􀎢(􀏶)|𝐷|􀎩􀎘􀎥􀎢(􀏵) , (55)

as well as the relations tr(𝐶􀚄𝐷) = vec(𝐶)􀚄vec(𝐷) and vec(𝐶𝐷𝐸) = (𝐸􀚄 ⊗𝐶)vec(𝐷) from

which follows

𝑣̃􀚄 (𝑄􀏳 ⊗ 𝑉̃􀍸􀍮) 𝑣̃ = vec(𝑣̃􀚄􀏿)
􀚄 (𝑄􀏳 ⊗ 𝑉̃􀍸􀍮) vec(𝑣̃􀚄􀏿)

= vec(𝑣̃􀚄􀏿)
􀚄vec(𝑉̃􀍸􀍮𝑣̃􀚄􀏿𝑄􀏳) = tr(𝑣̃􀏿𝑉̃

􀍸􀍮𝑣̃􀚄􀏿𝑄􀏳)

= tr(𝑣̃􀚄􀏿𝑄􀏳𝑣̃􀏿𝑉̃
􀍸􀍮) .

(56)

So in the case of unstructured covariance matrix 𝑉̃,

𝑝(𝑉̃|𝑦, .) = Inv −Wish(𝑉̃|𝜈􀐢􀍮, Ψ􀐢􀍮)

𝜈􀐢􀍮 = 𝜈􀐢 + 𝑙∗

Ψ􀐢􀍮 = Ψ􀐢 + 𝑣̃􀚄􀏿𝑄􀏳𝑣̃􀏿 .

(57)

Note that 𝑉 is obtained from (49), or more immediately by drawing from an inverseWishart

distribution with the same degrees of freedom, but with scale matrix

diag(𝜉)Ψ􀐢diag(𝜉) + 𝑣􀚄􀏿𝑄􀏳𝑣􀏿 , (58)

where 𝑣􀏿 = 𝑣̃􀏿diag(𝜉).

b.) In the case that 𝑉̃ is diagonal and independent inverse chi-squared priors are assigned to the

variance parameters 𝜎̃􀍯􀐢;􀐗 for 𝑘 = 1,… , 𝑑, we have

𝑝(𝜎̃􀍯􀐢;􀍮… 𝜎̃􀍯􀐢;􀐝􀑥|𝑦, .) ∝

􀐝􀑥

∏

􀐗􀍹􀍮

(𝜎̃􀍯􀐢;􀐗)
􀍸
􀕅􀔚;􀔏

􀑧 𝑒
􀍸
􀕅􀔚;􀔏􀔗

􀑧
􀔚;􀔏

􀑧􀕊̃􀑧
􀔚;􀔏 (𝜎̃􀍯􀐢;􀐗)

􀍸􀐘∗/􀍯𝑒
􀍸

􀑦

􀑧􀕊̃􀑧
􀔚;􀔏

(􀐢̃􀚅􀓷􀐃􀓫􀐢̃􀓷)􀔏􀔏
,

1) All full confitionals are expressed in terms of the precisionmatrix􀐃􀓫, and not in terms of the covariancematrix􀏳.

Strictly speaking, the latter as inverse of 􀐃􀓫 is not well-defined, although it can still be understood as a pseudo-

inverse.
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since in this case

𝑣̃􀚄(𝑉̃􀍸􀍮 ⊗𝑄􀏳)𝑣̃ = 𝑣̃􀚄 (⊕􀐐
􀐗􀍹􀍮

1

𝜎􀍯􀐢;􀐗
𝑄􀏳) 𝑣̃ =

􀐐

∑

􀐗􀍹􀍮

1

𝜎̃􀍯􀐢;􀐗
(𝑣̃􀚄􀏿𝑄􀏳𝑣̃􀏿)􀐗􀐗

.

Therefore,

𝑝(𝜎̃􀍯􀐢;􀍮… 𝜎̃􀍯􀐢;􀐐|𝑦, .) =

􀐐

∏

􀐗􀍹􀍮

Inv−𝜒􀍯(𝜎̃􀍯􀐢;􀐗|𝜈􀐢􀍮;􀐗, 𝑠
􀍯
􀐢􀍮;􀐗)

𝜈􀐢􀍮;􀐗 = 𝜈􀐢;􀐗 + 𝑙∗

𝑠􀍯􀐢􀍮;􀐗 =
1

𝜈􀐢􀍮;􀐗
(𝜈􀐢;􀐗𝑠

􀍯
􀐢;􀐗 + (𝑣̃􀚄􀏿𝑄􀏳𝑣̃􀏿)􀐗􀐗) .

(59)

The original variance parameters are obtained by drawing independently from inverse

chi-squared distributions with the same degrees of freedom, but with scale parameters

1

𝜈􀐢􀍮;􀐗
(𝜈􀐢;􀐗𝑠

􀍯
􀐢;􀐗𝜉

􀍯
􀐗 + (𝑣􀚄􀏿𝑄􀏳𝑣􀏿)􀐗􀐗) (60)

c.) Finally, in the case that 𝑉̃ = 𝜎̃􀍯􀐢 𝐼􀐐,

𝑝(𝜎̃􀍯􀐢 |𝑦, .) ∝ (𝜎̃􀍯􀐢 )
􀍸
􀕅􀔚

􀑧 𝑒
􀍸
􀕅􀔚􀔗

􀑧
􀔚

􀑧􀕊̃􀑧􀔚 (𝜎̃􀍯􀐢 )
􀍸􀐐􀐘∗/􀍯𝑒

􀍸
􀑦

􀑧􀕊̃􀑧􀔚
􀎫􀎩(􀐢̃􀚅􀓷􀐃􀓫􀐢̃􀓷)

(61)

and so

𝑝(𝜎̃􀍯􀐢 |𝑦, .) = Inv−𝜒􀍯(𝜎̃􀍯􀐢 |𝜈􀐢􀍮, 𝑠
􀍯
􀐢􀍮)

𝜈􀐢􀍮 = 𝜈􀐢 + 𝑑𝑙∗

𝑠􀍯􀐢􀍮 =
1

𝜈􀐢􀍮
(𝜈􀐢𝑠

􀍯
􀐢 + tr(𝑣̃􀚄􀏿𝑄􀏳𝑣̃􀏿)) .

(62)

In this case the original variance parameter is 𝜎􀍯􀐢 = 𝜉􀍯𝜎̃􀍯􀐢 .

Finally, the full conditional distribution for the vector 𝑣̃ of random effects is

𝑝(𝑣̃|𝑦, .) ∝ 𝑁(𝑣̃|0, 𝐴 ⊗ 𝑉̃)𝑁(𝑦|𝑍Δ􀑎𝑣̃ + … , Σ) , (63)

implying

𝑝(𝑣̃|𝑦, .) = 𝑁(𝑣̃|𝐸􀐢̃, 𝑉􀐢̃)

𝑉􀐢̃ = (Δ􀚄􀑎𝑍
􀚄Σ􀍸􀍮𝑍Δ􀑎 + 𝑄􀏳 ⊗ 𝑉̃􀍸􀍮)

􀍸􀍮

𝐸􀐢̃ = (Δ􀚄􀑎𝑍
􀚄Σ􀍸􀍮𝑍Δ􀑎 + 𝑄􀏳 ⊗ 𝑉̃􀍸􀍮)

􀍸􀍮

Δ􀚄􀑎𝑍
􀚄Σ􀍸􀍮𝑒􀐢 .

(64)

Note that Δ􀚄􀑎 = Δ􀑎 as it is a diagonal matrix. Since 𝑣 = Δ􀑎𝑣̃ and 𝑉 = diag(𝜉)𝑉̃diag(𝜉), we can

immediately obtain 𝑣 (conditional on 𝜉 and 𝑉̃) by drawing from

𝑝(𝑣|𝑦, .) = 𝑁(𝑣|𝐸􀐢, 𝑉􀐢)

𝑉􀐢 = (𝑍􀚄Σ􀍸􀍮𝑍 + 𝑄􀏳 ⊗𝑉􀍸􀍮)
􀍸􀍮

𝐸􀐢 = (𝑍􀚄Σ􀍸􀍮𝑍 + 𝑄􀏳 ⊗𝑉􀍸􀍮)
􀍸􀍮
𝑍􀚄Σ􀍸􀍮𝑒􀐢 .

(65)

Constraints are imposed by modifying draws of 𝑣̃ or 𝑣 as follows (Rue and Held, 2005),

𝑣 → 𝑣∗ = 𝑣 − 𝑉􀐢𝑅 (𝑅
􀚄𝑉􀐢𝑅)

􀍸􀍮
𝑅􀚄𝑣 , (66)

so that 𝑅􀚄𝑣∗ = 0.
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III.1 The Deviance Information Criterion

We use the deviance information criterion (DIC) as a model comparison measure (Spiegelhalter

et al., 2002). It is easily computed from the MCMC output. The deviance is

𝐷(𝜓) = −2 log 𝑝(𝑦|𝜓) = 𝑚 log 2𝜋 + log |Σ| + 𝑒􀚄Σ􀍸􀍮𝑒 ,

where 𝑒 = 𝑦 − 𝜂. The model fit is represented by the value of the deviance at the posterior

mean of𝜓,𝐷(𝐸(𝜓|𝑦)), whereas model complexity is measured by

𝑝􀎜􀎝􀎝 = 𝐸(𝐷(𝜓)|𝑦) − 𝐷(𝐸(𝜓|𝑦)), i.e. the posterior mean of the deviance minus the deviance at

the posterior mean. This quantity is also known as the effective number of model parameters.

DIC is then defined, analogously to AIC, as

𝐷𝐼𝐶 = 𝐷(𝐸(𝜓|𝑦)) + 2𝑝􀎜􀎝􀎝 .

Models with lower DIC values are preferred.

III.2 Implementation

The above Gibbs sampler has been implemented in R (R Development Core Team, 2009), and is

being developed into a package called mcmcsae (Boonstra, 2016). The package makes

extensive use of the sparse matrix facilities provided by package Matrix (Bates andMaechler,

2010) and also of some dense and sparse matrix routines of the C++ library Eigen, via packages

Rcpp (Eddelbuettel and Francois, 2011) and RcppEigen (Bates and Eddelbuettel, 2013).
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